On the 4-girth-thickness of the line graph of the complete graph

Christian Rubio-Montiel *

May 31, 2022

Abstract

The g-girth-thickness $\theta(g, G)$ of a graph G is the minimum number of planar subgraphs of girth at least g whose union is G. In this note, we give the 4-girth-thickness $\theta(4, L(K_n))$ of the line graph of the complete graph $L(K_n)$ when n is even. We also give the minimum number of subgraphs of $L(K_n)$, which are of girth at least 4 and embeddable on the projective plane, whose union is $L(K_n)$.

Keywords: girth-thickness, S-thickness, planar decomposition, line graph, token graph.

2010 Mathematics Subject Classification: 05C10.

1 Introduction

The thickness $\theta(G)$ of a graph G is the minimum number of elements in any partition of E(G) such that the induced subgraph of each part is a planar graph. Equivalently, $\theta(G)$ is defined as the minimum number of planar subgraphs whose union is G.

The thickness has draw the attention of several researchers since its introduction in the 60s [20] because it is an NP-hard problem [16] and it has many applications, for instance, in the design of circuits [1], in the Ringel's earth-moon problem [14] and to bound the achromatic numbers of planar graphs [3], see the survey [17].

^{*}División de Matemáticas e Ingeniería, FES Acatlán, Universidad Nacional Autónoma de México, 53150, Naucalpan, Mexico, christian.rubio@apolo.acatlan.unam.mx.

Only some exact results are known, for example, when G is a complete graph [2, 5, 6], a hypercube [15], or a complete multipartite graph [7, 13, 21, 22]. And some generalizations of the thickness also have been studied such that the outerthickness θ_o , defined similarly but with outerplanar instead of planar [12], and the S-thickness θ_S , considering the thickness on a surfaces S instead of the plane [4].

The g-girth-thickness $\theta(g, G)$ of a graph G, introduced in [18], is the minimum number of elements in any partition of E(G) such that the induced subgraphs of each part is a planar graph of girth at least g. The g-girth-thickness is the usual thickness when g = 3 and it is the *arboricity number* when $g = \infty$. Recall that the *girth* of a graph is the size of its shortest cycle or ∞ if it is acyclic.

Exact results also are known when g > 3 and finite, for instance, the 4-girth-thickness of the complete graph [9, 11, 18], the 4-girth-thickness of the complete multipartite graph [11, 19] and the 6-girth-thickness of the complete graph [9]. Owing to the fact that the hypercube and the complete bipartite are triangle-free graphs, their thickness equal their 4-girth-thickness which were calculate in [15] and partially calculate in [7, 13], respectively.

We define the S-g-girth-thickness $\theta_S(g, G)$ of a graph G as the minimum number of subgraphs embeddable on a surface S of girth at least g whose union is G. Of course, if G has girth g then $\theta_S(g, G)$ is $\theta_S(G)$ as in the case of $K_{n,n}$ for g = 4, see [4].

In this note, we obtain the 4-girth-thickness $\theta(4, L(K_n))$ of the line graph $L(K_n)$ of the complete graph K_n when n is even. To achieve this, in Section 2 we recall some properties about token graphs $F_k(G)$. In Section 3, we determine $\theta(4, F_2(G))$ when G contains a factorization into Hamiltonian paths, in particular

$$\theta(4, L(K_n)) = \frac{n}{2}$$
 and $\theta(4, F_2(K_{n-1,n})) = \frac{n}{2}$

for n even. Finally, in Section 4, we determine $\theta_S(4, F_2(G))$ when S is the projective plane and G contains a Hamiltonian-factorization, in consequence

$$\theta_S(4, L(K_n)) = \left\lfloor \frac{n}{2} \right\rfloor$$
 and $\theta(4, F_2(K_{2n,2n})) = n$

for all n.

2 Token graphs

Consider the following graph $F_k(G)$ called the *k*-token graph introduced in [10], for given an integer $k \ge 1$ and a graph G of order n. The vertex set $V(F_k(G))$ is the family of ksubsets of V(G), therefore $|V(F_k(G))| = \binom{n}{k}$. Two such *k*-subsets X and Y are adjacent if its symmetric difference $X \triangle Y = \{x, y\}$ such that $x \in X, y \in Y$ and $xy \in E(G)$. The size of

Figure 1: The 2-token graph of the path of order 6.

 $F_k(G)$ is $\binom{n-2}{k-1}|E(G)|$, see [10]. An example of a 2-token graph is showed in Figure 1, which is the $F_2(P_6)$.

The 2-token graph $F_2(K_n)$ of the complete graph K_n is the line graph $L(K_n)$ of the complete graph K_n because each pair of incident edges xz and zy has symmetric difference the set $\{x, y\}$ which is the edge xy of the complete graph. In general, the Johnson graph $J(n, k) \cong$ $F_k(K_n)$ owing to the fact that it is the graph whose vertices are the k-subsets of an n-set, where two such subsets X and Y are adjacent whenever $|X \cap Y| = k - 1$.

In [8], the authors remark that the 2-token graph $F_2(P_n)$ of the path graph P_n of n vertices is planar of girth at least 4 for every n.

