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We consider misère Nim as a normal-play game obtained from Nim by removing the terminal
position. While explicit formulas are known for the Sprague-Grundy functions of Nim and
Welter’s game, no explicit formula is known for that of misère Nim. All three of these games
can be considered as position restrictions of Nim. What are the differences between them? We
point out that Nim and Welter’s game are saturated, but misère Nim is not. Moreover, we
present explicit formulas for the Sprague-Grundy functions of saturations of misère Nim, which
are obtained from misère Nim by adjoining some moves.

1 Introduction

The loser in Nim is the winner in misère Nim. Nim is a two-player game played with heaps of
coins. Two players alternately choose a heap and take at least one coin from it. The player
who takes the last coin wins in Nim and loses in misère Nim. In general, the player who moves
last wins in the normal-play convention and loses in the misère-play convention, which has been
extensively studied by using misère Sprague-Grundy functions, genera, and misère quotients
(see, for example, [4, 5, 8, 12, 13]). In this paper, we will consider misère Nim as a normal-play
game obtained from Nim by removing the terminal position (see Section 1.2).

Impartial games including Nim and misère Nim can be analyzed using their (normal) Sprague-
Grundy functions [7,15]. Sprague-Grundy functions are defined recursively, and computing them
often leads to a combinatorial explosion. However, explicit formulas are known for the Sprague-
Grundy functions of some games such as Nim [7,15] and Welter’s game [16], which is a position
restriction of Nim. Though misère Nim is also a position restriction of Nim, no explicit formula
is currently available for its Sprague-Grundy function.1

What are the differences between Nim, Welter’s game, and misère Nim? One of the differences
is that Nim and Welter’s game are 2-saturated2 , but misère Nim is not. The purpose of this
paper is to present an explicit formula for the Sprague-Grundy functions of 2-saturations of
misère Nim, which are obtained from misère Nim by adjoining some moves. More generally, for

∗This work was partially carried out at Chiba University.
1By contrast, an explicit formula is known for the misère Sprague-Grundy function of Nim. See Remark 5.
2The concept of saturations was first introduced in [9] to connect Welter’s game with representations of symmetric
groups.
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a mixed-radix number system β, we give an explicit formula for the Sprague-Grundy functions
of β-saturations of misère Nim.

1.1 Mixed-radix number systems

We introduce some notation for mixed-radix number systems.
Let N be the set of nonnegative integers. Throughout this paper, β denotes a sequence

(βL)L∈N ∈ N
N with βL > 2 for every L ∈ N. Define βL = β0 · β1 · · · βL−1. For example, if

β = (2, 3, 2, . . .), then β0 = 1, β1 = 2, and β2 = 6.

Let n ∈ N. We denote by nβL the Lth digit in the mixed base β expansion of n, that is, if nβ
>L

is the integer quotient3 of n divided by βL, then nβL = n
β
>L mod βL, where n

β
>L mod βL is the

remainder of nβ
>L divided by βL. By definition,

n =
∑

L∈N

n
β
Lβ

L and n
β
L ∈ { 0, 1, . . . , βL − 1 } .

For example, if βL = b for every L ∈ N, then nβL is the Lth digit in the ordinary base b expansion

of n, so it is convenient to write β = b. For a negative integer n, we define nβL similarly; then

n
β
L + (−n− 1)βL = βL − 1.

For example, (−1)βL = βL − 1. We drop the superscript β when no confusion can arise.
For n ∈ Z, define

ordβ(n) =

{

min { L ∈ N : nL 6= 0 } ( = max
{
L ∈ N : βL divides n

}
) if n 6= 0,

∞ if n = 0.

For example, if β = (3, 2, 5, 4, . . .), then ordβ(54) = ordβ(4 · β
2 + β3) = 2.

1.2 Subtraction games

We define subtraction games, their misère versions, and Sprague-Grundy functions.
Fix a positive integer k and let Ω denote { 0, 1, . . . , k − 1 }. Let P ⊆ N

k and C ⊆ N
k \

{ (0, . . . , 0) }. Define Γ(P,C ) to be the digraph with vertex set P and edge set

{ (X,Y ) ∈ P2 : X − Y ∈ C } .

We call Γ(P,C ) a subtraction game or a take-away game. The vertex set P is called the position
set of Γ(P,C ).

Remark 1. We can consider Γ(P,C ) as a two-player game as follows. Before the game begins,
we pick an initial position X0 ∈ P. The first player subtracts some C0 ∈ C from X0 so that
X0 − C0 ∈ P. Let X1 = X0 − C0. Similarly, the second player subtracts some C1 ∈ C from X1

so that X1 − C1 ∈ P. In this way, the two players alternately subtract some C ∈ C from the
current position. The player who subtracts last wins.

