arXiv:1804.08817v1 [math.RA] 24 Apr 2018

The core and dual core inverse of a
morphism with factorization
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Let € be a category with an involution *. Suppose that ¢ : X — X
is a morphism and (p1, Z, p2) is an (epic, monic) factorization of ¢
through Z, then ¢ is core invertible if and only if (¢*)%¢; and pa¢; are
both left invertible if and only if ((¢*)2p1, Z, 2), (¢3, Z, ¢1p*¢) and
(™3, Z, T ) are all essentially unique (epic, monic) factorizations of
(¢*)%¢ through Z. We also give the corresponding result about dual
core inverse. In addition, we give some characterizations about the
coexistence of core inverse and dual core inverse of an R-morphism in
the category of R-modules of a given ring R.
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1 Introduction

Let &€ be a category. % is said to have an involution * provided that there
is a unary operation * on the morphisms such that ¢ : X — Y implies
©* 1Y — X and that (¢*)* = ¢, (p¥)* = ¥*p* for all morphisms ¢ and
in ¥ . (See, for example, @, p. 131].) Let ¢ : X - Y and x : Y — X be
morphisms of €. Consider the following four equations:

M exp=9, 2)xpx=x, ) ()" =wex, “4) (x¥)" = xp

Let @{i,j, -+ ,l} denote the set of morphisms x which satisfy equations
(©),(4),-++ , (1) from among equations (1)-(4), and in this case, x is called
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the {i,7,--- ,l}-inverse of . If x € ©{1,3}, then x is called a {1, 3}-inverse
of ¢ and is denoted by ¢13). A {1,4}-inverse of ¢ can be similarly defined.
If x € p{1,2,3,4}, then x is called the Moore-Penrose inverse of ¢. If such
a  exists, then it is unique and denoted by ¢f. If X =Y, then a morphism
© is group invertible if there is a morphism y € ¢{1,2} that commutes with
©. If the group inverse of ¢ exists, then it is unique and denoted by ¢#.
References to group inverses and Moore-Penrose inverses of morphisms can
be seen in, for example, [2]-[6].

In 2010, O.M. Baksalary and G. Trenkler introduced the core and dual
core inverse of a complex matrix in |7]. Raki¢ et al. [10] generalized core
inverse of a complex matrix to the case of an element in a ring with an
involution #*, and they use five equations to characterize the core inverse. In
the following, we rewrite these five equations in the category case. Let % be
a category with an involution and ¢ : X — X a morphism of €. If there is
a morphism y : X — X satisfying

exP =, XeX =X, (©X)* =ex, x> =X, x¢° =, (1)

then ¢ is core invertible and x is called the core inverse of . If such x
exists, then it is unique and denoted by ¢#. In [§], Xu et al. proved that
equations pxp = ¢ and xpx = x in () can be dropped, that is to say, ¢ is
core invertible with ¢® = y if and only if

()" =ex, oX° =X, x¢* = ¢.

And the dual core inverse can be given dually and denoted by ¢g. References
to core and dual core inverses of morphisms can be seen in, for example, [9].

In this paper, the convention is used of reading morphism composition
from left to right, that is to say,

ex Py Vg

A morphism ¢ is said to be epic if i) = 1)’ implies ¢ = ¢/, and monic if
Y =1’ ¢ implies ¢ = 1)'. A morphism ¢ : X — Y is left invertible if there
exists a morphism ¢ : Y — X such that ¥¢ = 1y, and right invertible if
there exists a morphism ¢ : Y — X such that ¢y = 1x.

Let ¢ : X — Y be a morphismin 4. If o1 : X - Z and ¢y : Z = Y
are morphisms and ¢ = @12, then (1, Z, 2) is called a factorization of ¢
through an object Z. A factorization (¢1,Z,¢2) of ¢ through Z is called
an (epic, monic) factorization of ¢ whenever ¢; is epic and @9 is monic.



