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Abstract

In this paper, we investigate the boundedness of maximal operator and
its commutators in generalized Orlicz-Morrey spaces on the spaces of ho-
mogeneous type. As an application of this boundedness, we give necessary
and sufficient condition for the Adams type boundedness of fractional in-
tegral and its commutators in these spaces. We also discuss criteria for the
boundedness of these operators in Orlicz spaces.
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1 Introduction

In the 1970s, in order to extend the theory of Calderén-Zygmund singular in-
tegrals to a more general setting, R. Coifman and G. Weiss introduced certain
topological measure spaces which are equipped with a metric which is compatible
with the given measure in a sense. These spaces are called spaces of homogeneous
type. In this work, we find necessary and sufficient conditions for the boundedness
of fractional integral and its commutators in Orlicz and generalized Orlicz-Morrey
spaces on spaces of homogeneous type.
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As a generalization of L,(R™), the Orlicz spaces were introduced by Birnbaum-
Orlicz in [2] and Orlicz in [29], since then, the theory of the Orlicz spaces them-
selves has been well developed and the spaces have been widely used in probabil-
ity, statistics, potential theory, partial differential equations, as well as harmonic
analysis and some other fields of analysis. They have been thoroughly investi-
gated, and two excellent monographs [22] and [31] are available on this subject.
Also [3] provides a good overview on the subject.

The spaces M, ,(R™) defined by the norm

_1
1£llas,, = sup @) B, ") 7 [ fllL,Ben)

zeR”, r>0

with a function ¢ positive and measurable on R" x (0, c0) are known as generalized
Morrey spaces. For certain functions ¢, the spaces M, ,(R") reduce to some

classical spaces. For instance, if ¢(r) = r%, where 0 < X\ < n, then M, , is the
classical Morrey space M), »

The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < ¢ <
00, then the fractional integral (also known as Riesz potential) I, (0 <a<n)

is bounded from L,(R") to L,(R") if and only if « = n <— - —> The Hardy-

Littlewood-Sobolev theorem is an important result in the fractional integral the-
ory and the potential theory. Later then, this result has been extended from
Lebesgue spaces to various function spaces.

Around the 1970’s, the Hardy-Littlewood-Sobolev inequality is extended from
Lebesgue spaces to Morrey spaces. As stated in [30], Spanne proved the following
result.

Theorem 1.1. (Spanne, but publzshed by Peetre [30]) Let0 <a <n,1<p<?Z
0 <A< n—ap. Moreover, let 11) — 5 = = and 2 = %. Then the operator I, zs
bounded from M, \(R"™) to M, (R"™).

Later on, a stronger result was obtained by Adams [I], and reproved by
Chiarenza and Frasca [6].

Theorem 1.2. (Adams [1]) Let 0 < a <n, 1 <p <2, 0< X <n—ap and
5 - % = —25. Then the operator I, is bounded from M, \(R") to M, (R"™).

For the boundedness of I, on generalized Morrey spaces see [17), [I8, 23], 32]
and references therein. The fractional integral in Orlicz spaces was studied in
[7, 24) 28, 33]. For more details we refer to survey paper [27].

Commutators of classical operators of harmonic analysis play an important
role in various topics of analysis and PDE, see for instance [4], [5 10, 11], where in
particular in [5] it was shown that the commutator [b, /] is bounded from LP(R™)
to LI(R") for 1 <p < 2, % =1 —2and be BMO(R").
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In order to extend the traditional Fuclidean space to build a general underly-
ing structure for the real harmonic analysis, the notion of spaces of homogeneous
type was introduced by Coifman and Weiss [§].

Let X = (X,d, ) be a space of homogeneous type, i.e. X is a topological
space endowed with a quasi-distance d and a positive measure p such that

d(z,y) > 0 and d(x,y) = 0 if and only if x =y,

d(z,y) = d(y,z),
d(r,y) < Ki(d(z, z) + d(2,9)), (1.1)

the balls B(z,r) = {y € X : d(z,y) < r}, r > 0, form a basis of neighborhoods
of the point x, p is defined on a o-algebra of subsets of X which contains the
balls, and

0 < u(B(z,2r) < Ko u(B(x,r)) < o0, (1.2)

where K; > 1(i = 1,2) are constants independent of x,y,z € X and r > 0. As
usual, the dilation of a ball B = B(z,r) will be denoted by A\B = B(z, Ar) for
every A > 0.

Note that (I.2) implies that

n(AB) < C(p, A) u(B), (1.3)

for all A > 1.
In the sequel, we always assume that p(X) = oo, the space of compactly
supported continuous function is dense in L, (X, ) and that X is Q-homogeneous

(@ >0), ie.
K?)_ITQ < u(B(x,r)) < Kqr¢, (1.4)

where K3 > 1 is a constant independent of x and r. The n-dimensional Euclidean
space R" is n-homogeneous.

In proving the boundedness of the fractional integral operators on various
spaces, some researchers find that the translation invariance and the doubling
properties of the Lebesgue measure play an important role. This is also true in
studying other operators such as maximal operators and various types of singular
integral operators. Thus, inspired by this fact, they studied the operators in the
homogeneous setting. We refer to [12] [16], (19, 25, 26] and references therein.

The authors introduced generalized Orlicz-Morrey spaces in [13] to investigate
the boundedness of maximal and singular operators. Generalized Orlicz-Morrey
spaces unify Orlicz and generalized Morrey spaces. Also, in [14] the authors
extended the Adams type boundedness of Riesz potential and its commutators
to the generalized Orlicz-Morrey spaces on the n-dimensional Euclidean space
R™. Moreover, the authors find criteria for the boundedness of Riesz potential
and its commutators on Orlicz spaces on the n-dimensional Euclidean space R"



in [20]. The purpose of this paper is to extend these results to the spaces of
homogeneous type.