3n
β

>L is the unique integer satisfying n− n
β

>Lβ
L ∈ { 0, 1, . . . , βL − 1 }.
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Example 2 (Nim). Let
C[1] = {C ∈ N

k : wt(C) = 1 } ,

where wt(C) is the Hamming weight of C, that is, the number of nonzero components of C. The
subtraction game Γ(Nk,C[1]) is called Nim. For example, in Nim, the first player will win if we
start from (1, 0); indeed, he can subtract (1, 0) ∈ C[1] from (1, 0), but the second player cannot
subtract any C ∈ C[1] from (0, 0).

We next define the misère version of a subtraction game. Let X be a position in a subtraction
game Γ(P,C ). If X−C ∈ P for some C ∈ C , then X−C is called an option of X (in Γ(P,C )).
If X has no options, then X is called a terminal position. Let P ′ be the set of non-terminal
positions in Γ(P,C ). The subtraction game Γ(P ′,C ) is called the misère version of Γ(P,C ) [11].

Example 3 (misère Nim). Let PMis = Pk
Mis = N

k \ { (0, . . . , 0) }. Then PMis is the set of non-
terminal positions of Nim, so the misère version of Nim is Γ(PMis,C[1]). We call Γ(PMis,C[1])
misère Nim.4 In misère Nim, the first player will lose if we start from (1, 0) because this position
is terminal.

We now define Sprague-Grundy functions. See, for example, [1, 2, 5, 14] for details. Let
Γ = Γ(P,C ) and X ∈ P. The Sprague-Grundy value sg(X) of X is defined to be the minimum
nonnegative integer n such that n is not equal to the Sprague-Grundy value of any option of X,
that is,

sg(X) = sgΓ(X) = mex { sgΓ(Y ) : Y is an option of X } ,

where mexS = min {n ∈ N : n 6∈ S }. Note that if X is a terminal position, then sg(X) =
mex ∅ = 0. The nonnegative integer-valued function sg : P ∋ X 7→ sg(X) ∈ N is called
the Sprague-Grundy function of the subtraction game Γ. For a position X, the following two
statements are equivalent:

(1) sg(X) = 0.

(2) The second player can win when the initial position is X.

Example 4. Let k = 2. We calculate the Sprague-Grundy values of some positions in misère
Nim (see Table 1 in Example 7). Since (0, 1) and (1, 0) are terminal positions, their Sprague-
Grundy values are 0. Hence sg((0, 2)) = sg((1, 1)) = sg((2, 0)) = mex { 0 } = 1. This implies
that sg((1, 2)) = sg((2, 1)) = mex { 0, 1 } = 2, so sg((2, 2)) = mex { 1, 2 } = 0. We can verify that
the second player can win when (2, 2) is the initial position.

Remark 5. The Sprague-Grundy function of misère Nim is different from the misère Sprague-
Grundy function G− of Nim defined in [5]. The domain of the former function is Nk\{ (0, . . . , 0) }
and that of the latter one is Nk. Here, for X ∈ N

k, we can compute G−(X) as follows:

G
−(X) =

{

1 if X = (0, . . . , 0),

mex {G −(Y ) : Y is an option of X } otherwise.

4Misère Nim is usually defined to be Nim in misère play, so the definition of misère Nim used in this paper is
slightly different from the standard one. However, for X ∈ N

k \ { (0, . . . , 0) }, the outcomes of X in the two of
these misère Nim are the same. In other words, when the initial position is X, the first player can win in one
of the two misère Nim if and only if he can win in the other misère Nim.
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The value G−(X) is generally not equal to sgΓ(X), where Γ is misère Nim Γ(PMis,C[1]). For
example, G−((0, 2)) = 2 6= 1 = sgΓ((0, 2)). However, G−(X) = 0 if and only if sgΓ(X) = 0.5

1.3 β-Saturations

We define β-saturations of subtraction games.
Elements in N

k will be denoted by upper-case letters, and components of them by lower-case
letters with superscripts. For example, C = (c0, . . . , ck−1) ∈ N

k. Define

C
β = C

β,k =

{

C ∈ N
k \ { (0, . . . , 0) } : ordβ

(
∑

i∈Ω

ci

)

= mordβ(C)

}

,

where
mordβ(C) = min { ordβ(c

i) : i ∈ Ω } .

For example, (2, 2, 6) ∈ C 2 and (2, 2, 4) 6∈ C 2 because

ord2(2 + 2 + 6) = 1 = mord2((2, 2, 6)) and ord2(2 + 2 + 4) = 3 > 1 = mord2((2, 2, 4)).

A subtraction game Γ(P,C ) is said to be β-saturated if its Sprague-Grundy function is equal
to that of Γ(P,C β). If Γ(P,C ) is β-saturated, then we also say that it is a β-saturation of
Γ(P,C[1]).

Example 6 (Nim and Welter’s game). Let

PWel = {X ∈ N
k : xi 6= xj whenever i 6= j } .

The subtraction game Γ(PWel,C[1]) is called Welter’s game. It is known that Nim and Welter’s

game are 2-saturated [3, 6, 9, 16], that is, for P ∈ {Nk,PWel }, the Sprague-Grundy function
of Γ(P,C[1]) is equal to that of Γ(P,C 2). Moreover, Γ(Nk,C ) is 2-saturated if and only if
C[1] ⊆ C ⊆ C 2 [3].

