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PROOF OF THE GORENSTEIN INTERVAL CONJECTURE

IN LOW SOCLE DEGREE

SUNG GI PARK, RICHARD P. STANLEY, AND FABRIZIO ZANELLO

Abstract. Roughly ten years ago, the following “Gorenstein Interval Conjecture” (GIC)

was proposed: Whenever (1, h1, . . . , hi, . . . , he−i, . . . , he−1, 1) and (1, h1, . . . , hi+α, . . . , he−i+

α, . . . , he−1, 1) are both Gorenstein Hilbert functions for some α ≥ 2, then (1, h1, . . . , hi +

β, . . . , he−i + β, . . . , he−1, 1) is also Gorenstein, for all β = 1, 2, . . . , α− 1. Since an explicit

characterization of which Hilbert functions are Gorenstein is widely believed to be hopeless,

the GIC, if true, would at least provide the existence of a strong, and very natural, structural

property for such basic functions in commutative algebra. Before now, very little progress

was made on the GIC.

The main goal of this note is to prove the case e ≤ 5, in arbitrary codimension. Our argu-

ments will be in part constructive, and will combine several different tools of commutative

algebra and classical algebraic geometry.

1. Introduction

We consider standard graded artinian algebras A = R/I, where R = k[x1, . . . , xr] is a

polynomial ring over a field k of characteristic zero, I is a homogeneous ideal of R, and the

variables xi have degree one. Since we do not lose generality by assuming that I does not

contain nonzero linear forms, r is the codimension of A.

Recall that the Hilbert function (HF) of A is defined as hi = dimk Ai, for all i ≥ 0. It

is a standard fact in commutative algebra that A is artinian if and only if the HF of A is

eventually zero. Thus, we can identify the HF of A with its h-vector h = (1, h1, . . . , he),

where e is the largest index such that he > 0 and is called the socle degree of A. The socle

of A is the annihilator of the maximal ideal (x1, . . . , xr) ⊂ A. Finally, A is level of type t

if its socle is a t-dimensional k-vector space all concentrated in degree e. We say that A is

Gorenstein if A is level of type 1.

An important theme in combinatorial commutative algebra is the understanding of level

and Gorenstein HFs. In our paper, we present a new contribution in this direction.

The theory of level algebras began with a couple of seminal papers of the second author

in the Seventies [19, 20], and has since been an active area of research, due to the intrinsic

interest of the topic and also its applications to several disciplines as diverse as combinatorics,

algebraic geometry, representation theory, and even computational complexity. We refer the
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interested reader to [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 23, 25, 26] as a highly

nonexhaustive list of recent works and further sources.

Despite the considerable progress of the last several years, however, it is widely accepted

by experts that an explicit classification of Gorenstein and level HFs is in general hopeless.

The only two broad classes that have been characterized to date are those of level HFs

of codimension two (a simple result already known to Macaulay [13]; see also [10]), and

Gorenstein HFs of codimension three ([20]; see [24] for a combinatorial proof).

Absent a full characterization, it is an interesting problem to determine strong structural

results for Gorenstein and level HFs. One such general, and very natural, conjectural state-

ment was suggested roughly ten years ago by the third author [27]. We recall here the

statement in the Gorenstein case, and refer to [27] for the conjecture in higher type.

Conjecture 1.1. (Gorenstein Interval Conjecture (GIC)). Suppose that for some α ≥ 2,

(1, h1, . . . , hi, . . . , he−i, . . . , he−1, 1) and (1, h1, . . . , hi+α, . . . , he−i+α, . . . , he−1, 1) are Goren-

stein HFs. Then

(1, h1, . . . , hi + β, . . . , he−i + β, . . . , he−1, 1)

is also Gorenstein, for each β = 1, 2, . . . , α− 1.

While the GIC would appear consistent with all known tools commonly employed in this

area (algebraic, combinatorial, homological, geometric), precious little progress has so far

been made towards its solution. In this note, we employ a novel combination of techniques

coming from both commutative algebra and algebraic geometry, and prove the GIC in socle

degree e ≤ 5, in any codimension. We wish to point out here that geometric tools of a similar

nature, which allow one to focus on restrictions modulo general linear forms, were previously

employed in [15], though the arguments and the results of this paper are very different. Also

interesting, we reduce our main theorem to the (equivalent) fact that suitable functions fe
of the codimension, first defined by the second author in his studies of the nonunimodality

of Gorenstein HFs [20, 21], are nondecreasing.

2. Some technical tools and preliminary notions

We first briefly recall a useful tool in the study of HFs, namely Macaulay’s inverse systems.

We refer to the standard sources [7, 11] for more information and a comprehensive treatment.