Furthermore, an (epic, monic) factorization (1,7, p2) of ¢ through Z is
said to be essentially unique (see, for example, [1]) if whenever (¢}, Z’, ¢})
is also an (epic, monic) factorization of ¢ through an object Z’, then there
is an invertible morphism v : Z — Z’ such that p1v = ¢} and v¢l, =
9. References to generalized inverses of a factorization can be seen in, for
example, [11] and [12].

In [1], D.W. Robinson and R. Puystjens showed us the characterizations
about the Moore-Penrose inverse of a morphism with a factorization. And
n [13], R. Puystjens and D.W. Robinson gave the characterizations about
the group inverse of a morphism with a factorization, and they also gave the
characterizations about the Moore-Penrose inverse which is different from
the results in [1]. Inspired by them, the second part in this paper will give
some characterizations about the core inverse and the dual core inverse of a
morphism with a factorization, respectively.

In [14] and [15], authors investigated the coexistence of core inverse and
dual core inverse of an element in a *- ring which is a ring with an involution
« provided that there is an anti-isomorphism * such that (a*)* = a, (a+b)* =
a* 4+ b* and (ab)* = b*a* for all a,b € R. It makes sense to investigate the
coexistence of core inverse and dual core inverse of an R-morphism in the
category of R-modules of a given ring R. We give some characterizations
about the coexistence of core inverse and dual core inverse of an R-morphism
in the third part.

The following notations will be used in this paper: aR = {az | x € R},
Ra={za|z e R}, a={re€R|za=0},a°={re€R|ar=0}. In
addition, some auxiliary lemmas and results are presented for the further
reference.

Lemma 1.1. [1, Lemma 1] Let ¢ : X — Y be a morphism of € with a
factorization (o1, Z, 2) through an object Z. If o1 : X — Z is left invertible
and po : Z — 'Y is right invertible, then (¢1,Z, p2) is an essentially unique
(epic, monic) factorization of ¢ through Z.

It should be pointed out, |8, Theorem 2.6 and 2.8], [15, Theorem 2.10],
[15, Theorem 2.11] and [16, p. 201] were put forward in a *- ring. Actually,
one can easily prove that these results are also valid in a category with an
involution *. Thus, we can rewrite them in the category case as the following
Lemma -3 respectively.

Lemma 1.2. [§, Theorem 2.6 and 2.8] Let ¢ : X — X be a morphism of
%, we have the following results:
(i) ¢ is core invertible if and only if ¢ is group invertible and {1, 3}-invertible.



In this case, p® = p#pp1:3)
(ii) ¢ is dual core invertible if and only if ¢ is group invertible and {1,4}-
invertible. In this case, pg = cp(1’4)cp<p#.

Lemma 1.3. (14, Theorem 2.10] Let ¢ : X — X be a morphism of € and
n = 2 a positive integer, we have the following results:

(i) ¢ is core invertible if and only if there exist morphisms ¢ : X — X and
7: X — X such that ¢ = e(p*)"p = 7" In this case, @® = " le*.

(ii) @ is dual core invertible if and only if there exist morphisms 0 : X — X
and p: X — X such that ¢ = @(p*)"0 = ©"p. In this case, pg = 0*p" L.

Lemma 1.4. (14, Theorem 2.11] Let ¢ : X — X be a morphism of € and
n = 2 a positive integer, the following statements are equivalent:

(i) @ is both Moore-Penrose invertible and group invertible.

(ii) @ is both core invertible and dual core invertible.

(iii) There exist a« : X — X and 5 : X — X such that ¢ = a(p*)"p =
P(e*)" 8.

In this case,
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Lemma 1.5. [16, p. 201] Let ¢ : X — Y be a morphism of €, we have the
following results:

(1) ¢ is {1,3}-invertible with {1,3}-inverse x : Y — X if and only if
X"t = ¢;

(i) ¢ is {1,4}-invertible with {1,4}-inverse ¢ : Y — X if and only if
PPt = .