Example 7. Let k = 2. We compare the Sprague-Grundy function of misère Nim Γ(PMis,C[1])
with that of Γ(PMis,C

2) (see Table 1). We first consider the position (2, 2). The Sprague-Grundy
value of (2, 2) equals 0 in Γ(PMis,C[1]); however, it equals 3 in Γ(PMis,C

2) because (0, 1) is an
option of (2, 2) in Γ(PMis,C

2). Thus misère Nim is not 2-saturated when k = 2. We next
compute the Sprague-Grundy value of (2, 3) in Γ(PMis,C

2). Since (2, 3) − (0, 1) = (2, 2) 6∈ C 2

and (2, 3) − (1, 0) = (1, 3) 6∈ C 2, (2, 3) has no options with Sprague-Grundy value 0, and hence
its Sprague-Grundy value is 0.

5As we have mentioned, G
−(X) can be written down explicitly. If maxX > 2, then G

−(X) = σ2(X), where
σ2(X) is the Nim sum of the components of X. If maxX < 2, then G

−(X) = 1− σ2(X).
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Table 1: Sprague-Grundy values in Γ(PMis,C[1]) and Γ(PMis,C
2).

0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7
1 0 1 2 3 4 5 6 7 8
2 1 2 0 4 5 3 7 8 6
3 2 3 4 0 1 6 8 5 9
4 3 4 5 1 0 2 9 10 11
5 4 5 3 6 2 0 1 9 10
6 5 6 7 8 9 1 0 2 3
7 6 7 8 5 10 9 2 0 1
8 7 8 6 9 11 10 3 1 0

0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7
1 0 1 2 3 4 5 6 7 8
2 1 2 3 0 5 6 7 4 9
3 2 3 0 1 6 7 4 5 10
4 3 4 5 6 7 0 1 2 11
5 4 5 6 7 0 1 2 3 12
6 5 6 7 4 1 2 3 0 13
7 6 7 4 5 2 3 0 1 14
8 7 8 9 10 11 12 13 14 15

1.4 A formula for β-saturations of misère Nim

We present an explicit formula for the Sprague-Grundy functions of β-saturations of misère Nim.
Let JβLK denote { 0, 1, . . . , βL − 1 } equipped with the following two operations: for a, b ∈ JβLK,

a⊕ b = (a+ b) mod βL and a⊖ b = (a− b) mod βL.

In other words, JβLK is the additive group of integers modulo βL. For example, in J5K, 2⊕ 4 = 1

and 2⊖ 4 = 3. For n ∈ N, we will think of nβL as an element of JβLK. Let Zβ denote
∏

L∈NJβLK
equipped with the following two operations: for n,m ∈ Zβ,

n⊕m = [nL ⊕mL]L∈N and n⊖m = [nL ⊖mL]L∈N,

where n = [nL]L∈N and m = [mL]L∈N. For n ∈ Zβ, define

ordβ(n) =

{

min { L ∈ N : nL 6= 0 } if n 6= [0, 0, . . .],

∞ if n = [0, 0, . . .].

Consider the map Φ : Z ∋ n 7→ [nβL]L∈N ∈ Zβ. For n ∈ Z, we identify Φ(n) with n. Let Nβ

denote Φ(N). For n ∈ Nβ, it is convenient to write n = [n0, n1, . . . , nL−1] when n>L = 0. For
example, if β = 10, then 24 = [4, 2, 0, . . .] = [4, 2] ∈ N10.

For X ∈ N k
β , define

σβ(X) = σβ,k(X) = x0 ⊕ · · · ⊕ xk−1 ( ∈ Nβ). (1.1)

Let σβL(X) = (σβ(X))L (= the Lth digit of σβ(X)) for L ∈ N.

Example 8 (β-saturations of Nim [10]). Let X be a position in a β-saturation of Nim. Then

sg(X) = σβ(X).

For example, if β = (3, 2, 5, . . .) and X = (16, 27) = ([1, 1, 2], [0, 1, 4]) ∈ N 2
β , then

sg(X) = σβ(X) = [1⊕ 0, 1⊕ 1, 2 ⊕ 4] = [1, 0, 1] = 7.
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Example 9 (b-saturations of Welter’s game [9]). Let X be a position in a b-saturation of
Welter’s game, where b is an integer greater than 1. Then

sg(X) = σb(X)⊕
⊕

i<j

(

bordb(x
i
−xj)+1 − 1

)

.

For example, if b = 3 and X = (1, 4) ∈ N 2
3 , then sg(X) = 1⊕ 4⊕ (32 − 1) = 1.

We now give an explicit formula for the Sprague-Grundy functions of β-saturations of misère
Nim. For X ∈ PMis (⊆ N k

β ), define

φβ(X) = σβ(X)⊕
(

βmordβ(X)+1 − 1
)

. (1.2)

Theorem 10. The Sprague-Grundy function of a β-saturation of misère Nim is equal to φβ,
that is,

sg(X) = φβ(X)

for every position X in a β-saturation of misère Nim.

