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Let C be an additive category with an involution ∗. Suppose that
ϕ : X → X is a morphism with kernel κ : K → X in C , then ϕ is
core invertible if and only if ϕ has a cokernel λ : X → L and both κλ
and ϕ∗ϕ3 + κ∗κ are invertible. In this case, we give the representation
of the core inverse of ϕ. We also give the corresponding result about
dual core inverse.
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1 Introduction

Throughout this paper, C is an additive category with an involution ∗, that
is to say, there is a unary operation ∗ on the morphisms such that ϕ : X → Y

implies ϕ∗ : Y → X and that (ϕ∗)∗ = ϕ, (ϕψ)∗ = ψ∗ϕ∗ for any ψ : Y → Z

and (ϕ + φ)∗ = ϕ∗ + φ∗ for any φ : X → Y . (See for example, [1, p. 131].)
And R is a ∗-ring, which is an associative ring with 1 and an involution ∗.

Let ϕ : X → Y be a morphism of C , we say that ϕ is regular (or {1}-
invertible) if there is a morphism χ : Y → X in C such that ϕχϕ = ϕ. In
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this case, χ is said to be an inner inverse of ϕ and is denoted by ϕ−. If such
a regular element ϕ also satisfies χϕχ = χ, then we call that χ is a reflexive
inverse of ϕ. When X = Y , if χ is a reflexive inverse of ϕ and commutes
with ϕ, then ϕ is group invertible and such a χ is called the group inverse
of ϕ. The group inverse of ϕ is unique if it exists and is denoted by ϕ#.

Recall that ϕ is Moore-Penrose invertible if there is a morphism χ : Y →
X in C satisfying the following four equations:

(1) ϕχϕ = ϕ, (2) χϕχ = χ, (3) (ϕχ)∗ = ϕχ, (4) (χϕ)∗ = χϕ.

If such a χ exists, then it is unique and denoted by ϕ†. Let ϕ{i, j, · · · , l}
denote the set of morphisms χ which satisfy equations (i), (j), · · · , (l) from
among equations (1)-(4), and in this case, χ is called the {i, j, · · · , l}-inverse
of ϕ. If χ ∈ ϕ{1, 3}, then χ is called a {1, 3}-inverse of ϕ and is denoted by
ϕ(1,3). A {1, 4}-inverse of ϕ can be similarly defined. Also, a regular element
and a reflexive invertible element can be called a {1}-invertible element and
a {1, 2}-invertible element, respectively.

Baksalary and Trenkler [2] introduced the core and dual core inverses
for a complex matrix. Then, Rakić et al. [3] generalized this concept to an
arbitrary ∗-ring, and they use five equations to characterize the core inverse.
Later, Xu et al. [4] proved that these five equations can be dropped to three
equations. In the following, we rewrite these three equations in the category
case. Let ϕ : X → X be a morphism of C , if there is a morphism χ : X → X

satisfying

(ϕχ)∗ = ϕχ, ϕχ2 = χ, χϕ2 = ϕ,

then ϕ is core invertible and χ is called the core inverse of ϕ. If such χ

exists, then it is unique and denoted by ϕ#©. And the dual core inverse can
be given dually and denoted by ϕ#©.

Group inverses and Moore-Penrose inverses of morphisms were investi-
gated some years ago. (See,[1] and [5]-[9].) In [5], Robinson and Puystjens
give the characterizations about the Moore-Penrose inverse and the group
inverse of a morphism with kernels. In [6], Miao and Robinson investigate
the group and Moore-Penrose inverses of regular morphisms with kernel and
cokernel. Inspired by them, we consider the core invertibility and dual core
invertibility of a morphism with kernels and give their representations. In
the process of proving the above results, we obtain some characterizations for
core inverse and dual core inverse of an element in a ∗-ring by the properties
of annihilators and units.
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The following notations will be used in this paper: aR = {ax | x ∈ R},
Ra = {xa | x ∈ R}, ◦a = {x ∈ R | xa = 0}, a◦ = {x ∈ R | ax = 0},
R#© = {a ∈ R | a is core invertible}, R#© = {a ∈ R | a is dual core invertible}.
Before beginning, there are some lemmas presenting for the further reference.
It should be pointed out, the following Lemma 1.1 - 1.3 were put forward
in a ∗- ring. It is easy to prove that they are valid in an additive category
with an involution ∗. Thus, we rewrite them in the category case.

Lemma 1.1. [4, Theorem 2.6 and 2.8] Let ϕ : X → X be a morphism of
C , we have the following results:
(1) ϕ is core invertible if and only if ϕ is group invertible and {1, 3}-
invertible. In this case, ϕ#© = ϕ#ϕϕ(1,3).
(2) ϕ is dual core invertible if and only if ϕ is group invertible and {1, 4}-
invertible. In this case, ϕ#© = ϕ(1,4)ϕϕ#.

