The core and dual core inverse of a morphism with factorization

Tingting Li^{*}, Jianlong Chen[†] School of Mathematics, Southeast University Nanjing 210096, China

Let \mathscr{C} be a category with an involution *. Suppose that $\varphi : X \to X$ is a morphism and $(\varphi_1, Z, \varphi_2)$ is an (epic, monic) factorization of φ through Z, then φ is core invertible if and only if $(\varphi^*)^2 \varphi_1$ and $\varphi_2 \varphi_1$ are both left invertible if and only if $((\varphi^*)^2 \varphi_1, Z, \varphi_2), (\varphi_2^*, Z, \varphi_1^* \varphi^* \varphi)$ and $(\varphi^* \varphi_2^*, Z, \varphi_1^* \varphi)$ are all essentially unique (epic, monic) factorizations of $(\varphi^*)^2 \varphi$ through Z. We also give the corresponding result about dual core inverse. In addition, we give some characterizations about the coexistence of core inverse and dual core inverse of an *R*-morphism in the category of *R*-modules of a given ring *R*.

Keywords: Core inverse, Dual core inverse, Morphism, Factorization, Invertibility.

AMS subject classifications: 15A09, 18A32.

1 Introduction

Let \mathscr{C} be a category. \mathscr{C} is said to have an involution * provided that there is a unary operation * on the morphisms such that $\varphi : X \to Y$ implies $\varphi^* : Y \to X$ and that $(\varphi^*)^* = \varphi, (\varphi\psi)^* = \psi^*\varphi^*$ for all morphisms φ and ψ in \mathscr{C} . (See, for example, [1, p. 131].) Let $\varphi : X \to Y$ and $\chi : Y \to X$ be morphisms of \mathscr{C} . Consider the following four equations:

(1) $\varphi \chi \varphi = \varphi$, (2) $\chi \varphi \chi = \chi$, (3) $(\varphi \chi)^* = \varphi \chi$, (4) $(\chi \varphi)^* = \chi \varphi$.

Let $\varphi\{i, j, \dots, l\}$ denote the set of morphisms χ which satisfy equations $(i), (j), \dots, (l)$ from among equations (1)-(4), and in this case, χ is called

^{*}E-mail: littnanjing@163.com

[†]Corresponding author. E-mail: jlchen@seu.edu.cn

the $\{i, j, \dots, l\}$ -inverse of φ . If $\chi \in \varphi\{1, 3\}$, then χ is called a $\{1, 3\}$ -inverse of φ and is denoted by $\varphi^{(1,3)}$. A $\{1, 4\}$ -inverse of φ can be similarly defined. If $\chi \in \varphi\{1, 2, 3, 4\}$, then χ is called the Moore-Penrose inverse of φ . If such a χ exists, then it is unique and denoted by φ^{\dagger} . If X = Y, then a morphism φ is group invertible if there is a morphism $\chi \in \varphi\{1, 2\}$ that commutes with φ . If the group inverse of φ exists, then it is unique and denoted by $\varphi^{\#}$. References to group inverses and Moore-Penrose inverses of morphisms can be seen in, for example, [2]-[6].

In 2010, O.M. Baksalary and G. Trenkler introduced the core and dual core inverse of a complex matrix in [7]. Rakić et al. [10] generalized core inverse of a complex matrix to the case of an element in a ring with an involution *, and they use five equations to characterize the core inverse. In the following, we rewrite these five equations in the category case. Let \mathscr{C} be a category with an involution and $\varphi: X \to X$ a morphism of \mathscr{C} . If there is a morphism $\chi: X \to X$ satisfying

$$\varphi \chi \varphi = \varphi, \ \chi \varphi \chi = \chi, \ (\varphi \chi)^* = \varphi \chi, \ \varphi \chi^2 = \chi, \ \chi \varphi^2 = \varphi,$$
 (1)

then φ is core invertible and χ is called the core inverse of φ . If such χ exists, then it is unique and denoted by φ^{\oplus} . In [8], Xu et al. proved that equations $\varphi \chi \varphi = \varphi$ and $\chi \varphi \chi = \chi$ in (1) can be dropped, that is to say, φ is core invertible with $\varphi^{\oplus} = \chi$ if and only if

$$(\varphi\chi)^* = \varphi\chi, \ \varphi\chi^2 = \chi, \ \chi\varphi^2 = \varphi.$$

And the dual core inverse can be given dually and denoted by φ_{\oplus} . References to core and dual core inverses of morphisms can be seen in, for example, [9].

In this paper, the convention is used of reading morphism composition from left to right, that is to say,

$$\varphi\psi: X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z.$$

A morphism φ is said to be epic if $\varphi \psi = \varphi \psi'$ implies $\psi = \psi'$, and monic if $\psi \varphi = \psi' \varphi$ implies $\psi = \psi'$. A morphism $\varphi : X \to Y$ is left invertible if there exists a morphism $\psi : Y \to X$ such that $\psi \varphi = 1_Y$, and right invertible if there exists a morphism $\psi : Y \to X$ such that $\varphi \psi = 1_X$.

Let $\varphi : X \to Y$ be a morphism in \mathscr{C} . If $\varphi_1 : X \to Z$ and $\varphi_2 : Z \to Y$ are morphisms and $\varphi = \varphi_1 \varphi_2$, then $(\varphi_1, Z, \varphi_2)$ is called a factorization of φ through an object Z. A factorization $(\varphi_1, Z, \varphi_2)$ of φ through Z is called an (epic, monic) factorization of φ whenever φ_1 is epic and φ_2 is monic. Furthermore, an (epic, monic) factorization $(\varphi_1, Z, \varphi_2)$ of φ through Z is said to be essentially unique (see, for example, [1]) if whenever $(\varphi'_1, Z', \varphi'_2)$ is also an (epic, monic) factorization of φ through an object Z', then there is an invertible morphism $\nu : Z \to Z'$ such that $\varphi_1 \nu = \varphi'_1$ and $\nu \varphi'_2 = \varphi_2$. References to generalized inverses of a factorization can be seen in, for example, [11] and [12].