Before giving an example of Theorem 10, we introduce some notation. For n ∈ Nβ and
L ∈ N, let n<L = [n0, n1, . . . , nL−1] ∈ Nβ, that is, n<L = n mod βL. For X ∈ N k

β , let

X<L = (x0<L, x
1
<L . . . , x

k−1
<L ) ∈ N k

β . When X = X<L, it is convenient to write X as follows:

X =






x00 x01 · · · x0L−1
...

...
. . .

...

xk−1
0 xk−1

1 · · · xk−1
L−1




 .

Note that if mordβ(X) = N , then

X =






x0N · · · x0L−1

0
... · · ·

...

xk−1
N · · · xk−1

L−1




 .

Example 11. Let us consider Example 7 again. Let

X = (2, 2) =

[
0 1
0 1

]

∈ N 2
2 and Y = (2, 3) =

[
0 1
1 1

]

∈ N 2
2 .

Then mord2(X) = 1 and mord2(Y ) = 0, so

φ2(X) = σ2(X)⊕ (21+1 − 1) = 3 and φ2(Y ) = σ2(Y )⊕ (20+1 − 1) = 0.

1.5 The weight of φβ,k

We give the minimum of the weight of C such that Γ(PMis,C ) is a β-saturation of misère Nim.
Let P ⊆ N

k. For a nonnegative integer-valued function ψ : P → N, let ∆(ψ) be the set of
C ⊆ N

k \ { (0, . . . , 0) } such that the Sprague-Grundy function of Γ(P,C ) equals ψ. Note that
if C ,D ∈ ∆(ψ) and C ⊆ E ⊆ D , then E ∈ ∆(ψ). By definition, Γ(P,C ) is β-saturated if and

6



only if C ∈ ∆(ψβ), where ψβ is the Sprague-Grundy function of Γ(P,C β). If ∆(ψ) 6= ∅, then
define

wt(ψ) = min
C∈∆(ψ)

wt(C ),

where wt(C ) = max {wt(C) : C ∈ C } and max ∅ = 0. For example, if ψ2 is the Sprague-Grundy
function of a 2-saturation of Nim or that of a 2-saturation of Welter’s game, then

wt(ψ2) = 1

since C[1] ∈ ∆(ψ2). In other words, Nim andWelter’s game themselves are 2-saturated. However,
as we have seen in Example 7, if k = 2, then C[1] 6∈ ∆(φ2,2), so wt(φ2,2) = 2. In fact, if k > 2,
then

wt(φ2,k) = 2.

Let B be the supremum of {βL : L > 1 } in N ∪ {∞}. In general, we will prove that

wt(φβ,k) = max

{

min
{

βL − δ(L), k − δ(L)[β0 < 2k]
}

: L ∈ N

}

(1.3)

=







k if B > k or β0 > 2k,

k − 1 if B < k and k 6 β0 < 2k,

max {β0 − 1, B } if B < k and β0 < k,

where δ(L) = [L = 0] and [ ] is the Iverson bracket notation, that is, [P ] = 1 if a statement P
holds, and [P ] = 0 otherwise. In particular, if β = b for some b ∈ N, then

wt(φb,k) = min { b, k } .

2 Proofs

When no confusion can arise, we write σ and φ instead of σβ and φβ, respectively.

2.1 Preliminaries

Let C ⊆ N k
β \ { (0, . . . , 0) }. The Sprague-Grundy function of Γ(PMis,C ) equals φ if and only if

C satisfies the following two conditions:

(SG1) If X ∈ PMis, then X has no option Y with φ(Y ) = φ(X) in Γ(PMis,C ), that is, φ(X −
C) 6= φ(X) for every C ∈ C with X − C ∈ PMis.

(SG2) If X ∈ PMis and 0 6 m < φ(X), then X has an option Y with φ(Y ) = m in Γ(PMis,C ),
that is, φ(X − C) = m for some C ∈ C with X − C ∈ PMis.

To prove Theorem 10 and (1.3), it therefore suffices to show the following three assertions:

(A1) C β satisfies (SG1).

(A2) {C ∈ N k
β : wt(C) < w } does not satisfy (SG2), where w is the right-hand side of (1.3).

(A3) C
β

[w] satisfies (SG2), where C
β

[w] = {C ∈ C β : wt(C) 6 w }.

7



2.2 Proof of (A1)

Let X ∈ PMis, C ∈ C β with X − C ∈ PMis, and Y = X − C. Let N = mordβ(X),M =
mordβ(Y ), and H = mordβ(C). We show that φH(Y ) 6= φH(X), where φH(X) = (φ(X))H .
Since (βN+1 − 1)L = ⊖[L 6 N ] for L ∈ N, it follows that

φL(X) = σL(X)⊖ [L 6 N ] and φL(Y ) = σL(Y )⊖ [L 6M ]. (2.1)

We first show that
[H 6 N ] = [H 6M ]. (2.2)

Since C<H = (0, . . . , 0), we see that Y<H = (X − C)<H = X<H . Suppose that H > N . Then
Y6N = X6N 6= (0, . . . , 0), where Y6N = Y<N+1. Hence M = N , so (2.2) holds. If H 6 N , then
Y<H = X<H = (0, . . . , 0), so H 6M . Therefore (2.2) holds.

