
ar
X

iv
:1

80
4.

08
75

2v
2 

 [
m

at
h.

A
P]

  2
8 

A
pr

 2
01

8

MASS CONCENTRATION AND CHARACTERIZATION OF FINITE TIME

BLOW-UP SOLUTIONS FOR THE NONLINEAR SCHRÖDINGER EQUATION

WITH INVERSE-SQUARE POTENTIAL

ABDELWAHAB BENSOUILAH AND VAN DUONG DINH

Abstract. We consider the L2-critical NLS with inverse-square potential

i∂tu + ∆u + c|x|−2u = −|u|
4
d u, u(0) = u0, (t, x) ∈ R

+ × R
d,

where d ≥ 3 and c 6= 0 satisfies c < λ(d) :=
(

d−2

2

)2
. We extend the mass concentration of finite time

blow-up solutions established by the first author in [2] to c < λ(d). Using the profile decomposition,
we give a short and simple proof of a limiting profile theorem that yields the same characterization of
finite time blow-up solutions with minimal mass obtained by Csobo-Genoud in [7]. We also extend the
characterization obtained by Csobo-Genoud to c < λ(d).

1. Introduction

Consider the Cauchy problem for the focusing L2-critical nonlinear Schrödinger equation with inverse-
square potential

{

i∂tu + ∆u + c|x|−2u = −|u| 4
d u, (t, x) ∈ R+ × Rd,

u(0) = u0,
(1.1)

where d ≥ 3, u : R+ × Rd → C, u0 : Rd → C and c 6= 0 satisfies c < λ(d) :=
(

d−2
2

)2
. The Schrödinger

equation with inverse-square potential appears in a variety of physical settings, such as in quantum field
equations or black hole solutions of the Einstein’s equations (see e.g. [5] or [10]). The study of nonlinear
Schrödinger equation with inverse-square potential and power-type nonlinearity has attracted a lot of
interests in the last several years (see e.g. [10, 4, 19, 23, 20, 12, 13, 11, 14, 7, 8, 2] and references therein).

Denote Pc the self-adjoint extension of −∆ − c|x|−2. It is known (see e.g. [10]) that in the range
λ(d) − 1 < c < λ(d), the extension is not unique. In this case, we do make a choice among possible
extensions, such as Friedrichs extension. The restriction c < λ(d) comes from the sharp Hardy inequality

λ(d)

∫

|x|−2|f(x)|2dx ≤
∫

|∇f(x)|2dx, ∀f ∈ H1, (1.2)

which ensures that Pc is a positive operator. We define the homogeneous Sobolev space Ḣ1
c as a completion

of C∞
0 (Rd\{0}) under the norm

‖f‖Ḣ1
c

:= ‖
√

Pcf‖L2 =

(
∫

|∇f(x)|2 − c|x|−2|f(x)|2dx

)1/2

. (1.3)

The sharp Hardy inequality implies that for c < λ(d), ‖f‖Ḣ1
c

∼ ‖f‖Ḣ1 , and the homogeneous Sobolev

space Ḣ1
c is equivalent to the usual homogenous Sobolev space Ḣ1.

The local well-posedness for (1.1) was established by Okazawa-Suzuki-Yokota [19].

Theorem 1.1 (Local well-posedness [19]). Let d ≥ 3 and c 6= 0 be such that c < λ(d). Then for any

u0 ∈ H1, there exists T ∈ (0, +∞] and a maximal solution u ∈ C([0, T ), H1) of (1.1). The maximal

time of existence satisfies either T = +∞ or T < +∞ and limt↑T ‖∇u(t)‖L2 = ∞. Moreover, the local

solution enjoys the conservation of mass and energy

M(u(t)) =

∫

|u(t, x)|2dx = M(u0),

E(u(t)) =
1

2

∫

|∇u(t, x)|2dx − c

2

∫

|x|−2|u(t, x)|2dx − d

2d + 4

∫

|u(t, x)| 4
d

+2dx,

for any t ∈ [0, T ).

We refer the reader to [19, Theorem 5.1] for the proof of the above local well-posedness result. Note
that the existence of local solutions is based on a refined energy method, and the uniqueness follows from
Strichartz estimates which are shown by Burq-Planchon-Stalker-Zadeh in [4].
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The main purpose of this paper is to study dynamical properties of blow-up solutions to (1.1), including
mass concentration, limiting profile and the characterization of finite time blow-up solutions with minimal
mass. Such phenomena were extensively studied in the last decades especially for the mass-critical non-
linear Schrödinger equation (NLS) (i.e. c = 0 in (1.1)). For the mass-critical NLS, the mass concentration
was first established by Tsutsumi [17] and Merle-Tsutsumi [18]. The limiting profile of finite time blow-up
solutions was obtained by Weinstein in [22]. The characterization of finite time blow-up solutions with
minimal mass was obtained by Merle in [16]. Based on a refined compactness lemma, Hmidi-Keraani in
[9] gave much simpler proofs of all the aforementioned results. It is their approach that we are going to
pursue in the sequel.

Following the idea of Hmidi-Keraani in [9], to study dynamical properties of finite time blow-up solu-
tions for (1.1), we first need the profile decomposition of bounded sequences in H1 related to (1.1). This
profile decomposition was proved recently by the first author in [2]. Thanks to this profile decomposi-
tion, a refined version of compactness lemma related to (1.1) was shown. With the help of this refined
compactness lemma, we are able to study dynamical properties of finite time blow-up solutions for (1.1).

The mass concentration for non-radial blow-up solutions was established by the first author in [2] for
the case 0 < c < λ(d). Here we extend this result to c < λ(d). We also give an improvement of the mass
concentration for radial blow-up solutions in the case c < 0. This improvement is due to the sharp radial
Gagliardo-Nirenberg inequality related to (1.1) for c < 0. More precisely, we prove the following result.

Theorem 1.2 (Mass concentration). Let d ≥ 3, c 6= 0 and c < λ(d). Let u0 ∈ H1 be such that the

corresponding solution u to (1.1) blows up at finite time 0 < T < +∞. Let a(t) > 0 be such that

a(t)‖∇u(t)‖L2 → ∞, (1.4)

as t ↑ T . Then there exists x(t) ∈ Rd such that

lim inf
t↑T

∫

|x−x(t)|≤a(t)

|u(t, x)|2dx ≥ ‖Qc‖2
L2, (1.5)

where c = max{c, 0}. Moreover, in the case c < 0, if we assume in addition that u0 is radial, then (1.5)
can be improved to

lim inf
t↑T

∫

|x|≤a(t)

|u(t, x)|2dx ≥ ‖Qc,rad‖2
L2 . (1.6)

Here Qc and Qc,rad are given in Theorem 2.1.

Remark 1.3. • By using a standard argument of Merle-Raphaël [15], we have the following blow-
up rate: if u is a solution to (1.1) blows up at finite time 0 < T < +∞, then there exists C > 0
such that

‖∇u(t)‖L2 >
C√

T − t
.

• Rewriting

1

a(t)‖∇u(t)‖L2

=

√
T − t

a(t)

1√
T − t‖∇u(t)‖L2

< C

√
T − t

a(t)
,

we see that any function a(t) > 0 satisfying
√

T −t
a(t) → 0 as t → T fulfills (1.4).