Before describing the characterization for fractional integral and its commu-
tators in Orlicz and generalized Orlicz-Morrey spaces on spaces of homogeneous
type, we give several examples of spaces of homogeneouls type ([8, 9], 12 [16]).

(1) X =R", p(z,y) = |z —y| = <z_:1(:cj — yj)z)5 and p equals Lebesgue
measure. . ”

(2) X =R", plx,y) = > (z; —y;), where ay,as,...,q, are positive
j=1
numbers, not necessarily equal, and equals Lebesgue measure (this distance is
called nonisotropic).

(3) X =1[0,1), p(z,y) is the length of the smallest dyadic interval containing
x and y, and p is Lebesgue measure.

(4)  Any C* compact Riemannian manifold with the Riemannian metric
and volume.

(5) Let G be a nilpotent Lie group with a left-invariant Riemannian metric
and p is the induced measure.

(6) When X is the boundary of a smooth and bounded pseudo-convex
domain in C™ one can introduce a nonisotropic quasi-distance that is related to
the complex structure in such a way that we obtain a space of homogeneous type
by using Lebesgue surface measure. For example, if X is the surface of the unit
sphere

n

azn—lz{zeC":z-E:szz_jzl},

j=1

the nonisotropic distance is given by d(z,w) = |1 — 2z - w|2.

By A < B we mean that A < C'B with some positive constant C' independent
of appropriate quantities. If A < B and B < A, we write A = B and say that A
and B are equivalent.

2 Preliminaries

The Morrey spaces and weak Morrey spaces on spaces of homogeneous type are
defined as follows.

Definition 2.1. Let 1 <p <ooand 0 < X < Q,

_2A
MpA(X):{feL;“(X):nan,,,A ~ swp p||f||Lp<B<x,r>><oo},

zeX, r>0

_2A
WM,J,AX):{feL;°C<X>:||f||WM,,,A = swp v p||f||WLp<B<m,r»<oo}>

exX, r>0



where

1 lesteny = ( / y |f(y)\”du(y))p

and W L,(B(z,r)) denotes the weak L,-space of measurable functions f for which

B =

171wty = S ({y € Blar): [£(w)] > 73) -

We recall the definition of Young functions.

Definition 2.2. A function ® : [0,00) — [0, 00] is called a Young function if @
is convex, left-continuous, liIJrr10<I>(r) =®(0) =0 and lim ®(r) = oc.
r—r T—00

From the convexity and ®(0) = 0 it follows that any Young function is in-
creasing. If there exists s € (0,00) such that ®(s) = oo, then ®(r) = oo for
r > s.

Let Y be the set of all Young functions ® such that

0<®d(r) <oo for 0<r<oo

If & € Y, then ® is absolutely continuous on every closed interval in [0, 00) and
bijective from [0, 00) to itself.

The Orlicz spaces and weak Orlicz spaces on spaces of homogeneous type are
defined as follows.

Definition 2.3. For a Young function &,

Le(X) = {f € LX) : /X(ID(e|f(x)|)du(z) < oo for some € > 0 } :

11z, = int {3 > 05 [ @(H)au) <1,

WLe(X) = {f € Li (X) :sup @(r)m(r, ef) < oo for some € > 0 } ,

r>0

| fllwre = inf {)\ >0 : sup @(;)df(t) < 1} ,

t>0

where ds(t) = |[{z € R" : |f(x)| > t}|.
We note that,

1

o lwa = s e = 5y (21)
ol = et = 5, (5) 1)



where B is a p-measurable set in X with p(B) < oo and x,, is the characteristic
function of B, that

|f(@)]
oG, ot <1 22
and that ;
sup @(W)df(t) < 1. (2.3)

For a Young function ® and 0 < s < o0, let
d(s) =inf{r > 0: ®(r) > s} (inf ) = o0).
If ® € Y, then ®~! is the usual inverse function of ®. We note that
PO (r) <r <dHP(r) for0<r < oo

A Young function ® is said to satisfy the As-condition, denoted by ® € A,,
if
O(2r) < k®(r) for r >0
for some k > 1. If ® € Ao, then & € ).
A Young function @ is said to satisfy the Va-condition, denoted also by ® &
Vo, if

1
< — >
O(r) < 2kq)(kr), r >0,

for some k > 1. B
For a Young function ®, the complementary function ®(r) is defined by

EIS(T) _ { sup{rs — @(i)o: s €[0,00)} : r SE,OZO),

The complementary function d is also a Young function and d=0. If O(r)=r,
then ®(r) = 0 for 0 < r < 1 and ®(r) = co for r > 1. If 1 < p < oo,
1/p+1/p =1 and ®(r) = r?/p, then ®(r) = r¥ /p/. If O(r) = ¢" —r — 1, then
®(r) = (14 r)log(1 +r) —r. Note that & € V, if and only if & € A,. It is
known that

r< &Y r)d T (r) < 2r for r > 0. (2.4)

Note that by the convexity of ® and concavity of ®~! we have the following
properties

Plat) <ad®(t), if 0<a<l J P lat) > ad l(t), if 0<a<l
d(at) > ad(t), if a>1 T oV at) <ad (), i a> 1.
(2.5)



The following analogue of the Holder inequality is known,

/ F@)g(@)|du(x) < 2| fllza gz, (2.6)

In the next sections where we prove our main estimates, we use the following
lemma, which follows from Hélder inequality, (1)) and (24)).

