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Abstract. We prove that every countable family of countable acylindrically hyperbolic
groups has a common finitely generated acylindrically hyperbolic quotient. As an appli-
cation, we obtain an acylindrically hyperbolic group Q with strong fixed point properties:
Q has property FLp for all p ∈ [1,+∞), and every action of Q on a finite dimensional
contractible topological space has a fixed point. In addition, Q has other properties which
are rather unusual for groups exhibiting “hyperbolic-like” behaviour. E.g., Q is not uni-
formly non-amenable and has finite generating sets with arbitrary large balls consisting of
torsion elements.

1. Introduction

An isometric action of a group G on a metric space S is acylindrical if for every ε > 0
there exist R,N > 0 such that for every two points x, y with d(x, y) ≥ R, there are at most
N elements g ∈ G satisfying

d(x, gx) ≤ ε and d(y, gy) ≤ ε.

A group G is called acylindrically hyperbolic if it admits a non-elementary acylindrical action
on a hyperbolic space; equivalently, G is not virtually cyclic and acts on a hyperbolic space
acylindrically with unbounded orbits.

The class of acylindrically hyperbolic groups was introduced in [31] and includes many
examples of interest: non-elementary hyperbolic and relatively hyperbolic groups, all but
finitely many mapping class groups of punctured closed surfaces, Out(Fn) for n ≥ 2, finitely
presented groups of deficiency at least 2, most 3-manifold groups, etc. On the other hand,
many aspects of the theory of hyperbolic and relatively hyperbolic groups can be generalized
in the context of acylindrical hyperbolicity (see [32] and references therein).

In [17, Corollary 1.6], Hull proved that any two finitely generated acylindrically hyperbolic
groups have a common acylindrically hyperbolic quotient. The main goal of this paper is
to prove the following strengthening of his result.

Theorem 1.1. Every countable family of countable acylindrically hyperbolic groups has a
common finitely generated acylindrically hyperbolic quotient.

We note that neither of the countability assumptions in Theorem 1.1 can be dropped,
see Remark 5.1.
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All corollaries below are obtained by applying Theorem 1.1 to the family of all non-
elementary hyperbolic groups. In particular, all properties mentioned in Corollaries 1.2–1.4
can be realized by the same group. Constructing interesting examples as common quotients
of countable families of hyperbolic and relatively hyperbolic groups is not a new idea.
For instance, it was used in [29] to obtain groups with property (T) whose left regular
representation is not uniformly isolated from the trivial representation, and in [3] to obtain
groups with strong fixed point properties (see below). Our main contribution is that such
a quotient can be made acylindrically hyperbolic.

Recall that a group G is said to have property FLp if every affine isometric action of G
on an Lp-space has a fixed point. Known examples of groups having property FLp for all
p ∈ [1,+∞) include higher rank lattices [7] and certain Gromov’s Monsters [27]; none of
these examples admit non-elementary actions on hyperbolic spaces [14, 15]. On the other
hand, Yu [36] proved that every hyperbolic group admits a proper affine action on an `p-
space for large enough p, which is a strong negation of the property FLp. A generalization
of Yu’s result to relatively hyperbolic groups has been recently obtained by Chatterji and
Dahmani in [10]. It is also known that every acylindrically hyperbolic group G admits an
unbounded quasi-cocycle G→ `p(G) for all p ∈ [1,+∞) (see [16, 18]), which can be seen as
a violation of the “quasified” version of FLp.

Motivated by these results, Gruber, Sisto and Tessera [14] asked whether there exists a
group G acting non-elementarily on a hyperbolic space and such that G has property FLp

for all p ∈ [1,+∞). The following corollary answers this question affirmatively.

Corollary 1.2. There exists a finitely generated acylindrically hyperbolic group Q such that:

(a) Q has property FLp for all p ∈ [1,+∞);
(b) every action of Q on a contractible Hausdorff topological space of finite covering

dimension has a fixed point;
(c) every simplicial action of Q on a finite dimensional locally finite contractible sim-

plicial complex C is trivial, i.e., it fixes the whole of C pointwise.

The second and the third claims of the corollary strengthen the main results of [3], where
the first examples of finitely generated groups that do not admit any fixed point-free actions
on finite dimensional contractible Hausdorff topological spaces were constructed. These
strong fixed point properties for the acylindrically hyperbolic group G can be contrasted
with a theorem of Rips, stating that any hyperbolic group acts properly and cocompactly
on a contractible finite dimensional simplicial complex ([12, Ch. 4, Theorem 1]).

The same construction produces groups with interesting “non-uniform” behaviour. Recall
that there are two potentially non-equivalent ways to define uniform non-amenability of a
finitely generated group. The first one was suggested by Shalom in [34] and uses the
Kazhdan constants of the left regular representations. More precisely, one says that the left
regular representation of a finitely generated group G is uniformly isolated from the trivial
representation if there exists ε > 0 such that for every finite generating set X of G and
every unit vector v ∈ `2(G), there exists x ∈ X such that

‖λ(x)v − v‖ ≥ ε,
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where λ denotes the left regular representation of the group G. Another possibility, consid-
ered in [4], is to control the Følner constants: one says that G is uniformly non-amenable if
there exists ε > 0 such that for every finite generating set X of G, we have Føl(G,X) ≥ ε,
where

(1) Føl(G,X) = inf
|∂XA|
|A|

.

Here the infimum is taken over all finite subsets A ⊆ G, and

∂XA = {a ∈ A | ax /∈ A for some x ∈ X±1}.
It is not difficult to show that if the left regular representation of a finitely generated group
G is uniformly isolated from the trivial representation, then G is uniformly non-amenable
[4]. To the best of our knowledge, it is still an open problem whether the converse is true.