The characterization of finite time blow-up solutions for (1.1) with minimal mass was recently estab-
lished by Csobo-Genoud in [7] in the case 0 < c < λ(d). They showed that up to symmetries of the
equation, the only finite time blow-up solutions for (1.1) with minimal mass are the pseudo-conformal
transformation of ground state standing waves. Note that since the uniqueness of ground states for (1.1)
is not yet known, one needs to define properly a notion of ground states for (1.1). The proof of their
result is based on the concentration-compactness lemma (see e.g. [6, Proposition 1.7.6]). The key point
is the limiting profile result (see [7, Proposition 4, p.120]). In this paper, we aim to give a simple proof
for the above result of Csobo-Genoud in the case 0 < c < λ(d). Our approach is based on the profile
decomposition of [2]. This allows us to give a simple version of the limiting profile compared to the
one of [7]. We also extend Csobo-Genoud’s result to negative values of c. Since the sharp non-radial
Gagliardo-Nirenberg inequality for c < 0 is never attained for c < 0. We need to restrict our attention
only to finite time radial blow-up solutions. More precisely, we prove the following result.

Theorem 1.4 (Characterization of finite time blow-up solutions with minimal mass). • Let d ≥ 3
and 0 < c < λ(d). Let u0 ∈ H1 be such that ‖u0‖L2 = Mgs. Suppose that the corresponding so-

lution u to (1.1) blows up at finite time 0 < T < +∞. Then there exist Q ∈ G, θ ∈ R and λ > 0
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such that

u0(x) = eiθei λ2

T e−i
|x|2

4T

(

λ

T

)
d
2

Q

(

λx

T

)

. (1.7)

In particular, u(t, x) = SQ,T,θ,λ(t, x), where

SQ,T,θ,λ(t, x) := eiθei λ2

T −t e−i
|x|2

4(T −t)

(

λ

T − t

)
d
2

Q

(

λx

T − t

)

.

• Let d ≥ 3 and c < 0. Let u0 ∈ H1
rad be such that ‖u0‖L2 = Mgs,rad. Suppose that the corresponding

solution u to (1.1) blows up at finite time 0 < T < +∞. Then there exist Qrad ∈ Grad, ϑ ∈ R and

ρ > 0 such that

u0(x) = eiϑei ρ2

T e−i
|x|2

4T

( ρ

T

)
d
2

Qrad

(ρx

T

)

. (1.8)

In particular, u(t, x) = SQrad,T,ϑ,ρ(t, x), where

SQrad,T,ϑ,ρ(t, x) := eiϑei ρ2

T −t e−i
|x|2

4(T −t)

(

ρ

T − t

)
d
2

Qrad

(

ρx

T − t

)

.

We refer the reader to Section 4 for the notations Mgs, G, Mgs,rad and Grad.
The paper is organized as follows. In Section 2, we recall sharp Gagliardo-Nirenberg inequalities and

the compactness lemma related to (1.1). In Section 3, we give the proof of the mass concentration given
in Theorem 1.2. In Section 4, we prove a simple version of the limiting profile result compared to the
one in [7]. Using this limiting profile, we give the proof of the characterization of finite time blow-up
solutions with minimal mass given in Theorem 1.4.

2. Preliminaries

2.1. Sharp Gagliardo-Nirenberg inequalities. In this subsection, we recall sharp Gagliardo-Nirenberg
inequalities related to (1.1). Let us start with the sharp non-radial Gagliardo-Nirenberg inequality

‖u‖
4
d

+2

L
4
d

+2
≤ CGN(c)‖u‖

4
d

L2‖u‖2
Ḣ1

c
, (2.1)

where the sharp constant CGN(c) is defined by

CGN(c) := sup
{

Jc(u) : u ∈ H1\{0}
}

.

Here Jc(u) is the Weinstein functional

Jc(u) := ‖u‖
4
d

+2

L
4
d

+2
÷

[

‖u‖
4
d

L2‖u‖2
Ḣ1

c

]

. (2.2)

We also recall the sharp radial Gagliardo-Nirenberg inequality

‖u‖
4
d

+2

L
4
d

+2
≤ CGN(c, rad)‖u‖

4
d

L2‖u‖2
Ḣ1

c

, (2.3)

where the sharp constant CGN(c, rad) is defined by

CGN(c, rad) := sup
{

Jc(u) : u ∈ H1
rad\{0}

}

,

where H1
rad is the space of radial H1 functions. When c = 0, Weinstein in [21] proved that the sharp

constant CGN(0) is attained by the fuction Q0 which is the unique (up to symmetries) positive radial
solution of

∆Q0 − Q0 + |Q0| 4
d Q0 = 0. (2.4)

We have the following result (see [11] and also [8]).

Theorem 2.1 (Sharp Gagliardo-Nirenberg inequalities). Let d ≥ 3 and c 6= 0 be such that c < λ(d).
Then CGN(c) ∈ (0, ∞) and

• if 0 < c < λ(d), then the equality in (2.1) is attained by a function Qc ∈ H1 which is a positive

radial solution to the elliptic equation

∆Qc + c|x|−2Qc − Qc + |Qc| 4
d Qc = 0. (2.5)

• if c < 0, then CGN(c) = CGN(0) and the equality in (2.1) is never attained. However, the equality

in (2.3) is attained by a function Qc,rad ∈ H1
rad which is a positive solution to the elliptic equation

∆Qc,rad + c|x|−2Qc,rad − Qc,rad + |Qc,rad| 4
d Qc,rad = 0. (2.6)
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We refer the reader to [11, Theorem 3.1] (see also [8, Theorem 4.1]) for the proof of the above result.

Remark 2.2. • In the case 0 < c < λ(d), Theorem 2.1 shows that there exist positive radial
solutions to the elliptic equation (2.5). However, unlike the case c = 0, the uniqueness up to
symmetries of these solutions is not known yet. We also have the following Pohozaev’s identities
1:

‖Qc‖2
L2 =

2

d
‖Qc‖2

Ḣ1
c

=
2

d + 2
‖Qc‖

4
d

+2

L
4
d

+2
.

In particular,

CGN(c) =
d + 2

d

1

‖Qc‖
4
d

L2

.

• Since the above identities still hold true for c = 0, we get from Theorem 2.1 that for any c < λ(d),

CGN(c) =
d + 2

d

1

‖Qc‖
4
d

L2

, (2.7)

where c = max{c, 0}.
• In the case c < 0, we also have

‖Qc,rad‖2
L2 =

2

d
‖Qc,rad‖2

Ḣ1
c

=
2

d + 2
‖Qc,rad‖

4
d

+2

L
4
d

+2
.

In particular,

CGN(c, rad) =
d + 2

d

1

‖Qc,rad‖
4
d

L2

. (2.8)

Note that since CGN(c, rad) < CGN(c), we see that for any c < 0,

‖Q0‖L2 < ‖Qc,rad‖L2.

2.2. Profile decomposition. In this subsection, we recall the profile decomposition related to the non-
linear Schrödinger equation with inverse-square potential. This profile decomposition was established
recently by the first author in [2] for 0 < c < λ(d). There is no difficulty to extend this result for negative
values of c.

