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8 The core and dual core inverse of a

morphism with factorization
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Let C be a category with an involution ∗. Suppose that ϕ : X → X

is a morphism and (ϕ1, Z, ϕ2) is an (epic, monic) factorization of ϕ
through Z, then ϕ is core invertible if and only if (ϕ∗)2ϕ1 and ϕ2ϕ1 are
both left invertible if and only if ((ϕ∗)2ϕ1, Z, ϕ2), (ϕ

∗

2
, Z, ϕ∗

1
ϕ∗ϕ) and

(ϕ∗ϕ∗

2
, Z, ϕ∗

1
ϕ) are all essentially unique (epic, monic) factorizations of

(ϕ∗)2ϕ through Z. We also give the corresponding result about dual
core inverse. In addition, we give some characterizations about the
coexistence of core inverse and dual core inverse of an R-morphism in
the category of R-modules of a given ring R.

Keywords: Core inverse, Dual core inverse, Morphism, Factorization,
Invertibility.

AMS subject classifications: 15A09, 18A32.

1 Introduction

Let C be a category. C is said to have an involution ∗ provided that there
is a unary operation ∗ on the morphisms such that ϕ : X → Y implies
ϕ∗ : Y → X and that (ϕ∗)∗ = ϕ, (ϕψ)∗ = ψ∗ϕ∗ for all morphisms ϕ and ψ
in C . (See, for example, [1, p. 131].) Let ϕ : X → Y and χ : Y → X be
morphisms of C . Consider the following four equations:

(1) ϕχϕ = ϕ, (2) χϕχ = χ, (3) (ϕχ)∗ = ϕχ, (4) (χϕ)∗ = χϕ.

Let ϕ{i, j, · · · , l} denote the set of morphisms χ which satisfy equations
(i), (j), · · · , (l) from among equations (1)-(4), and in this case, χ is called
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the {i, j, · · · , l}-inverse of ϕ. If χ ∈ ϕ{1, 3}, then χ is called a {1, 3}-inverse
of ϕ and is denoted by ϕ(1,3). A {1, 4}-inverse of ϕ can be similarly defined.
If χ ∈ ϕ{1, 2, 3, 4}, then χ is called the Moore-Penrose inverse of ϕ. If such
a χ exists, then it is unique and denoted by ϕ†. If X = Y , then a morphism
ϕ is group invertible if there is a morphism χ ∈ ϕ{1, 2} that commutes with
ϕ. If the group inverse of ϕ exists, then it is unique and denoted by ϕ#.
References to group inverses and Moore-Penrose inverses of morphisms can
be seen in, for example, [2]-[6].

In 2010, O.M. Baksalary and G. Trenkler introduced the core and dual
core inverse of a complex matrix in [7]. Rakić et al. [10] generalized core
inverse of a complex matrix to the case of an element in a ring with an
involution ∗, and they use five equations to characterize the core inverse. In
the following, we rewrite these five equations in the category case. Let C be
a category with an involution and ϕ : X → X a morphism of C . If there is
a morphism χ : X → X satisfying

ϕχϕ = ϕ, χϕχ = χ, (ϕχ)∗ = ϕχ, ϕχ2 = χ, χϕ2 = ϕ, (1)

then ϕ is core invertible and χ is called the core inverse of ϕ. If such χ

exists, then it is unique and denoted by ϕ#©. In [8], Xu et al. proved that
equations ϕχϕ = ϕ and χϕχ = χ in (1) can be dropped, that is to say, ϕ is
core invertible with ϕ#© = χ if and only if

(ϕχ)∗ = ϕχ, ϕχ2 = χ, χϕ2 = ϕ.

And the dual core inverse can be given dually and denoted by ϕ#©. References
to core and dual core inverses of morphisms can be seen in, for example, [9].

In this paper, the convention is used of reading morphism composition
from left to right, that is to say,

ϕψ : X
ϕ

−−−→ Y
ψ

−−−→ Z.

A morphism ϕ is said to be epic if ϕψ = ϕψ′ implies ψ = ψ′, and monic if
ψϕ = ψ′ϕ implies ψ = ψ′. A morphism ϕ : X → Y is left invertible if there
exists a morphism ψ : Y → X such that ψϕ = 1Y , and right invertible if
there exists a morphism ψ : Y → X such that ϕψ = 1X .