In [1], D.W. Robinson and R. Puystjens showed us the characterizations about the Moore-Penrose inverse of a morphism with a factorization. And in [13], R. Puystjens and D.W. Robinson gave the characterizations about the group inverse of a morphism with a factorization, and they also gave the characterizations about the Moore-Penrose inverse which is different from the results in [1]. Inspired by them, the second part in this paper will give some characterizations about the core inverse and the dual core inverse of a morphism with a factorization, respectively.

In [14] and [15], authors investigated the coexistence of core inverse and dual core inverse of an element in a *- ring which is a ring with an involution * provided that there is an anti-isomorphism * such that $(a^*)^* = a, (a+b)^* =$ $a^* + b^*$ and $(ab)^* = b^*a^*$ for all $a, b \in R$. It makes sense to investigate the coexistence of core inverse and dual core inverse of an *R*-morphism in the category of *R*-modules of a given ring *R*. We give some characterizations about the coexistence of core inverse and dual core inverse of an *R*-morphism in the third part.

The following notations will be used in this paper: $aR = \{ax \mid x \in R\}$, $Ra = \{xa \mid x \in R\}$, $a = \{x \in R \mid xa = 0\}$, $a^{\circ} = \{x \in R \mid ax = 0\}$. In addition, some auxiliary lemmas and results are presented for the further reference.

Lemma 1.1. [1, Lemma 1] Let $\varphi : X \to Y$ be a morphism of \mathscr{C} with a factorization $(\varphi_1, Z, \varphi_2)$ through an object Z. If $\varphi_1 : X \to Z$ is left invertible and $\varphi_2 : Z \to Y$ is right invertible, then $(\varphi_1, Z, \varphi_2)$ is an essentially unique (epic, monic) factorization of φ through Z.

It should be pointed out, [8, Theorem 2.6 and 2.8], [15, Theorem 2.10], [15, Theorem 2.11] and [16, p. 201] were put forward in a *- ring. Actually, one can easily prove that these results are also valid in a category with an involution *. Thus, we can rewrite them in the category case as the following Lemma 1.2 - 1.5, respectively.

Lemma 1.2. [8, Theorem 2.6 and 2.8] Let $\varphi : X \to X$ be a morphism of \mathscr{C} , we have the following results:

(i) φ is core invertible if and only if φ is group invertible and $\{1,3\}$ -invertible.

In this case, $\varphi^{\oplus} = \varphi^{\#} \varphi \varphi^{(1,3)}$.

(ii) φ is dual core invertible if and only if φ is group invertible and $\{1,4\}$ -invertible. In this case, $\varphi_{\oplus} = \varphi^{(1,4)} \varphi \varphi^{\#}$.

Lemma 1.3. [15, Theorem 2.10] Let $\varphi : X \to X$ be a morphism of \mathscr{C} and $n \ge 2$ a positive integer, we have the following results: (i) φ is core invertible if and only if there exist morphisms $\varepsilon : X \to X$ and $\tau : X \to X$ such that $\varphi = \varepsilon(\varphi^*)^n \varphi = \tau \varphi^n$. In this case, $\varphi^{\oplus} = \varphi^{n-1}\varepsilon^*$. (ii) φ is dual core invertible if and only if there exist morphisms $\theta : X \to X$ and $\rho : X \to X$ such that $\varphi = \varphi(\varphi^*)^n \theta = \varphi^n \rho$. In this case, $\varphi_{\oplus} = \theta^* \varphi^{n-1}$.

Lemma 1.4. [15, Theorem 2.11] Let $\varphi : X \to X$ be a morphism of \mathscr{C} and $n \ge 2$ a positive integer, the following statements are equivalent: (i) φ is both Moore-Penrose invertible and group invertible. (ii) φ is both core invertible and dual core invertible. (iii) There exist $\alpha : X \to X$ and $\beta : X \to X$ such that $\varphi = \alpha(\varphi^*)^n \varphi = \varphi(\varphi^*)^n \beta$. In this case,

$$\begin{split} \varphi^{\textcircled{B}} &= \varphi^{n-1} \alpha^*, \\ \varphi_{\textcircled{B}} &= \beta^* \varphi^{n-1}, \\ \varphi^{\dagger} &= \beta \varphi^{2n-1} \alpha^*, \\ \varphi^{\#} &= (\varphi^{n-1} \alpha^*)^2 \varphi = \varphi (\beta^* \varphi^{n-1})^2 \end{split}$$

Lemma 1.5. [16, p. 201] Let $\varphi : X \to Y$ be a morphism of \mathscr{C} , we have the following results:

(i) φ is $\{1,3\}$ -invertible with $\{1,3\}$ -inverse $\chi : Y \to X$ if and only if $\chi^* \varphi^* \varphi = \varphi$;

(ii) φ is $\{1,4\}$ -invertible with $\{1,4\}$ -inverse $\zeta : Y \to X$ if and only if $\varphi \varphi^* \zeta^* = \varphi$.

2 Main Results

In [1], D.W. Robinson and R. Puystjens gave some results about the Moore-Penrose inverse of a morphism with a factorization. And in [13], R. Puystjens and D.W. Robinson gave the characterizations about the group inverse of a morphism with a factorization, as follows.

Lemma 2.1. [13, Theorem 1] Let $(\varphi_1, Z, \varphi_2)$ be an (epic, monic) factorization of a morphism $\varphi : X \to X$ through an object Z of a category. Then the following statements are equivalent: (i) φ has a group inverse $\varphi^{\#} : X \to X$, (ii) $\varphi_2 \varphi_1 : Z \to Z$ is invertible, (iii) $(\varphi_1, Z, \varphi_2 \varphi)$ and $(\varphi \varphi_1, Z, \varphi_2)$ are both essentially unique (epic, monic) factorizations of φ^2 through Z.