Proposition 2.3 (Profile decomposition). Let d ≥ 3 and c < λ(d). Let (vn)n≥1 be a bounded sequence

in H1. Then there exist a subsequence still denoted by (vn)n≥1, a family (xj
n)n≥1 of sequences in Rd and

a sequence (V j)j≥1 of H1-functions such that

i) for every j 6= k,

|xj
n − xk

n| → ∞, (2.9)

as n → ∞;

ii) for every l ≥ 1 and every x ∈ Rd, we have

vn(x) =

l
∑

j=1

V j(x − xj
n) + vl

n(x),

with

lim sup
n→∞

‖vl
n‖Lq → 0, (2.10)

as l → ∞ for every 2 < q < 2d
d−2 .

Moreover, for every l ≥ 1,

‖vn‖2
L2 =

l
∑

j=1

‖V j‖2
L2 + ‖vl

n‖2
L2 + on(1), (2.11)

‖vn‖2
Ḣ1

c

=
l

∑

j=1

‖V j(· − xj
n)‖Ḣ1

c
+ ‖vl

n‖Ḣ1
c

+ on(1), (2.12)

as n → ∞.

1These identities can be proved rigorously by using the technique of [3, Proposition 1]: first, considering Pohozaev’s
identities in Ωr,R := {x : r < |x| < R}, and then showing the boundary term (on ∂Ωr,R) to converge to 0 as r → 0 and

R → +∞.
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Proof. For reader’s convenience, we recall some details. Since H1 is a Hilbert space, we denote Ω(vn) the
set of functions obtained as weak limits of sequences of the translated vn(·+xn) with (xn)n≥1 a sequence
in Rd. Denote

η(vn) := sup{‖v‖L2 + ‖∇v‖L2 : v ∈ Ω(vn)}.

Clearly,

η(vn) ≤ lim sup
n→∞

‖vn‖L2 + ‖∇vn‖L2.

We shall prove that there exist a sequence (V j)j≥1 of Ω(vn) and a family (xj
n)j≥1 of sequences in R

d such
that for every k 6= j,

|xk
n − xj

n| → ∞, as n → ∞,

and up to a subsequence, the sequence (vn)n≥1 can be written, for every l ≥ 1 and every x ∈ Rd, as

vn(x) =

l
∑

j=1

V j(x − xj
n) + vl

n(x),

with η(vl
n) → 0 as l → ∞. Moreover, the identities (2.11) and (2.12) hold as n → ∞.

Indeed, if η(vn) = 0, then we can take V j = 0 for all j ≥ 1. Otherwise we choose V 1 ∈ Ω(vn) such
that

‖V 1‖L2 + ‖∇V 1‖L2 ≥ 1

2
η(vn) > 0.

By the definition of Ω(vn), there exists a sequence (x1
n)n≥1 ⊂ Rd such that up to a subsequence,

vn(· + x1
n) ⇀ V 1 weakly in H1.

Set v1
n(x) := vn(x) − V 1(x − x1

n). We see that v1
n(· + x1

n) ⇀ 0 weakly in H1 and thus

‖vn‖2
L2 = ‖V 1‖2

L2 + ‖v1
n‖2

L2 + on(1),

‖∇vn‖2
L2 = ‖∇V 1‖2

L2 + ‖∇v1
n‖2

L2 + on(1),

as n → ∞. We next show that
∫

|x|−2|vn(x)|2dx =

∫

|x|−2|V 1(x − x1
n)|2dx +

∫

|x|−2|v1
n(x)|2dx + on(1),

as n → ∞. Using the fact

|vn(x)|2 = |V 1(x − x1
n)|2 + |v1

n(x)|2 + 2Re (V 1(x − x1
n)v1

n(x)),

it suffices to show that
∫

|x|−2V 1(x − x1
n)v1

n(x)dx → 0, (2.13)

as n → ∞. Without loss of generality, we may assume that V 1 is continuous and compactly supported.
Moreover, up to a subsequence, we assume that |x1

n| → {0, ∞} as n → ∞.
• Case 1: |x1

n| → ∞. Since |x1
n| → ∞ as n → ∞, we see that |x + x1

n| ≥ 1 for all x ∈ supp(V 1) and all
n ≥ n0 with n0 large enough. Therefore, for n ≥ n0,

∣

∣

∣

∣

∫

|x|−2V 1(x − x1
n)v1

n(x)dx

∣

∣

∣

∣

=

∫

supp(V 1)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx

≤
∫

|V 1(x)||v1
n(x + x1

n)|dx.

Since v1
n(· + x1

n) ⇀ 0 in H1 as n → ∞, the last term tends to zero as n → ∞.
• Case 2: |x1

n| → 0. Let ǫ > 0. For η > 0 small to be chosen later, we split
∫

supp(V 1)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx =

∫

B(0,η)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx (2.14)

+

∫

supp(V 1)\B(0,η)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx.

Since |x1
n| → 0, we see that for all n ≥ n1 with n1 large enough, |x+x1

n| ≥ η/2 for all x ∈ supp(V 1)\B(0, η).
Thus

∫

supp(V 1)\B(0,η)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx . η−2

∫

|V 1(x)||v1
n(x + x1

n)|dx.
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We next learn from the fact v1
n(· + x1

n) ⇀ 0 in H1 as n → ∞ that for n ≥ n1 (increasing n1 if necessary),
∫

supp(V 1)\B(0,η)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx <

ǫ

2
. (2.15)

We next use the Cauchy-Schwarz inequality, Hardy’s inequality (1.2) and the fact (v1
n)n≥1 is bounded in

H1 to get
∫

B(0,η)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx ≤

(

∫

B(0,η)

|x + x1
n|−2|V 1(x)|2dx

)1/2

×
(

∫

|x + x1
n|−2|v1

n(x + x1
n)|2dx

)1/2

.
(

∫

B(0,η)

|x + x1
n|−2|V 1(x)|2dx

)1/2

‖∇v1
n‖L2

.
(

∫

B(0,η)

|x + x1
n|−2|V 1(x)|2dx

)1/2

. (2.16)

Since |V 1(x)|2 is continuous on the compact set B(0, 3η), hence it is uniformly continuous on B(0, 3η).
Thus, there exists δ > 0 such that for all x, y ∈ B(0, 3η) satisfying |x − y| < δ, we have

||V 1(x)|2 − |V 1(y)|2| <
ǫ2

8K(η)
,

where

K(η) :=

∫

B(0,2η)

|x|−2dx =
(2η)d−2

d − 2
|Sd−1|.

Note that we can take δ ∈ (0, η). Since |x1
n| → 0, we have for n ≥ n2 with n2 large enough that

|x1
n| < δ < η.

This implies that for all x ∈ B(0, 2η) and all n ≥ n2,

||V 1(x − x1
n)|2 − |V 1(x)|2| <

ǫ2

8K(η)
. (2.17)

Since B(x1
n, η) ⊂ B(0, 2η) for all n ≥ n2, we use (2.17) to get

∫

B(0,η)

|x + x1
n|−2|V 1(x)|2dx =

∫

B(x1
n,η)

|x|−2|V 1(x − x1
n)|2dx

≤
∫

B(0,2η)

|x|−2|V 1(x)|2dx +

∫

B(0,2η)

|x|−2 ǫ2

8K(η)
dx

=

∫

B(0,2η)

|x|−2|V 1(x)|2dx +
ǫ2

8
.

Using Hardy’s inequality (1.2) with V 1 ∈ H1, the dominated convergence allows to choose η > 0 small
enough so that

∫

B(0,2η)

|x|−2|V 1(x)|2dx <
ǫ2

8
.