It was proved in [29] that the left regular representations of certain Baumslag-Solitar
groups are not uniformly isolated from the trivial representations. These groups were also
shown to be not uniformly non-amenable in [4]. On the other hand, it follows from a result
of Koubi [22] that every non-elementary hyperbolic group is uniformly non-amenable. This
is also true for non-elementary relatively hyperbolic groups [35], mapping class groups of
closed surfaces of genus g ≥ 1 and Out(Fn) for n ≥ 2 [5]. Nevertheless, we have the
following.

Corollary 1.3. There exists a finitely generated acylindrically hyperbolic group which is
not uniformly non-amenable. In particular, its left regular representation is not uniformly
isolated from the trivial representation.

The first step in the proofs of uniform non-amenability of the groups considered in [5,
22, 35] consists of showing that there exists a constant C such that for any finite generating
set X of G, one can find an element g ∈ G, of word length |g|X ≤ C, which is loxodromic
with respect to a certain action of G on a hyperbolic space. In particular, such an element
g has infinite order. Our last corollary shows that even this property may fail to be true in
a general acylindrically hyperbolic group.

Corollary 1.4. There exists an acylindrically hyperbolic group Q with the following prop-
erty. For every r ∈ N and every sufficiently large n ∈ N, there is a finite generating set X
of Q such that all elements g ∈ Q of length |g|X ≤ r have order at most n.

It is worth noting that we do not know whether every finitely generated acylindrically
hyperbolic group has uniform exponential growth. For the definition of uniform exponential
growth and a survey of known results we refer to [24].

The paper is organized as follows. In the next section we collect necessary definitions
and results about hyperbolically embedded subgroups. Section 3 is devoted to the small
cancellation component of our proof. Its main result, Proposition 3.3, strengthens the work
of [17] and seems to be of independent interest. To apply Proposition 3.3 in our settings
we show that every acylindrically hyperbolic group contains infinite proper hyperbolically
embedded subgroups with universal associated hyperbolicity constant. This is the key
novelty of our paper, which is discussed in Section 4. The proofs of Theorem 1.1 and
Corollaries 1.2–1.4 are contained in Section 5.
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2. Preliminaries

In this section we recall the definition of a hyperbolically embedded collection of sub-
groups. This notion was introduced in [6] and plays a crucial role in our paper.

In what follows, we will use Cayley graphs of groups with respect to generating alphabets
which are not necessarily subsets of the group. More precisely, by a generating alphabet of a
group G we mean an abstract set A together with a possibly non-injective map α : A → G
such that G is generated by α(A) in the usual sense. Given a word aε11 . . . aεkk , where
a1, . . . , ak ∈ A and ε1, . . . , εk ∈ {1,−1}, we say that it represents an element g ∈ G if
g = α(a1)ε1 · · ·α(ak)

εk in G.

By the Cayley graph of G with respect to a generating alphabet A, denoted Γ(G,A),
we mean a graph with the vertex set G and the set of edges defined as follows. For every
a ∈ A and every g ∈ G, there is an oriented edge eg,a = (g, gα(a)) in Γ(G,A) labelled by
a. Note that Γ(G,A) may have multiple edges if (and only if) α is not injective. By dA
(respectively, | · |A) we denote the standard edge-path metric on Γ(G,A) (respectively, the
word length on G with respect to the generating set α(A)).

By abuse of notation, we often identify words in the alphabet A and the elements of G
represented by them. For two words U and V , we write U ≡ V to denote the letter-by-letter
equality between them, and U =G V if these words represent the same element in the group
G. For a word W , ‖W‖ denotes its length. If p is a simplicial path in the Cayley graph
Γ(G,A), p− and p+ will denote the initial and the terminal vertices of p respectively, and
l(p) will denote the length of this path. The label of p, denoted by Lab(p), is the word
obtained by reading off the labels of its oriented edges from p− to p+.

Suppose that we have a group G, a collection of subgroups {Hλ}λ∈Λ of G, and a subset
X ⊆ G such that X and the union of all Hλ together generate G. In this case we say that
X is a relative generating set of G with respect to {Hλ}λ∈Λ. We think of X and subgroups
Hλ as abstract sets and consider the disjoint unions

(2) H =
⊔
λ∈Λ

Hλ and A = X tH.

Obviously A is a generating alphabet of G, where the map α : A → G is induced by the
natural inclusions X → G and Hλ → G. Note that α may not be injective.

Convention 2.1. Henceforth we always assume that all generating sets and relative gen-
erating sets are symmetric. That is, if x ∈ X, then x−1 ∈ X. In particular, every element
of G can be represented by a (positive) word in A. Given a word W ≡ a1 . . . ak in A, we
denote by W−1 the word a−1

k . . . a−1
1 , where a−1

i are letters of A: a−1
i ∈ X whenever ai ∈ X

and ai ∈ Hλ whenever ai ∈ Hλ.
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In these settings, we consider the Cayley graphs Γ(G,A) and Γ(Hλ, Hλ), λ ∈ Λ, and
naturally think of the latter as subgraphs of the former. For each λ ∈ Λ, we introduce an

extended metric d̂λ : Hλ ×Hλ → [0,+∞] as follows.

Definition 2.2. For every g, h ∈ Hλ, let d̂λ(g, h) denote the length of a shortest path in
Γ(G,A) that connects the elements g, h ∈ Hλ and contains no edges of Γ(Hλ, Hλ). If no

such a path exists, we set d̂λ(h, k) =∞.

Clearly d̂λ satisfies the triangle inequality, where the addition is extended to [0,+∞] in
the natural way.