Let ϕ : X → Y be a morphism in C . If ϕ1 : X → Z and ϕ2 : Z → Y

are morphisms and ϕ = ϕ1ϕ2, then (ϕ1, Z, ϕ2) is called a factorization of ϕ
through an object Z. A factorization (ϕ1, Z, ϕ2) of ϕ through Z is called
an (epic, monic) factorization of ϕ whenever ϕ1 is epic and ϕ2 is monic.
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Furthermore, an (epic, monic) factorization (ϕ1, Z, ϕ2) of ϕ through Z is
said to be essentially unique (see, for example, [1]) if whenever (ϕ′

1, Z
′, ϕ′

2)
is also an (epic, monic) factorization of ϕ through an object Z ′, then there
is an invertible morphism ν : Z → Z ′ such that ϕ1ν = ϕ′

1 and νϕ′
2 =

ϕ2. References to generalized inverses of a factorization can be seen in, for
example, [11] and [12].

In [1], D.W. Robinson and R. Puystjens showed us the characterizations
about the Moore-Penrose inverse of a morphism with a factorization. And
in [13], R. Puystjens and D.W. Robinson gave the characterizations about
the group inverse of a morphism with a factorization, and they also gave the
characterizations about the Moore-Penrose inverse which is different from
the results in [1]. Inspired by them, the second part in this paper will give
some characterizations about the core inverse and the dual core inverse of a
morphism with a factorization, respectively.

In [14] and [15], authors investigated the coexistence of core inverse and
dual core inverse of an element in a ∗- ring which is a ring with an involution
∗ provided that there is an anti-isomorphism ∗ such that (a∗)∗ = a, (a+b)∗ =
a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R. It makes sense to investigate the
coexistence of core inverse and dual core inverse of an R-morphism in the
category of R-modules of a given ring R. We give some characterizations
about the coexistence of core inverse and dual core inverse of an R-morphism
in the third part.

The following notations will be used in this paper: aR = {ax | x ∈ R},
Ra = {xa | x ∈ R}, ◦a = {x ∈ R | xa = 0}, a◦ = {x ∈ R | ax = 0}. In
addition, some auxiliary lemmas and results are presented for the further
reference.

Lemma 1.1. [1, Lemma 1] Let ϕ : X → Y be a morphism of C with a
factorization (ϕ1, Z, ϕ2) through an object Z. If ϕ1 : X → Z is left invertible
and ϕ2 : Z → Y is right invertible, then (ϕ1, Z, ϕ2) is an essentially unique
(epic, monic) factorization of ϕ through Z.

It should be pointed out, [8, Theorem 2.6 and 2.8], [15, Theorem 2.10],
[15, Theorem 2.11] and [16, p. 201] were put forward in a ∗- ring. Actually,
one can easily prove that these results are also valid in a category with an
involution ∗. Thus, we can rewrite them in the category case as the following
Lemma 1.2 - 1.5, respectively.

Lemma 1.2. [8, Theorem 2.6 and 2.8] Let ϕ : X → X be a morphism of
C , we have the following results:
(i) ϕ is core invertible if and only if ϕ is group invertible and {1, 3}-invertible.
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In this case, ϕ#© = ϕ#ϕϕ(1,3).
(ii) ϕ is dual core invertible if and only if ϕ is group invertible and {1, 4}-
invertible. In this case, ϕ#© = ϕ(1,4)ϕϕ#.

Lemma 1.3. [15, Theorem 2.10] Let ϕ : X → X be a morphism of C and
n > 2 a positive integer, we have the following results:
(i) ϕ is core invertible if and only if there exist morphisms ε : X → X and
τ : X → X such that ϕ = ε(ϕ∗)nϕ = τϕn. In this case, ϕ#© = ϕn−1ε∗.
(ii) ϕ is dual core invertible if and only if there exist morphisms θ : X → X

and ρ : X → X such that ϕ = ϕ(ϕ∗)nθ = ϕnρ. In this case, ϕ#© = θ∗ϕn−1.

Lemma 1.4. [15, Theorem 2.11] Let ϕ : X → X be a morphism of C and
n > 2 a positive integer, the following statements are equivalent:
(i) ϕ is both Moore-Penrose invertible and group invertible.
(ii) ϕ is both core invertible and dual core invertible.
(iii) There exist α : X → X and β : X → X such that ϕ = α(ϕ∗)nϕ =
ϕ(ϕ∗)nβ.
In this case,

ϕ#© = ϕn−1α∗,

ϕ#© = β∗ϕn−1,

ϕ† = βϕ2n−1α∗,

ϕ# = (ϕn−1α∗)2ϕ = ϕ(β∗ϕn−1)2.

Lemma 1.5. [16, p. 201] Let ϕ : X → Y be a morphism of C , we have the
following results:
(i) ϕ is {1, 3}-invertible with {1, 3}-inverse χ : Y → X if and only if
χ∗ϕ∗ϕ = ϕ;
(ii) ϕ is {1, 4}-invertible with {1, 4}-inverse ζ : Y → X if and only if
ϕϕ∗ζ∗ = ϕ.