For a a homogeneous ideal I ⊂ R = k[x1, . . . , xr], define its inverse system to be the graded

R-module I⊥ = M ⊂ S = k[y1, . . . , yr], where R acts on S by partial differentiation and

I = ann(M). The external product defining the module structure on S is thus uniquely

determined by linearity by xi ◦ F = ∂iF, for any form F ∈ S and i = 1, . . . , r.

A crucial consequence for us here is that the HFs of A = R/I and M coincide; i.e.,

dimk Ai = dimk Mi, for all i. Moreover, A is artinian, level of type t and socle degree e if

and only if M is finitely generated by t linearly independent forms of degree e.
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In particular, any Gorenstein HF of codimension r and socle degree e can be obtained

by computing the dimensions of the spaces of partial derivatives of a form F ∈ k[y1, . . . , yr]

of degree e in essentially r variables (i.e., the first partials of F span a vector space of

dimension precisely r). Because Gorenstein HFs are symmetric, note that the case e = 3 is

completely understood (all such HFs are of the form (1, r, r, 1), for any r ≥ 1). For e = 4

and 5, Gorenstein HF are of the form (1, r, a, r, 1) and (1, r, a, a, r, 1), respectively.

A considerable amount of work has been devoted to understanding the possible values of a

as a function of r. If we define fe(r) as the least possible degree 2 entry of a Gorenstein HF of

socle degree e and codimension r, then fe(r) has been determined asymptotically for all e; in

particular, f4(r) ∼r (6r)
2/3 (as conjectured in [19] and proven in [14]) and f5(r) ∼r

1

6
(24r)3/4

(see [16], Theorem 3.6 for more). Also, it was recently shown [17] that the first nonunimodal

example of a Gorenstein HF ever produced, namely (1, 13, 12, 13, 1) [19], is the smallest

possible in terms of dimension of the algebra. In particular, f4(13) = 12 and f4(r) < r if

and only if r ≥ 13. Similarly, f5(r) < r precisely for r ≥ 17 (see [1, 17] for more in this

direction). For most r, however, the precise values of f4 and f5 remain unknown.

To prove our main result, we will rely on the (simpler) fact that the GIC is already known

to hold in degree 2 when e ≤ 5. More precisely, we have:

Lemma 2.1. ([27], Theorem 2.3). Let (1, r, a, . . . ) be a Gorenstein HF of socle degree e ∈

{4, 5}. Then fe(r) ≤ a ≤
(

r+1

2

)

, and any such integer value of a can actually occur.

We will also need the following two lemmas. We refer the reader to Hartshorne [9] or Vakil

[22] for standard facts and unexplained terminology of algebraic geometry.

Lemma 2.2. ([9], Chapter 2, Exercise 3.22; or [22], Proposition 11.4.1). Given a morphism

of irreducible k-varieties π : X → Y with dimX = m and dim Y = n, there exists a

nonempty, Zariski-open subset U ⊂ Y such that for all q ∈ U , π−1(q) has dimension m− n

or is empty. In particular, dim π(X) ≤ dimX.

Lemma 2.3. ([9], Chapter 3, Corollary 10.9 and Remark 10.9.2; or [22], Exercise 25.3.D).

Let f0, . . . , fn be forms of the same degree in k[y0, . . . , yn], where k is algebraically closed of

characteristic zero. Then, for any general linear combination b0f0 + · · · + bnfn, the hyper-

surface V (b0f0 + · · ·+ bnfn) is smooth in P
n
k \ V (f0, . . . , fn).

3. Proof of the GIC in socle degree e ≤ 5

We begin by proving that the GIC holds in socle degree e ≤ 5 if and only if the corre-

sponding functions fe(r) are nondecreasing. We will then show the latter fact, by a suitable

application of Macaulay’s inverse systems and of a (more general) geometric result.

Proposition 3.1. Let e = {4, 5}. Then the GIC holds in socle degree e if and only if fe is

a nondecreasing function of r.
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Proof. We show the result for e = 4, the case e = 5 being entirely similar. Assume f4 is

nondecreasing. By Lemma 2.1, it suffices to prove the GIC on the first entry of a Gorenstein

HF; i.e., we want to show that if (1, r1, a, r1, 1) and (1, r2, a, r2, 1) are both Gorenstein and

r1 < r2, then (1, r, a, r, 1) is also Gorenstein, for any r1 < r < r2.

Suppose that this is not the case; hence, (1, r, a, r, 1) is not Gorenstein for some r1 < r < r2.

Then f4(r) > a; otherwise, because of Lemma 2.1, a >
(

r+1

2

)

>
(

r1+1

2

)

, which is impossible

since (1, r1, a, r1, 1) is a Gorenstein HF. On the other hand, since (1, r2, a, r2, 1) is Gorenstein

and f4 is nondecreasing, we have that f4(r) ≤ f4(r2) ≤ a, a contradiction.