Lemma 2.4. For a Young function ® and B = B(x,r), the following inequality
15 valid

11l m) < 2u(B)2™ (u(B)™) 1 £ ]| o)
where || fllLo8) = 1/ X5l o

3 Generalized Orlicz-Morrey spaces

The generalized Orlicz-Morrey spaces and the weak generalized Orlicz-Morrey
spaces on spaces of homogeneous type are defined as follows.

Definition 3.1. Let (X, d, ) be Q—homogeneous, ¢(r) be a positive measurable
function on (0, 00) and ® any Young function. We denote by Mg ,(X) the gen-
eralized Orlicz-Morrey space, the space of all functions f € L¢(X) with finite
quasinorm

1Flasa, . = [1fllntg oy = sUD o)™ O (B, 1) IS B

X,r>0

where LI¢(X) is defined as the set of all functions f such that fy, € Lg(X) for
all balls B C X.

Also by W Mg ,(X) we denote the weak generalized Orlicz-Morrey space of
all functions f € WLL¢(X) for which

1 lwata, = I lwate @y = sup @(r) ' @7 (u(B (@, 7)) DI llwLa(per) < oo,

zeX,r>0

where W L¢(X) is defined as the set of all functions f such that fx, € WLg(X)
for all balls B C X.

Remark 3.2. Thanks to ([L4) and (2.5]) we have
O (u(B(x,r) ) = o (r 9.
Therefore we can also write

1fllate, = sup o) '@ (™ fll LoB.r).

z€X,r>0
and
Ifllwae, = sup ()7 ™) fllwraBn),
z€X,r>0
respectively.



According to this definition, we recover the generalized Morrey space M, ,(X
and weak generalized Morrey space WM, ,(X) under the choice ®(r) = r?, 1
p<oo Ifd(r)=1r71<p<ooand p(r)= 7“%, 0 <\ <@, then Mg (X
and W Mg ,(X) coincide with M), \(X') and WM, (X)), respectively and if ()
®~1(r=9), then Mg ,(X) and W Mg ,(X) coincide with the Lg(X) and W Le(X),
respectively.

A function ¢ : (0,00) — (0, 00) is said to be almost increasing (resp. almost
decreasing) if there exists a constant C' > 0 such that

~—

IA

~—

o(r) < Cp(s) (resp. o(r) > Cp(s)) forr <s.

For a Young function ®, we denote by Gg the set of all almost decreasing functions
¢ :(0,00) — (0,00) such that t € (0,00) — % is almost increasing.

Lemma 3.3. Let By := B(xg,70). If ¢ € Go, then there exist C' > 0 such that

< llx e S -
90(7“0) || Bo||M<1,¢ 90(7“0)

Proof. Let B = B(z,r) denote an arbitrary ball in X. By the definition and
(210, it is easy to see that

1
_ —I(I)—l B -1
HXB()HM@,(; IES;:}LO 90(7"> (:u( ) )CI)—l(,u(Bﬂ BO)_l)

—15—1 -1 1 = !
= elro) =l Bo) ) G By A By ) — o)

Now if r < rg, then ¢(rg) < Co(r) and

p(r) 7 o7 (u(B) ) Ixsollzas) <

On the other hand if r > rg, then % <C o(r) and

p(r) 7 o7 (u(B) Ixsollza ) <

This completes the proof. O

4 Maximal operator and its commutators in gen-
eralized Orlicz-Morrey spaces

Let M f(z) be the maximal function, i.e.

1
MJ(x) =sup—pr=sy /B<w>

8

|f(y)]du(y).



The known boundedness statement for M in Orlicz spaces on spaces of ho-
mogeneous type runs as follows.

Theorem 4.1. [16] Let & € Y. Then M is bounded from Le(X) to W Le(X).
Moreover, if ® € Vy, then M is bounded from Le(X) to Lo(X).

Lemma 4.2. Let ® € Y, f € L¥(X) and B = B(x,r). Then

1
<L poipe
1M fll o) S ) sup @ E) S LoB@o (4.1)

o

for any Young function ® € Vy and

1
M < _supd (¢ . 4.2
1M fllwram) S S(a) P () I LatBan) (4.2)

for any Young function ®.

Proof. Let ® € V,. We put f = fi + fo, where fi = fXB@aow) and fo =
fx 5 2k where k is the constant from the triangle inequality (LTI).
Estimation of M f;: By Theorem 1] we have

| M fill o) < (IM fillLox) S 1f1llzex) = 1 f]| Lo(B@,26r)-

By using the monotonicity of the functions || f{| L, (5., P (¢) with respect to
t and (2.5) we get,

- —1(1-Q
o (e op? () a0

> Hﬂhq)(ﬂ sup q)_l(t_Q) > Hf” (4'3)
= (I)—l(r—Q) i = Lo (B(z,2kr)) -
Consequently we have
1
M S goipay S (° - 1.4
M fillLas) S o1(rQ) t>§ (S 2 (Bt (4.4)

Estimation of M fy: Let y be an arbitrary point from B. If B(y, t)N E(B(:c, 2kr)) #
0, then t > r. Indeed, if z € B(y,t) N (B(x,2kr)), then t > d(y,z) >
2d(z,2) — d(z,y) > 2r —r=r.

On the other hand, B(y,t)N C(B(SL’, 2kr)) C B(x,2kt). Indeed, if z € B(y,t)N
“(B(x,2kr)), then we get d(x, 2) < kd(y, 2) + kd(z,y) < kt + kr < 2kt.