2 Main Results

In [1], D.W. Robinson and R. Puystjens gave some results about the Moore-
Penrose inverse of a morphism with a factorization. And in [13], R. Puystjens
and D.W. Robinson gave the characterizations about the group inverse of a
morphism with a factorization, as follows.

Lemma 2.1. [13, Theorem 1] Let (ϕ1, Z, ϕ2) be an (epic, monic) factoriza-
tion of a morphism ϕ : X → X through an object Z of a category. Then the
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following statements are equivalent:
(i) ϕ has a group inverse ϕ# : X → X,
(ii) ϕ2ϕ1 : Z → Z is invertible,
(iii) (ϕ1, Z, ϕ2ϕ) and (ϕϕ1, Z, ϕ2) are both essentially unique (epic, monic)
factorizations of ϕ2 through Z.

Lemma 2.2. [1, Theorem 2 and Theorem 3] Let ϕ : X → Y be a morphism
of a category with involution ∗. If (ϕ1, Z, ϕ2) is an (epic, monic) factoriza-
tion of ϕ through Z, then the following statements are equivalent:
(i) ϕ has a Moore-Penrose inverse with respect to ∗,
(ii) ϕ∗ϕ1 is left invertible and ϕ∗

2ϕ is right invertible,
(iii) (ϕ∗ϕ1, Z, ϕ2) and (ϕ1, Z, ϕ2ϕ

∗) are, respectively, essentially unique (epic,
monic) factorizations of ϕ∗ϕ and ϕϕ∗ through Z,
(iv) ϕ∗

1ϕ1 and ϕ2ϕ
∗
2 are both invertible.

In this case,
ϕ† = ϕ∗

2(ϕ2ϕ
∗
2)

−1(ϕ∗
1ϕ1)

−1ϕ∗
1.

From Lemma 2.2, we know that ϕ has a Moore-Penrose inverse if and
only if ϕ∗ϕ1 is left invertible and ϕ2ϕ

∗ is right invertible if and only if both
ϕ∗
1ϕ1 and ϕ2ϕ

∗
2 are invertible. Thus we can easily prove the following two

lemmas in a similar way.

Lemma 2.3. Let ϕ : X → Y be a morphism of a category with involution
∗. If (ϕ1, Z, ϕ2) is an (epic, monic) factorization of ϕ through Z, then ϕ

has a {1, 3}-inverse with respect to ∗ if and only if ϕ∗ϕ1 : Y → Z is left
invertible.

Proof. Since

ϕ1 · 1Z · ϕ2 = ϕ = ϕϕ(1,3)ϕϕ(1,3)ϕ = ϕϕ(1,3)(ϕϕ(1,3))∗ϕ

= ϕϕ(1,3)(ϕ(1,3))∗ϕ∗ϕ = ϕ1ϕ2ϕ
(1,3)(ϕ(1,3))∗ϕ∗ϕ1ϕ2,

ϕ1 is epic and ϕ2 monic, then

ϕ2ϕ
(1,3)(ϕ(1,3))∗ϕ∗ϕ1 = 1Z .

Therefore, ϕ∗ϕ1 is left invertible.
Conversely, there is a morphism µ : Z → Y such that µϕ∗ϕ1 = 1Z , then

ϕ = ϕ1 · 1Z · ϕ2 = ϕ1(µϕ
∗ϕ1)ϕ2 = ϕ1µϕ

∗ϕ,

thus ϕ is {1, 3}-invertible by Lemma 1.5.
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Similarly, we have a dual result for {1, 4}-inverse.

Lemma 2.4. Let ϕ : X → Y be a morphism of a category with involution
∗. If (ϕ1, Z, ϕ2) is an (epic, monic) factorization of ϕ through Z, then ϕ

has a {1, 4}-inverse with respect to ∗ if and only if ϕ2ϕ
∗ : Z → X is right

invertible.

Inspired by D.W. Robinson and R. Puystjens [13], we get some char-
acterizations of the core invertibility of a morphism with an (epic, monic)
factorization in a category C .

Theorem 2.5. Let ϕ : X → X be a morphism of a category with involution
∗. If (ϕ1, Z, ϕ2) is an (epic, monic) factorization of ϕ through Z, then the
following statements are equivalent:
(i) ϕ has a core inverse with respect to ∗;
(ii) ϕ∗ϕ1 : X → Z is left invertible and ϕ2ϕ1 : Z → Z is invertible;
(iii) (ϕ∗)nϕ1 : X → Z and ϕ2ϕ1 : Z → Z are both left invertible for any
positive integer n > 2;
(iv) ((ϕ∗)2ϕ1, Z, ϕ2), (ϕ∗

2, Z, ϕ
∗
1ϕ

∗ϕ) and (ϕ∗ϕ∗
2, Z, ϕ

∗
1ϕ) are all essentially

unique (epic, monic) factorizations of (ϕ∗)2ϕ through Z.