Definition 2.3. A collection of subgroups {Hλ}λ∈Λ of G is hyperbolically embedded in G
with respect to a subset X ⊆ G, denoted {Hλ}λ∈Λ ↪→h (G,X), if the following conditions
hold.

(a) The group G is generated by the alphabet A defined in (2) and the Cayley graph
Γ(G,A) is hyperbolic.

(b) For every n ∈ N and every λ ∈ Λ, the ball {h ∈ Hλ | d̂λ(1, h) ≤ n} contains finitely
many elements.

We say that {Hλ}λ∈Λ is hyperbolically embedded in G and write {Hλ}λ∈Λ ↪→h G if
{Hλ}λ∈Λ ↪→h (G,X) for some X ⊆ G.

For details and further information on hyperbolically embedded subgroups we refer to
[6]. We will need the following result, which is a simplification of [31, Theorem 1.2].

Theorem 2.4. A group G is acylindrically hyperbolic if and only if it contains a proper
infinite hyperbolically embedded subgroup.

3. Small cancellation quotients of groups with hyperbolically embedded
subgroups

The proof of Theorem 1.1 makes use of small cancellation theory over acylindrically
hyperbolic groups. The idea of generalizing classical small cancellation to groups acting
on hyperbolic spaces is due to Gromov [13]. For hyperbolic groups it was elaborated by
Olshanskii in [33]. This approach was generalized to relatively hyperbolic groups by the
second author in [30], and further extended to acylindrically hyperbolic groups by Hull [17].
We begin by recalling necessary definitions.

Let G be a group generated by an alphabet A, and let R be a symmetrized set of words
over A; that is, we assume that for every R ∈ R, R contains all cyclic permutations of R±1.

Recall that a path p in a metric space (S,d) is said to be (λ, c)-quasi-geodesic for some
λ > 0, c ≥ 0, if

d(q−, q+) ≥ λl(q)− c
for any subpath q of p. Further, a word R in A is (λ, c)-quasi-geodesic, if some (equivalently,
any) path labelled by R in Γ(G,A) is (λ, c)-quasi-geodesic.



6 ASHOT MINASYAN AND DENIS OSIN

Definition 3.1. The set R satisfies the C(ε, µ, λ, c, ρ) small cancellation condition (with
respect to A) for some ε ≥ 0, µ > 0, λ > 0, c ≥ 0, ρ > 0, if

(a) ‖R‖ ≥ ρ for any R ∈ R;
(b) any word R ∈ R is (λ, c)-quasi-geodesic;
(c) suppose that for two words R,R′ ∈ R we have R ≡ UV , R′ ≡ U ′V ′, U ′ =G Y UZ

for some words Y, Z in A such that

max{‖Y ‖, ‖Z‖} ≤ ε and max{‖U‖, ‖U ′‖} ≥ µ‖R‖;

then Y RY −1 =G R
′.

Recall that, by our definition, every generating alphabet A of a group G comes equipped
with a not necessarily injective map α : A → G. In some cases, if a, b ∈ A represent the
same element of G (i.e., if α(a) = α(b)), we may want to replace A with another generating
alphabet A′ of G, where the letters a and b are identified. Clearly passing from A to A′
does not change the word metric on G. To prove the main result of this section we will
need the following elementary observation.

Lemma 3.2. Let A1 and A2 be generating alphabets of a group G with the corresponding
maps αi : Ai → G, i = 1, 2. Let ξ : A1 → A2 be a surjective map such that α1 = α2 ◦ ξ.
Suppose that R1 is a symmetrized set of words in the alphabet A1 satisfying the C(ε, µ, λ, c, ρ)
small cancellation condition (with respect to A1) for some ε ≥ 0, µ > 0, λ > 0, c ≥ 0, ρ > 0.
Let R2 be the set of words in A2 obtained from words in R1 by replacing each letter a ∈ A1

with ξ(a) ∈ A2. Then R2 satisfies the same C(ε, µ, λ, c, ρ) small cancellation condition
(with respect to A2).

Proof. We extend the map ξ to free monoids ξ∗ : A∗1 → A∗2 in the obvious way. Using
surjectivity of ξ it is straightforward to check that ξ∗ preserves the property of a word to
be (λ, c)-quasi-geodesic as well as property (c) in Definition 3.1 and the claim follows. �

Proposition 3.3. Let G be a group, {Hλ}λ∈Λ, {Kµ}µ∈M two collections of subgroups of
G, X subset of G. Suppose that

{Hλ}λ∈Λ ∪ {Kµ}µ∈M ↪→h (G,X).

Then there exists n ∈ N and finite subsets Fλ ⊆ Hλ, λ ∈ Λ, such that the following holds.

Let H, A be the alphabets defined by (2) and let W = {Wi}i∈I be any set of words in A
of the form

(3) Wi ≡ xiai1bi1 . . . ainbin
satisfying the following conditions for all i ∈ I:

(a) xi ∈ X;
(b) there exist α = α(i) and β = β(i) in Λ such that Hα ∩Hβ = {1} and aij ∈ Hα \Fα,

bij ∈ Hβ \ Fβ for all 1 ≤ j ≤ n;
(c) if a letter c ∈ H occurs in Wi for some i ∈ I, then it occurs only in Wi and only

once; in addition, c−1 does not occur in any word from W.
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Let

(4) G = G/〈〈Wi, i ∈ I〉〉.
and

Y = X ∪

(⋃
λ∈Λ

Hλ

)
⊆ G.

Then the restriction of the natural homomorphism γ : G → G to the subset Y ∪(⋃
µ∈M Kµ

)
⊆ G is injective and {γ(Kµ)}µ∈M ↪→h (G, γ(Y )).