Therefore,

1
M fo(y) = sup ———— 2)|du(z
f2(y) St>g w(B(y,t)) /B(y,t)nE(B(x,zkr)) 1F()ldp(z)
1
- z2)|d
=SBy ) /B(m,m 7 ()ldu(z)
C
=S LBy, k) /B@,M F()ldu(z)

t>2kr m /B(x,t) |f(2)]dp(z)

by the doubling condition (L3).
Hence by Lemma 2.4 and (.4])

Mfaly) < sup 8@ D) g

B(z,t))™! B Ssup® (1@ .
ok ,U(B(y,t)) (:u( ( )) )HfHLq (B(z,t)) ~ t>£) ( >||f||L<I>(B( t))

(4.5)

Thus the function M f5(y), with fixed z and r, is dominated by the expression
not depending on y. Then we integrate the obtained estimate for M fs(y) in y
over B, we get

1
< -1/1-Q
1M follLam) S 5 =3 sup & NS N a(Ben) (4.6)

Gathering the estimates ({4 and (6] we arrive at (4.1]).
Let now ® be an arbitrary Young function. It is obvious that

IM fllwrem < IMfillwrems) + [IM follwras)-

By the boundedness of the operator M from Le¢(X) to WiLe(X), provided by
Theorem [A.1], we have

M fillwres) S fllLeB@2rr)-

By using (43), ([4.3) and ([2.1]) we arrive at (£.2)). O
Theorem 4.3. Let ® € Y, the functions @1, s and ® satisfy the condition

sup @' (t7¥) ess inf _eils) < Ca(r), (4.7)

r<t<oo t<s<oo P—1 (S—Q)

where C' does not depend on r. Then the maximal operator M is bounded from
My, (X) to WMs ,,(X) and for & € Vs, the operator M is bounded from
M‘I’,Sol (X) to M‘I’,SDQ (X)

10



Proof. Note that

. -1 1
(esmseljlf f (:5)) = esies;lp e

is true for any real-valued nonnegative function f and measurable on A and the
fact that || f|| L, (B, 15 & nondecreasing function of ¢

. P1(s7@ .
I lra@en oo Gl 1A PREED)

ess inf —218) _ goicscoo o1(s)

0<t<s<oo d—1 s*Q)
Pt (s7@ s
< sp T W hhatoiesy _ypy,,,
550,26 X ©1(s) .

Since (1, p2) and ® satisfy the condition (.1),

sup || 1|24 (5an® " (t79)
r<t<oo
< sup [ [PREE) ess inf7¢1(s> ‘I)_l(t_Q)

r<t<oo €SS lnf 8017(5) t<s<oo ¢_1 (S_Q)
t<s<oco d—1(s—Q

< O, sup (‘oss inf L@Q)) o1 (+9)

0o \ t<s<oo 1 (5—

< Coa(n)l| fll v,
Then by (1)

M < sup sup<1>_1 ) (Bl
1M fll s, Sy S N1 o Bty

S sup oi(r) TN () (1 f 1l Lo (B
zeX,r>0

= [1FlIvsa

The estimate ||M fllwag,, S || fllam,, can be proved similarly by the help of
local estimate (A.2]). O

1

loe(X) and the maximal operator M is

The commutators generated by b € L
defined by

My(f)(x) = sup u(B(z, 1))~ /B( ) [b(z) = b(W)II.f (y)ldp(y).

>0
We recall that the space BMO(X) = {b € L. (X) : ||b|l« < oo} is defined

loc
by the seminorm

1
1Bl := sup

w(B(z. 7)) b — bp(a,nld < 00,
zexr>0 1(B(x, 7)) /B(m,r)| (y) B(z, )| w(y)

11



where bp(;,) = m J5(2r 0(¥)du(y). We will need the following properties of
BMO-functions:

1 P
bl, ~ su 7/ b(y) — ben|Pd ) 48
W~ s (o L )= bt Pinty (19

where 1 < p < o0, and
t
‘bB(m,r) — bB(m,t)‘ < CHbH* In—- for 0<2r<t, (4.9)
r

where C' does not depend on b, z, r and t.

Next, we recall the notion of weights. Let w be a locally integrable and
positive function on X. The function w is said to be a Muckenhoupt A; weight
if there exists a positive constant C' such that for any ball B

1
1(B)

Lemma 4.4. [16, Chapter 1] Let w € Ay, then the reverse Hélder inequality
holds, that is, there exist ¢ > 1 such that

(@ /B w(x)qd,u(x))% < ﬁ /B w(x)dp(x)
for all balls B.

/Bw(x)du(:c) < Cesxseglfw(x).

Lemma 4.5. Let ® be a Young function with ® € Ay. Then we have

71 -1 —1 1 » %
5B, @) < 97 uB) )HfHLq)(B)sc(@ / |f(x)|du(x))

for some 1 < p < oc0.

Proof. The left-hand side inequality is just Lemma 2.4

Next we prove the right-hand side inequality. Our idea is based on [21]. Take
g € Lg with [[g]z. < 1. Note that ® € V, since ® € Ay, therefore M is bounded
on Lg(X) from Theorem {1l Let @ := [|M||r 1. and define a function

— M*g(x)
Rg(z) = =
—~ (2Q)
where
9] k=0,
MFg = g k=1,

M
M(M¥1g) k> 2.
<

For every g € Lg with ||gl|r, < 1, the function Rg satisfies the following

properties:

12



e |g(z)| < Rg(z) for almost every z € X;

* [|Rgllz; <2llgllz;

o M(Rg)(z) < 2QRg(x), that is, Rg is a Muckenhoupt A; weight with the
Aj constant less than or equal to 20Q).