Lemma 2.2. [1, Theorem 2 and Theorem 3] Let $\varphi : X \to Y$ be a morphism of a category with involution *. If $(\varphi_1, Z, \varphi_2)$ is an (epic, monic) factorization of φ through Z, then the following statements are equivalent: (i) φ has a Moore-Penrose inverse with respect to *, (ii) $\varphi^*\varphi_1$ is left invertible and $\varphi_2^*\varphi$ is right invertible, (iii) $(\varphi^*\varphi_1, Z, \varphi_2)$ and $(\varphi_1, Z, \varphi_2 \varphi^*)$ are, respectively, essentially unique (epic, monic) factorizations of $\varphi^*\varphi$ and $\varphi\varphi^*$ through Z, (iv) $\varphi_1^*\varphi_1$ and $\varphi_2\varphi_2^*$ are both invertible. In this case,

$$\varphi^{\dagger} = \varphi_2^* (\varphi_2 \varphi_2^*)^{-1} (\varphi_1^* \varphi_1)^{-1} \varphi_1^*$$

From Lemma 2.2, we know that φ has a Moore-Penrose inverse if and only if $\varphi^* \varphi_1$ is left invertible and $\varphi_2 \varphi^*$ is right invertible if and only if both $\varphi_1^* \varphi_1$ and $\varphi_2 \varphi_2^*$ are invertible. Thus we can easily prove the following two lemmas in a similar way.

Lemma 2.3. Let $\varphi : X \to Y$ be a morphism of a category with involution *. If $(\varphi_1, Z, \varphi_2)$ is an (epic, monic) factorization of φ through Z, then φ has a $\{1,3\}$ -inverse with respect to * if and only if $\varphi^*\varphi_1 : Y \to Z$ is left invertible.

Proof. Since

$$\varphi_1 \cdot 1_Z \cdot \varphi_2 = \varphi = \varphi \varphi^{(1,3)} \varphi \varphi^{(1,3)} \varphi = \varphi \varphi^{(1,3)} (\varphi \varphi^{(1,3)})^* \varphi$$
$$= \varphi \varphi^{(1,3)} (\varphi^{(1,3)})^* \varphi^* \varphi = \varphi_1 \varphi_2 \varphi^{(1,3)} (\varphi^{(1,3)})^* \varphi^* \varphi_1 \varphi_2$$

 φ_1 is epic and φ_2 monic, then

$$\varphi_2 \varphi^{(1,3)} (\varphi^{(1,3)})^* \varphi^* \varphi_1 = 1_Z.$$

Therefore, $\varphi^* \varphi_1$ is left invertible.

Conversely, there is a morphism $\mu: Z \to Y$ such that $\mu \varphi^* \varphi_1 = 1_Z$, then

$$\varphi = \varphi_1 \cdot 1_Z \cdot \varphi_2 = \varphi_1(\mu \varphi^* \varphi_1) \varphi_2 = \varphi_1 \mu \varphi^* \varphi,$$

thus φ is $\{1,3\}$ -invertible by Lemma 1.5.

Similarly, we have a dual result for $\{1, 4\}$ -inverse.

Lemma 2.4. Let $\varphi : X \to Y$ be a morphism of a category with involution *. If $(\varphi_1, Z, \varphi_2)$ is an (epic, monic) factorization of φ through Z, then φ has a $\{1, 4\}$ -inverse with respect to * if and only if $\varphi_2 \varphi^* : Z \to X$ is right invertible.

Inspired by D.W. Robinson and R. Puystjens [13], we get some characterizations of the core invertibility of a morphism with an (epic, monic) factorization in a category \mathscr{C} .

Theorem 2.5. Let $\varphi : X \to X$ be a morphism of a category with involution *. If $(\varphi_1, Z, \varphi_2)$ is an (epic, monic) factorization of φ through Z, then the following statements are equivalent:

(i) φ has a core inverse with respect to *;

(ii) $\varphi^* \varphi_1 : X \to Z$ is left invertible and $\varphi_2 \varphi_1 : Z \to Z$ is invertible;

(iii) $(\varphi^*)^n \varphi_1 : X \to Z$ and $\varphi_2 \varphi_1 : Z \to Z$ are both left invertible for any positive integer $n \ge 2$;

(iv) $((\varphi^*)^2 \varphi_1, Z, \varphi_2)$, $(\varphi_2^*, Z, \varphi_1^* \varphi^* \varphi)$ and $(\varphi^* \varphi_2^*, Z, \varphi_1^* \varphi)$ are all essentially unique (epic, monic) factorizations of $(\varphi^*)^2 \varphi$ through Z.

Proof. (i) \Leftrightarrow (ii). By Lemma 1.2, φ is core invertible if and only if φ is group invertible and $\{1,3\}$ -invertible. Moreover, φ is group invertible if and only $\varphi_2\varphi_1: Z \to Z$ is invertible by Lemma 2.1, and φ is $\{1,3\}$ -invertible if and only if $\varphi^*\varphi_1: X \to Z$ is left invertible by Lemma 2.3. In conclusion, φ is core invertible if and only if $\varphi^*\varphi_1: X \to Z$ is left invertible and $\varphi_2\varphi_1: Z \to Z$ is invertible.

 $(i) \Rightarrow (iii)$. Since

$$\varphi_{1} \cdot 1_{Z} \cdot \varphi_{2} = \varphi = \varphi \varphi^{\oplus} \varphi = \varphi (\varphi^{\oplus} \varphi \varphi^{\oplus}) \varphi = \varphi \varphi^{\oplus} (\varphi \varphi^{\oplus})^{*} \varphi$$
$$= \varphi \varphi^{\oplus} (\varphi^{\oplus})^{*} \varphi^{*} \varphi = \varphi \varphi^{\oplus} (\varphi \varphi^{\oplus} \varphi^{\oplus})^{*} \varphi^{*} \varphi$$
$$= \varphi_{1} \varphi_{2} \varphi^{\oplus} (\varphi^{\oplus})^{*} (\varphi^{\oplus})^{*} (\varphi^{*})^{2} \varphi_{1} \varphi_{2}$$
$$= \varphi_{1} \varphi_{2} \varphi^{\oplus} (\varphi^{\oplus})^{*} (\varphi^{\oplus} \varphi^{\oplus})^{*} (\varphi^{*})^{2} \varphi_{1} \varphi_{2}$$
$$= \varphi_{1} \varphi_{2} \varphi^{\oplus} (\varphi^{\oplus})^{*} ((\varphi^{\oplus})^{2})^{*} (\varphi^{*})^{3} \varphi_{1} \varphi_{2}$$
$$= \cdots$$
$$= \varphi_{1} \varphi_{2} \varphi^{\oplus} (\varphi^{\oplus})^{*} ((\varphi^{\oplus})^{n-1})^{*} (\varphi^{*})^{n} \varphi_{1} \varphi_{2},$$

 φ_1 is epic and φ_2 is monic, then

$$\varphi_2 \varphi^{\oplus} (\varphi^{\oplus})^* ((\varphi^{\oplus})^{n-1})^* (\varphi^*)^n \varphi_1 = 1_Z,$$

thus $(\varphi^*)^n \varphi_1 : X \to Z$ is left invertible for any $n \ge 2$.