Now suppose the GIC holds, and that for some r1 < r, f4(r1) > f4(r). Note that f4(r1) ≤

r1, since (1, r1, r1, r1, 1) is a Gorenstein HF (for instance, it is easily obtained from the inverse

system form y41+y42+ · · ·+y4r1 ∈ k[y1, . . . , yr1]). But, similarly, (1, f4(r), f4(r), f4(r), 1) is also

Gorenstein. Therefore, the inequalities f4(r) < r1 < r force the failure of the GIC, since our

assumptions imply that (1, r1, f4(r), r1, 1) cannot be Gorenstein. This contradiction gives us

that f4 is nondecreasing. �

Lemma 3.2. Let n ≥ 2, and suppose f0, . . . , fn ∈ k[y0, . . . , yn] are linearly independent

forms of the same degree d > 1 with gcd(f0, . . . , fn) = 1. Then, for any general linear form

H = α0y0 + · · ·+ αnyn, no nonzero linear combination of the fi over k is divisible by H.

Proof. Let P
n
k = {[b0 : · · · : bn]} and P

n
k
∨ = {[a0 : · · · : an]} be the projective spaces param-

eterizing, respectively, the nonzero linear combinations b0f0 + · · · + bnfn and the nonzero

linear forms a0y0 + · · ·+ anyn. Define Z as the following subvariety of Pn
k
∨ × P

n
k :

Z = {([a0 : · · · : an], [b0 : · · · : bn]) : a0y0 + · · ·+ anyn | b0f0 + · · ·+ bnfn} ,

and consider the projections π1 and π2 of Z to P
n
k
∨ and P

n
k , respectively. Note that it suffices

to show that π1 is not surjective, since then the lemma is proven by choosing any linear form

H = α0y0 + · · ·+ αnyn with coefficients in P
n
k
∨ \ π1(Z).

We argue by contradiction, and suppose π1 is surjective. Since surjectivity is preserved by

extending scalars, we may assume k is algebraically closed. By Lemma 2.3, there exists a

nonempty open subset U ⊂ P
n
k such that for every [b0 : · · · : bn] ∈ U , V (b0f0 + · · ·+ bnfn) is

smooth on the complement, in the ambient projective space, of the base locus V (f0, . . . , fn).

Fix a point [b0 : · · · : bn] ∈ U , and suppose there exists some [a0 : · · · : an] such that

b0f0 + · · · + bnfn factors as (a0y0 + · · · + anyn) · f . Then V (b0f0 + · · · + bnfn) is singular

on V (a0y0 + · · · + anyn, f). Since, as we saw above, V (b0f0 + · · ·+ bnfn) is smooth on the

complement of V (f0, . . . , fn), we deduce that

V (a0y0 + · · ·+ anyn, f) ⊂ V (f0, . . . , fn),

which is equivalent to the inclusion of radical ideals
√

(f0, . . . , fn) ⊂
√

(a0y0 + · · ·+ anyn, f).

Since by Krull’s principal ideal theorem, (a0y0+ · · ·+anyn, f) is an ideal of height at most

2, (f0, . . . , fn) is included in some prime ideal P of height 2 containing a0y0 + · · · + anyn.
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Noting that gcd(f0, . . . , fn) = 1 gives us that (f0, . . . , fn) has height precisely 2, we define

T as the set of primes of height 2 containing (f0, . . . , fn). Clearly, T is finite because of the

primary decomposition of (f0, . . . , fn).

The above argument shows that whenever [b0 : · · · : bn] ∈ U and a0y0 + · · ·+ anyn divides

b0f0 + · · · + bnfn, there exists P ∈ T such that a0y0 + · · · + anyn ∈ P . Now let S ⊂ P
n
k
∨

consist of those points [a0 : · · · : an] such that a0y0 + · · · + anyn | b0f0 + · · · + bnfn for

some [b0 : · · · : bn] ∈ U ; i.e., S = π1(π
−1

2 (U)). Since a prime of height 2 contains at most a

2-dimensional subspace of linear forms, each element of T contributes to a point or a line in

P
n
k
∨. Thus, the finiteness of T implies that S is contained in the union of finitely many lines

and points in P
n
k
∨.

On the other hand, only finitely many linear forms can divide a given linear combination

of f0, . . . , fn, so the fiber of π2 over any point of Pn
k is finite. Therefore, it easily follows from

Lemma 2.2 that π−1

2 (Pn
k \ U) is a subvariety of Z of dimension at most the dimension of

P
n
k \ U . We conclude, again by employing Lemma 2.2, that

dim π1

(

π−1

2 (Pn
k \ U)

)

≤ dim π−1

2 (Pn
k \ U) ≤ n− 1.