Now, we prove that an edge-partition of a graph G induces an edge partition of $F_k(G)$.

Lemma 2.1. Let G be a non empty graph and $P = \{E_1, \ldots, E_l\}$ an edge-partition of G. Then the set $\{E'_1, \ldots, E'_l\}$ is an edge-partition of $F_k(G)$ where $E'_i = E(F_k(G[E_i]))$ for all $i \in \{1, \ldots, l\}$.

Proof. Let XY be an edge of $F_k(G)$, that is, X and Y are k-subsets of V(G) such that for some $x \in X$ and some $y \in Y$, the symmetric difference of X and Y is $\{x, y\}$, and xy is an edge of G. Let j the unique index in the set $\{1, \ldots, l\}$ such that $xy \in E_j$. Thus xy is an edge of $G[E_j]$ and in consequence XY is an edge of $F_k(G[E_j]) = E'_j$. Then $XY \in E'_j$. Moreover, if $XY \in E_i$ for some $i \in \{1, \ldots, l\}$, then $xy \in E(G[E_i]) = E_i$. But $P = \{E_1, \ldots, E_l\}$ is an edge-partition of G, and $xy \in E_j$, so i = j. Therefore each edge of $F_k(G)$ is in a unique element of $\{E'_1, \ldots, E'_l\}$. In order to guarantee that every E'_i is a non empty set, we need that G has order at least k + 1. In that case, if $xy \in E_i$ and $U = \{g_1, \ldots, g_{k-1}\} \subseteq V(G) \setminus \{x, y\}$, then $X' = U \cup \{x\}$ and $Y' = U \cup \{y\}$ are two k-subsets of $G[E_i]$ such that its symmetric difference is $\{x, y\}$, and then $E'_i \neq \emptyset$, because $X'Y' \in E'_i$.

3 Determining $\theta(4, L(K_n))$ for *n* even

A planar graph of *n* vertices and girth at least 4 has at most 2(n-2) edges for $n \ge 4$ and at most n-1, otherwise. In consequence, the 4-girth-thickness $\theta(4, G)$ of a graph *G* is at least $\left\lceil \frac{|E(G)|}{2(n-2)} \right\rceil$ for $n \ge 4$ and at least $\left\lceil \frac{|E(G)|}{n-1} \right\rceil$, otherwise.

Therefore we have the following theorem.

Theorem 3.1. If G contains a factorization into k Hamiltonian paths, then $\theta(4, F_2(G)) = k$.

Proof. For $G = K_2$ or $G = P_3$, it is easy to check that $\theta(4, F_2(G)) = 1$. Assume that G is a graph of order $n \ge 4$ containing a factorization into Hamiltonian paths. Then G has size $e = (n-1)k \le {n \choose 2}$, then $k \le n/2$ and

$$k < n/2 + 1 + 1/(n-3).$$

Since, the 2-token graph $F_2(G)$ has order $\binom{n}{2}$ and size (n-2)(n-1)k, it follows that

$$\theta(4, F_2(G)) \ge \left\lceil \frac{(n-2)(n-1)k}{2\binom{n}{2} - 2} \right\rceil = \left\lceil k - \frac{2nk - 6k}{n^2 - n - 4} \right\rceil$$

Because $k < \frac{n}{2} + 1 + \frac{1}{n-3} = \frac{n^2 - n - 4}{2n-6}$ then

$$0 < \frac{k(2n-6)}{n^2 - n - 4} < 1$$

and we have

$$\theta(4, F_2(G)) \ge k.$$

By Lemma 2.1, the partition of k Hamiltonian paths $\{G_1, \ldots, G_k\}$ of G induces a partition of $F_2(G)$ into k planar subgraphs of girth at least 4, $\{F_2(G_1), \ldots, F(G_k)\}$ and the result follows.

We have the following corollaries.

Corollary 3.2. If n is even then $\theta(4, F_2(K_{n-1,n})) = n/2$. Corollary 3.3. If n is even then $\theta(4, L(K_n)) = n/2$.

4 $\theta_S(4, L(K_n))$ when S is the projective plane

Although the problem of finding the minimum number of planar graphs of girth at least 4 into which the line graph of the complete graph can be decomposed remains partially

solved, the corresponding problem can be solved for the surface called the projective plane. A similar proof provide the solution.

On one hand, a maximal graph of order n and girth at least 4 embeddable in the projective plane S has size at most 2n - 2. On the other hand, since the 2-token graph of a cycle is a graph embeddable in S with girth 4, see Figure 2 for a example, we can give the following theorem.

Figure 2: The 2-token graph of the cycle of order 6.

Theorem 4.1. If G is a graph of order $n \ge 4$ and contains a factorization into k Hamiltonian cycles, then $\theta_S(4, F_2(G)) = k$ when S is the projective plane.