We thus obtain
∫

B(0,η)

|x + x1
n|−2|V 1(x)|2dx <

ǫ2

4
,

which together with (2.16) yield for n ≥ n2,
∫

B(0,η)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx <

ǫ

2
. (2.18)

Combining (2.14), (2.15) and (2.18), we have for n ≥ max{n1, n2},
∫

supp(V 1)

|x + x1
n|−2|V 1(x)||v1

n(x + x1
n)|dx < ǫ.

Therefore, (2.13) is proved in both cases.
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We now replace (vn)n≥1 by (v1
n)n≥1 and repeat the same process. If η(v1

n) = 0, then we choose V j = 0
for all j ≥ 2. Otherwise there exist V 2 ∈ Ω(v1

n) and a sequence (x2
n)n≥1 ⊂ R

d such that

‖V 2‖L2 + ‖∇V 2‖L2 ≥ 1

2
η(v1

n) > 0,

and

v1
n(· + x2

n) ⇀ V 2 weakly in H1.

Set v2
n(x) := v1

n(x) − V 2(x − x2
n). We thus have v2

n(· + x2
n) ⇀ 0 weakly in H1 and

‖v1
n‖2

L2 = ‖V 2‖2
L2 + ‖v2

n‖2
L2 + on(1),

‖v1
n‖2

Ḣ1
c

= ‖V 2‖2
Ḣ1

c

+ ‖v2
n‖2

Ḣ1
c

+ on(1),

as n → ∞. We claim that

|x1
n − x2

n| → ∞, as n → ∞.

In fact, if it is not true, then up to a subsequence, x1
n − x2

n → x0 as n → ∞ for some x0 ∈ Rd. Since

v1
n(x + x2

n) = v1
n(x + (x2

n − x1
n) + x1

n),

and v1
n(· + x1

n) converges weakly to 0, we see that V 2 = 0. This implies that η(v1
n) = 0 and it is a contra-

diction. An argument of iteration and orthogonal extraction allows us to construct the family (xj
n)j≥1 of

sequences in Rd and the sequence (V j)j≥1 of H1 functions satisfying the claim above. Furthermore, the
convergence of the series

∑∞
j≥1 ‖V j‖2

L2 + ‖∇V j‖2
L2 implies that

‖V j‖2
L2 + ‖∇V j‖2

L2 → 0, as j → ∞.

By construction, we have

η(vj
n) ≤ 2

(

‖V j+1‖L2 + ‖∇V j+1‖L2

)

,

which proves that η(vj
n) → 0 as j → ∞. The proof of 2.3 follows by the same lines as in [9, Proposition

2.3]. We thus omit the details. �

2.3. Compactness lemma. In this subsection, we recall a compactness lemma related to the nonlinear
Schrödinger equation with inverse-square potential.

Lemma 2.4 (Compactness lemma). Let d ≥ 3, c 6= 0 and c < λ(d). Let (vn)n≥1 be a bounded sequence

in H1 such that

lim sup
n→∞

‖vn‖Ḣ1
c

≤ M, lim sup
n→∞

‖vn‖
L

4
d

+2 ≥ m. (2.19)

Then there exists (xn)n≥1 in Rd such that up to a subsequence, vn(· + xn) ⇀ V weakly in H1 for some

V ∈ H1 satisfying

‖V ‖
4
d

L2 ≥ d

d + 2

m
4
d

+2

M2
‖Qc‖

4
d

L2,

where c = max{c, 0} and Qc is given in Theorem 2.1. Moreover, in the case c < 0, if we assume

in addition (vn)n≥1 are radially symmetric, then up to a subsequence vn ⇀ V weakly in H1 for some

V ∈ H1
rad satisfying

‖V ‖
4
d

L2 ≥ d

d + 2

m
4
d

+2

M2
‖Qc,rad‖

4
d

L2 ,

where Qc,rad is also given in Theorem 2.1.

Proof. In the case c < λ(d) and vn non-radial, the proof is given in [2, Lemma 5] using the profile
decomposition, the sharp Gagliardo-Nirenberg inequality (2.1) and (2.7).

Let us now consider the case c < 0 and (vn)n≥1 a bouded sequence in H1
rad satisfying (2.19). Thanks

to the fact

H1
rad →֒ L

4
d

+2 compactly,

we see that there exists V ∈ H1
rad such that up to a subsequence, vn ⇀ V weakly in H1 as well as strongly

in L
4
d

+2. In particular, we have from the second condition in (2.19) that m ≤ ‖V ‖
L

4
d

+2 . By the sharp

radial Gagliardo-Nirenberg inequality and (2.8), we have

m
4
d

+2 ≤ ‖V ‖
4
d

+2

L
4
d

+2
≤ d + 2

d

1

‖Qc,rad‖
4
d

L2

‖V ‖
4
d

L2‖V ‖2
Ḣ1

c

.
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By the lower semi continuity of Hardy’s functional, the first condition in (2.19) implies

‖V ‖Ḣ1
c

≤ lim sup
n→∞

‖vn‖Ḣ1
c

≤ M.

We thus obtain

‖V ‖
4
d

L2 ≥ d

d + 2

m
4
d

+2

M2
‖Qc,rad‖

4
d

L2 .

The proof is complete. �

3. Mass concentration

In this short section, we give the proof of the mass concentration given in Theorem 1.2.
Proof of Theorem 1.2. The proof is similar to the one of [2, Theorem 1]. For the sake of completeness,
we recall some details. Let (tn)n≥1 be a time sequence such that tn ↑ T as n → ∞. Set

λn :=
‖Qc‖Ḣ1

c

‖u(tn)‖Ḣ1
c

, vn(x) := λ
d
2
n u(tn, λnx).

By the local well-posedness theory given in Theorem 1.1 and the equivalence between Ḣ1
c and Ḣ1, we

see that λn → 0 as n → ∞. Moreover, a direct computation combined with the conservation of mass and
energy show

‖vn‖L2 = ‖u(tn)‖L2 = ‖u0‖L2 , ‖vn‖Ḣ1
c

= λn‖u(tn)‖Ḣ1
c

= ‖Qc‖Ḣ1
c
,

and
E(vn) = λ2

nE(u(tn)) = λ2
nE(u0) → 0,

as n → ∞. In particular,

‖vn‖
4
d

+2

L
4
d

+2
→ d + 2

d
‖Qc‖2

Ḣ1
c
,

as n → ∞. This implies in particular that (vn)n≥1 satisfies conditions of Lemma 2.4 with

m
4
d

+2 =
d + 2

d
‖Qc‖2

Ḣ1
c
, M2 = ‖Qc‖2

Ḣ1
c
.

Therefore, there exist a sequence (xn)n≥1 in Rd and V ∈ H1 such that up to a subsequence

vn(· + xn) = λ
d
2
n u(tn, λn · +xn) ⇀ V weakly in H1,

as n → ∞ with ‖V ‖L2 ≥ ‖Qc‖L2 . This implies for every R > 0,

lim inf
n→∞

∫

|x|≤R

λd
n|u(tn, λnx + xn)|2dx ≥

∫

|x|≤R

|V (x)|2dx,

hence

lim inf
n→∞

∫

|x−xn|≤Rλn

|u(tn, x)|2dx ≥
∫

|x|≤R

|V (x)|2dx.