We next show that
σH(X) 6= σH(Y ). (2.3)

Since C<H = (0, . . . , 0), it follows that yiH = xiH ⊖ ciH for i ∈ Ω. Hence

σH(Y ) = σH(X) ⊖ σH(C).

Recall that H = mordβ(C) = ordβ(
∑

i c
i) since C ∈ C β . This implies that (

∑

i c
i)H = σH(C) 6=

0. Thus (2.3) holds.
Combining (2.1)–(2.3), we see that φH(X) 6= φH(Y ). Therefore C β satisfies (SG1).

2.3 Proof of (A2)

A position Y ∈ PMis is called a descendant of a position X ∈ PMis if X − Y ∈ N k
β .

If k = 1, then w = 1, so (A2) is obvious. Suppose that k > 2. It suffices to show that
there exist X ∈ PMis and m with 0 6 m < φ(X) satisfying the following condition: if Y is a
descendant of X with φ(Y ) = m, then wt(X − Y ) > w. By (1.3),

w = min
{

βN − δ(N), k − δ(N)[β0 < 2k]
}

for some N ∈ N.

Note that w > 1. We divide the proof into two cases.

Case 1 (N > 0 or β0 < 2k). We see that w = min {βN , k } − δ(N). Let

X = (βN , . . . , βN
︸ ︷︷ ︸

w+δ(N)

, 0, . . . , 0) ∈ Pk
Mis.

Since w + δ(N) 6 βN and mordβ(X) = N , it follows that

φ(X) = σ(X)⊕ (βN+1 − 1) = [

N
︷ ︸︸ ︷

0, . . . , 0, 1⊕ · · · ⊕ 1
︸ ︷︷ ︸

w+δ(N)

]⊖ [

N
︷ ︸︸ ︷

1, . . . , 1, 1]

=

{

wβN − 1 if N > 0,

w if N = 0.
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In particular, φ(X) > 0. Let Y be a descendant of X with φ(Y ) = 0. To prove that wt(X −
Y ) = w, we show that

∑

i y
i
N = δ(N). Since φ0(Y ) = 0, we see that mordβ(Y ) = 0. Hence

φN (Y ) = σN (Y )⊖ [N 6 0] = σN (Y )⊖ δ(N). Since φN (Y ) = 0,

σN (Y ) = δ(N). (2.4)

We also see that
∑

i y
i
N <

∑

i x
i
N = w+δ(N) 6 βN because Y is a descendant of X with Y 6= X.

Hence
∑

i y
i
N = σN (Y ) = δ(N). Therefore wt(X − Y ) = w.

Case 2 (N = 0 and β0 > 2k). Since k > 2, we see that β0 > 4 and w = min {β0 − 1, k } = k.
Let

X = (2, . . . , 2) ∈ Pk
Mis.

Then φ(X) = φ0(X) = 2k − 1 > 0. Let Y be a descendant of X with φ(Y ) = 0. Then
φ0(Y ) = σ0(Y ) ⊖ 1 = 0. Since

∑

i y
i
0 <

∑

i x
i
0 = 2k 6 β0, it follows that

∑

i y
i
0 = σ0(Y ) = 1.

This implies that yi ∈ { 0, 1 } for i ∈ Ω. Hence wt(X − Y ) = k = w.

Example 12. Let β = (6, 2, 2, . . .), k = 3, and X = (2, 2, 2). Then φ(X) = 5. If Y is a
descendant ofX with φ(Y ) = 0, then Y ∈ { (0, 0, 1), (0, 1, 0), (1, 0, 0) }, and hence wt(X−Y ) = 3.
Note that if β = (5, 2, 2, . . .), then φ((2, 2, 2)) = 0.

2.4 Proof of (A3)

To prove (A3), we present two lemmas.
For X ∈ PMis, the next lemma allows us to express x0 with x1, . . . , xk−1, and φ(X).

Lemma 13. Let X ∈ PMis and m ∈ Nβ. For i ∈ Ω, let

M (i) = mordβ

(

(m⊖ (−1), x0, . . . , xi−1, xi+1, . . . , xk−1)
)

,

y(i) = m⊖ (βM
(i)+1 − 1)⊖ x0 ⊖ · · · ⊖ xi−1 ⊖ xi+1 ⊖ · · · ⊖ xk−1,

and
Y (i) = (x0, . . . , xi−1, y(i), xi+1, . . . , xk−1).

Then mordβ(Y
(i)) =M (i). In particular, φ(Y (i)) = m.