Lemma 1.2. [10, p. 201] Let ϕ : X → Y be a morphism of C , we have the
following results:
(1) ϕ is {1, 3}-invertible with {1, 3}-inverse χ : Y → X if and only if
χ∗ϕ∗ϕ = ϕ;
(2) ϕ is {1, 4}-invertible with {1, 4}-inverse ζ : Y → X if and only if
ϕϕ∗ζ∗ = ϕ.

Lemma 1.3. [11, Theorem 2.10] Let ϕ : X → X be a morphism of C and
n > 2 a positive integer, we have the following results:
(i) ϕ is core invertible if and only if there exist morphisms ε : X → X and
τ : X → X such that ϕ = ε(ϕ∗)nϕ = τϕn. In this case, ϕ#© = ϕn−1ε∗.
(ii) ϕ is dual core invertible if and only if there exist morphisms θ : X → X

and ρ : X → X such that ϕ = ϕ(ϕ∗)nθ = ϕnρ. In this case, ϕ#© = θ∗ϕn−1.

Lemma 1.4. [10, Proposition 7] Let a ∈ R. a ∈ R# if and only if a =
a2x = ya2 for some x, y ∈ R. In this case, a# = yax = y2a = ax2.

2 The Core and Dual Core Inverse of a Morphism

with Kernel

In [5], Robinson and Puystjens gave the characterizations about the Moore-
Penrose inverse and the group inverse of a morphism with kernels, see the
following two lemmas.

Lemma 2.1. [5, Theorem 1] Let ϕ : X → Y be a morphism in C . If
κ : K → X is a kernel of ϕ, then ϕ has a Moore-Penrose inverse ϕ† with
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respect to ∗ if and only if

ϕϕ∗ + κ∗κ : X → X

is invertible. In this case, κ also has a Moore-Penrose inverse κ†, κκ∗ is
invertible,

κ† = κ∗(κκ∗)−1 = (ϕϕ∗ + κ∗κ)−1κ∗,

and
ϕ† = ϕ∗(ϕϕ∗ + κ∗κ)−1.

Dually, if λ : Y → L is a cokernel of ϕ, then ϕ has a Moore-Penrose inverse
ϕ† with respect to ∗ if and only if

ϕ∗ϕ+ λλ∗ : Y → Y

is invertible. In this case, λ also has a Moore-Penrose inverse λ†, λ∗λ is
invertible,

λ† = (λ∗λ)−1λ∗ = λ∗(ϕ∗ϕ+ λλ∗)−1,

and
ϕ† = (ϕ∗ϕ+ λλ∗)−1ϕ∗.

Lemma 2.2. [5, Corollary 2] Let ϕ : X → X be a morphism in C . If
κ : K → X is a kernel of ϕ, then ϕ has a group inverse if and only if ϕ has
a cokernel λ : X → L and both κλ : K → L and ϕ2 + λ(κλ)−1κ : X → X

are invertible. In this case, γ = λ(κλ)−1 : X → K is a cokernel of ϕ,
ϕϕ# + γκ = 1X , and

ϕ# = ϕ(ϕ2 + γκ)−1 = (ϕ2 + γκ)−1ϕ.

There are some papers characterizing the core and dual core inverse by
units. (See for example, [12] and [11].) Inspired by them and the above
two lemmas, we get characterizations of the core invertibility of a morphism
with kernel.

Theorem 2.3. Let ϕ : X → X be a morphism in C . If κ : K → X is a
kernel of ϕ, then ϕ has a core inverse in C if and only if ϕ has a cokernel
λ : X → L and both κλ : K → L and ϕ∗ϕ3 + κ∗κ : X → X are invertible.
In this case, γ = λ(κλ)−1 : X → K is a cokernel of ϕ, ϕ#©ϕ+ γκ = 1X , and

ϕ#© = ϕ2(ϕ∗ϕ3 + κ∗κ)−1ϕ∗.
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Proof. Let λ : X → L be a cokernel of ϕ with both κλ and ϕ∗ϕ3 + κ∗κ

invertible, and set γ = λ(κλ)−1. Since κϕ = 0 = ϕλ and ϕ∗κ∗ = 0 = λ∗ϕ∗,
then

ϕ∗ϕ3 + κ∗κ = (ϕ∗ϕ+ κ∗κ)(ϕ2 + γκ),

because ϕ∗ϕ + κ∗κ is symmetric, both ϕ∗ϕ + κ∗κ : X → X and ϕ2 + γκ :
X → X are invertible. In addition,

(ϕ∗ϕ+ κ∗κ)ϕ = ϕ∗ϕ2,

and for s ≥ 0 an integer,

ϕ1+s(ϕ2 + γκ) = ϕ3+s = (ϕ2 + γκ)ϕ1+s.