Proof. The proof relies on results from [17]. We assume the reader to be familiar with the
material discussed in Sections 4 and 5 of [17]; to keep this paper reasonably short we do
not repeat it here.

We first note that the subsets Fλ ⊆ Hλ can be chosen so that for every n and every
i ∈ I, every cyclic permutation of the word Wi satisfies the conditions (W1)–(W4) from [17,
Section 5]. Indeed (W1) is obvious, (W2) can be ensured by taking Fλ to be the (finite) set

of all elements h ∈ Hλ satisfying d̂λ(1, h) < 50C in the notation of [17, Section 5], (W3) is
guaranteed by (b) and the structure of Wi (the first alternative in the conclusion of (W3)
always holds), and (W4) also follows from (b).

From now on, we assume that the subsets Fλ ⊆ Hλ are chosen as explained above. Thus
Lemmas 5.1 and 5.2 from [17, Section 5] hold in our settings. Together with our assumption
(c), they allow us to repeat the proof of [17, Proposition 5.3] and obtain the following.

Claim. For every ε > 0 there exists a constant M > 0 such that the set R of all cyclic
shifts of all words W±1

i satisfies the C(ε,M/n, 1/4, 1, n) small cancellation condition.

Although [17, Proposition 5.3] deals with the case |I| = 1, its proof works almost verba-
tim in the general case; the only change we need to make is to replace the phrase “since
Lab(e) only appears once in W±1” in the beginning of the third paragraph of the proof
with the reference to the condition (c). Note also that [17, Proposition 5.3] proves the
C1(ε,M/n, 1/4, 1, n) condition, which is stronger than C(ε,M/n, 1/4, 1, n) (see [17, Defini-
tion 4.3]); however, we do not need this stronger condition in our paper.

Let
K =

⊔
µ∈M

Kµ.

Applying Lemma 3.2 to the generating alphabets A1 = AtK = X tHtK and A2 = Y tK
with the obvious maps α1 : A1 → G, α2 : A2 → G, and ξ : A1 → A2, we obtain that the set
of words R′ in the alphabet A2, obtained from words in R by replacing each letter a ∈ A1

with ξ(a), satisfies the same C(ε,M/n, 1/4, 1, n) small cancellation condition.

Note that {Kµ}µ∈M ↪→h (G, Y ) by definition (cf. [6, Remark 4.26]). The set of words R′
is strongly bounded with respect to the collection of hyperbolically embedded subgroups
{Kµ}µ∈M and the relative generating set Y of G in the terminology of [17, Section 3, p.
1089]. Indeed, in our settings, the latter condition means that only finitely many letters
from each Kµ appear in words from R′; in our case there are no such letters at all. Let
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ε, µ, ρ be the constants provided by [17, Lemma 4.4] for the group G, the hyperbolically
embedded collection {Kµ}µ∈M , the relative generating set Y , λ = 1/4, c = 1 and N = 1.

By choosing sufficiently large n we can ensure that M/n ≤ µ and n ≥ ρ. Observe that
the C(ε, µ, λ, c, ρ) condition becomes stronger as µ decreases and ρ increases. Thus taking
n large enough, we can apply [17, Lemma 4.4] to the set of words R′ and conclude that

the natural homomorphism G → G is injective on the set Y ∪
(⋃

µ∈M Kµ

)
and we have

{γ(Kµ)}µ∈M ↪→h (G, γ(Y )). �

Remark 3.4. Note that in the proof of Proposition 3.3 we could not apply [17, Lemma 4.4]
directly to the set R, of all cyclic permutations of words from W±1. Indeed, if the set I is
infinite, infinitely many letters from H may appear in the words from W (because α(I) or
β(I) may be infinite subsets of Λ), which would imply that R is not strongly bounded with
respect to the collection of hyperbolically embedded subgroups {Hλ}λ∈Λ ∪ {Kµ}µ∈M .

4. Constructing uniformly hyperbolically embedded subgroups

We say that a metric space (S, d) is δ-hyperbolic for some constant δ ≥ 0 if it satisfies
the Gromov 4-point condition: for all x, y, z, w ∈ S one has

d(x, z) + d(y, w) ≤ max{d(x, y) + d(z, w), d(x,w) + d(z, y)}+ δ.

This condition is well-known to be equivalent to other definitions of hyperbolicity (see [12,
Ch. 2, §§ 2.4, 2.3, 2.21]). We say that a metric space is hyperbolic if it is δ-hyperbolic for
some δ ≥ 0.

Definition 4.1. Let Σ be a graph and let C be a natural number. The C-expansion of Σ
is a graph Ξ obtained from Σ by adding an edge between every two vertices u, v that are
at most C apart in Σ.

Lemma 4.2. Let Σ be a connected δ-hyperbolic graph, let C ∈ N and let Ξ be the C-
expansion of Σ. Then Ξ is (δ/C + 6)-hyperbolic.

Proof. Let dΣ and dΞ denote the standard path metrics on Σ and Ξ respectively. Let u, v
be any two vertices of Ξ. The definition of Ξ implies that u, v are also vertices of Σ and

(5) dΣ(u, v) ≤ CdΞ(u, v) and dΞ(u, v) ≤ 1

C
dΣ(u, v) + 1.