Since

a(tn)‖∇u(tn)‖L2 =
a(tn)

λn

‖∇u(tn)‖L2

‖u(tn)‖Ḣ1
c

‖Qc‖Ḣ1
c
,

the equivalence ‖∇u(tn)‖L2 ∼ ‖u(tn)‖Ḣ1
c

and the condition (1.4) yield a(tn)
λn

→ ∞ as n → ∞. We thus

get for every R > 0,

lim inf
n→∞

sup
y∈Rd

∫

|x−y|≤a(tn)

|u(tn, x)|2dx ≥
∫

|x|≤R

|V (x)|2dx,

which means that

lim inf
n→∞

sup
y∈Rd

∫

|x−y|≤a(tn)

|u(tn, x)|2dx ≥
∫

|V (x)|2dx ≥
∫

|Qc(x)|2dx.

Since the sequence (tn)n≥1 is arbitrary, we infer that

lim inf
t↑T

sup
y∈Rd

∫

|x−y|≤a(t)

|u(t, x)|2dx ≥
∫

|Qc(x)|2dx.

Moreover, since for every t ∈ (0, T ), the function u 7→
∫

|x−y|≤a(t)
|u(t, x)|2dx is continuous and goes to

zero at inifinity, there exists x(t) ∈ Rd such that

sup
y∈Rd

∫

|x−y|≤a(t)

|u(t, x)|2dx =

∫

|x−x(t)|≤a(t)

|u(t, x)|2dx.
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This completes the first part of Theorem 1.2.
We now consider the case c < 0 and assume u0 ∈ H1

rad. It is well-known that the corresponding
solution u(t) to (1.1) with initial data u0 is also in H1

rad for any t in the existence time. Let (tn)n≥1 be
such that tn ↑ T as n → ∞. Denote

ρn :=
‖Qc,rad‖Ḣ1

c

‖u(tn)‖Ḣ1
c

, vn(x) := ρ
d
2
n u(tn, ρnx).

As above, the blow-up alternative implies ρn → 0 as n → ∞. We also have

‖vn‖L2 = ‖u0‖L2, ‖vn‖Ḣ1
c

= ρn‖u(tn)‖Ḣ1
c

= ‖Qc,rad‖Ḣ1
c
,

and

E(vn) = ρ2
nE(u(tn)) = ρ2

nE(u0) → 0,

as n → ∞. This implies in particular that

‖vn‖
4
d

+2

L
4
d

+2
→ d + 2

d
‖Qc,rad‖2

Ḣ1
c

,

as n → ∞. We thus obtain a bounded sequence (vn)n≥1 in H1
rad satisfying conditions of Lemma 2.4 with

m
4
d

+2 =
d + 2

d
‖Qc,rad‖2

Ḣ1
c

, M2 = ‖Qc,rad‖2
Ḣ1

c

.

Thus, there exists V ∈ H1
rad such that

vn ⇀ V weakly in H1,

as n → ∞ with ‖V ‖L2 ≥ ‖Qc,rad‖L2. The rest of the proof follows by the same argument as in the first
case. The proof is complete. �

4. Characterization of finite time blow-up solutions with minimal mass

In this section, we give the proof of the characterization of finite time blow-up solutions with minimal
mass given in Theorem 1.4. Let us start with the following variational structure of ground states.

4.1. Variational structure of ground states. In this subsection, we show the variational structure
of ground states which is neccessary in the study of limiting profile of finite time blow-up solutions with
minimal mass. To sucessfully study the variational structure of ground states, we need to define a proper
notion of ground states. To do this, we follow the idea of Csobo-Genoud in [7].

Definition 4.1 (Ground states). • In the case 0 < c < λ(d), we call ground states the maximiz-
ers of Jc (see (2.2)) which are positive radial solutions to the elliptic equation (2.5). The set of
ground states is denoted by G.

• In the case c < 0, we call radial ground states the maximizers of Jc which are positive radial
solutions to the elliptic equation (2.6). The set of radial ground states is denoted by Grad.

Remark 4.2. • The reason for introducing the above notion of ground states is that the uniqueness
(up to symmetries) of positive radial solutions to (2.5) and (2.6) are not yet known.

• By definition, the function Qc (resp. Qc,rad) given in Theorem 2.1 belongs to G (resp. Grad).
• It follows from the proof of Theorem 2.1 and (2.7) that all ground states have the same mass.

Hence, there exists Mgs > 0 such that ‖Q‖L2 = Mgs for all Q ∈ G. The constant Mgs is called
minimal mass.

• Similarly, it follows from the proof of Theorem 2.1 and (2.8) that all radial ground states have
the same mass. Hence there exists Mgs,rad > 0 such that ‖Qrad‖L2 = Mgs,rad for all Qrad ∈ Grad.
The constant Mgs,rad is called radial minimal mass.

Using Definition 4.1, we have the following sharp Gagliardo-Nirenberg inequality: for 0 < c < λ(d),

‖u‖
4
d

+2

L
4
d

+2
≤ CGN(c)‖u‖

4
d

L2‖u‖2
Ḣ1

c

, (4.1)

for any u ∈ H1\{0}, where

CGN(c) =
d + 2

d

1

M
4
d

gs

,

and also the following sharp radial Gagliardo-Nirenberg inequality: for c < 0,

‖u‖
4
d

+2

L
4
d

+2
≤ CGN(c, rad)‖u‖

4
d

L2‖u‖2
Ḣ1

c
, (4.2)
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for any u ∈ H1
rad\{0}, where

CGN(c, rad) =
d + 2

d

1

M
4
d

gs,rad

.

We have the following variational structure of ground states.

Lemma 4.3 (Variational structure of ground states). • Let d ≥ 3 and 0 < c < λ(d). If v ∈ H1

satisfies

‖v‖L2 = Mgs, E(v) = 0,

then there exists Q ∈ G such that v is of the form

u(x) = eiθλ
d
2 Q(λx),

for some θ ∈ R and λ > 0.

• Let d ≥ 3 and c < 0. If v ∈ H1
rad satisfies

‖v‖L2 = Mgs,rad, E(v) = 0,

then there exists Qrad ∈ Grad such that v is of the form

v(x) = eiϑρ
d
2 Qrad(ρx),

for some ϑ ∈ R and ρ > 0.

Proof. In the case 0 < c < λ(d), the proof of the above result is given in [7, Proposition 3, p.119]. The
one for c < 0 is similar. We thus omit the details. �

4.2. Limiting profile of finite time minimal mass blow-up solutions. Using the variational struc-
ture of ground states given in Lemma 4.3, we obtain the following limiting profile of finite time blow-up
solutions with minimal mass. This limiting profile plays a same role as the one proved by Csobo-Genoud
in [7, Proposition 4, p.120]. With the help of this limiting profile, we show the classification of finite time
blow-up solutions with minimal mass for (1.1).

Theorem 4.4 (Limiting profile with minimal mass). • Let d ≥ 3 and 0 < c < λ(d). Let u0 ∈ H1

be such that ‖u0‖L2 = Mgs. Suppose that the corresponding solution u to (1.1) blows up at

finite time 0 < T < +∞. Then for any time sequence (tn)n≥1 satisfying tn ↑ T , there exist a

subsequence still denoted by (tn)n≥1, a function Q ∈ G, sequences of θn ∈ R, λn > 0, λn → 0 and

xn ∈ Rd such that

eitθnλ
d
2
n u(tn, λn · +xn) → Q strongly in H1, (4.3)

as n → ∞.