2 Main Results

In [1], D.W. Robinson and R. Puystjens gave some results about the Moore-
Penrose inverse of a morphism with a factorization. And in [13], R. Puystjens
and D.W. Robinson gave the characterizations about the group inverse of a
morphism with a factorization, as follows.

Lemma 2.1. (13, Theorem 1] Let (1, Z, p2) be an (epic, monic) factoriza-
tion of a morphism ¢ : X — X through an object Z of a category. Then the



following statements are equivalent:

(i) ¢ has a group inverse o7 : X — X,

(13) wap1 : Z — Z is invertible,

(#i1) (¢1, 2, p2p) and (pp1,Z,p2) are both essentially unique (epic, monic)
factorizations of ©? through Z.

Lemma 2.2. [1, Theorem 2 and Theorem 3] Let p : X — Y be a morphism

of a category with involution . If (v1,Z,¢2) is an (epic, monic) factoriza-

tion of @ through Z, then the following statements are equivalent:

(1) ¢ has a Moore-Penrose inverse with respect to ,

(73) ©*p1 is left invertible and 5 is right invertible,

(7i1) (¢*p1, Z,p2) and (p1, Z, 29*) are, respectively, essentially unique (epic,
monic) factorizations of p*p and pp* through Z,

(v) pip1 and s are both invertible.

In this case,

o' = 3 (20%) " Hpier) et

From Lemma 2] we know that ¢ has a Moore-Penrose inverse if and
only if p*p; is left invertible and wo¢* is right invertible if and only if both
©ip1 and @as are invertible. Thus we can easily prove the following two
lemmas in a similar way.

Lemma 2.3. Let ¢ : X — Y be a morphism of a category with involution
x. If (p1,Z,¢2) is an (epic, monic) factorization of ¢ through Z, then ¢
has a {1,3}-inverse with respect to x if and only if *v1 : Y — Z is left
invertible.

Proof. Since
(1,3)90(70(1,3) (1,3)

(1,3))*

¢ = 1) (D )*p

¢* ¢ = 10201 (VI % 010,

o1-lz-p2 =p=pp

= o3

1 is epic and @9 monic, then
P2 (1) o* o1 = 1.

Therefore, p*p; is left invertible.
Conversely, there is a morphism p : Z — Y such that pp*p; = 1z, then

=11z 02 = @1(up*p1)p2 = P1P"P,

thus ¢ is {1, 3}-invertible by Lemma O



Similarly, we have a dual result for {1, 4}-inverse.

Lemma 2.4. Let ¢ : X — Y be a morphism of a category with involution
x. If (p1,Z,¢2) is an (epic, monic) factorization of ¢ through Z, then ¢
has a {1,4}-inverse with respect to x if and only if o¢* : Z — X is right
invertible.

Inspired by D.W. Robinson and R. Puystjens [13], we get some char-
acterizations of the core invertibility of a morphism with an (epic, monic)
factorization in a category %.

Theorem 2.5. Let ¢ : X — X be a morphism of a category with involution
x. If (1,2, p2) is an (epic, monic) factorization of ¢ through Z, then the
following statements are equivalent:

(i) ¢ has a core inverse with respect to x;

(ii) p*p1: X — Z is left invertible and pap1 1 Z — Z is invertible;

(iii) (©*)"1 : X — Z and pop1 : Z — Z are both left invertible for any
positive integer n = 2;

(iv) ((¢*)?¢1,Z,02), (05,2, 010" p) and (¢* o5, Z, 95p) are all essentially
unique (epic, monic) factorizations of (¢*)%¢ through Z.