Proof. (i) ⇔ (ii). By Lemma 1.2, ϕ is core invertible if and only if ϕ is group
invertible and {1, 3}-invertible. Moreover, ϕ is group invertible if and only
ϕ2ϕ1 : Z → Z is invertible by Lemma 2.1, and ϕ is {1, 3}-invertible if and
only if ϕ∗ϕ1 : X → Z is left invertible by Lemma 2.3. In conclusion, ϕ is core
invertible if and only if ϕ∗ϕ1 : X → Z is left invertible and ϕ2ϕ1 : Z → Z is
invertible.

(i) ⇒ (iii). Since

ϕ1 · 1Z · ϕ2 = ϕ = ϕϕ#©ϕ = ϕ(ϕ#©ϕϕ#©)ϕ = ϕϕ#©(ϕϕ#©)∗ϕ

= ϕϕ#©(ϕ#©)∗ϕ∗ϕ = ϕϕ#©(ϕϕ#©ϕ#©)∗ϕ∗ϕ

= ϕ1ϕ2ϕ
#©(ϕ#©)∗(ϕ#©)∗(ϕ∗)2ϕ1ϕ2

= ϕ1ϕ2ϕ
#©(ϕ#©)∗(ϕϕ#©ϕ#©)∗(ϕ∗)2ϕ1ϕ2

= ϕ1ϕ2ϕ
#©(ϕ#©)∗((ϕ#©)2)∗(ϕ∗)3ϕ1ϕ2

= · · ·

= ϕ1ϕ2ϕ
#©(ϕ#©)∗((ϕ#©)n−1)∗(ϕ∗)nϕ1ϕ2,

ϕ1 is epic and ϕ2 is monic, then

ϕ2ϕ
#©(ϕ#©)∗((ϕ#©)n−1)∗(ϕ∗)nϕ1 = 1Z ,
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thus (ϕ∗)nϕ1 : X → Z is left invertible for any n > 2.
Similarly, from

ϕ1 · 1Z · ϕ2 = ϕ = ϕϕ#©ϕ = ϕϕ#©(ϕ#©ϕ2) = ϕ1ϕ2ϕ
#©ϕ#©ϕ1ϕ2ϕ1ϕ2,

ϕ1 is epic and ϕ2 is monic, we obtain

ϕ2ϕ
#©ϕ#©ϕ1ϕ2ϕ1 = 1Z , (2)

thus ϕ2ϕ1 : Z → Z is left invertible.
(iii) ⇒ (i). Suppose that (ϕ∗)nϕ1 : X → Z and ϕ2ϕ1 : Z → Z are both

left invertible for any n > 2, then there exist µ : Z → X and ν : Z → Z

such that

µ(ϕ∗)nϕ1 = 1Z = νϕ2ϕ1.

Therefore,

ϕ = ϕ1 · 1Z · ϕ2 = ϕ1(νϕ2ϕ1)ϕ2 = ϕ1ν(νϕ2ϕ1)ϕ2ϕ1ϕ2 = ϕ1ν
2ϕ2ϕ

2

= ϕ1ν
2(νϕ2ϕ1)ϕ2ϕ

2 = ϕ1ν
3ϕ2ϕ

3 = · · · = ϕ1ν
nϕ2ϕ

n,

ϕ = ϕ1 · 1Z · ϕ2 = ϕ1(µ(ϕ
∗)nϕ1)ϕ2 = ϕ1µ(ϕ

∗)nϕ.

Thus ϕ has a core inverse with ϕ#© = ϕn−1(ϕ1µ)
∗ by Lemma 1.3.

((i) ⇔ (iii)) ⇒ (iv). When taking n = 2, ϕ has a core inverse if and
only if (ϕ∗)2ϕ1 : X → Z and ϕ2ϕ1 : Z → Z are both left invertible. To
begin with, since (ϕ∗)2ϕ1 is left invertible, and equality (2) shows that ϕ2 is
right invertible, thus ((ϕ∗)2ϕ1, Z, ϕ2) is an essentially unique (epic, monic)
factorization of (ϕ∗)2ϕ through Z by Lemma 1.1.