• Let d ≥ 3 and c < 0. Let u0 ∈ H1
rad satisfy ‖u0‖L2 = Mgs,rad. Suppose that the corresponding

solution u to (1.1) blows up at finite time 0 < T < +∞. Then for any time sequence (tn)n≥1

satisfying tn ↑ T , there exist a subsequence still denoted by (tn)n≥1, a function Qrad ∈ Grad,

sequences of ϑn ∈ R and ρn > 0, ρn → 0 such that

eitϑnρ
d
2
n u(tn, ρn·) → Qrad strongly in H1, (4.4)

as n → ∞.

Proof. Let us firstly consider the case 0 < c < λ(d). Let (tn)n≥1 be a sequence such that tn ↑ T . Set

λn :=
‖Qc‖Ḣ1

c

‖u(tn)‖Ḣ1
c

, vn(x) := λ
d
2
n u(tn, λnx),

where Qc is given in Theorem 2.1. By the blow-up alternative, we see that λn → 0 as n → ∞. Moreover,

‖vn‖L2 = ‖u(tn)‖L2 = ‖u0‖L2 = Mgs, (4.5)

and

‖vn‖Ḣ1
c

= λn‖u(tn)‖Ḣ1
c

= ‖Qc‖Ḣ1
c
, (4.6)

and

E(vn) = λ2
nE(u(tn)) = λ2

nE(u0) → 0,

as n → ∞. In particular,

‖vn‖
4
d

+2

L
4
d

+2
→ d + 2

d
‖Qc‖2

Ḣ1
c

, (4.7)
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as n → ∞. Thus the sequence (vn)n≥1 satisfies conditions of Lemma 2.4 with

M2 = ‖Qc‖2
Ḣ1

c

, m
4
d

+2 =
d + 2

d
‖Qc‖2

Ḣ1
c

.

Therefore, there exist V ∈ H1 and a sequence (xn)n≥1 in Rd such that up to a subsequence,

vn(· + xn) = λ
d
2
n u(tn, λn · +xn) ⇀ V weakly in H1,

as n → ∞ and ‖V ‖L2 ≥ ‖Qc‖L2 = Mgs. Since vn(·+xn) ⇀ V weakly in H1 as n → ∞, the semi-continuity
of weak convergence and (4.5) imply

Mgs ≤ ‖V ‖L2 ≤ lim inf
n→∞

‖vn‖L2 = Mgs.

This shows that

‖V ‖L2 = lim
n→∞

‖vn‖L2 = Mgs. (4.8)

Therefore, vn(· + xn) → V strongly in L2 as n → ∞. By the sharp Gagliardo-Nirenberg inequality (4.1),

we also have that vn(· + xn) → V strongly in L
4
d

+2 as n → ∞. Indeed,

‖vn(· + xn) − V ‖
4
d

+2

L
4
d

+2
≤ CGN(c)‖vn(· + xn) − V ‖

4
d

L2‖vn(· + xn) − V ‖2
Ḣ1

c

. CGN(c)
(

‖Qc‖2
Ḣ1

c

+ ‖V ‖2
Ḣ1

c

)

‖vn(· + xn) − V ‖
4
d

L2 → 0,

as n → ∞. Here we use

‖vn(· + xn)‖Ḣ1
x

∼ ‖vn(· + xn)‖Ḣ1 = ‖vn‖Ḣ1 ∼ ‖vn‖Ḣ1
c

in the second estimate. Moreover, using (4.7), (4.8) and the sharp Gagliardo-Nirenberg inequality (4.1),
we get

‖Qc‖2
Ḣ1

c

=
d

d + 2
lim

n→∞
‖vn‖

4
d

+2

L
4
d

+2
=

d

d + 2
‖V ‖

4
d

+2

L
4
d

+2
≤

(‖V ‖L2

Mgs

)
4
d

‖V ‖2
Ḣ1

c

= ‖V ‖2
Ḣ1

c

.

Thus the semi-continuity of weak convergence and (4.6) imply

‖Qc‖Ḣ1
c

≤ ‖V ‖Ḣ1
c

≤ lim inf
n→∞

‖vn‖Ḣ1
c

= ‖Qc‖Ḣ1
c
.

Hence

‖V ‖Ḣ1
c

= lim
n→∞

‖vn‖Ḣ1
c

= ‖Qc‖Ḣ1
c
.

We next claim that

vn(· + xn) → V strongly in Ḣ1,

as n → ∞. Since

‖V ‖
4
d

+2

L
4
d

+2
=

d + 2

d
‖Qc‖2

Ḣ1
c
, ‖V ‖Ḣ1

c
= ‖Qc‖Ḣ1

c
,

we see that E(V ) = 0. It follows that there exists V ∈ H1 such that

‖V ‖L2 = Mgs, E(V ) = 0.

The variational structure of ground states given in Lemma 4.3 shows that there exists Q ∈ G such that

V (x) = eiθλ
d
2 Q(λx) for some θ ∈ R and λ > 0. Thus,

vn(· + xn) = λ
d
2
n u(tn, λn · +xn) → V = eiθλ

d
2 Q(λ·) strongly in H1,

as n → ∞. Redefining λ̃n := λnλ−1, we obtain

e−iθλ̃
d
2
n u(tn, λ̃n · +xn) → Q strongly in H1,

as n → ∞. We now prove the claim. Since vn(·+xn) ⇀ V weakly in H1. Set rn(x) := vn(x)−V (x−xn).
We see that rn(· + xn) ⇀ 0 weakly in H1. By the same argument as in the proof of Proposition 2.3, we
have

∫

|x|−2|vn(x)|2dx =

∫

|x|−2|V (x − xn)|2dx +

∫

|x|−2|rn(x)|2dx + on(1).

In particular, we have

‖vn‖2
Ḣ1

c
= ‖V (· − xn)‖2

Ḣ1
c

+ ‖rn‖2
Ḣ1

c
+ on(1),

‖vn‖
4
d

+2

L
4
d

+2
= ‖V (· − xn)‖

4
d

+2

L
4
d

+2
+ ‖rn‖

4
d

+2

L
4
d

+2
+ on(1),
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as n → ∞. Thus,

E(vn) = E(V (· − xn)) + E(rn) + on(1), (4.9)

as n → ∞. On the other hand, since vn(· + xn) → V strongly in L2, it follows that rn(· + xn) → 0
strongly in L2. This implies in particular that rn → 0 strongly in L2 and rn ⇀ 0 weakly in H1. The
sharp Gagliardo-Nireberg inequality (4.1) then implies rn → 0 strongly in L

4
d

+2. By the semi-continuity
of weak convergence,

0 ≤ 1

2
lim inf
n→∞

‖rn‖2
Ḣ1

c

=
1

2
lim inf
n→∞

‖rn‖2
Ḣ1

c

− d

2d + 4
lim inf
n→∞

‖rn‖
4
d

+2

L
4
d

+2

≤ lim inf
n→∞

(

1

2
‖rn‖2

Ḣ1
c

− d

2d + 4
‖rn‖

4
d

+2

L
4
d

+2

)

= lim inf
n→∞

E(rn).

In particular,

lim inf
n→∞

E(V (· − xn)) ≤ lim inf
n→∞

E(V (· − xn)) + lim inf
n→∞

E(rn)

≤ lim inf
n→∞

(E(V (· − xn)) + E(rn)) = lim inf
n→∞

E(vn) = 0.