Proof. (i) < (ii). By Lemmal[l.2] ¢ is core invertible if and only if ¢ is group
invertible and {1, 3}-invertible. Moreover, ¢ is group invertible if and only
pop1 ¢ Z — Z is invertible by Lemma 2.1] and ¢ is {1, 3}-invertible if and
only if ¢*q : X — Z is left invertible by Lemmal[2.3l In conclusion, ¢ is core
invertible if and only if p*p; : X — Z is left invertible and pop1 : Z — Z is
invertible.
(i) = (4i7). Since
o117 92 == %o = p(p®PPe®)p = pp® (pp®)

= pp®(0®)" 0" = p® (pp®e®) "y

= p19020® ()" (9®)"(¥*) 192

= 01020® (0®)* (0p® 0®)* (") 01002

= 01020% (0%)"(9®)*)* (") 1002

= 01020% () ((¥®)" ) (") 102,

1 is epic and (o is monic, then

P20® (9B)" ((0®)" ) (0*)" 1 = 12,



thus (p*)"@1 : X — Z is left invertible for any n > 2.
Similarly, from

011z 02 = o = pp®p = pE® (VB P?) = P1P2® P Y1 Y1 P,

1 is epic and 9 is monic, we obtain

020 0B 121 = 17, (2)

thus pop1 1 Z — Z is left invertible.

(i7i) = (7). Suppose that (¢*)"¢1 : X — Z and a1 : Z — Z are both
left invertible for any n > 2, then there exist p: Z - X and v : Z — Z
such that

w(@*) p1 = 1z = vpaepr.
Therefore,

¢ =11z 92 = p1(Vpap1)p2 = L1v (V201 ) papipe = P17 pap?
= 9017/2(’/902901)902902 = 9011/3902903 == 901’/”90290",

o =11z 92 =@1(u(e*)"p1)p2 = 1u(e*)"p.

Thus ¢ has a core inverse with o® = "1 (1 )* by Lemma 3l

((i) < (1)) = (iv). When taking n = 2, ¢ has a core inverse if and
only if (¢*)2¢p1 : X — Z and @op1 : Z — Z are both left invertible. To
begin with, since (¢*)%¢p1 is left invertible, and equality (2]) shows that @9 is
right invertible, thus ((¢*)2¢1, Z, =) is an essentially unique (epic, monic)
factorization of (¢*)%¢ through Z by Lemma [l

Next, @9 is right invertible, which gives that (p9)* is left invertible. In
addition, equality (2]) gives

1z = p20® 0B p10201 = P20® (VP PP®) 1 = P2 P® (V®)* P Py,

S0 p* 1 is left invertible, that is to say, ¢]¢* ¢ is right invertible. Therefore,
(%, Z, ptp*p) is an essentially unique (epic, monic) factorization of (¢*)2%¢p
through Z by Lemma [T

Finally, since (¢*)2¢; is left invertible, then ¢*¢; is also left invertible,

which implies that ¢i¢ is right invertible. In addition, equality (2]) shows

1z = 2@ 0@ 1201 = P2 (@ @)@ iy,



thus ¢a¢ is right invertible, that is to say, ¢*y5 is left invertible. Hence
(0% 5, Z, i) is an essentially unique (epic, monic) factorization of (¢*)2¢p
through Z by Lemma L1l

(iv) = (iii). Suppose that ((¢*)2¢1, Z, 2), (¢* 05, Z, oi¢) and (3, Z, 01" ¢)
are essentially unique (epic, monic) factorizations of (¢*)2¢ through Z. In
particular, there exist invertible morphisms p : Z — Z,0 : Z — Z such that

(") p1p = ¢ 3,

pPL1P = P2, (3)
P30 = P 5, (4)

and
oI = Piete. (5)

By calculation, we have

@ * _ *
P2 = PP1P = PP1Y1¥Y2,
_ _ * K\ k @ * _\k %
o102 = P2 = (P p3)" = (w30)" = 0" 2,

and

* * @ kK kK
OP1P1P2 = 0P1P = P1P P = L1 P1P2.