Because we have assumed π1 is surjective, π1(π
−1

2 (U)) must contain a nonempty open

subset of Pn
k
∨. Hence S is dense in P

n
k
∨, a contradiction since a finite union of lines and

points cannot cover a dense set in P
n
k
∨ for n ≥ 2. �

Lemma 3.3. Suppose F = pe11 pe22 . . . pett is an irreducible factorization of a form F ∈

k[y0, . . . , yn]. Then

gcd(∂0F, ∂1F, . . . , ∂nF ) = pe1−1

1 · · · pet−1

t .

Proof. Let p be an irreducible polynomial dividing gcd(∂0F, ∂1F, . . . , ∂nF ). Since F =
∑n

i=0
yi(∂iF )/ degF , it follows that p divides F , and therefore it must coincide with some pi

because of the uniqueness of the factorization. Now note that for any index i,

∂iF =
t

∑

j=1

ej(∂ipj)
F

pj
.

Thus, since ∂ipj shares no common divisor with pj, the order of pj in ∂iF is precisely

ej − 1. This proves the lemma. �

Now consider a Gorenstein algebra A of arbitrary socle degree e ≥ 3 and codimension

r = n + 1 ≥ 3, whose corresponding inverse system M is generated by some form F ∈ S =

k[y0, . . . , yn] of degree e. For a Zariski-general linear form H , let FH be the image of F in

the polynomial ring in essentially n variables SH = k[y0, . . . , yn]/H .

If

(1, h1(F ), . . . , he−1(F ), he(F ) = 1)

is the HF of A, and
(

1, h1

(

FH
)

, . . . , he−1

(

FH
)

, he

(

FH
)

= 1
)
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is the HF of the Gorenstein algebra AH corresponding to the inverse systems module MH =

〈FH〉 ⊂ SH , then it is easy to see that

hi

(

FH
)

≤ hi(F )

for all i, and

h1

(

FH
)

≤ n.

We are now ready to show that, since H is general, h1

(

FH
)

is in fact equal to n.

Theorem 3.4. With the above notation,

h1

(

FH
)

= n.

Proof. By inverse systems, since the codimension of A is n + 1, we have

dimk M1 = dimk Me−1 = n+ 1,

where Me−1 = 〈∂0F, . . . , ∂nF 〉 is the k-vector space spanned by the first partials of F .

Thus, we want to show that dimk M
H
1 = dimk M

H
e−1 = n, for a general linear form H =

α0y0 + · · · + αnyn. It is easy to see that the theorem is proven whenever we show that no

nonzero element in Me−1 (i.e., no nonzero linear combination of the ∂iF ) is divisible by H .

Set g = gcd(∂0F, . . . , ∂nF ) and fi = ∂iF/g, for all i. When g = 1, Lemma 3.2 proves the

theorem. Thus we can assume g has positive degree. The fi are clearly all forms of the same

degree, say d. If d > 1, then we are again done by Lemma 3.2, since only finitely many linear

forms can divide g and we are assuming that H is general.

Hence let d ≤ 1. If pe11 pe22 . . . pett is an irreducible factorization of F , then it easily follows

from Lemma 3.3 that d =
(

∑t
j=1

deg pj

)

− 1. Thus,
∑t

j=1
deg pj ≤ 2.

We deduce that F can only be equal to pm1

1 pm2

2 , with p1 and p2 linear forms, or to pm,

with p linear or quadratic. Because any quadratic form can be diagonalized, after a change

of variables we promptly reduce F to the following three possible cases:

F =















ym1

0 ym2

1 ;

ym0 ;

(
∑n

i=0
ciy

2
i )

m
.

In the first two cases, the first derivatives of F span a space of dimension at most 2, against

the assumption dimk Me−1 = n + 1 ≥ 3. Thus, F = (
∑

i ciy
2
i )

m
. Note that ci 6= 0 for all i,

since the first derivatives of F are linearly independent. It is now immediate to see that, e.g.,

H = y0 yields dimk M
H
e−1 = n. Thus, the result for H general follows by semicontinuity. �

Corollary 3.5. The GIC holds in socle degree e ≤ 5.

Proof. Assume r ≥ 3, otherwise the result is trivial. By Proposition 3.1, it suffices to show

that f4 and f5 are nondecreasing functions of r. Theorem 3.4 implies that if

(1, h1 = r, h2 = fe(r), . . . , he−1, he = 1)
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is a Gorenstein HF, then there exists a Gorenstein HF

(1, h′

1 = r′, h′

2, . . . , h
′

e−1, h
′

e = 1)

with h′

i ≤ hi for all i and r′ = r − 1. This immediately gives fe(r − 1) ≤ h′

2 ≤ fe(r), which

completes the proof. �
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