Similarly, from

$$\varphi_1 \cdot 1_Z \cdot \varphi_2 = \varphi = \varphi \varphi^{\oplus} \varphi = \varphi \varphi^{\oplus} (\varphi^{\oplus} \varphi^2) = \varphi_1 \varphi_2 \varphi^{\oplus} \varphi^{\oplus} \varphi_1 \varphi_2 \varphi_1 \varphi_2,$$

 φ_1 is epic and φ_2 is monic, we obtain

$$\varphi_2 \varphi^{\oplus} \varphi^{\oplus} \varphi_1 \varphi_2 \varphi_1 = \mathbf{1}_Z, \tag{2}$$

thus $\varphi_2 \varphi_1 : Z \to Z$ is left invertible.

 $(iii) \Rightarrow (i)$. Suppose that $(\varphi^*)^n \varphi_1 : X \to Z$ and $\varphi_2 \varphi_1 : Z \to Z$ are both left invertible for any $n \ge 2$, then there exist $\mu : Z \to X$ and $\nu : Z \to Z$ such that

$$\mu(\varphi^*)^n \varphi_1 = 1_Z = \nu \varphi_2 \varphi_1.$$

Therefore,

$$\varphi = \varphi_1 \cdot 1_Z \cdot \varphi_2 = \varphi_1(\nu\varphi_2\varphi_1)\varphi_2 = \varphi_1\nu(\nu\varphi_2\varphi_1)\varphi_2\varphi_1\varphi_2 = \varphi_1\nu^2\varphi_2\varphi^2$$
$$= \varphi_1\nu^2(\nu\varphi_2\varphi_1)\varphi_2\varphi^2 = \varphi_1\nu^3\varphi_2\varphi^3 = \dots = \varphi_1\nu^n\varphi_2\varphi^n,$$
$$\varphi = \varphi_1 \cdot 1_Z \cdot \varphi_2 = \varphi_1(\mu(\varphi^*)^n\varphi_1)\varphi_2 = \varphi_1\mu(\varphi^*)^n\varphi.$$

Thus φ has a core inverse with $\varphi^{\oplus} = \varphi^{n-1}(\varphi_1 \mu)^*$ by Lemma 1.3.

 $((i) \Leftrightarrow (iii)) \Rightarrow (iv)$. When taking n = 2, φ has a core inverse if and only if $(\varphi^*)^2 \varphi_1 : X \to Z$ and $\varphi_2 \varphi_1 : Z \to Z$ are both left invertible. To begin with, since $(\varphi^*)^2 \varphi_1$ is left invertible, and equality (2) shows that φ_2 is right invertible, thus $((\varphi^*)^2 \varphi_1, Z, \varphi_2)$ is an essentially unique (epic, monic) factorization of $(\varphi^*)^2 \varphi$ through Z by Lemma 1.1.

Next, φ_2 is right invertible, which gives that $(\varphi_2)^*$ is left invertible. In addition, equality (2) gives

$$1_Z = \varphi_2 \varphi^{\oplus} \varphi^{\oplus} \varphi_1 \varphi_2 \varphi_1 = \varphi_2 \varphi^{\oplus} (\varphi^{\oplus} \varphi \varphi^{\oplus}) \varphi \varphi_1 = \varphi_2 \varphi^{\oplus} \varphi^{\oplus} (\varphi^{\oplus})^* \varphi^* \varphi \varphi_1,$$

so $\varphi^* \varphi \varphi_1$ is left invertible, that is to say, $\varphi_1^* \varphi^* \varphi$ is right invertible. Therefore, $(\varphi_2^*, Z, \varphi_1^* \varphi^* \varphi)$ is an essentially unique (epic, monic) factorization of $(\varphi^*)^2 \varphi$ through Z by Lemma 1.1.

Finally, since $(\varphi^*)^2 \varphi_1$ is left invertible, then $\varphi^* \varphi_1$ is also left invertible, which implies that $\varphi_1^* \varphi$ is right invertible. In addition, equality (2) shows

$$1_Z = \varphi_2 \varphi^{\oplus} \varphi^{\oplus} \varphi_1 \varphi_2 \varphi_1 = \varphi_2 (\varphi \varphi^{\oplus} \varphi^{\oplus}) \varphi^{\oplus} \varphi \varphi_1,$$

thus $\varphi_2 \varphi$ is right invertible, that is to say, $\varphi^* \varphi_2^*$ is left invertible. Hence $(\varphi^* \varphi_2^*, Z, \varphi_1^* \varphi)$ is an essentially unique (epic, monic) factorization of $(\varphi^*)^2 \varphi$ through Z by Lemma 1.1.

 $(iv) \Rightarrow (iii)$. Suppose that $((\varphi^*)^2 \varphi_1, Z, \varphi_2), (\varphi^* \varphi_2^*, Z, \varphi_1^* \varphi)$ and $(\varphi_2^*, Z, \varphi_1^* \varphi^* \varphi)$ are essentially unique (epic, monic) factorizations of $(\varphi^*)^2 \varphi$ through Z. In particular, there exist invertible morphisms $\rho: Z \to Z, \sigma: Z \to Z$ such that

$$(\varphi^*)^2 \varphi_1 \rho = \varphi^* \varphi_2^*,$$

$$\rho \varphi_1^* \varphi = \varphi_2, \tag{3}$$

$$\varphi_2^* \sigma = \varphi^* \varphi_2^*, \tag{4}$$

and

$$\sigma\varphi_1^*\varphi = \varphi_1^*\varphi^*\varphi. \tag{5}$$

By calculation, we have

$$\varphi_2 \stackrel{(3)}{=} \rho \varphi_1^* \varphi = \rho \varphi_1^* \varphi_1 \varphi_2,$$
$$\varphi_2 \varphi_1 \varphi_2 = \varphi_2 \varphi = (\varphi^* \varphi_2^*)^* \stackrel{(4)}{=} (\varphi_2^* \sigma)^* = \sigma^* \varphi_2,$$

and

$$\sigma\varphi_1^*\varphi_1\varphi_2 = \sigma\varphi_1^*\varphi \stackrel{(5)}{=} \varphi_1^*\varphi^*\varphi = \varphi_1^*\varphi^*\varphi_1\varphi_2.$$