By Lemma [4.4], there exist positive constants ¢ > 1 and C' independent of g such
that for all balls B,

(ﬁ/BRg(x)qd,u(x)); < %/BRQ(??)UZM(I)-

By Theorem 2.6 and Lemma 2.4, we obtain

| Rgllzam = u(B)Vs (@ / Rg(as)qdu(z)) "< u(B)l/q% /B Ry(x)dp(x)
<C (B)—l/q’—”Rg”L@ C (B)—l/q’—1
= ey =Y e )y

Thus we have

/B 1 (@)g(x) du(z) < / F@)|Ra(@)dp(z) < 1o, Rolaco)

<0 (g [ I auta) i FEET

Since the Luxemburg-Nakano norm is equivalent to the Orlicz norm we get

11l < sup {\ [ s@gteina

9€ g Nl <1

<0 (g5 [ oM auta) i EE)

Consequently, the right-hand side inequality follows with p = q. O
We have the following result from ([£8) and Lemma
Lemma 4.6. Let b € BMO(X) and ® be a Young function with ® € Ay. Then
o]l = xes;(l’%oq) () []o() = bB(mvT)HL@(B(x,r)) :
The known boundedness statements for the commutator operator M, on Or-

licz spaces run as follows, see [I5, Theorem 1.9 and Corollary 2.3]. Note that in
[T5] a more general case of multi-linear commutators was studied.

13



Theorem 4.7. Let ® be a Young function with ® € Ay NVy and b € BMO(X).
Then M, is bounded on Le(X) and the inequality

Mo fl[Ls < Collbl[ ]I 1 s (4.10)
holds with constant Cy independent of f.

Lemma 4.8. Let ® be a Young function with ® € Ao N'Vy, b € BMO(X), then
the tnequality

[1b]« APy
M zor)) S (1 1 —><1> t9 .
1My fl| Lo (B0 S T () P + 10— )07 () 1f o (50,0

holds for any ball B(xq,r) and for all f € Li¢(X).

Proof. For B = B(xg,r), write f = fi + fo with fi = fx,,, and fo = fx,
where k is the constant from the triangle inequality (I.T), so that

Y
(2kB)

||be||L<I>(B) < ||be1||L<1>(B) + ||be2||L<1>(B) :

By the boundedness of the operator M, in the space Lg(X) provided by
Theorem [4.7], we obtain

My fillee sy < [[Mofillcecey SOl fillcecey = 10l ([l Le@m)- (4.11)
As we proceed in the proof of Lemma (4.2, we have for x € B

My(fo) () S sup ——

r=2r 11(B(0, 1)) /B - [b(y) = b(@)|[.f (y)|dp(y).

Then

1
sup

My follpo(m) S w(B(zo, 1))
1My follze(m) S t>r p(B(xo, 1))

/B ) b0l

L7(B)
1
,SJ—%—J:supi/ b(y) — ba||f(y)|du(y
' ’ 1>2r M(B($0at)) B(xo,t)‘ ( ) BH ( )| ( ) L®(B)
1

+sup7/ b(-) — bel|f(y)|du(y

P B0 oy WG
For the term J; by (IL4)) and (2I) we obtain

I S e [ ) = bl w)lduty)
~ u —

! -1 (r=9) o (B(z0,t)) JB@on ) PBIERY

14



and split it as follows:
1 1
J ,S su / b — bp(a d
bt (T’_Q) t>£) w(B(xg,t)) B(xo7t)‘ () = bogan.lf (v)lduy)

1 1

su b zo,T -b o / d .
Y (Blao D)) Baon ~ b B(mo’t)|f(y)l p(y)

Applying Holder’s inequality, by Lemmas 24 and F6] and ([£3) we get
1 1
< D) —
4! ~ (I)—I(T—Q) Stlig M(B(:L’g,t)) Hb( ) bB(mO,t)HL&;(B(:pO,t)) ||fHL‘1>(B(xo,t))

1 1
Y m— Bl(xg, t))®~ ! (79 .
+ (I)‘l(r—Q) Stlilg ,u(B(xo,t))| B(xo,r) B( o,t)|,u( (z0,1)) ( ) ||f||L<I>(B( 0.))

_l_

[10]]- 1 (- t
< _qupd ! (t7¢ (1 + ln—) 2o £)) -
~ (b_l(r_Q) t>2p7" ( ) r ||f||L‘I>(B( O,t))

For J; we obtain

Jo 2 () = b 125 SUD ﬁ / )

t>r U
1611 .
< —— T _supd (@ .
~ (I)_l(’/‘_Q) t>£’ ( )Hf||L<I>(B( 0,t))
gathering the estimates for J; and J,, we get
1611 . t
My follpo i < — _ qup @ tQ<1 1—) . 412
| My folle ) S <I>—1(T—Q) Stl>llr) ( ) + nr £l 22 (B@o.t)) ( )
By using ([£3) we unite (LI12) with ([ZII]), which completes the proof. O

Theorem 4.9. Let ® be a Young function with ® € Ay NVy, b € BMO(X) and
the functions @1, ps and ® satisfy the condition

sup (1 +1In E><I>_1 (t79) ess inf _ils) < Ca(r), (4.13)
T

r<t<oo t<s<oco P~ (S_Q)

where C' does not depend on r. Then the operator M, is bounded from Mg ,, (X)
to M@,gpz (X)

Proof. The proof is similar to the proof of Theorem (4.3 thanks to Lemma4.8 [

5 Fractional integral and its commutators in Or-
licz spaces

For a Q-homogeneous space (X, d, i), let

Lf(x) = /X %du@), 0<a<@.

For proving our main results, we need the following estimate.

15



Lemma 5.1. If By := B(xg, 1), then r§ < Clyxp,(x) for every x € By.
Proof. If x,y € By, then d(x,y) < k(d(x,z0)+d(y, x¢)) < 2krg. Since 0 < a < Q,
we get 39 < Cd(x,y)* 9. Therefore

Loxs,(x) = / d(z,y)* “du(y) > Cry~u(By) = Cry.
Bo

O

The known boundedness statement for I, in Orlicz spaces on spaces of homo-
geneous type runs as follows.