Proof. It suffices to prove the lemma when i = 0. Let M = M (0) and Y = Y (0). We show that
mordβ(Y ) =M . For L < M ,

y0L = mL ⊖ (βM+1 − 1)L ⊖ x1L ⊖ · · · ⊖ xk−1
L

= mL ⊖ (⊖1) = (m⊖ (−1))L = 0.

This implies that mordβ(Y ) > M . By the definition of M , we see that (m ⊖ (−1))M 6= 0 or

x
j
M 6= 0 for some j > 1. If the latter holds, then mordβ(Y ) =M . Suppose that (m⊖(−1))M 6= 0

and xjM = 0 for every j > 1. Then y0M = mM⊖(βM+1−1)M⊖x1M⊖· · ·⊖xk−1
M = (m⊖(−1))M 6= 0,

so mordβ(Y ) =M . Therefore

m = y0 ⊕ x1 ⊕ · · · ⊕ xk−1 ⊕ (βM+1 − 1) = σβ(Y )⊕ (βmordβ(Y )+1 − 1) = φ(Y ).
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Example 14. Let β = 3, X = (3, 4), and m = 2. Note that m ⊖ (−1) = [0, 1, 1, . . .] and
ord3(m⊖ (−1)) = 1. Since

M (0) = mord3
(
(m⊖ (−1), 4)

)
= 0 and M (1) = mord3

(
(m⊖ (−1), 3)

)
= 1,

it follows that

y(0) = m⊖ (31 − 1) ⊖ 4 = 8 and y(1) = m⊖ (32 − 1)⊖ 3 = 0.

By Lemma 13, φ((y(0), x1)) = φ((x0, y(1))) = m = 2. Indeed,

φ((8, 4)) = 8⊕ 4⊕ (31 − 1) = 2 and φ((3, 0)) = 3⊕ 0⊕ (32 − 1) = 2.

The following trivial lemma will be used to construct appropriate options. For X ∈ N k
β and

L ∈ N, let xL = (x0L, x
1
L, . . . , x

k−1
L ) ∈ JβLKk. For example, if β = 3 and X = ([1, 0, 2], [2, 1]), then

x0 = (1, 2) and x1 = (0, 1).

Lemma 15. Let X ∈ N k
β , m ∈ Nβ, and R ∈ N. Choose j ∈ Ω so that xjR > xiR for every i ∈ Ω.

If mR 6
∑

i x
i
R, then there exists u ∈ JβRKk satisfying the following three conditions:

(1)
⊕

i∈Ω

ui = mR, where u = (u0, . . . , uk−1).

(2) 0 6 xiR − ui 6 x
j
R − uj for every i ∈ Ω.

(3)
∑

i∈Ω

(xiR − ui) 6 βR − 1.

Before proving Lemma 15, let us give an example. Let β = (7, 2, . . .), X = (4, 4, 3), R = j = 0,
and m = 6. Then m0 = 6 < 11 =

∑

i x
i
0. Since (

⊕

i x
i
0) ⊖m0 = 4 ⊖ 6 = 5 < 11, we can obtain

u satisfying (1)–(3) by subtracting a vector (t0, t1, t2) with
∑
ti = 5 from x0. For example, let

t = (4, 1, 0); then x0 − t = (0, 3, 3), and it satisfies (1)–(3).

Proof. By rearranging x0, . . . , xk−1 if necessary, we may assume that j = 0. Let d = (
⊕

i x
i
R)⊖

mR. Since mR 6
∑

i x
i
R, it follows that d 6

∑

i x
i
R −mR 6

∑

i x
i
R. For i ∈ Ω, let

ti = min

{

xiR, d−
i−1∑

h=0

th

}

.

Then
∑

i t
i = d. It follows that xR − (t0, . . . , tk−1) satisfies (1)–(3).

We now prove (A3). Let n = φ(X) andm ∈ Nβ with 0 6 m < n. We show that φ(X−C) = m

for some C ∈ C
β

[w] with X − C ∈ PMis. Let N = mordβ(X) and

R = max {L ∈ N : mL 6= nL } .

We divide the proof into two cases.
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Case 1 (N > R). By rearranging x0, . . . , xk−1 if necessary, we may assume that x0N 6= 0. For
i > 1, let yi = xi. Let

M = mordβ((m⊖ (−1), y1, . . . , yk−1)),

y0 = m⊖ (βM+1 − 1)⊖ y1 ⊖ · · · ⊖ yk−1,

and Y = (y0, y1, . . . , yk−1). By Lemma 13, φ(Y ) = m and mordβ(Y ) = M . It remains to prove
that y0 < x0. We show that y0N = x0N − 1 and y0

>N+1 = x0
>N+1. Since mR < nR 6 βR − 1, we

see that (m⊖ (−1))R = mR ⊕ 1 6= 0. Hence M 6 R < N . Since mordβ(Y ) =M ,

mN = y0N ⊕ y1N ⊕ · · · ⊕ yk−1
N ⊖ [N 6M ] = y0N ⊕ x1N ⊕ · · · ⊕ xk−1

N . (2.5)

Moreover, since N > R,

mN = nN = x0N ⊕ x1N ⊕ · · · ⊕ xk−1
N ⊖ [N 6 N ] = x0N ⊕ x1N ⊕ · · · ⊕ xk−1

N ⊖ 1. (2.6)

By (2.5) and (2.6), y0N = x0N ⊖1. Since x0N 6= 0, it follows that y0N = x0N ⊖1 = x0N −1. Similarly,
for L > N + 1,

y0L ⊕ x1L ⊕ · · · ⊕ xk−1
L ⊖ [L 6M ] = mL = nL = x0L ⊕ x1L ⊕ · · · ⊕ xk−1

L ⊖ [L 6 N ].