Next, ϕ2 is right invertible, which gives that (ϕ2)
∗ is left invertible. In

addition, equality (2) gives

1Z = ϕ2ϕ
#©ϕ#©ϕ1ϕ2ϕ1 = ϕ2ϕ

#©(ϕ#©ϕϕ#©)ϕϕ1 = ϕ2ϕ
#©ϕ#©(ϕ#©)∗ϕ∗ϕϕ1,

so ϕ∗ϕϕ1 is left invertible, that is to say, ϕ
∗
1ϕ

∗ϕ is right invertible. Therefore,
(ϕ∗

2, Z, ϕ
∗
1ϕ

∗ϕ) is an essentially unique (epic, monic) factorization of (ϕ∗)2ϕ
through Z by Lemma 1.1.

Finally, since (ϕ∗)2ϕ1 is left invertible, then ϕ∗ϕ1 is also left invertible,
which implies that ϕ∗

1ϕ is right invertible. In addition, equality (2) shows

1Z = ϕ2ϕ
#©ϕ#©ϕ1ϕ2ϕ1 = ϕ2(ϕϕ

#©ϕ#©)ϕ#©ϕϕ1,
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thus ϕ2ϕ is right invertible, that is to say, ϕ∗ϕ∗
2 is left invertible. Hence

(ϕ∗ϕ∗
2, Z, ϕ

∗
1ϕ) is an essentially unique (epic, monic) factorization of (ϕ∗)2ϕ

through Z by Lemma 1.1.
(iv) ⇒ (iii). Suppose that ((ϕ∗)2ϕ1, Z, ϕ2), (ϕ

∗ϕ∗
2, Z, ϕ

∗
1ϕ) and (ϕ∗

2, Z, ϕ
∗
1ϕ

∗ϕ)
are essentially unique (epic, monic) factorizations of (ϕ∗)2ϕ through Z. In
particular, there exist invertible morphisms ρ : Z → Z, σ : Z → Z such that

(ϕ∗)2ϕ1ρ = ϕ∗ϕ∗
2,

ρϕ∗
1ϕ = ϕ2, (3)

ϕ∗
2σ = ϕ∗ϕ∗

2, (4)

and

σϕ∗
1ϕ = ϕ∗

1ϕ
∗ϕ. (5)

By calculation, we have

ϕ2
(3)
= ρϕ∗

1ϕ = ρϕ∗
1ϕ1ϕ2,

ϕ2ϕ1ϕ2 = ϕ2ϕ = (ϕ∗ϕ∗
2)

∗ (4)
= (ϕ∗

2σ)
∗ = σ∗ϕ2,

and

σϕ∗
1ϕ1ϕ2 = σϕ∗

1ϕ
(5)
= ϕ∗

1ϕ
∗ϕ = ϕ∗

1ϕ
∗ϕ1ϕ2.

Since ϕ2 is monic, then 1Z = ρϕ∗
1ϕ1, ϕ2ϕ1 = σ∗ and σϕ∗

1ϕ1 = ϕ∗
1ϕ

∗ϕ1.
Thus ϕ2ϕ1 is invertible follows from ϕ2ϕ1 = σ∗. Moreover, σϕ∗

1ϕ1 = ϕ∗
1ϕ

∗ϕ1

implies ϕ∗
1ϕ1 = σ−1ϕ∗

1ϕ
∗ϕ1, then

1Z = ρϕ∗
1ϕ1 = ρσ−1ϕ∗

1ϕ
∗ϕ1 = ρσ−1(σ−1σ)ϕ∗

1ϕ
∗ϕ1 = ρσ−2(σ∗)∗ϕ∗

1ϕ
∗ϕ1

= ρσ−2(ϕ2ϕ1)
∗ϕ∗

1ϕ
∗ϕ1 = ρσ−2ϕ∗

1(ϕ
∗)2ϕ1 = ρσ−2(σ−1σ)ϕ∗

1(ϕ
∗)2ϕ1

= ρσ−3(σ∗)∗ϕ∗
1(ϕ

∗)2ϕ1 = ρσ−3(ϕ2ϕ1)
∗ϕ∗

1(ϕ
∗)2ϕ1

= ρσ−3ϕ∗
1(ϕ

∗)3ϕ1 = · · · = ρσ−nϕ∗
1(ϕ

∗)nϕ1,

hence (ϕ∗)nϕ1 is left invertible.

The following theorem is a corresponding result for dual core inverse.
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Theorem 2.6. Let ϕ : X → X be a morphism of a category with involution.
If (ϕ1, Z, ϕ2) is an (epic, monic) factorization of ϕ through Z, then the
following statements are equivalent:
(i) ϕ has a dual core inverse with respect to ∗;
(ii) ϕ2ϕ

∗ : Z → X is right invertible and ϕ2ϕ1 : Z → Z is invertible;
(iii) ϕ2(ϕ

∗)n : Z → X and ϕ2ϕ1 : Z → Z are both right invertible for any
positive integer n > 2;
(iv) (ϕ1, Z, ϕ2(ϕ

∗)2), (ϕϕ∗ϕ∗
2, Z, ϕ

∗
1) and (ϕϕ∗

2, Z, ϕ
∗
1ϕ

∗) are all essentially
unique (epic, monic) factorizations of ϕ(ϕ∗)2 through Z.