Proof. Let G be a graph of order $n \ge 4$ containing a Hamiltonian-factorization, that is, a factorization into Hamiltonian cycles. Then G has size $e = nk \le {n \choose 2}$, then $k \le (n-1)/2$ and

$$k < n + 1 + 2/(n - 2).$$

Since, the 2-token graph $F_2(G)$ has order $\binom{n}{2}$ and size (n-2)nk, it follows that

$$\theta_S(4, F_2(G)) \ge \left\lceil \frac{(n-2)nk}{2\binom{n}{2} - 2} \right\rceil = \left\lceil k - \frac{nk - 2k}{n^2 - n - 2} \right\rceil.$$

Because $k < n + 1 + \frac{2}{n-2} = \frac{n^2 - n - 2}{n-2}$ then

$$0 < \frac{k(n-2)}{n^2 - n - 2} < 1$$

and we have

$$\theta_S(4, F_2(G)) \ge k.$$

By Lemma 2.1, the partition of k Hamiltonian cycles $\{G_1, \ldots, G_k\}$ of G induces a partition of $F_2(G)$ into k planar subgraphs of girth at least 4 embeddable in S, $\{F_2(G_1), \ldots, F(G_k)\}$ and the result follows.

We have the following corollaries.

Corollary 4.2. If n is even then $\theta_S(4, F_2(K_{n,n})) = n/2$.

Corollary 4.3. For all n, we have that $\theta_S(4, L(K_n)) = \lfloor \frac{n}{2} \rfloor$.

Acknowledgments

Part of the work was done during the Reunión de Optimización, Matemáticas y Algoritmos ROMA 2017, held at Casa Rafael Galván, Universidad Autónoma de Metropolitana, Mexico City, Mexico on July 24–28, 2017.

The author wishes to thank F. Esteban Contreras-Mendoza for his useful discussions.

Research partially supported by PAPIIT of Mexico grant IN107218.

References

- A. Aggarwal, M. Klawe and P. Shor, *Multilayer grid embeddings for VLSI*, Algorithmica 6 (1991), no. 1, 129–151.
- [2] V. B. Alekseev and V. S. Gončakov, The thickness of an arbitrary complete graph, Mat. Sb. (N.S.) 101(143) (1976), no. 2, 212–230.
- [3] G. Araujo-Pardo, F. E. Contreras-Mendoza, S. J. Murillo-García, A. B. Ramos-Tort and C. Rubio-Montiel, *Complete colorings of planar graphs*, preprint arXiv:1706.03109 (2017).
- [4] L. W. Beineke, Minimal decompositions of complete graphs into subgraphs with embeddability properties, Canad. J. Math. 21 (1969), 992–1000.
- [5] L. W. Beineke and F. Harary, On the thickness of the complete graph, Bull. Amer. Math. Soc. 70 (1964), 618–620.
- [6] L. W. Beineke and F. Harary, The thickness of the complete graph, Canad. J. Math. 17 (1965), 850–859.
- [7] L. W. Beineke, F. Harary and J. W. Moon, On the thickness of the complete bipartite graph, Proc. Cambridge Philos. Soc. 60 (1964), 1–5.
- [8] W. Carballosa, R. Fabila-Monroy, J. Leaños and L. M. Rivera, *Regularity and planarity of token graphs*, Discuss. Math. Graph Theory **37** (2017), no. 3, 573–586.

- [9] H. Castañeda-López, P. C. Palomino, A. B. Ramos-Tort, C. Rubio-Montiel and C. Silva-Ruíz, The 6-girth-thickness of the complete graph, in review.
- [10] R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia and D. Wood, *Token graphs*, Graphs Combin. 28 (2012), no. 3, 365–380.
- [11] X. Guo and Y. Yang, A note on the 4-girth-thickness of $K_{n,n,n}$, in review, ArXiv: 1709.06854.
- [12] R. K. Guy and R. J. Nowakowski, The outerthickness & outercoarseness of graphs. I. The complete graph & the n-cube, Topics in combinatorics and graph theory (Oberwolfach, 1990), Physica, Heidelberg, 1990, pp. 297–310.
- [13] S. Isao and H. Ozaki, On the planar decomposition of a complete bipartite graph, Siam J. Appl. Math. 16 (1968), no. 2, 408–416.
- B. Jackson and G. Ringel, Variations on Ringel's earth-moon problem, Discrete Math. 211 (2000), no. 1-3, 233–242.
- [15] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory 3 (1967), 10–15.
- [16] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 9–23.
- [17] P. Mutzel, Odenthal T. and M. Scharbrodt, *The thickness of graphs: a survey*, Graphs Combin. 14 (1998), no. 1, 59–73.
- [18] C. Rubio-Montiel, The 4-girth-thickness of the complete graph, Ars Math. Contem. 14 (2018), no. 2, 319–327.
- [19] C. Rubio-Montiel, The 4-girth-thickness of the complete multipartite graph, in review, ArXiv: 1709.03932.
- [20] W. T. Tutte, The thickness of a graph, Indag. Math. 25 (1963), 567–577.
- [21] Y. Yang, A note on the thickness of $K_{l,m,n}$, Ars Combin. 117 (2014), 349–351.
- [22] Y. Yang, Remarks on the thickness of $K_{n,n,n}$, Ars Math. Contemp. **12** (2017), no. 1, 135–144.