Since [L 6M ] = [L 6 N ] = 0, we see that y0L = x0L. Therefore y0 < x0 and X − Y =

(x0 − y0, 0, . . . , 0) ∈ C
β

[w].

Case 2 (N 6 R). By rearranging x0, . . . , xk−1 if necessary, we may assume that x0R > x1R >

· · · > xk−1
R . Let M = mordβ((m⊖ (−1), x1, . . . , xk−1)). Since mR < nR 6 βR− 1, it follows that

M 6 R.

Claim. There exists u ∈ JβRKk satisfying the following four conditions:

(C1)
⊕

i∈Ω

ui = mR ⊕ [R 6M ], where u = (u0, . . . , uk−1).

(C2) 0 6 xiR − ui 6 x0R − u0 for every i ∈ Ω.

(C3) u0 < x0R unless N < R =M .

(C4) wt(xR − u) 6 w.

Assuming the claim for the moment, we construct Y with φ(Y ) = m and X − Y ∈ C
β

[w]. For
i > 1, let

yi = [xi0, . . . , x
i
R−1, u

i, xiR+1, x
i
R+2, . . .] = xi − (xiR − ui)βR ( 6 xi). (2.7)

Then
mordβ((m⊖ (−1), y1, . . . , yk−1)) =M. (2.8)

Indeed, if M < R, then (2.8) is obvious. If M = R, then (m⊖ (−1))M = (m ⊖ (−1))R 6= 0, so
(2.8) holds. Let

y0 = m⊖ (βM+1 − 1)⊖ y1 ⊖ · · · ⊖ yk−1 (2.9)

and Y = (y0, y1, . . . , yk−1). It follows from (2.8) and Lemma 13 that φ(Y ) = m and mordβ(Y ) =
M .

Let C = X − Y . We next show that C ∈ C
β

[w], that is,

11



(a) C ∈ N k
β \ { (0, . . . , 0) },

(b) wt(C) 6 w, and

(c) ordβ(
∑
ci) = mordβ(C).

(a) Since φ(Y ) = m 6= n = φ(X), it follows that C 6= (0, . . . , 0). By (2.7), we see that yi 6 xi

for i > 1. To prove that y0 6 x0, we show that y0
>R+1 = x0

>R+1 and y0R = u0. By (2.9), for
L > R(>M,N),

y0L = mL ⊕ [L 6M ]⊖ y1L ⊖ · · · ⊖ yk−1
L = nL ⊖ x1L ⊖ · · · ⊖ xk−1

L = x0L ⊖ [L 6 N ] = x0L.

We also see that

y0R = mR ⊕ [R 6M ]⊖ y1R ⊖ · · · ⊖ yk−1
R = mR ⊕ [R 6M ]⊖ u1 ⊖ · · · ⊖ uk−1 = u0

by (C1). Hence if u0 < x0R, then y
0 < x0. Suppose that u0 = x0R. Then M = R by (C3). Since

M = mordβ(Y ),

y0 = [0, . . . , 0
︸ ︷︷ ︸

M

, u0, x0M+1, x
0
M+2, . . .] = [0, . . . , 0

︸ ︷︷ ︸

M

, x0M , x
0
M+1, x

0
M+2, . . .] 6 x0.

(b) If u0 6= x0R, then wt(C) = wt(xR − u), and hence wt(C) 6 w by (C4). Suppose that
u0 = x0R. By (C2), u = xR, so wt(C) = 1 6 w.

(c) For i > 1, we know that ci = xi − yi = (xiR − ui)βR. Hence if ordβ(c
0) < R, then

mordβ(C) = ordβ(c
0) = ordβ

(
∑

i∈Ω

ci

)

.

Suppose that ordβ(c
0) > R. Then R 6 mordβ(C) 6 ordβ(

∑
ci), so we need only show that

ordβ(
∑
ci) = R, that is,

⊕

i∈Ω

ciR 6= 0. (2.10)

We first show that M = N . Since Y<R = X<R and M,N 6 R, it follows that if M < R or
N < R, then M = N . If M > R and N > R, then M = R = N . We now show (2.10). Since
yiR = xiR ⊖ ciR, we see that

mR =
⊕

i∈Ω

yiR ⊖ [R 6M ] =
⊕

i∈Ω

xiR ⊖

(
⊕

i∈Ω

ciR

)

⊖ [R 6 N ]

= nR ⊖

(
⊕

i∈Ω

ciR

)

.