Since 9 is monic, then 1z = ppip1, w21 = 0" and opipr = PiP* 1.
Thus ¢ is invertible follows from ¢y = o*. Moreover, op]p1 = "1
implies ¢t = o~ Ll py, then

HCORE
o)pi(¢") 1

1z = ppior = po ot o1 = po~ o7 o)l o1 = po~
= po 2 (pa01) 01 p1 = po 2ot (") 1 = po (0!
= po (") Pt (") 201 = po > (p2¢1) 0} (") 20n
= po 30 (" )31 = - = po (") e,
hence (¢*)"p; is left invertible. O

The following theorem is a corresponding result for dual core inverse.



Theorem 2.6. Let ¢ : X — X be a morphism of a category with involution.
If (v1,2Z,p2) is an (epic, monic) factorization of ¢ through Z, then the
following statements are equivalent:

(i) ¢ has a dual core inverse with respect to *;

(ii) o™ : Z — X is right invertible and pop1 1 Z — Z is invertible;

(111) p2(*)" : Z — X and @ap1 : Z — Z are both right invertible for any
positive integer n = 2;

(i) (o1, Z,02(¢")?), (0905, Z, 1) and (o5, Z, pi¢*) are all essentially
unique (epic, monic) factorizations of p(¢*)? through Z.

In [14] and [15], authors characterized the coexistence of core inverse
and dual core inverse of a regular element by units in a *-ring. And we give
characterizations of the coexistence of core inverse and dual core inverse of
a morphism with an (epic, monic) factorization in a category €.

Theorem 2.7. Let ¢ : X — X be a morphism of a category with involution
and n = 2 a positive integer. If (p1,Z,p2) is an (epic, monic) factorization
of p through Z, then the following statements are equivalent:

(i) @ is both Moore-Penrose invertible and group invertible;

(ii) ¢ is both core invertible and dual core invertible;

(iii) (¢*)"p1 : X — Z is left invertible and pa(*)" : Z — X is right
inwvertible;

() "% X — Z is left invertible and ¢¢" : Z — X is right invertible.
In this case,

p® =" e,

va =3 "

ol = v e,

P = (" rel) e = plesrt e,

where p(@*)"p1 = 1z = pa(@*)"v for some p: Z — X andv: X — Z.

Proof. (i) < (ii). Obviously.

(14) = (#i7). It is clear by Theorem and Theorem

(i7i) = (4i). Suppose that pu(¢*)"p1 = 1z = @a(¢*)"v for some p: Z —
X and v: X — Z, where n > 2 is a positive integer. Then we have

0 =11z 02 = o1(p(@")"p1)p2 = pru(e™) e
and

0 =011z 902 = 01(2(")" V)2 = 0(¢")" V2.



Hence, the conclusion is now a consequence of Lemma [I.4]

(1i) & (). Since ¢* exists and has an (epic, monic) factorization
(¢35, Z,07), and ¢ is both core invertible and dual core invertible if and
only if ¢* is both core invertible and dual core invertible. Therefore, the
conclusion is a consequence of the preceding argument.

The expressions can be deduced by Lemma [T.4] O

Let C,,, be the set of all m x n complex matrices. In [17], H.X. Wang
and X.L. Liu showed us that if A € CSM has a full-rank decomposition
A = BC, then A%2 = B(CB)™YB*B)~'B*, where CSM = {A € C,, :
rank(A?) = rank(A4)}. We will show another derivation for this result as
follow.

Corollary 2.8. [17, Theorem 2.4] Let A € CS™ with rank(A) = r. If A
has a full-rank decomposition A = BC, then

A® = B(CB)"Y(B*B)"'B".

Proof. Let U = (B*B)~Y((CB)*)~1(CC*)~1C, then
U(A*)?B = [(B*B)"((CB)")"H(CC")~IC(A")*B
=[(B*B)~'((CB)")~{(CC*) ' CI(BC)*(BC)'B
=[(B*B)"((CB)")"{(CC*) ' CIC*(CB)'B*B
= I,

thus U is a left inverse of (A*)2B. According to the proof (iii) = (i) of
Theorem 2.5 we deduce that A® = A(BU)*. Therefore,

A® = A(BU)*
= A[B(B*B)~H((CB)")~H(CC*)~C)
= (BO)C*(cc*)~Y(eB)" (B*B) "' B*
= B(CB)"YB*B)"'B".