Now consider arbitrary points x, y, z, w in Ξ, and choose vertices x′, y′, z′, w′ of Ξ such
that dΞ(x, x′) ≤ 1/2, . . . ,dΞ(w,w′) ≤ 1/2. Then, in view of (5), we have

dΞ(x, z) + dΞ(y, w) ≤ dΞ(x′, z′) + 1 + dΞ(y′, w′) + 1 ≤ 1

C

(
dΣ(x′, z′) + dΣ(y′, w′)

)
+ 4.
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Recalling that Σ is δ-hyperbolic and using (5) again, we get

dΞ(x, z) + dΞ(y, w) ≤ 1
C (max{dΣ(x′, y′) + dΣ(z′, w′),dΣ(x′, w′) + dΣ(z′, y′)}+ δ) + 4

≤ max{dΞ(x′, y′) + dΞ(z′, w′), dΞ(x′, w′) + dΞ(z′, y′)}+ δ
C + 4

≤ max{dΞ(x, y) + dΞ(z, w), dΞ(x,w) + dΞ(z, y)}+ δ
C + 6.

Hence the graph Ξ satisfies Gromov 4-point condition with the constant (δ/C + 6). �

Recall that a subset Q of a geodesic metric space S is ε-quasiconvex, for some ε ≥ 0, if
for any two points x, y ∈ Q any geodesic path joining x and y in S lies within the closed
ε-neighborhood of Q in S.

Lemma 4.3. There exists a constant κ ≥ 0 such that for any ε, δ ≥ 0 the following holds.
Let Σ be a connected δ-hyperbolic graph and let Q be an ε-quasiconvex subset of vertices of
Σ, for some δ, ε ≥ 0. Then for each positive integer C ≥ max{δ, ε}, the C-expansion Ξ of
Σ is 7-hyperbolic and Q is κ-quasiconvex in Ξ.

Proof. Suppose that C ∈ N, C ≥ max{δ, ε}. Then Ξ, the C-expansion of Σ equipped with
the standard path metric dΞ, is 7-hyperbolic by Lemma 4.2. Let ΣC denote the geometric
realization of the graph Σ where all the edges are assumed to be isometric to the interval
[0, 1/C]. Thus the metric dΣC

on ΣC , can be obtained by rescaling the standard path metric
dΣ on Σ: for all x, y ∈ Σ one has dΣC

(x, y) = 1
CdΣ(x, y). Obviously ΣC is 1-hyperbolic (as

δ/C ≤ 1) and Q is 1-quasiconvex in ΣC (as ε/C ≤ 1).

The inequalities (5) clearly imply that for all vertices u, v of Σ we have

(6) dΣC
(u, v) ≤ dΞ(u, v) ≤ dΣC

(u, v) + 1,

i.e., the natural identification of the vertex set of Ξ with the vertex set of ΣC is a (1, 1)-
quasi-isometry.

Thus for every geodesic path p connecting two vertices in Ξ, its vertex set forms the
image of a (discrete) (1, 1)-quasi-segment in ΣC , using the terminology of [12, Ch. 5, § 1.2].
Therefore, by [12, Ch. 5, § 1.6], this vertex set lies within an H-neighborhood of any
geodesic path in ΣC which has the same endpoints as p, where H = H(1, 1, 1) is some
global constant.

Now, let p be a geodesic path connecting two vertices a, b ∈ Q in Ξ, and let x be any
point of p. Then there is a vertex u of p such that dΞ(x, u) ≤ 1/2. Let q be a geodesic
between a and b in ΣC . By the above discussion, u lies in the H-neighborhood of a vertex
w ∈ q in ΣC . On the other hand, the 1-quasiconvexity of Q in ΣC implies that there is a
vertex v ∈ Q such that dΣC

(w, v) ≤ 1, hence dΣC
(u, v) ≤ H + 1. Recalling (6), we obtain

dΞ(u, v) ≤ H + 2, hence dΞ(x, v) ≤ H + 5/2.

Thus we can conclude that Q is κ-quasiconvex in Ξ, where κ = H + 5/2 is a global
constant (independent of δ, ε, etc.), and the lemma is proved. �

The following observation will be useful.
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Lemma 4.4. Suppose that G is a group, X1 ⊆ G and {Hλ}λ∈Λ is a collection of subgroups
in G. Let X2 ⊆ G be a subset such that X1 ⊆ X2 ⊆ 〈X1〉 and sup{|x|X1 | x ∈ X2} < ∞.
Then {Hλ}λ∈Λ ↪→h (G,X1) if and only if {Hλ}λ∈Λ ↪→h (G,X2).

Proof. Let H =
⊔
λ∈ΛHλ. Obviously the set X1 t H generates G if and only if the set

X2 tH generates G, as 〈X1〉 = 〈X2〉. Moreover, the assumptions X1 ⊆ X2 and sup{|x|X1 |
x ∈ X2} = C < ∞ imply that the natural inclusion of the Cayley graph Γ(G,X1 t H) in
Γ(G,X2 tH) is C-bi-Lipschitz. Hence the Cayley graph Γ(G,X1 tH) is hyperbolic if and
only if Γ(G,X2 tH) is hyperbolic (cf. [12, Ch. 5, § 2.12]).

For each λ ∈ Λ and i ∈ {1, 2} let d̂iλ : Hλ ×Hλ → [0,+∞] denote the metric, given by

Definition 2.2, coming from the Cayley graph Γ(G,XitH). Note that d̂2
λ(1, h) ≤ d̂1

λ(1, h) ≤
Cd̂2

λ(1, h) for all h ∈ Hλ. Therefore the metric d̂1
λ is locally finite on Hλ if and only if d̂2

λ is
locally finite on Hλ. Thus {Hλ}λ∈Λ ↪→h (G,X1) if and only if {Hλ}λ∈Λ ↪→h (G,X2). �

We will also make use of [21, Corollary 2.4] (see also [21, Proposition 2.3]), which we
state in a much simplified form below (in the notation of [21], we have L = M1 = 1 and
M2 = M).