Theorem 5.2. [2]] Let (X,d, ) be Q—homogeneous and ®,¥ € Y. Assume
that there exist constants A, A" > 0 such that
/ ! (t_Q) dt < Ar®d~! (T_Q) for 0 <r < oo, (5.1)

re@ (rm@) < AT (P @) for 0 <r < oc. (5.2)

Then 1, is bounded from Lg(X) to W Ly(X). Moreover, if ® € Vs, then I, is
bounded from Le(X) to Ly(X).

Theorem 5.3. Let (X, d, p) be Q—homogeneous and ®,V € ). Assume that 1,
is bounded from Lo (X) to W Ly (X) then condition (5.2) holds.

Proof. Let By = B(xo,r9) and x € By. By (L) and Lemmas (1] and 2], we
have

76 ST (g ) Haxsollwrase) S O g Dl axs, lwes
1 - (g 9)
SO (rg Q)HXB()”L@ N m
Since this is true for every ry > 0, we are done. O

Combining Theorems and [0.3] we have the following result.

Theorem 5.4. Let (X, d,p) be Q—homogeneous and ®,¥ € Y. If ([B1]) holds,
then the condition ([5.2) is necessary and sufficient for the boundedness of 1, from
Lo(X) to WLy(X). Moreover, if ® € Vs, the condition (5.2) is necessary and
sufficient for the boundedness of 1, from Le(X) to Ly(X).

The commutators generated by b € Li .(X) and the operator I, are defined
by

b 1o)f) = | Wﬂy)du(yx 0<a<Q.

16



The operator |b, I,,| is defined by

b, LI f / ) =) o au(y),  0<a<0.

The following lemma is the analogue of the Hedberg’s trick for [b, I,].

Lemma 5.5. If (X,d,u) be Q—homogeneous, 0 < a < Q and f,b € Ll (X),
then for all x € X and r > 0 we get

/ MV’(%) = b(y)lduly) S r*Myf ().
B(e,r) A

T, y)e

|f(y)] 1f(y)]
/B(gc,r) WV)(ZL’) y)ldp(y) 2/2 r<d(ey)<2-ir d(:L’,y)Q_aw(x) — b(y)|du(y)

S Z(Tjr)“(ﬁr)_@ /d@ er [FW)llb(x) = b(y)ldu(y) < v Mo f ().

O
Lemma 5.6. Ifb € L\ (X) and By := B(xo,70), then
1o [b(2) — bp,| < Clb, La|x 5, (2)
for every x € By.
Proof. The proof is similar to the proof of Theorem (.l O

Theorem 5.7. Let (X,d, ) be Q—homogeneous, 0 < a < Q, b € BMO(X) and
o Ue).
1. If® €V, and ¥ € Ay, then the condition

oo (rQ) + /TOO <1 +1n ;)gp—l(t‘Q)to‘% <OV (r @) (5.3)

for allr > 0, where C' > 0 does not depend on r, is sufficient for the boundedness
of [b, I,] from Le(X) to Ly(X).

2. If U € Ay, then the condition (B2) is necessary for the boundedness of
b, I,| from Le(X) to Ly(X).

3. Let ® € Vy and ¥ € A,. If the condition

/ (141 ;)qu(t—Q)ta% < O (9 (5.4)

holds for all r > 0, where C > 0 does not depend on r, then the condition (5.2))
is necessary and sufficient for the boundedness of |b, I,| from Le(X) to Ly (X).

17



Proof. (1) For arbitrary zp € X, set B = B(x,r) for the ball centered at z, and
of radius r. Write f = f; + fo with f; = fx,,, and fo = f X, , where k is the
B’

constant from the triangle inequality (I.TI).
For x € B we have

b1l 5 [ G ) ~ [ S )

< [ PO+ [ BEZ rau)

Sorn) d(0, Y)? Sorn) d(z0,y)?
== J1 + JQ(I),
since z € B and y € C(QkB) implies

S, y) < d(e,y) < (k4 3)d(wo,y).

Let us estimate .J;.

o dt

[ Dy el _ ) a
h= /ZkB d(wo, )@~ a ()lduty) ~ A(%B) ) = bullr ) /d(:co,y) 1Q+1-a dp(y)
dt
/kr /Mxoy y) = bl fW)ldny)gm=

dt
S b(y) — bel|f(Y)|d(y) 57—
/2kr /B(:vo,t)| W)= a7 ln )tQH_a
Applying Holder’s inequality, by (2.4), (4.9), (4.6) and Lemma [2.4] we get

%0 dt
T < / / b(y) — bp(a, dp(y)———
15 B(:vo,t)| (¥) = bson |1 W)ldn(y) o=

+/ |bB(m077‘) - bB(mo,t)|

2r B(zo,t)
h dt

S 16 = bt iy 1 e o0

o0 _ oy dt

+/2 b5 = Vo) |l La(Bo.oy @ (1(B(zo, 1)) 1)t1—a

o0 _qy dt

SIl [ (110 51 @ (B, ) ) i
dt

SI 0 [ (1) (e

T

d
) ldn(y) s

A geometric observation shows 2kB C B(z,6) for all z € B, where 0 =

18



(2k + 1)kr. Using Lemma [5.5] we get

e =0 LA S | 1oy) = D)) ¢ p1au(y)

oxp d(z,y)@—

b(y) — b()] a
S /B(m,é) WV(Q)WMQ) S My f(z).