In [14] and [15], authors characterized the coexistence of core inverse
and dual core inverse of a regular element by units in a ∗-ring. And we give
characterizations of the coexistence of core inverse and dual core inverse of
a morphism with an (epic, monic) factorization in a category C .

Theorem 2.7. Let ϕ : X → X be a morphism of a category with involution
and n > 2 a positive integer. If (ϕ1, Z, ϕ2) is an (epic, monic) factorization
of ϕ through Z, then the following statements are equivalent:
(i) ϕ is both Moore-Penrose invertible and group invertible;
(ii) ϕ is both core invertible and dual core invertible;
(iii) (ϕ∗)nϕ1 : X → Z is left invertible and ϕ2(ϕ

∗)n : Z → X is right
invertible;
(iv) ϕnϕ∗

2 : X → Z is left invertible and ϕ∗
1ϕ

n : Z → X is right invertible.
In this case,

ϕ#© = ϕn−1µ∗ϕ∗
1,

ϕ#© = ϕ∗
2ν

∗ϕn−1,

ϕ† = νϕ2ϕ
2n−1µ∗ϕ∗

1,

ϕ# = (ϕn−1µ∗ϕ∗
1)

2ϕ = ϕ(ϕ∗
2ν

∗ϕn−1)2,

where µ(ϕ∗)nϕ1 = 1Z = ϕ2(ϕ
∗)nν for some µ : Z → X and ν : X → Z.

Proof. (i) ⇔ (ii). Obviously.
(ii) ⇒ (iii). It is clear by Theorem 2.5 and Theorem 2.6.
(iii) ⇒ (ii). Suppose that µ(ϕ∗)nϕ1 = 1Z = ϕ2(ϕ

∗)nν for some µ : Z →
X and ν : X → Z, where n > 2 is a positive integer. Then we have

ϕ = ϕ1 · 1Z · ϕ2 = ϕ1(µ(ϕ
∗)nϕ1)ϕ2 = ϕ1µ(ϕ

∗)nϕ

and

ϕ = ϕ1 · 1Z · ϕ2 = ϕ1(ϕ2(ϕ
∗)nν)ϕ2 = ϕ(ϕ∗)nνϕ2.
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Hence, the conclusion is now a consequence of Lemma 1.4.
(ii) ⇔ (iv). Since ϕ∗ exists and has an (epic, monic) factorization

(ϕ∗
2, Z, ϕ

∗
1), and ϕ is both core invertible and dual core invertible if and

only if ϕ∗ is both core invertible and dual core invertible. Therefore, the
conclusion is a consequence of the preceding argument.

The expressions can be deduced by Lemma 1.4.

Let Cm,n be the set of all m× n complex matrices. In [17], H.X. Wang
and X.L. Liu showed us that if A ∈ C

CM
n has a full-rank decomposition

A = BC, then A#© = B(CB)−1(B∗B)−1B∗, where C
CM
n = {A ∈ Cn,n :

rank(A2) = rank(A)}. We will show another derivation for this result as
follow.

Corollary 2.8. [17, Theorem 2.4] Let A ∈ C
CM
n with rank(A) = r. If A

has a full-rank decomposition A = BC, then

A#© = B(CB)−1(B∗B)−1B∗.

Proof. Let U = (B∗B)−1((CB)∗)−1(CC∗)−1C, then

U(A∗)2B = [(B∗B)−1((CB)∗)−1(CC∗)−1C](A∗)2B

= [(B∗B)−1((CB)∗)−1(CC∗)−1C](BC)∗(BC)∗B

= [(B∗B)−1((CB)∗)−1(CC∗)−1C]C∗(CB)∗B∗B

= Ir,

thus U is a left inverse of (A∗)2B. According to the proof (iii) ⇒ (i) of
Theorem 2.5, we deduce that A#© = A(BU)∗. Therefore,

A#© = A(BU)∗

= A[B(B∗B)−1((CB)∗)−1(CC∗)−1C]∗

= (BC)C∗(CC∗)−1(CB)−1(B∗B)−1B∗

= B(CB)−1(B∗B)−1B∗.

Likewise, we have the following result.