Since φ_2 is monic, then $1_Z = \rho \varphi_1^* \varphi_1$, $\varphi_2 \varphi_1 = \sigma^*$ and $\sigma \varphi_1^* \varphi_1 = \varphi_1^* \varphi^* \varphi_1$. Thus $\varphi_2 \varphi_1$ is invertible follows from $\varphi_2 \varphi_1 = \sigma^*$. Moreover, $\sigma \varphi_1^* \varphi_1 = \varphi_1^* \varphi^* \varphi_1$ implies $\varphi_1^* \varphi_1 = \sigma^{-1} \varphi_1^* \varphi^* \varphi_1$, then

$$1_{Z} = \rho \varphi_{1}^{*} \varphi_{1} = \rho \sigma^{-1} \varphi_{1}^{*} \varphi^{*} \varphi_{1} = \rho \sigma^{-1} (\sigma^{-1} \sigma) \varphi_{1}^{*} \varphi^{*} \varphi_{1} = \rho \sigma^{-2} (\sigma^{*})^{*} \varphi_{1}^{*} \varphi^{*} \varphi_{1}$$
$$= \rho \sigma^{-2} (\varphi_{2} \varphi_{1})^{*} \varphi_{1}^{*} \varphi^{*} \varphi_{1} = \rho \sigma^{-2} \varphi_{1}^{*} (\varphi^{*})^{2} \varphi_{1} = \rho \sigma^{-2} (\sigma^{-1} \sigma) \varphi_{1}^{*} (\varphi^{*})^{2} \varphi_{1}$$
$$= \rho \sigma^{-3} (\sigma^{*})^{*} \varphi_{1}^{*} (\varphi^{*})^{2} \varphi_{1} = \rho \sigma^{-3} (\varphi_{2} \varphi_{1})^{*} \varphi_{1}^{*} (\varphi^{*})^{2} \varphi_{1}$$
$$= \rho \sigma^{-3} \varphi_{1}^{*} (\varphi^{*})^{3} \varphi_{1} = \dots = \rho \sigma^{-n} \varphi_{1}^{*} (\varphi^{*})^{n} \varphi_{1},$$

hence $(\varphi^*)^n \varphi_1$ is left invertible.

The following theorem is a corresponding result for dual core inverse.

Theorem 2.6. Let $\varphi : X \to X$ be a morphism of a category with involution. If $(\varphi_1, Z, \varphi_2)$ is an (epic, monic) factorization of φ through Z, then the following statements are equivalent:

(i) φ has a dual core inverse with respect to *;

(ii) $\varphi_2 \varphi^* : Z \to X$ is right invertible and $\varphi_2 \varphi_1 : Z \to Z$ is invertible;

(iii) $\varphi_2(\varphi^*)^n : Z \to X$ and $\varphi_2\varphi_1 : Z \to Z$ are both right invertible for any positive integer $n \ge 2$;

(iv) $(\varphi_1, Z, \varphi_2(\varphi^*)^2)$, $(\varphi \varphi^* \varphi_2^*, Z, \varphi_1^*)$ and $(\varphi \varphi_2^*, Z, \varphi_1^* \varphi^*)$ are all essentially unique (epic, monic) factorizations of $\varphi(\varphi^*)^2$ through Z.

In [14] and [15], authors characterized the coexistence of core inverse and dual core inverse of a regular element by units in a *-ring. And we give characterizations of the coexistence of core inverse and dual core inverse of a morphism with an (epic, monic) factorization in a category \mathscr{C} .

Theorem 2.7. Let $\varphi : X \to X$ be a morphism of a category with involution and $n \ge 2$ a positive integer. If $(\varphi_1, Z, \varphi_2)$ is an (epic, monic) factorization of φ through Z, then the following statements are equivalent:

(i) φ is both Moore-Penrose invertible and group invertible;

(ii) φ is both core invertible and dual core invertible;

(iii) $(\varphi^*)^n \varphi_1 : X \to Z$ is left invertible and $\varphi_2(\varphi^*)^n : Z \to X$ is right invertible;

(iv) $\varphi^n \varphi_2^* : X \to Z$ is left invertible and $\varphi_1^* \varphi^n : Z \to X$ is right invertible. In this case,

$$\begin{split} \varphi^{\oplus} &= \varphi^{n-1} \mu^* \varphi_1^*, \\ \varphi_{\oplus} &= \varphi_2^* \nu^* \varphi^{n-1}, \\ \varphi^{\dagger} &= \nu \varphi_2 \varphi^{2n-1} \mu^* \varphi_1^*, \\ \varphi^{\#} &= (\varphi^{n-1} \mu^* \varphi_1^*)^2 \varphi = \varphi(\varphi_2^* \nu^* \varphi^{n-1})^2, \end{split}$$

where $\mu(\varphi^*)^n \varphi_1 = 1_Z = \varphi_2(\varphi^*)^n \nu$ for some $\mu: Z \to X$ and $\nu: X \to Z$.

Proof. $(i) \Leftrightarrow (ii)$. Obviously.

 $(ii) \Rightarrow (iii)$. It is clear by Theorem 2.5 and Theorem 2.6.

 $(iii) \Rightarrow (ii)$. Suppose that $\mu(\varphi^*)^n \varphi_1 = 1_Z = \varphi_2(\varphi^*)^n \nu$ for some $\mu: Z \to X$ and $\nu: X \to Z$, where $n \ge 2$ is a positive integer. Then we have

$$\varphi = \varphi_1 \cdot 1_Z \cdot \varphi_2 = \varphi_1(\mu(\varphi^*)^n \varphi_1)\varphi_2 = \varphi_1\mu(\varphi^*)^n \varphi$$

and

$$\varphi = \varphi_1 \cdot 1_Z \cdot \varphi_2 = \varphi_1(\varphi_2(\varphi^*)^n \nu)\varphi_2 = \varphi(\varphi^*)^n \nu \varphi_2$$

Hence, the conclusion is now a consequence of Lemma 1.4.