Lemma 4.5. For every δ0,M ≥ 0, there exists δ1 ≥ 0 such that the following holds. Let Θ
be a graph obtained from a connected δ0-hyperbolic graph Ξ by adding edges. Suppose that
for any two vertices x, y of Ξ, connected by an edge in Θ, and any geodesic p in Ξ going
from x to y, the diameter of p in Θ is at most M . Then Θ is δ1-hyperbolic.

Suppose that a group G acts on a hyperbolic metric space (S,d). This action is said to
be non-elementary if for some s ∈ S the orbit Gs has more than two limit points on the
boundary ∂S (see [13, § 8.2.D]). An element g ∈ G is loxodromic if for any point s ∈ S the
map Z → S, defined by n 7→ gns, is a quasi-isometry. Clearly the order of any loxodromic
element is infinite.

Recall that every acylindrically hyperbolic group contains a maximal finite normal sub-
group called the finite radical of G and denoted K(G) (see [6, Theorem 2.24]).

Lemma 4.6. There exists a constant D with the following property. Let G be an acylin-
drically hyperbolic group with trivial finite radical. Then there exist elements a, b ∈ G of
infinite order and a generating set X of G satisfying the following conditions:

(a) {〈a〉, 〈b〉} ↪→h (G,X);
(b) The Cayley graph Γ(G,X t 〈a〉 t 〈b〉) is D-hyperbolic.

Proof. By [31, Theorem 1.2] there exists a generating set Y of G such that the Cayley graph
Γ(G, Y ) is δ-hyperbolic, for some δ ≥ 0, and the natural action of G on it is acylindrical
and non-elementary. Since the finite radical of G is assumed to be trivial, G is a ‘suitable’
subgroup of itself, in the terminology of [17]. Therefore we can use [17, Corollary 5.7] to
find loxodromic elements a, b ∈ G such that {〈a〉, 〈b〉} ↪→h (G, Y ).
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Now, by [2, Lemma 2.5] the cyclic subgroups 〈a〉, 〈b〉 are ε-quasiconvex in Γ(G, Y ), for
some ε ≥ 0. Choose any C ∈ N with C ≥ max{δ, ε}, and let

X = {x ∈ G | |x|Y ≤ C}.

Observe that the Cayley graph Γ(G,X) is the C-expansion of the Cayley graph Γ(G, Y ),
so, according to Lemma 4.3, Γ(G,X) is 7-hyperbolic and the subgroups 〈a〉, 〈b〉 are κ-
quasiconvex in it (where κ is the global constant from that lemma). Moreover, Lemma 4.4
ensures that {〈a〉, 〈b〉} ↪→h (G,X), so it remains to show that Γ(G,X t 〈a〉 t 〈b〉) is D-
hyperbolic for some global constant D ≥ 0.

Let δ0 = 7 and M = 2κ + 1. We will now check that the assumptions of Lemma 4.5 are
satisfied, where Ξ = Γ(G,X) and Θ = Γ(G,X t 〈a〉 t 〈b〉). Let u, v ∈ G be two adjacent
vertices of Θ, let p be any geodesic joining u with v in Ξ, and let w, z be arbitrary points
on p.

If p is a single edge then dΘ(w, z) ≤ dΞ(w, z) ≤ 1 ≤M . Otherwise, p must be labelled by
a power of a or b. Let us consider the case when p is labelled by an, for some n ∈ Z, as the
other case is similar. Then the κ-quasiconvexity of 〈a〉 in Ξ implies that there exist k, l ∈ Z
such that dΞ(w, uak) ≤ κ and dΞ(z, ual) ≤ κ. Moreover, since (uak)−1(ual) = al−k ∈ 〈a〉,
the vertices uak and ual are adjacent in Θ. Therefore

dΘ(w, z) ≤ dΘ(w, uak) + dΘ(uak, ual) + dΘ(ual, z)

≤ dΞ(w, uak) + 1 + dΞ(ual, z) ≤ 2κ + 1 = M.

Thus the universal constant M is an upper bound for the diameter of p in Θ. Now we
can apply Lemma 4.5 to find a universal constant D ≥ 0 such that the Cayley graph
Γ(G,X t 〈a〉 t 〈b〉) = Θ is D-hyperbolic, as required. �

Lemma 4.7. Let {Gi}i∈I be a collection of groups. Suppose that for every i ∈ I we have a
collection of subgroups {Hij}j∈Ji and a generating set Xi of Gi, relative to {Hij}j∈Ji, such
that

(a) {Hij}j∈Ji ↪→h (Gi, Xi), for all i ∈ I, and
(b) the hyperbolicity constants of the Cayley graphs Γ(Gi, Xi t Hi), where Hi =⊔

j∈Ji Hij, i ∈ I, are uniformly bounded.

Then the collection {Hij | i ∈ I, j ∈ Ji} is hyperbolically embedded in the free product
G = ∗i∈IGi with respect to X =

⋃
i∈I Xi.

Proof. Suppose that the Cayley graphs Γ(Gi, XitHi) are δ-hyperbolic, for some fixed δ ≥ 0,
and all i ∈ I. After increasing δ, we can assume that δ ≥ 1 and geodesic triangles in each
of these Cayley graphs are δ-slim, i.e, each side of such a triangle is contained in the δ-
neighborhood of the two other sides (see [12, Ch. 2, § 3.21]). Let us first show that all
geodesic triangles in Γ(G,X tH) are also δ-slim.

Let us first establish some convenient terminology. Given a path p in Γ(G,X t H), its
label is a concatenation of subwords, each of which is written over the alphabet XitHi, for
some i ∈ I. Given any i ∈ I, a Gi-component of p is a subpath of p labelled by a non-empty
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word over the alphabet Xi t Hi, which is not contained in a larger subpath of p with this
property.