Corollary 2.9. Let A ∈ C
CM
n with rank(A) = r. If A has a full-rank

decomposition A = BC, then

A#© = C∗(CC∗)−1(CB)−1C.
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3 Applications

Let R be a ring, and let RMod be the category of R-modules and R-
morphisms. In [1], R. Puystjens and D.W. Robinson mentioned that as-
sociated with every morphism τ : M → N of RMod are the R-modules
Imτ = Mτ = {xτ |x ∈ M}, Kerτ = {x|xτ = 0} and the R-morphisms
τ1 : M → Imτ , x 7→ xτ , and τ2 : Imτ → N , x 7→ x. In particular,
(τ1, Imτ, τ2) is an (epic, monic) factorization of τ through the object Imτ ,
which is herein called the standard factorization of τ in RMod.

Now we consider the coexistence of the core inverse and dual core inverse
of an R-morphism in the category of R-modules of a given ring R.

Lemma 3.1. Let τ : M → M be a morphism of RMod with standard fac-
torization (τ1, Imτ, τ2), and let n be a positive integer. If the full subcategory
determined by M has an involution ∗, then
(i) (τ∗)nτ1 is epic if and only if Im(τ∗)nτ = Imτ ;
(ii) τ2(τ

∗)n is monic if and only if Kerτ(τ∗)n = Kerτ ;
(iii) Ker(τ∗)nτ1 = Ker(τ∗)nτ ;
(iv) Imτ2(τ

∗)n = Imτ(τ∗)n.

Proof. (i). Assume that (τ∗)nτ1 : M → Imτ is epic. It is obvious that
Im(τ∗)nτ ⊆ Imτ , so we only need to prove that Imτ ⊆ Im(τ∗)nτ . Since
(τ∗)nτ1 is epic, if z ∈ Imτ , then there is a y ∈ M such that z = y(τ∗)2τ1,
and

z = zτ2 = (y(τ∗)nτ1)τ2 = y(τ∗)nτ ∈ Im(τ∗)nτ.

Thus, Im(τ∗)nτ = Imτ . Conversely, Assume that Im(τ∗)nτ = Imτ and let
z ∈ Imτ , then there is a y ∈M such that

z = y(τ∗)nτ = y(τ∗)nτ1τ2 = y(τ∗)nτ1.

That is to say, (τ∗)nτ1 is surjective as a function and hence is epic as an
R-morphism.

(ii). Suppose that τ2(τ
∗)n : Imτ → M is monic. It is easy to see that

Kerτ ⊆ Kerτ(τ∗)n, hence, we only need to show that Kerτ(τ∗)n ⊆ Kerτ .
Since τ2(τ

∗)n is monic, for any z ∈ Kerτ(τ∗)n, we have 0 = zτ(τ∗)n =
zτ1τ2(τ

∗)n, thus 0 = zτ1 = zτ1τ2 = zτ , that is z ∈ Kerτ . Conversely,
suppose Kerτ(τ∗)n = Kerτ and zτ2(τ

∗)n = 0, where z ∈ Imτ . Since τ1 is
epic, there exists a y ∈M such that z = yτ1. Therefore,

0 = zτ2(τ
∗)n = (yτ1)τ2(τ

∗)n = yτ(τ∗)n,

which follows that 0 = yτ = yτ1τ2 = yτ1 = z. Hence, τ2(τ
∗)n is monic.
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Part (iii) follows from the fact that τ2 is an insertion and part (iv) is a
consequence of the fact that τ1 is epic.

Theorem 3.2. Let τ : M → M be a morphism of the category RMod, and
let n > 2 be a positive integer. If the full subcategory determined by M has
an involution ∗, then the following statements are equivalent:
(i) τ is both core invertible and dual core invertible;
(ii) τ is both Moore-Penrose invertible and group invertible;
(iii) both Ker(τ∗)nτ and Imτ(τ∗)n are direct summands ofM , and Im(τ∗)nτ =
Imτ , Kerτ(τ∗)n = Kerτ ;
(iv) both Kerτnτ∗ and Imτ∗τn are direct summands of M , and Imτnτ∗ =
Imτ∗, Kerτ∗τn = Kerτ∗;
(v) M = Kerτ ⊕ Im(τ∗)n, M = Ker(τ∗)n ⊕ Imτ ;
(vi) M = Kerτ∗ ⊕ Imτn, M = Kerτn ⊕ Imτ∗.

Proof. (i) ⇔ (ii). Clearly.
(i) ⇔ (iii). As is known that an epic morphism in RMod is left invertible

if and only if its kernel is a direct summand of its domain. (See for example
[18, p. 12].) In particular, (τ∗)nτ1 is left invertible if and only if (τ∗)nτ1
is epic and Ker(τ∗)nτ1 is a direct summand of M . Thus, by (i) and (iii)
in Lemma 3.1, (τ∗)nτ1 is left invertible if and only if Im(τ∗)nτ = Imτ and
Ker(τ∗)nτ is a direct summand of M . In a similar way, since a monic
morphism in ModR is right invertible if and only if its image is a direct
summand of its codomain. then from (ii) and (iv) in Lemma 3.1, τ2(τ

∗)n

is right invertible if and only if Kerτ(τ∗)n = Kerτ and Imτ(τ∗)n is a direct
summand of M . Consequently, we get the conclusion by Theorem 2.7.