We also have from the sharp Gagliardo-Nirenberg inequality (4.1) and the fact ‖V (· − xn)‖L2 = ‖V ‖L2 =
Mgs that E(V (· − xn)) ≥ 0 for all n ≥ 1. Therefore, we must have

lim inf
n→∞

E(V (· − xn)) = 0.

Taking lim inf both sides of (4.9), we obtain lim infn→∞ E(rn) = 0. Since rn → 0 strongly in L
4
d

+2, we
see that up to a subsequence, limn→∞ ‖rn‖Ḣ1

c
= 0. Using the equivalence ‖ · ‖Ḣ1

c
∼ ‖ · ‖Ḣ1 , we obtain

limn→∞ ‖∇rn‖L2 = 0. Thanks to the expansion

‖∇vn‖2
L2 = ‖∇V ‖2

L2 + ‖∇rn‖2
L2 + on(1),

as n → ∞, we obtain

lim
n→∞

‖∇vn‖L2 = ‖∇V ‖L2.

Since vn(· + xn) ⇀ V weakly in H1, we infer that vn(· + xn) → V strongly in Ḣ1 as n → ∞. This proves
the claim and the proof of the first item is complete.

We now consider the case c < 0. Let (tn)n≥1 be a sequence such that tn ↑ T . Denote

ρn :=
‖Qc,rad‖Ḣ1

c

‖u(tn)‖Ḣ1
c

, vn(x) := ρ
d
2
n u(tn, ρnx),

where Qc,rad is given in Theorem 2.1. Since u0 ∈ H1
rad, we see that u(t) ∈ H1

rad for any t as long as the
solution exists. By the blow-up alternative, it follows that ρn → 0 as n → ∞. We also have

‖vn‖L2 = ‖u(tn)‖L2 = ‖u0‖L2 = Mgs,rad, ‖vn‖Ḣ1
c

= ρn‖u(tn)‖Ḣ1
c

= ‖Qc,rad‖Ḣ1
c
, (4.10)

and

E(vn) = ρ2
nE(u(tn)) = ρ2

nE(u0) → 0,

as n → ∞. In particular,

‖vn‖
4
d

+2

L
4
d

+2
→ d + 2

d
‖Qc,rad‖2

Ḣ1
c

, (4.11)

as n → ∞. We thus obtain a bounded sequence (vn)n≥1 of H1
rad-functions which satisfies conditions of

Lemma 2.4 with

M2 = ‖Qc,rad‖2
Ḣ1

c
, m

4
d

+2 =
d + 2

d
‖Qc,rad‖2

Ḣ1
c
.

We learn from Lemma 2.4 that there exists V ∈ H1
rad such that up to a subsequence

vn ⇀ V weakly in H1,

as n → ∞ and ‖V ‖L2 ≥ ‖Qc,rad‖L2 = Mgs,rad. The semi-continuity of weak convergence and (4.10) imply
that

Mgs,rad ≤ ‖V ‖L2 ≤ lim inf
n→∞

‖vn‖L2 = Mgs,rad. (4.12)

We thus get

‖V ‖L2 = lim
n→∞

‖vn‖L2 = Mgs,rad.
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In particular, vn → V strongly in L2 as n → ∞. This together with the sharp Gagliardo-Nirenberg
inequality (4.2) yield that vn → V strongly in L

4
d

+2 as n → ∞. By (4.11) and (4.12), the sharp
Gagliardo-Nirenberg inequality implies that

‖Qc,rad‖2
Ḣ1

c

=
d

d + 2
lim

n→∞
‖vn‖

4
d

+2

L
4
d

+2
=

d

d + 2
‖V ‖

4
d

+2

L
4
d

+2
≤

( ‖V ‖L2

Mgs,rad

)
4
d

‖V ‖2
Ḣ1

c

= ‖V ‖2
Ḣ1

c

.

Using the above inequality, the semi-continuity of weak convergence and (4.10) imply

‖Qc,rad‖Ḣ1
c

≤ ‖V ‖Ḣ1
c

≤ lim inf
n→∞

‖vn‖Ḣ1
c

= ‖Qc,rad‖Ḣ1
c
.

Hence

‖V ‖Ḣ1
c

= lim
n→∞

‖vn‖Ḣ1
c

= ‖Qc,rad‖Ḣ1
c
.

We now claim that

vn → V strongly in H1,

as n → ∞. To see this, we write

vn(x) = V (x) + rn(x),

with rn ⇀ 0 weakly in H1 as n → ∞. We easily verify that

E(vn) = E(V ) + E(rn) + on(1),

as n → ∞. Since vn → V strongly in L2, we see that rn → 0 strongly in L2. The sharp Gagliardo-
Nirenberg inequality (4.2) then implies that rn → 0 strongly in L

4
d

+2. Arguing as in the case 0 < c < λ(d),
we get

lim inf
n→∞

E(rn) ≥ 0,

and

E(V ) ≤ E(V ) + lim inf
n→∞

E(rn) ≤ lim inf
n→∞

(E(V ) + E(rn)) = lim inf
n→∞

E(vn) = 0.

On the other hand, since ‖V ‖L2 = Mgs,rad, the sharp Gagliardo-Nirenberg inequality (4.2) implies that
E(V ) ≥ 0. Therefore, E(V ) = 0. As a result, we obtain that

lim inf
n→∞

E(rn) = 0.

Since rn → 0 strongly in L
4
d

+2, we see that up to a subsequence, limn→∞ ‖rn‖Ḣ1
c

= 0. This implies in

particular that limn→∞ ‖∇rn‖L2 = 0. Using the fact

‖∇vn‖2
L2 = ‖∇V ‖2

L2 + ‖∇rn‖2
L2 + on(1),

as n → ∞, we obtain limn→∞ ‖∇vn‖L2 = ‖∇V ‖L2. Since vn ⇀ V weakly in H1 as n → ∞, it follows
that vn → V strongly in Ḣ1 as n → ∞. This proves the claim.

We thus obtain V ∈ H1
rad such that

‖V ‖L2 = Mgs,rad, E(V ) = 0.

The second equality follows from

‖V ‖
4
d

+2

L
4
d

+2
=

d + 2

d
‖Qc,rad‖2

Ḣ1
c

, ‖V ‖Ḣ1
c

= ‖Qc,rad‖Ḣ1
c
.

The variational structure of radial ground states given in Lemma 4.3 implies that there exists Qrad ∈ Grad

such that V (x) = eiϑρ
d
2 Q(ρx) for some ϑ ∈ R and ρ > 0. We thus obtain

vn(·) = ρ
d
2
n u(tn, ρn·) → V = eiϑρ

d
2 Qrad(ρ·) strongly in H1,

as n → ∞. Redefining ρ̃n := ρnρ−1, we obtain

e−iϑρ̃
d
2
n u(tn, ρ̃n·) → Qrad strongly in H1,

as n → ∞. The proof is complete. �

In order to prove the characterization of finite time blow-up solutions with minimal mass, we need
to recall basic facts related to (1.1). Let us start with the following Cauchy-Schwarz inequality due to
Banica [1].