Since mR 6= nR, it follows that (2.10) holds, so ordβ(
∑
ci) = R = mordβ(C). Therefore

C ∈ C
β

[w].

It remains to prove the claim. We first show that xR 6= (0, . . . , 0). If R = N , then the
assertion is obvious. If R > N , then [R 6 N ] = 0, so mR < nR =

⊕

i x
i
R, which implies that

xR 6= (0, . . . , 0).
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We next show that
nR + [R 6 N ] 6

∑

i∈Ω

xiR. (2.11)

Since nR ⊕ [R 6 N ] =
⊕

i x
i
R 6

∑

i x
i
R, if nR + [R 6 N ] = nR ⊕ [R 6 N ], then (2.11) holds.

Suppose that nR + [R 6 N ] 6= nR ⊕ [R 6 N ]. Then [R 6 N ] = 1 and nR ⊕ [R 6 N ] = 0. Hence
⊕

i x
i
R = 0. Since xR 6= (0, . . . , 0), it follows that

∑
xiR > βR = nR + [R 6 N ].

We now construct u satisfying (C1)–(C4). Since [R 6M ], [R 6 N ] ∈ { 0, 1 } and mR < nR,
we see that

mR ⊕ [R 6M ] = mR + [R 6M ] 6 nR + [R 6 N ] 6
∑

i∈Ω

xiR.

By Lemma 15, there exists u ∈ JβRKk satisfying (C1), (C2), and

wt(xR − u) 6 min {βR − 1, k } .

We divide the proof into two cases.

Case i (R > 0). Since min {βR − 1, k } 6 w, we see that u satisfies (C4). If u 6= xR, then
u0 < x0R, so u also satisfies (C3). Suppose that u = xR. Then

mR ⊕ [R 6M ] =
⊕

i∈Ω

ui =
⊕

i∈Ω

xiR = nR ⊕ [R 6 N ]. (2.12)

It follows that [R 6M ] 6= [R 6 N ] sincemR < nR. Suppose that [R 6M ] = 1 and [R 6 N ] = 0.
Then R 6 M and R > N , so N < R = M since M 6 R. Hence u satisfies (C3). Suppose that
[R 6M ] = 0 and [R 6 N ] = 1. By (2.12),

mR =
⊕

i∈Ω

xiR = nR ⊕ 1 < nR.

This implies that
⊕

i x
i
R = 0, and hence that

∑

i x
i
R > βR since xR 6= (0, . . . , 0). We can now

find (ũ0, . . . , ũk−1) satisfying
∑

i ũ
i =

∑

i x
i
R − βR and (C1)–(C3) in the same way as in the

proof of Lemma 15. Let ũ = (ũ0, . . . , ũk−1). Since R > 0,

wt(xR − ũ) 6 min {βR, k } 6 w,

so ũ also satisfies (C4).

Case ii (R = 0). We see that x0 6= u because

⊕

i∈Ω

xi0 = n0 ⊕ [0 6 N ] = n0 ⊕ 1

and ⊕

i∈Ω

ui = m0 ⊕ [0 6M ] = m0 ⊕ 1.

Thus u satisfies (C3). Since wt(x0 − u) 6 min {β0 − 1, k }, we see that (C4) holds when
min {β0 − 1, k − [β0 < 2k] } = β0 − 1 or k. Suppose that

min {β0 − 1, k − [β0 < 2k] } = k − 1 < β0 − 1.
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Then k < β0 < 2k and k−1 6 w. We show that there exists ũ satisfying (C1)–(C4). If xk−1
0 = 0,

then uk−1 = 0, so u itself satisfies (C1)–(C4). Suppose that xk−1
0 > 1. We show that

x00 + · · ·+ xk−2
0 > m0 ⊕ 1⊖ xk−1

0 . (2.13)

If xk−1
0 = 1, then n0 = (

⊕

i x
i
0)⊖ 1 = x00 ⊕ · · · ⊕ xk−2

0 , and hence

x00 + · · · + xk−2
0 > x00 ⊕ · · · ⊕ xk−2

0 = n0 > m0 = m0 ⊕ 1⊖ xk−1
0 .

If xk−1
0 > 2, then, since x00 > x10 > · · · > xk−1

0 > 2 and 2k > β0,

x00 + · · ·+ xk−2
0 > 2(k − 1) > β0 − 1 > m0 ⊕ 1⊖ xk−1

0 .

Thus (2.13) holds. By Lemma 15, there exists (ũ0, . . . , ũk−2) such that ũ0 ⊕ · · · ⊕ ũk−2 =
m0 ⊕ 1 ⊖ xk−1

0 and 0 6 xi0 − ũi 6 x00 − ũ0. Thus (ũ0, . . . , ũk−2, xk−1
0 ) satisfies (C1)–(C4). This

completes the proof.
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