 $(ii) \Leftrightarrow (iv)$. Since φ^* exists and has an (epic, monic) factorization $(\varphi_2^*, Z, \varphi_1^*)$, and φ is both core invertible and dual core invertible if and only if φ^* is both core invertible and dual core invertible. Therefore, the conclusion is a consequence of the preceding argument.

The expressions can be deduced by Lemma 1.4.

Let $\mathbb{C}_{m,n}$ be the set of all $m \times n$ complex matrices. In [17], H.X. Wang and X.L. Liu showed us that if $A \in \mathbb{C}_n^{\text{CM}}$ has a full-rank decomposition A = BC, then $A^{\oplus} = B(CB)^{-1}(B^*B)^{-1}B^*$, where $\mathbb{C}_n^{\text{CM}} = \{A \in \mathbb{C}_{n,n} : \text{rank}(A^2) = \text{rank}(A)\}$. We will show another derivation for this result as follow.

Corollary 2.8. [17, Theorem 2.4] Let $A \in \mathbb{C}_n^{\text{CM}}$ with $\operatorname{rank}(A) = r$. If A has a full-rank decomposition A = BC, then

$$A^{\oplus} = B(CB)^{-1}(B^*B)^{-1}B^*.$$

Proof. Let $U = (B^*B)^{-1}((CB)^*)^{-1}(CC^*)^{-1}C$, then

$$U(A^*)^2 B = [(B^*B)^{-1}((CB)^*)^{-1}(CC^*)^{-1}C](A^*)^2 B$$

= $[(B^*B)^{-1}((CB)^*)^{-1}(CC^*)^{-1}C](BC)^*(BC)^* B$
= $[(B^*B)^{-1}((CB)^*)^{-1}(CC^*)^{-1}C]C^*(CB)^* B^* B$
= I_r ,

thus U is a left inverse of $(A^*)^2 B$. According to the proof $(iii) \Rightarrow (i)$ of Theorem 2.5, we deduce that $A^{\oplus} = A(BU)^*$. Therefore,

$$A^{\oplus} = A(BU)^{*}$$

= $A[B(B^{*}B)^{-1}((CB)^{*})^{-1}(CC^{*})^{-1}C]^{*}$
= $(BC)C^{*}(CC^{*})^{-1}(CB)^{-1}(B^{*}B)^{-1}B^{*}$
= $B(CB)^{-1}(B^{*}B)^{-1}B^{*}.$

Likewise, we have the following result.

Corollary 2.9. Let $A \in \mathbb{C}_n^{CM}$ with rank(A) = r. If A has a full-rank decomposition A = BC, then

$$A_{\oplus} = C^* (CC^*)^{-1} (CB)^{-1} C.$$

3 Applications

Let R be a ring, and let $_R$ Mod be the category of R-modules and R-morphisms. In [1], R. Puystjens and D.W. Robinson mentioned that associated with every morphism $\tau : M \to N$ of $_R$ Mod are the R-modules Im $\tau = M\tau = \{x\tau | x \in M\}$, Ker $\tau = \{x | x\tau = 0\}$ and the R-morphisms $\tau_1 : M \to \operatorname{Im}\tau, x \mapsto x\tau$, and $\tau_2 : \operatorname{Im}\tau \to N, x \mapsto x$. In particular, $(\tau_1, \operatorname{Im}\tau, \tau_2)$ is an (epic, monic) factorization of τ through the object Im τ , which is herein called the standard factorization of τ in $_R$ Mod.

Now we consider the coexistence of the core inverse and dual core inverse of an R-morphism in the category of R-modules of a given ring R.

Lemma 3.1. Let $\tau : M \to M$ be a morphism of _RMod with standard factorization $(\tau_1, \operatorname{Im} \tau, \tau_2)$, and let n be a positive integer. If the full subcategory determined by M has an involution *, then

(i) $(\tau^*)^n \tau_1$ is epic if and only if $\operatorname{Im}(\tau^*)^n \tau = \operatorname{Im}\tau$; (ii) $\tau_2(\tau^*)^n$ is monic if and only if $\operatorname{Ker}\tau(\tau^*)^n = \operatorname{Ker}\tau$; (iii) $\operatorname{Ker}(\tau^*)^n \tau_1 = \operatorname{Ker}(\tau^*)^n \tau$; (iv) $\operatorname{Im}\tau_2(\tau^*)^n = \operatorname{Im}\tau(\tau^*)^n$.

Proof. (i). Assume that $(\tau^*)^n \tau_1 : M \to \operatorname{Im} \tau$ is epic. It is obvious that $\operatorname{Im}(\tau^*)^n \tau \subseteq \operatorname{Im} \tau$, so we only need to prove that $\operatorname{Im} \tau \subseteq \operatorname{Im}(\tau^*)^n \tau$. Since $(\tau^*)^n \tau_1$ is epic, if $z \in \operatorname{Im} \tau$, then there is a $y \in M$ such that $z = y(\tau^*)^2 \tau_1$, and

$$z = z\tau_2 = (y(\tau^*)^n \tau_1)\tau_2 = y(\tau^*)^n \tau \in \operatorname{Im}(\tau^*)^n \tau.$$

Thus, $\operatorname{Im}(\tau^*)^n \tau = \operatorname{Im}\tau$. Conversely, Assume that $\operatorname{Im}(\tau^*)^n \tau = \operatorname{Im}\tau$ and let $z \in \operatorname{Im}\tau$, then there is a $y \in M$ such that

$$z = y(\tau^*)^n \tau = y(\tau^*)^n \tau_1 \tau_2 = y(\tau^*)^n \tau_1.$$

That is to say, $(\tau^*)^n \tau_1$ is surjective as a function and hence is epic as an R-morphism.