(i) ⇔ (iv). Since τ is both core invertible and dual core invertible if and
only if τ∗ is both core invertible and dual core invertible. Then, we can get
this conclusion by replacing τ with τ∗ in the preceding argument.

(i) ⇒ (v). Given τ #© and τ#©, then M =M(1M − ττ #©)⊕Mττ #©. Clearly
M(1M − ττ #©) = Kerτ . Since

ττ #© = (ττ #©)∗ = (τ #©)∗τ∗ = (ττ #©τ #©)∗τ∗ = ((τ #©)2)∗(τ∗)2

= (τ #©)∗(ττ #©τ #©)∗(τ∗)2 = ((τ #©)3)∗(τ∗)3

= · · · = ((τ #©)n)∗(τ∗)n

and
(τ∗)n = (τ∗)n−1τ∗ = (τ∗)n−1(ττ #©τ)∗ = (τ∗)n−1τ∗ττ #©,

then Mττ #© = Im(τ∗)n. Thus M = Kerτ ⊕ Im(τ∗)n.

12



In addition, for any z ∈M , z = (z − zτ#©τ) + zτ#©τ , where zτ#©τ ∈ Imτ .
Now we show that z − zτ#©τ ∈ Ker(τ∗)n. Since

(τ∗)n = (ττ#©τ)
∗(τ∗)n−1 = τ#©ττ

∗(τ∗)n−1 = τ#©τ(τ
∗)n,

then (z − zτ#©τ)(τ
∗)n = z(τ∗)n − zτ#©τ(τ

∗)n = 0. Let y ∈ Ker(τ∗)n ∩ Imτ ,
then y(τ∗)n = 0 and there exists an x ∈M such that y = xτ . Hence,

y = xτ = x(ττ#©τ) = xττ∗(τ#©)∗ = xττ∗(τ#©τ#©τ)
∗

= y(τ∗)2(τ2#©)∗ = y(τ∗)2(τ#©τ#©τ)
∗τ∗#©

= y(τ∗)3(τ3#©)∗ = · · · = y(τ∗)n(τn#©)∗ = 0.

Therefore, we have M = Ker(τ∗)n ⊕ Imτ .
(v) ⇒ (iii). Let M = Kerτ ⊕ Im(τ∗)n. Then, for any z ∈ M , z =

k + y(τ∗)n, where k ∈ Kerτ . Therefore,

zτ = y(τ∗)nτ ∈ Im(τ∗)nτ,

which implies Imτ ⊆ Im(τ∗)nτ . Hence, Imτ = Im(τ∗)nτ . In addition, if
y(τ∗)nτ = 0, then

y(τ∗)n ∈ Kerτ ∩ Im(τ∗)n = {0},

thus Ker(τ∗)nτ ⊆ Ker(τ∗)n. Moreover, Ker(τ∗)nτ = Ker(τ∗)n

Likewise, letM = Ker(τ∗)n⊕Imτ , then Kerτ(τ∗)n = Kerτ and Im(τ∗)n =
Imτ(τ∗)n.

(vi) ⇔ (v). We can get this conclusion immediately by replacing τ with
τ∗ in the statement (v).

Remark 3.3. It should be noted that when taking n = 1, Lemma 3.1 is
consistent with [1, Lemma 4], and the statements (iii), (iv), (v)and (vi) in
Theorem 3.2 are all equivalent to that τ is Moore-Penrose invertible. (See
[1, Theorem 4].)

Corollary 3.4. Let R be a ∗-ring and a ∈ R and n > 2 a positive integer,
then the following statements are equivalent:
(i) a is both Moore-Penrose invertible and group invertible;
(ii) a is both core invertible and dual core invertible;
(iii) R = ◦a⊕R(a∗)n, R = ◦((a∗)n)⊕Ra;
(iv) R = (a∗)◦ ⊕ anR, R = (an)◦ ⊕ a∗R;
(v) R = ◦(a∗)⊕Ran, R = ◦(an)⊕Ra∗;
(vi) R = a◦ ⊕ (a∗)nR, R = ((a∗)n)◦ ⊕ aR.

13



Proof. As is known that (i) ⇔ (ii). And (ii) ⇔ (iii) ⇔ (v) follows from
Theorem 3.2. When taking involution on statements (iii) and (v), we obtain
statements (iv) and (vi), respectively.
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