Let us now make the following observation, which is an immediate consequence of the
uniqueness of normal forms of elements in free products.

Remark 4.8. If p and q are two simple paths in Γ(G,X t H) with p− = q− and p+ = q+

then p = p1p2 . . . pn, q = q1q2 . . . qn, where for each k ∈ {1, . . . , n} there is ik ∈ I such that
pk and qk are Gik -components of p and q respectively, and (pk)− = (qk)−, (pk)+ = (qk)+.

Suppose that ∆ is a simplicial geodesic triangle in Γ(G,X t H), and p is any side of it.
Let q and r denote the two remaining sides of ∆. Without loss of generality we can re-orient
p, q, r so that p− = q−, q+ = r− and r+ = p+. Let x be any point of p. Then x belongs to
a Gi-component pi of p, for some i ∈ I. Let v be the first vertex of q which also belongs to
r (see Figure 1), and let q′, r′ be the subpaths of q and r respectively, such that q′− = q−,
q′+ = v = r′− and r′+ = r+. Note that the paths p,q and r are simple because they are
geodesic in Γ(G,X t H), and the choice of v implies that the path s = q′r′ is also simple.
Since p− = s− and p+ = s+, we can use Remark 4.8 to find a Gi-component si, of s, such
that (si)− = (pi)− and (si)+ = (pi)+.

p q

r v
x

p+ = r+

p− = q−

r− = q+

Figure 1. A generic geodesic triangle ∆ in Γ(G,X tH)

Now, by construction, si is either a subpath of q or r or it is a concatenation of a subpath
of q ending at v with a subpath of r starting at v. Thus pi is geodesic and si is the union
of at most two geodesics in the copy of Γ(Gi, Xi t Hi) in Γ(G,X t H) based at v. The
δ-slimness of geodesic triangles in Γ(Gi, Xi t Hi) implies that x is at most δ away from a
point of si in Γ(G,X t H). But si is contained in the union of q and r, so the geodesic
triangle ∆ is δ-slim. Since the latter is true for an arbitrary simplicial geodesic triangle in
Γ(G,X tH), we can conclude that this Cayley graph is hyperbolic by [12, Ch. 2, § 3.21].

Now, choose any i ∈ I and j ∈ Ji and consider the subgroupH = Hij , ofGi 6 G. Suppose
that n ∈ N, h ∈ H \{1}, p is the edge joining 1 and h and labelled by h in Γ(G,X tH), and
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q is any path from 1 to h in this graph, of length at most n, which avoids the edges from the
copy of Γ(H,H). Let q′ be a simple path with the same endpoints as q, whose set of edges is
a subset of the set of edges of q (we can get q′ from q by removing all maximal subpaths of
q which start and end at the same vertex). Then, according to Remark 4.8, q′ must consist
of a single Gi-component (since this is true for p and q′− = 1 = p−, q′+ = h = p+). Thus the
path q′ lies inside the Cayley graph Γ(Gi, XitHi). Clearly the length of q′ does not exceed
n and it still avoids the edges of Γ(H,H). Recalling that {Hik}k∈Ji ↪→h (Gi, Xi), we see
that there are only finitely many possibilities for the element h (for a given n). Since this is
true for any n ∈ N and arbitrary Hij , we can conclude that {Hij | i ∈ I, j ∈ Ji} ↪→h (G,X),
as claimed. �

5. Proofs of the main results

We begin with the proof of Theorem 1.1. Recall that for an acylindrically hyperbolic
group G, K(G) denotes its finite radical, i.e., K(G) is the unique maximal finite normal
subgroup of G. It is shown in [25, Lemma 3.9] (see also [26, Lemma 1]) that the quotient
group G/K(G) is also acylindrically hyperbolic and has trivial finite radical.

Proof of Theorem 1.1. Let Gk, k ∈ N, be a countable set of countable acylindrically hyper-
bolic groups. Passing to Gk/K(Gk) if necessary, we can assume that the finite radicals of
all groups Gk are trivial.

By Lemma 4.6, there exist infinite cyclic subgroups Ak, Bk ≤ Gk and generating sets
Xk ⊆ Gk such that {Ak, Bk} ↪→h (Gk, Xk), and the hyperbolicity constant of the Cayley
graph Γ(Gk, Xk tAk tBk) is bounded from above by a universal constant for all k ∈ N.

Let X =
⋃
k∈NXk and G = G1∗G2∗· · · . Note that X generates G and, by Lemma 4.7, we

have {Ak, Bk}k∈N ↪→h (G,X). Combining [2, Corollary 5.3] with [2, Corollary 3.12] we can
find an infinite virtually cyclic subgroup K 6 G such that {K} ∪ {Ak, Bk}k∈N ↪→h (G,X).
Let X = {x1, x2, . . .} and let I = N × N. If X = {x1, . . . , xm}, we define xm+1 = xm+2 =
· · · = 1 to uniformize our notation. For every i = (s, t) ∈ I, we consider a word of the form

Wi ≡ xsai1bi1 . . . ainbin,

where aij ∈ At, bij ∈ Bt for all 1 ≤ j ≤ n. Note that the intersection of distinct subgroups
from a hyperbolically embedded collection is always finite by [6, Proposition 4.33] and
therefore Ak ∩ Bk = {1} for all k. By Proposition 3.3, applied to the group G, the set X,
and the collections {Hλ}λ∈Λ = {Ak}k∈N ∪ {Bk}k∈N and {Kµ}µ∈M = {K}, we can chose
n ∈ N and finite subsets Fλ ⊂ Hλ, λ ∈ Λ, so that the conclusion of the proposition holds as
long as the elements aij , bij are chosen to satisfy conditions (b) and (c) from the proposition.
Since Ak and Bk are infinite cyclic, k ∈ N, such a choice is clearly possible.