Consequently, we have

Jo(@) + T S 1bllar® My f () + HbII*IIfHL@/

2r

Thus, by (5.3) we obtain

< \II_I(T_Q) —1/,.—Q
Jo(x) + J1 < 0l be(l“)m ) s ) -
Choose 7 > 0 so that ®~1(r=9) = m Then
* @
~1 My f (x)
w9 (Ve )i, )
o1(-Q) My (@)

Collbll«[fll g

Therefore, we get

M,
JW@+JiSCNWMfMJW*o¢x5ﬂﬁ§%%T)

Let Cy be as in (4.I0). Consequently by Theorem A7 we have
U ——t— | du(x) < O ————— L — | du(z
Lo (i) e = [ o (G
My f(x) )
< [ o2\ i) <1,
< [+ (T e <

170() + JillLa(zy) S N0l fl]2s-

l.e.

19
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In order to estimate J, by (£6]), Lemma 24 and condition (5.3), we also get

ﬁ(w) 1) = 0] () auty)

d(I0> )
~ 150) — bl /C( . ATty

i /)
S G0y o, )
~ I i) oy, YO [ i)

1 alzo = \
Lg(B)

6

*6

1 dt
~ ||b d
H || v- l(r Q /kr /kr<d(xoy )| Iu( )tQ—‘rl_a
1 dt
Sl gy [, 0o

1 o 1/—O\sa—
< Il gy /. e Oyt

1 ot
S gy Il [0 69§
SUNT.

Consequently, we have
12l ey S N0l 2s-

Combining (5.35]) and (5.06]), we get
11b; Lol fll Lo ) S Ol S 2

By taking supremum over B in (5.7), we get
116, L] fllw S 1Bl £ 2

since the constants in (5.7)) do not depend on xg and 7.

(2) We shall now prove the second part. Let By = B(x,79) and x € By. By

Lemmas 5.6, and [Z1] we have

< Mo, Lalxsoll @0 o g-1/, -
o < 0!l Ly (Bo) <0 1(r0Q)H|b, La|XBoll Ly (Bo)
16(-) = b5o | 2o (50)

S U (g b, Lalxsallze S U0 ) lIxmollze S

Since this is true for every ry > 0, we are done.

v 1(7’0 Q)
O (r?)

(3) The third statement of the theorem follows from the first and second parts

of the theorem.
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6 Fractional integral and its commutators in gen-
eralized Orlicz-Morrey spaces

The following theorem is one of our main results.

Theorem 6.1. Let 0 < a < Q, ® € Y, B € (0,1) and n(t) = ¢(t)° and
T(t) = d(tYP).
1. If ® € Vy and ¢(t) satisfies (A7), then the condition

e+ [ e < cpte)” (6)

for all t > 0, where C' > 0 does not depend t, is sufficient for boundedness of I,
from Mg ,(X) to My, (X).
2. If p € Gg, then the condition

t%o(t) < Co(t)?, (6.2)

for allt > 0, where C > 0 does not depend t, is necessary for boundedness of I,
from Mg ,(X) to My ,(X).
3. Let ® € Vy. If ¢ € Gg satisfies the reqularity condition

[ e <cee, (63

for allt > 0, where C' > 0 does not depend t, then the condition (6.2)) is necessary
and sufficient for boundedness of 1, from Mg ,(X) to My, (X).

Proof. Proof of the first part of the theorem.:
For arbitrary ball B = B(z,t) we represent f as

f=h+tf Hh)=rwxs), L) =Fy)xeg®),

and have
Iaf(x) = Iafl(x) + [a.f2(x)'

For I, fi(x), following Hedberg’s trick, we obtain |I,fi(z)| < Ci1t*M f(z). For
I, fo(x) by Lemma 24 we have

7wl < w
AB) d(z,y)@—o 1(y) A(B)If(yﬂ/d(z’y) wersmnl ()
> dr

o L

<G [T O gt

t
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Consequently we have

Lo f(2)] < *Mf(x) + / R T P—
t

@

"

SEMF@) e, [ r00)
t
From (6.1) we obtain

Lo f(2)] S min{p()" "M f(2), ()| flpes}
< sup min{s” M f(x), 7| fl| moo }
s>0

= (MF(@) I3

where we have used that the supremum is achieved when the minimum parts are
balanced. Hence for every x € X we have

af (@) < (Mf(@)? [ £l (6.4)
By using the inequality (64]) we have
1o fllzaisy S IOLEH N puea 11527

Note that from ([2.2)) we get

M A M
/ v % dp(z) :/ i) (ﬂ) du(z) < 1.
B HMfHL@(B) B HMf||Lq>(B)
Thus [[(M )|y < |Mf ||€¢(B). Consequently by using this inequality we

have
1—
afllzaisy S IMANL, @ 113 (6.5)

From Theorem and (G.0]), we get
1 Iafllsg, = sup n(t) " O ) LafllLym
zeX,t>0

1— _ _ _

S, sup n() O E M AL, 5

zeX,t>0

1-8 1g—1 ’

= 15182, (swp o007 )M

zeX,t>0
S I fllagg -

Proof of the second part of the theorem:
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Let By = B(xg,ty) and x € By. By Lemma [l we have t§ < CI,xg,(z).
Therefore, by (1) and Lemma B3] we have

ty < CU™H(u(Bo) ™) [HaXpollu (B0) < Cn(to)HfaxBoHMq,,n

< Onto)lxeolne . < c”i >) Coplto)’

Since this is true for every ¢y, > 0, we are done.
The third statement of the theorem follows from first and second parts of the
theorem. ]

Theorem 6.2. Let 0 < a < Q, ® € Y, B € (0,1) and n(t) = ¢(t)? and
T(t) = d(tYP).