Likewise, we have the following result.

Corollary 2.9. Let A € CSM with rank(A) = r. If A has a full-rank
decomposition A = BC, then

Ag = C*(CC*)"HCB) 'C.

10



3 Applications

Let R be a ring, and let pMod be the category of R-modules and R-
morphisms. In [1], R. Puystjens and D.W. Robinson mentioned that as-
sociated with every morphism 7 : M — N of gMod are the R-modules
Im7 = M7 = {z7|]z € M}, Kerr = {z|z7 = 0} and the R-morphisms
T : M — Imr, x — 27, and » : Im7 — N, x — x. In particular,
(11,Im7,75) is an (epic, monic) factorization of 7 through the object Imr,
which is herein called the standard factorization of 7 in gMod.

Now we consider the coexistence of the core inverse and dual core inverse
of an R-morphism in the category of R-modules of a given ring R.

Lemma 3.1. Let 7 : M — M be a morphism of pMod with standard fac-
torization (11,Im7,79), and let n be a positive integer. If the full subcategory
determined by M has an involution *, then

(i) (7%)"7y is epic if and only if Im(7*)"1 = Imr;

(ii) T2 (7)™ is monic if and only if Kerr(7*)" = Kerr;

(11i) Ker(7*)" 1y = Ker(7%)"7;

(iv) Imro(7%)" = Im7(7%)".

Proof. (i). Assume that (7%)"1 : M — Im7 is epic. It is obvious that
Im(7*)"7r C Imr, so we only need to prove that Im7 C Im(7*)"7. Since
(7*)"7 is epic, if z € Im7, then there is a y € M such that z = y(7%)%7y,
and

z=zmy = (y(77)" )72 = y(77)"7 € Im(7")" 7.
Thus, Im(7*)"7 = Im7. Conversely, Assume that Im(7*)"7 = Im7 and let
z € Imr, then there is a y € M such that

z=y(m") "t =y(r) "m0 = y(77) "7y
That is to say, (7%)"7 is surjective as a function and hence is epic as an
R-morphism.

(74). Suppose that 7o(7*)" : Im7 — M is monic. It is easy to see that
Kerr C Kerr(7%)", hence, we only need to show that Kerr(7*)" C Kerr.
Since 79(7*)™ is monic, for any z € Kerr(7*)", we have 0 = z7(7%)" =
2mTo (7)™, thus 0 = 21 = 27179 = 27, that is z € Kerr. Conversely,
suppose Kerr(7*)" = Kerr and z79(7*)" = 0, where z € Im7. Since 7y is
epic, there exists a y € M such that z = y7. Therefore,

n

0= 2zm(1")" = (ym)m2(7")" = yr(7%)",

which follows that 0 = y7 = ymi70 = ym1 = 2. Hence, 72(7*)" is monic.

11



Part (iii) follows from the fact that 79 is an insertion and part (iv) is a
consequence of the fact that 71 is epic. O

Theorem 3.2. Let 7 : M — M be a morphism of the category rRMod, and
let n = 2 be a positive integer. If the full subcategory determined by M has
an involution *, then the following statements are equivalent:

(i) T is both core invertible and dual core invertible;

(ii) T is both Moore-Penrose invertible and group invertible;

(iii) both Ker(7*)"1 and Im7 (7)™ are direct summands of M, and Im(7*)"T =
Im7, Kerr(7%)" = Kerr;

(iv) both Kert"7* and Im7*1™ are direct summands of M, and Im7"7* =
Im7*, Kerr*r" = Ker7r*;

(v) M = Kerr & Im(7*)", M = Ker(7*)" & Imr;

(vi) M = Kert* & Im7", M = Kert" & Im7*.

Proof. (i) < (ii). Clearly.