(*ii*). Suppose that $\tau_2(\tau^*)^n$: Im $\tau \to M$ is monic. It is easy to see that Ker $\tau \subseteq \text{Ker}\tau(\tau^*)^n$, hence, we only need to show that Ker $\tau(\tau^*)^n \subseteq \text{Ker}\tau$. Since $\tau_2(\tau^*)^n$ is monic, for any $z \in \text{Ker}\tau(\tau^*)^n$, we have $0 = z\tau(\tau^*)^n = z\tau_1\tau_2(\tau^*)^n$, thus $0 = z\tau_1 = z\tau_1\tau_2 = z\tau$, that is $z \in \text{Ker}\tau$. Conversely, suppose Ker $\tau(\tau^*)^n = \text{Ker}\tau$ and $z\tau_2(\tau^*)^n = 0$, where $z \in \text{Im}\tau$. Since τ_1 is epic, there exists a $y \in M$ such that $z = y\tau_1$. Therefore,

$$0 = z\tau_2(\tau^*)^n = (y\tau_1)\tau_2(\tau^*)^n = y\tau(\tau^*)^n,$$

which follows that $0 = y\tau = y\tau_1\tau_2 = y\tau_1 = z$. Hence, $\tau_2(\tau^*)^n$ is monic.

Part (*iii*) follows from the fact that τ_2 is an insertion and part (*iv*) is a consequence of the fact that τ_1 is epic.

Theorem 3.2. Let $\tau : M \to M$ be a morphism of the category $_R$ Mod, and let $n \ge 2$ be a positive integer. If the full subcategory determined by M has an involution *, then the following statements are equivalent: (i) τ is both core invertible and dual core invertible; (ii) τ is both Moore-Penrose invertible and group invertible; (iii) both $\operatorname{Ker}(\tau^*)^n \tau$ and $\operatorname{Im}\tau(\tau^*)^n$ are direct summands of M, and $\operatorname{Im}(\tau^*)^n \tau =$ $\operatorname{Im}\tau$, $\operatorname{Ker}\tau(\tau^*)^n = \operatorname{Ker}\tau$; (iv) both $\operatorname{Ker}\tau^n\tau^*$ and $\operatorname{Im}\tau^*\tau^n$ are direct summands of M, and $\operatorname{Im}\tau^n\tau^* =$ $\operatorname{Im}\tau^*$, $\operatorname{Ker}\tau^*\tau^n = \operatorname{Ker}\tau^*$; (v) $M = \operatorname{Ker}\tau \oplus \operatorname{Im}(\tau^*)^n$, $M = \operatorname{Ker}(\tau^*)^n \oplus \operatorname{Im}\tau$; (vi) $M = \operatorname{Ker}\tau^* \oplus \operatorname{Im}\tau^n$, $M = \operatorname{Ker}\tau^n \oplus \operatorname{Im}\tau^*$.

Proof. $(i) \Leftrightarrow (ii)$. Clearly.

 $(i) \Leftrightarrow (iii)$. As is known that an epic morphism in _RMod is left invertible if and only if its kernel is a direct summand of its domain. (See for example [18, p. 12].) In particular, $(\tau^*)^n \tau_1$ is left invertible if and only if $(\tau^*)^n \tau_1$ is epic and $\operatorname{Ker}(\tau^*)^n \tau_1$ is a direct summand of M. Thus, by (i) and (iii) in Lemma 3.1, $(\tau^*)^n \tau_1$ is left invertible if and only if $\operatorname{Im}(\tau^*)^n \tau = \operatorname{Im}\tau$ and $\operatorname{Ker}(\tau^*)^n \tau$ is a direct summand of M. In a similar way, since a monic morphism in Mod_R is right invertible if and only if its image is a direct summand of its codomain. then from (ii) and (iv) in Lemma 3.1, $\tau_2(\tau^*)^n$ is right invertible if and only if $\operatorname{Ker}\tau(\tau^*)^n = \operatorname{Ker}\tau$ and $\operatorname{Im}\tau(\tau^*)^n$ is a direct summand of M. Consequently, we get the conclusion by Theorem 2.7.

 $(i) \Leftrightarrow (iv)$. Since τ is both core invertible and dual core invertible if and only if τ^* is both core invertible and dual core invertible. Then, we can get this conclusion by replacing τ with τ^* in the preceding argument.

 $(i) \Rightarrow (v)$. Given τ^{\oplus} and τ_{\oplus} , then $M = M(1_M - \tau \tau^{\oplus}) \oplus M \tau \tau^{\oplus}$. Clearly $M(1_M - \tau \tau^{\oplus}) = \text{Ker}\tau$. Since

$$\tau\tau^{\oplus} = (\tau\tau^{\oplus})^* = (\tau^{\oplus})^*\tau^* = (\tau\tau^{\oplus}\tau^{\oplus})^*\tau^* = ((\tau^{\oplus})^2)^*(\tau^*)^2$$

= $(\tau^{\oplus})^*(\tau\tau^{\oplus}\tau^{\oplus})^*(\tau^*)^2 = ((\tau^{\oplus})^3)^*(\tau^*)^3$
= $\cdots = ((\tau^{\oplus})^n)^*(\tau^*)^n$

and

$$(\tau^*)^n = (\tau^*)^{n-1}\tau^* = (\tau^*)^{n-1}(\tau\tau^{\oplus}\tau)^* = (\tau^*)^{n-1}\tau^*\tau\tau^{\oplus},$$

then $M\tau\tau^{\oplus} = \operatorname{Im}(\tau^*)^n$. Thus $M = \operatorname{Ker}\tau \oplus \operatorname{Im}(\tau^*)^n$.

In addition, for any $z \in M$, $z = (z - z\tau_{\oplus}\tau) + z\tau_{\oplus}\tau$, where $z\tau_{\oplus}\tau \in \text{Im}\tau$. Now we show that $z - z\tau_{\oplus}\tau \in \text{Ker}(\tau^*)^n$. Since

$$(\tau^*)^n = (\tau\tau_{\oplus}\tau)^* (\tau^*)^{n-1} = \tau_{\oplus}\tau\tau^* (\tau^*)^{n-1} = \tau_{\oplus}\tau (\tau^*)^n,$$

then $(z - z\tau_{\oplus}\tau)(\tau^*)^n = z(\tau^*)^n - z\tau_{\oplus}\tau(\tau^*)^n = 0$. Let $y \in \operatorname{Ker}(\tau^*)^n \cap \operatorname{Im}\tau$, then $y(\tau^*)^n = 0$ and there exists an $x \in M$ such that $y = x\tau$. Hence,

$$y = x\tau = x(\tau\tau_{\oplus}\tau) = x\tau\tau^*(\tau_{\oplus})^* = x\tau\tau^*(\tau_{\oplus}\tau_{\oplus}\tau)^*$$
$$= y(\tau^*)^2(\tau_{\oplus}^2)^* = y(\tau^*)^2(\tau_{\oplus}\tau_{\oplus}\tau)^*\tau_{\oplus}^*$$
$$= y(\tau^*)^3(\tau_{\oplus}^3)^* = \dots = y(\tau^*)^n(\tau_{\oplus}^n)^* = 0.$$

Therefore, we have $M = \text{Ker}(\tau^*)^n \oplus \text{Im}\tau$.