1. If p(t) satisfies (A1), then the condition (G.1)) is sufficient for boundedness
of I, from Mg ,(X) to WMy, (X).

2. If p € Go, then the condition ([6.2]) is necessary for boundedness of I, from
M¢’¢(X) to WM\I;’”(X)

3. If v € Gg satisfies the reqularity condition (G3)), then the condition (G.2l)
is necessary and sufficient for boundedness of 1, from Mg ,(X) to WMy ,(X).

Proof. Proof of the first part of the theorem:
By using the inequality (6.4]) we have

af llwras) S WM lweow |l

where B = B(x,t). Note that from (23] we get

8 "
sup¥ [ ———— | d B(tﬁ):supq)(—)dM () < 1.
(HMfHWL@(J 4 ot \ M fllwoam ) ™

Thus ||(M f)P|lwrys) < ]|Mf||€VL¢(B). Consequently by using this inequality we
have

Haf lwrwsy S IMFIy a1 r - (6.6)
From Theorem A3 and (G.0]), we get

ILafllwae, = 50 00706l
<IAE. sup n) U M A
zeX,t>0
1-3 1 1 B
I ( sup p(t) 10" <t—Q>HMf||WL@<B>)
zeX,t>0

S 1 1aa -
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Proof of the second part of the theorem: Let By = B(x,ty) and x € By. By
Lemma 5.1l we have t§ < CI,xp,(z). Therefore, by ([2.1) and Lemma

te < CU N (p(Bo) [ Taxsolwrese) < Cnlto) [ Iaxslwaty.,

t
< Cnlto) Izl < €T — o)1,
©(to)

Since this is true for every ¢, > 0, we are done.
The third statement of the theorem follows from first and second parts of the
theorem. ]

The following theorem is one of our main results.

Theorem 6.3. Let0 < a<n, ® €Y, bc BMO(X), 8 € (0,1) andn(t) = p(t)?
and V(t) = ®(tY/5).
1. If ® € Ay NV, and ¢ satisfies [EI3), then the condition

ﬁwwy+[m(y+m§ﬁmﬁ¢?gcw@w, (6.7)

for allr > 0, where C' > 0 does not depend on r, is sufficient for the boundedness
of [b, 1] from Mg ,(X) to My ,(X).

2. Ifd € Ay and ¢ € Gg, then the condition ([62) is necessary for the
boundedness of |b, I,| from Mg ,(X) to My ,(X).

3. Let ® € Ay NV,y. If ¢ € Gg satisfies the conditions

sup (1107 )(t) < Cplr),

r<t<oo

and - . it
_ Cl{_ < (e}
/T <1 +In T)(p(t)t ;= Crep(r),

for all r > 0, where C > 0 does not depend on r, then the condition ([6.2]) is
necessary and sufficient for the boundedness of |b, I,| from Mg ,(X) to My ,(X).

Proof. For arbitrary xg € X, set B = B(xg,r) for the ball centered at zo and of
radius r. Write f = fi + fo with f; = fx,,, and fo = fx, , where k is the
(2kB)
constant from the triangle inequality (L.TI).
If we use the same notation and proceed as in the proof of Theorem [(.7] for
x € B we have

o0

t oy
(1+1n ;)||f||L¢(B(xo,t>>q’ (t Q)tl—a

<1+Jn;)¢@%ﬁl).

Jo(@) + i < [bllrMyf(z) + o]l /

2r
o)

S Wl (M () + s [

2r
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Thus, by (67) we obtain

Jo(@) + I S bl min{e(r)" " My f (), o(r)"|| fll saoe }
S ||b||*81>1103 min{s” ™ My f(x), °|| f peoe }

= 1Bl (Mo f (2))7 (||| vgs.o-
Consequently for every x € B we have
To(@) + T S 1Bl (My f (2))7 (| || ogso- (6.8)
By using the inequality (6.8]) we have
190C) + Till g S 0l (Mof)? |y B) [1F1] gt

Note that from ([Z2]) we get

(My f(2))” _ My f(z) -
f <||be||?@(3)> o) = [ () 00 <

Thus [[(Myf)?||Ly 8) < Mo fI|7, ). Therefore, we have

1960) + illzaey S IONMFIZ, ) 110

If we also use the same notation and proceed as in the proof of Theorem [5.7],
we also get

1 > —1(4-Q\a—
12l Lo (3) S Hb“*m/z £ 112 (500 @7 (¢ Q)t dt.

T

From this estimate and condition (6.1) we have
1]« °° dt
< 7 hnE & _

||J2||L\IJ(B) ~ \11_1 (T_Q) ||.f||/\/lq>’9" ) t Sp(t)

- t
1]«
< B

Consequently by using Theorem .9 we get

1, L] fllpewn = sup n(r) = O (=) [b, Lol fll o s)

zoeX,r>0

Ié]
5Hb||*||f!|i2§,¢< sup ¢<r>—1<1>—1<r—Q>r|ber|Lq><B>) bl e

zo€X,r>0
S ol f Lt
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We shall now prove the second part. Let By = B(xg,ro) and z € By. By
Lemma we have r§|b(x) — bg,| < C|b, Ia|xB,(x). Therefore, by Lemma
and Lemma

|||b I |XBO||Lq/ Bo)

o <C < b, TalX 8o |l Lo ~1(,-Q
" 16(-) = bBo || Lo (Bo) ||b|| I IXBollLoB)Y (r™)
C )
= ||bH n(ro)||10, La|XBo || e < Coa(ro)llXBo |l mee < Cﬁ((ro)) < Ciplry)*L.

Since this is true for every ry > 0, we are done.
The third statement of the theorem follows from the first and second parts of
the theorem. O
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