Let G be the quotient group defined by (4). By Proposition 3.3, the image of K in G is an
infinite proper hyperbolically embedded subgroup. Therefore G is acylindrically hyperbolic
by Theorem 2.4. On the other hand, for every k ∈ N, the relations Wi = 1, i ∈ N × {k}
guarantee that the restriction of the natural homomorphism G → G to Gk is surjective,
i.e., G is a quotient group of Gk.
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Finally, we can always add the free group of rank 2 to the collection {Gk}k∈N. This will
ensure that G can be generated by 2 elements, as a quotient of this free group. �

Remark 5.1. Let us explain why the countability assumptions in Theorem 1.1 cannot be
dropped. Observe that, given a simple group S, any non-trivial quotient of the free product
S ∗ S must contain a copy of S. So, if S is an uncountable simple group (e.g., PSL2(R)),
then the acylindrically hyperbolic group S ∗S cannot have a common quotient with the free
group of rank 2, as S is not a subgroup of any countable group. On the other hand, in [9]
Camm showed that there exists a continuum of pairwise non-isomorphic 4-generated infinite
simple groups Si, i ∈ I. Note that the groups Gi = Si ∗ Si are acylindrically hyperbolic,
i ∈ I, and any non-trivial common quotient of the family {Gi}i∈I will be generated by 8
elements and will contain a copy of Sj , for each j ∈ I. But the latter is impossible since a
countable group can have at most countably many finitely generated subgroups. Thus the
only common quotient of {Gi}i∈I is the trivial group.

In view of Theorem 1.1, to obtain Corollaries 1.2–1.4 it suffices to prove the following.
We recall that a hyperbolic group is called non-elementary if it is not virtually cyclic.

Lemma 5.2. Let Q be any common quotient of all non-elementary hyperbolic groups. Then
the following hold:

(a) Q has property FLp for all p ∈ [1,+∞);
(b) every action of Q on a finite dimensional contractible topological space has a fixed

point;
(c) every simplicial action of Q on a finite dimensional locally finite contractible sim-

plicial complex is trivial;
(d) Q is not uniformly non-amenable;
(e) for every sufficiently large n ∈ N and all r ∈ N, there exists a finite generating set

X of Q such that every element g ∈ Q of length |g|X ≤ r has order at most n.

Proof. (a) For every n ∈ N, there exists a non-elementary hyperbolic group H such that
for all 1 ≤ p ≤ n every isometric action of H on an Lp-space fixes a point. In fact, a
random hyperbolic group, in a suitable density model, satisfies this property for every given
n almost surely [11, 27] (note that, by [7, Theorem 1.3] and [8, Corollary D], property FLp

for p ∈ [1, 2] follows from property FL2). Since FLp passes to quotients, the result follows.

(b) Let Xn denote the class of contractible Hausdorff topological spaces of covering di-
mension n, n ∈ N. By [3, Theorem 1.7] for each n ∈ N there exists a non-elementary
hyperbolic group Gn such that any action of Gn by homeomorphisms on any space S ∈ Xn
has a global fixed point. Since Q is a quotient of Gn, for every n ∈ N, Q does not admit a
fixed point-free action on any space from X =

⋃
n∈NXn, as required.

(c) This can be derived using the same argument as in the proof of [3, Corollary 1.2].
Indeed, first let us observe that the free product Alt(n)∗Alt(n), n ≥ 5, is a non-elementary
hyperbolic group which does not contain any proper normal subgroups of index less than
n!/2. Since Q is a quotient of such groups for all n ≥ 5, Q cannot have any proper subgroups
of finite index at all. Now, if Q acts on a finite dimensional simplicial complex C, then, by
claim (b), Q should fix some point p ∈ C. It follows that for every R > 0 and k ∈ N ∪ {0},
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Q acts on the set of k-simplices intersecting the ball of radius R centered at p in C. This
set is finite, provided C is locally finite, thus, since Q has no proper finite index subgroups,
such an action must fix each simplex of C. Hence the action of Q on C must be trivial.

(d) It was noted in [28] that there exists a sequence of normal subgroups

N1 CN2 C . . .C F,

where F is the free group of rank 2 such that Hi = F/Ni is non-elementary hyperbolic and
F/
⋃∞
i=1Ni is amenable (in fact, it is isomorphic to Z2 wrZ.) Let Xi be the image of the

standard basis of F in Hi. It follows that the Følner constants of Hi with respect to Xi

satisfy Føl(Hi, Xi) → 0 as i → ∞ [4, Corollary 12.3]. Let Yi be the image of Xi under a
surjective homomorphism Hi → Q. It is easy to see that Følner constants are monotone
under epimorphisms, i.e., Føl(Q,Yi) ≤ Føl(Hi, Xi) in our notation (see, for example, [4,
Theorem 4.1]). Thus we have lim

i→∞
Føl(Q,Yi) = 0, i.e., Q is not uniformly non-amenable.

(e) Let n be a sufficiently large natural number. It follows from the work of Novikov-
Adyan [1] (for n odd), Ivanov [19] and Lysenok [23] (for n even) and the isoperimetric
characterization of hyperbolic groups that for every r ∈ N, there exists a non-elementary
hyperbolic group Hr, generated by a finite set Xr, such that every element h ∈ Hr of length
|h|Xr ≤ r has order at most n. This fact can also be found in an explicit form in the paper
[20] (for all sufficiently large n). Given r ∈ N, let Yr be the image of Xr under the surjective
homomorphism Hr → Q. It is clear that every element g ∈ Q of length |g|Yr ≤ r has order
at most n. �
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