(i) < (4i7). Asis known that an epic morphism in pkMod is left invertible
if and only if its kernel is a direct summand of its domain. (See for example
[18, p. 12].) In particular, (7%)"m is left invertible if and only if (7%)"7
is epic and Ker(7*)"7 is a direct summand of M. Thus, by (i) and (iii)
in Lemma Bl (7%)"7 is left invertible if and only if Im(7*)"7 = Im7 and
Ker(7*)"7 is a direct summand of M. In a similar way, since a monic
morphism in Modg is right invertible if and only if its image is a direct
summand of its codomain. then from (ii) and (iv) in Lemma Bl 7o(7*)"
is right invertible if and only if Kerr(7*)" = Kerr and Im7(7*)" is a direct
summand of M. Consequently, we get the conclusion by Theorem 271

(1) < (iv). Since 7 is both core invertible and dual core invertible if and
only if 7* is both core invertible and dual core invertible. Then, we can get
this conclusion by replacing 7 with 7* in the preceding argument.

(i) = (v). Given 7® and 74, then M = M(1p; —77®)® M77%. Clearly
M(1p — 77%) = Kerr. Since

7® = (17®)* = (1®)* 1" = (r7®7®)* 1 = ((128))* (7*)?
= (1) (rr®r @) ()2 = ((r®)?)"
== (Y

and
(T*)n — (T*)n—lT* — (T*)n_l(TT@T)* — (T*)n_lT*TT@,

then M77% = Im(7*)". Thus M = Kerr @ Im(7%)".

12



In addition, for any z € M, z = (2 — 275 T) + 27T, where 27547 € Im7.
Now we show that z — 2747 € Ker(7*)™. Since

()" = (rrpm)* (1) = 77 (1) = 7T (7",
then (z — 27 7)(7%)" = 2(7%)" — 2757(7*)" = 0. Let y € Ker(7*)" N Imr,
then y(7*)™ = 0 and there exists an © € M such that y = x7. Hence,

I
8

T =2(T7eT) = 277 (1g)" = 277" (TaTaT)"
(T)2(r3)" = y(7°)* (TeTaT) 15

(T)(rg)" = =y(r")"(13)" = 0.
Therefore, we have M = Ker(7*)" & Imr.

(v) = (i17). Let M = Kerr @ Im(7*)". Then, for any z € M, z =
kE+ y(7*)", where k € Kerr. Therefore,

Y

=Yy
=Yy

zr =y(")"r € Im(7")"T,

which implies Im7 C Im(7*)"7. Hence, Im7 = Im(7*)"7. In addition, if
y(7*)"1 = 0, then

y(r*)" € Kerr NIm(7*)" = {0},

thus Ker(7*)"r C Ker(7*)". Moreover, Ker(7*)"7 = Ker(7*)"

Likewise, let M = Ker(7*)"®Imr, then Kerr(7*)" = Kerr and Im(7*)" =
Im7(7%)™.

(vi) < (v). We can get this conclusion immediately by replacing 7 with
7% in the statement (v). O

Remark 3.3. It should be noted that when taking n = 1, Lemma [31] is
consistent with (1, Lemma 4/, and the statements (i), (iv), (v)and (vi) in

Theorem are all equivalent to that T is Moore-Penrose invertible. (See
/1, Theorem 4].)

Corollary 3.4. Let R be a *-ring and a € R and n > 2 a positive integer,
then the following statements are equivalent:

(i) a is both Moore-Penrose invertible and group invertible;

(ii) a is both core invertible and dual core invertible;

(ii) R = “a ® R(a*)", R = ((a*)") ® Ra;

(iv) R = (a*)° @ a"R, R (a™)° ® a*R;

(v) R = %a*) ® Ra™, R = %a") & Ra*;

(vi) R =a° & (a*)"R, R ((a*)")° @ aR.

13



Proof. As is known that (i) < (i7). And (i) < (iii) < (v) follows from
Theorem 3.2 When taking involution on statements (i7i) and (v), we obtain
statements (iv) and (vi), respectively. O
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