Lemma 4.5. If one of the following conditions holds true

• d ≥ 3, 0 < c < λ(d) and u ∈ H1 is such that ‖u‖L2 = Mgs,

• d ≥ 3, c < 0 and u ∈ H1
rad is such that ‖u‖L2 = Mgs,rad,
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then for any real valued function ϕ ∈ C1 satisfying ∇ϕ is bounded, we have
∣

∣

∣

∣

∫

∇ϕ · Im (u∇u)dx

∣

∣

∣

∣

≤
√

2E(u)

(
∫

|∇ϕ|2|u|2dx

)1/2

. (4.13)

Note that by sharp Gagliardo Nirenberg inequalities (4.1) and (4.2), the above assumptions imply
E(u) is non-negative.

We also need the following virial identity (see e.g. [8, Lemma 5.3] or [7, Lemma 3, p.124]).

Lemma 4.6 (Virial identity). Let d ≥ 3 and c 6= 0 be such that c < λ(d). Let u0 ∈ H1 be such that

|x|u0 ∈ L2 and u : I × Rd → C the corresponding solution to (1.1). Then |x|u ∈ C(I, L2) and for any

t ∈ I,

d2

dt2
‖xu(t)‖2

L2 = 16E(u0). (4.14)

In particular, we have for any t ∈ I,
∫

|x|2|u(t)|2dx =

∫

|x|2|u0|2dx − 4t

∫

x · Im (u0∇u0)dx + 8t2E(u0)

= 8t2E

(

ei
|x|2

4t u0

)

.

(4.15)

Proof. We refer the reader to [8, Lemma 5.3] or [7, Lemma 3, p.124] for the proof of (4.14). The first
identity in (4.15) follows by integrating (4.14) over the time t. The second identity in (4.15) follows from
a direct computation using the fact that

∣

∣

∣

∣

∇
(

ei
|x|2

4t u0

)
∣

∣

∣

∣

=
1

4t2
|x|2|u0|2 − 1

t
x · Im (u0∇u0) + |∇u0|2.

The proof is complete. �

We are now able to prove the characterization of finite time blow-up solutions with minimal mass given
in Theorem 1.4.
Proof of Theorem 1.4. Let us firstly consider the case 0 < c < λ(d). Let (tn)n≥1 be such that tn ↑ T . By
Theorem 4.4, we see that up to a subsequence, there exists Q ∈ G such that

eiθnλ
d
2
n u(tn, λn · +xn) → Q strongly in H1, (4.16)

as n → ∞, where (θn)n≥1 ⊂ R, (xn)n≥1 ⊂ Rd and λn → 0 as n → ∞. From this, we infer that

|u(tn, x)|2dx − ‖Q‖2
L2δx=xn

⇀ 0, (4.17)

as n → ∞.
Up to subsequence, we may assume that xn → x0 ∈ {0, ∞}. Now let ϕ be a smooth non-negative

radial compactly supported function satisfying

ϕ(x) = |x|2 if |x| < 1, and |∇ϕ(x)|2 ≤ Cϕ(x),

for some constant C > 0. For R > 1, we define

ϕR(x) := R2ϕ(x/R), UR(t) :=

∫

ϕR(x)|u(t, x)|2dx.

Using the Cauchy-Schwarz inequality (4.13) and the fact |∇ϕR|2 ≤ C|ϕR|, we have

|U ′
R(t)| = 2

∣

∣

∣

∣

∫

∇ϕR · Im (u(t)∇u(t))dx

∣

∣

∣

∣

≤ 2
√

2E(u0)

(
∫

|u(t)|2|∇ϕR|2dx

)1/2

≤ C(u0)
√

UR(t).

Integrating with respect to t, we obtain
∣

∣

∣

√

UR(t) −
√

UR(tn)
∣

∣

∣
≤ C(u0)|tn − t|. (4.18)

Thanks to (4.17), we see that UR(tn) → 0 as n → ∞. Indeed, if |xn| → 0, then UR(tn) → ‖Q‖2
L2ϕR(0) = 0

as n → ∞. If |xn| → ∞, then UR(tn) → 0 since ϕR is compactly supported. Letting n → ∞ in (4.18),
we obtain

UR(t) ≤ C(u0)(T − t)2.
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Now fix t ∈ [0, T ), letting R → ∞, we have

8t2E

(

ei |x|2

4t u0

)

=

∫

|x|2|u(t, x)|2dx ≤ C(u0)(T − t)2, (4.19)

where the first equality follows from Lemma 4.6. Note that we have from (4.19) that u(t) ∈ L2(|x|2dx)
for any t ∈ [0, T ). We also have from (4.17) and (4.19) that

lim inf
n→∞

|xn|2‖Q‖2
L2 ≤ C(u0)T 2.

Thus xn cannot go to infinity, hence xn converges to zero. Letting t tends to T , we learn from (4.19) that

E

(

ei
|x|2

4T u0

)

= 0.

We also have
∥

∥

∥
ei

|x|2

4T u0

∥

∥

∥

L2
= ‖u0‖L2 = Mgs.

Therefore, Lemma 4.3 shows that there exists Q̃ ∈ G such that

ei
|x|2

4T u0(x) = eiθ̃λ̃
d
2 Q̃(λ̃x).

Redefining λ̃ = λ
T and θ̃ = θ + λ2

T , we obtain

u0(x) = eiθei λ2

T e−i
|x|2

4T

(

λ

T

)
d
2

Q̃

(

λx

T

)

.

This shows (1.7). By the uniqueness of solution to (1.1), we find that u(t) = SQ̃,T,θ,λ(t) for any t ∈ [0, T ).

This completes the proof of the case 0 < c < λ(d).
Let us now consider the case c < 0. Let (tn)n≥1 be such that tn ↑ T . We have from Theorem 4.4 that

up to a subsequence, there exists Qrad ∈ Grad such that

eiϑnρ
d
2
n u(tn, ρn·) → Qrad strongly in H1,

as n → ∞, where (ϑn)n≥1 ⊂ R and ρn → 0 as n → ∞. This implies that

|u(tn, x)|2dx − ‖Qrad‖2
L2δx=0 ⇀ 0, (4.20)

as n → ∞. By the same argument as in the case 0 < c < λ(d), we learn that
∣

∣

∣

√

UR(t) −
√

UR(tn)
∣

∣

∣
≤ C(u0)|tn − t|.

Here UR(tn) → 0 as n → ∞. Indeed, by (4.20), UR(tn) → ‖Qrad‖2
L2ϕR(0) = 0 as n → ∞. Therefore,

letting n → ∞, we obtain

UR(t) ≤ C(u0)(T − t)2.

Fix t ∈ [0, T ), letting R → ∞, we obtain

8t2E

(

ei
|x|2

4t u0

)

=

∫

|x|2|u(t, x)|2dx ≤ C(u0)(T − t)2.

Letting t ↑ T , we get

E

(

ei
|x|2

4T u0

)

= 0,

and also
∥

∥

∥

∥

ei
|x|2

4T u0

∥

∥

∥

∥

L2

= ‖u0‖L2 = Mgs,rad.

By Lemma 4.3, there exists Q̃rad ∈ Grad such that

ei
|x|2

4T u0(x) = eiϑ̃ρ̃
d
2 Q̃rad(ρ̃x).

Redefining ρ̃ = ρ
T and ϑ̃ = ϑ + ρ2

T , we get

u0 = eiϑei ρ2

T e−i
|x|2

4T

( ρ

T

)
d
2

Q̃rad

(ρx

T

)

.

This shows (1.8). The proof is complete. �
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