 $(v) \Rightarrow (iii)$. Let $M = \text{Ker}\tau \oplus \text{Im}(\tau^*)^n$. Then, for any $z \in M$, $z = k + y(\tau^*)^n$, where $k \in \text{Ker}\tau$. Therefore,

$$z\tau = y(\tau^*)^n \tau \in \operatorname{Im}(\tau^*)^n \tau,$$

which implies $\operatorname{Im} \tau \subseteq \operatorname{Im}(\tau^*)^n \tau$. Hence, $\operatorname{Im} \tau = \operatorname{Im}(\tau^*)^n \tau$. In addition, if $y(\tau^*)^n \tau = 0$, then

$$y(\tau^*)^n \in \operatorname{Ker} \tau \cap \operatorname{Im}(\tau^*)^n = \{0\},\$$

thus $\operatorname{Ker}(\tau^*)^n \tau \subseteq \operatorname{Ker}(\tau^*)^n$. Moreover, $\operatorname{Ker}(\tau^*)^n \tau = \operatorname{Ker}(\tau^*)^n$

Likewise, let $M = \operatorname{Ker}(\tau^*)^n \oplus \operatorname{Im}\tau$, then $\operatorname{Ker}\tau(\tau^*)^n = \operatorname{Ker}\tau$ and $\operatorname{Im}(\tau^*)^n = \operatorname{Im}\tau(\tau^*)^n$.

 $(vi) \Leftrightarrow (v)$. We can get this conclusion immediately by replacing τ with τ^* in the statement (v).

Remark 3.3. It should be noted that when taking n = 1, Lemma 3.1 is consistent with [1, Lemma 4], and the statements (iii), (iv), (v) and (vi) in Theorem 3.2 are all equivalent to that τ is Moore-Penrose invertible. (See [1, Theorem 4].)

Corollary 3.4. Let R be a *-ring and $a \in R$ and $n \ge 2$ a positive integer, then the following statements are equivalent:

(i) a is both Moore-Penrose invertible and group invertible; (ii) a is both core invertible and dual core invertible; (iii) $R = {}^{\circ}a \oplus R(a^{*})^{n}, R = {}^{\circ}((a^{*})^{n}) \oplus Ra;$ (iv) $R = (a^{*})^{\circ} \oplus a^{n}R, R = (a^{n})^{\circ} \oplus a^{*}R;$ (v) $R = {}^{\circ}(a^{*}) \oplus Ra^{n}, R = {}^{\circ}(a^{n}) \oplus Ra^{*};$ (vi) $R = a^{\circ} \oplus (a^{*})^{n}R, R = ((a^{*})^{n})^{\circ} \oplus aR.$ *Proof.* As is known that $(i) \Leftrightarrow (ii)$. And $(ii) \Leftrightarrow (iii) \Leftrightarrow (v)$ follows from Theorem 3.2. When taking involution on statements (iii) and (v), we obtain statements (iv) and (vi), respectively.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No.11771076); the Scientific Innovation Research of College Graduates in Jiangsu Province (No.KYCX17_0037).

References

- R. Puystjens, D.W. Robinson, The Moore-Penrose inverse of a morphism with factorization, Linear Algebra Appl. 40(1981)129-141.
- [2] R. Puystjens, D.W. Robinson, The Moore-Penrose inverse of a morphism in an additive category, Comm. Algebra. 12(3)(1984)287-299.
- [3] R. Puystjens, D.W. Robinson, Symmetric morphisms and the existence of Moore-Penrose inverses, Linear Algebra Appl. 131(1990)51-69.
- [4] P. Peška, The Moore-Penrose inverse of a partitioned morphism in an additive category, Math. Slovaca. 50(4)(2000)437-452.
- [5] H. You, J.L. Chen, Generalized inverses of a sum of morphisms, Linear Algebra Appl. 338(2001)261-273.
- [6] S.D. Liu, H. You, On generalized Moore-Penrose inverses of morphisms with universal factorization, Mathematica Applicata. 14(3)(2001)37-40.
- [7] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra. 58(2010)681-697.
- [8] S.Z. Xu, J.L. Chen, X.X. Zhang, New characterizations for core and dual core inverses in rings with involution, Front. Math. China. 12(1)(2017)231-246.
- [9] T.T. Li, J.L. Chen, S.Z. Xu, Core and dual core inverses of a sum of morphisms, arXiv:1612.09482v1 [math.CT], 2016.
- [10] D.S. Rakić, N.C. Dinčić, D.S. Djordiević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463(2014)115-133.

- [11] P. Patrício, The Moore-Penrose inverse of a factorization, Linear Algebra Appl. 370(2003)227-235.
- [12] H.H. Zhu, X.X. Zhang, J.L. Chen, Generalized inverses of a factorization in a ring with involution, Linear Algebra Appl. 472(2015)142-150.
- [13] D.W. Robinson, R. Puystjens, EP morphisms, Linear Algebra Appl. 64(1985)157-174.
- [14] J.L. Chen, H.H. Zhu, Patrício P, Zhang YL. Characterizations and representations of core and dual core inverses. Canad. Math. Bull. 60(2)(2017)269-282.
- [15] T.T. Li, J.L. Chen, Characterizations of core and dual core inverses in rings with involution, Linear Multilinear Algebra. Doi: 10.1080/03081087.2017.1320963.
- [16] R.E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61(1976)197-251.
- [17] H.X. Wang, X.J. Liu, Characterizations of the core inverse and the core partial ordering, Linear Multilinear Algebra. 63(2015)1829-1836.
- [18] D.G. Northcott, An Introduction to Homological Algebra, Cambridge University Press. 1960.