Consequently,

ϕ = (ϕ∗ϕ+ κ∗κ)−1ϕ∗ϕ2, (1)

ϕ1+s = ϕ3+s(ϕ2 + γκ)−1 = (ϕ2 + γκ)−1ϕ3+s, (2)

ϕ1+s(ϕ2 + γκ)−1 = (ϕ2 + γκ)−1ϕ1+s. (3)

Let χ = ϕ2(ϕ∗ϕ3 + κ∗κ)−1ϕ∗ = ϕ2(ϕ2 + γκ)−1(ϕ∗ϕ + κ∗κ)−1ϕ∗, we now
show that χ is the core inverse of ϕ. Since

ϕχ = ϕϕ2(ϕ2 + γκ)−1(ϕ∗ϕ+ κ∗κ)−1ϕ∗

= [ϕ3(ϕ2 + γκ)−1](ϕ∗ϕ+ κ∗κ)−1ϕ∗

(2)
= ϕ(ϕ∗ϕ+ κ∗κ)−1ϕ∗,

thus (ϕχ)∗ = ϕχ. In addition,

χϕ2 = ϕ2(ϕ2 + γκ)−1(ϕ∗ϕ+ κ∗κ)−1ϕ∗ϕ2 (1)
= ϕ2(ϕ2 + γκ)−1ϕ

(3)
= ϕ2ϕ(ϕ2 + γκ)−1 (2)

= ϕ,

and

ϕχ2 = ϕϕ2(ϕ2 + γκ)−1(ϕ∗ϕ+ κ∗κ)−1ϕ∗ϕ2(ϕ2 + γκ)−1(ϕ∗ϕ+ κ∗κ)−1ϕ∗

= [ϕ3(ϕ2 + γκ)−1][(ϕ∗ϕ+ κ∗κ)−1ϕ∗ϕ2](ϕ2 + γκ)−1(ϕ∗ϕ+ κ∗κ)−1ϕ∗

(1)(2)
= ϕϕ(ϕ2 + γκ)−1(ϕ∗ϕ+ κ∗κ)−1ϕ∗ = χ.
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Therefore, ϕ is core invertible with core inverse ϕ#© = ϕ2(ϕ∗ϕ3 + κ∗κ)−1ϕ∗.
Conversely, suppose that ϕ has a core inverse ϕ#©, then ϕ is group invert-

ible and ϕ#ϕ = ϕ#©ϕ by Lemma 1.1. Therefore, by applying Lemma 2.2, ϕ
has a cokernel λ : X → L, both κλ : K → L and ϕ2 + λ(κλ)−1κ : X → X

are invertible and 1X = ϕϕ# + γκ = ϕ#ϕ + γκ = ϕ#©ϕ + γκ, where
γ = λ(κλ)−1 : X → K is a cokernel of ϕ. In addition, since κϕ = 0 = ϕλ,
thus κϕ#© = κϕϕ#©ϕ#© = 0, ϕγ = 0 and κγ = 1K , furthermore,

(ϕ#©(ϕ#©)∗ + γγ∗)(ϕ∗ϕ+ κ∗κ)

= ϕ#©(ϕ#©)∗ϕ∗ϕ+ ϕ#©(ϕ#©)∗κ∗κ+ γγ∗ϕ∗ϕ+ γγ∗κ∗κ

= ϕ#©(ϕϕ#©)∗ϕ+ ϕ#©(κϕ#©)∗κ+ γ(ϕγ)∗ϕ+ γ(κγ)∗κ

= ϕ#©ϕ+ γκ = 1X .

Since ϕ∗ϕ + κ∗κ is symmetric, it follows that ϕ∗ϕ + κ∗κ is invertible with
inverse ϕ#©(ϕ#©)∗ + γγ∗. Consequently, ϕ∗ϕ3 + κ∗κ = (ϕ∗ϕ + κ∗κ)(ϕ2 +
λ(κλ)−1κ) is invertible.

Dually, we obtain the following result.

Theorem 2.4. Let ϕ : X → X be a morphism of an additive category
C . If λ : X → L is a cokernel of ϕ, then ϕ has a dual core inverse in
C if and only if ϕ has a kernel κ : K → X and both κλ : K → L and
ϕ3ϕ∗ + λλ∗ : X → X are invertible. In this case, δ = (κλ)−1κ : L→ X is a
kernel of ϕ, ϕ#©ϕ+ δκ = 1X , and

ϕ#© = ϕ∗(ϕ3ϕ∗ + λλ∗)−1ϕ2.

Remark 2.5. In fact, one can easily find that Theorem 2.3 is true when we
raise the 3 power to n power, that is to say, change ϕ∗ϕ3+κ∗κ to ϕ∗ϕn+κ∗κ,
where n > 3. And in this case, ϕ#© = ϕn−1(ϕ∗ϕn + κ∗κ)−1ϕ∗. Similarly, it
is valid for dual core inverse.

Consider Theorem 2.3 in the ring case, we obtain the following result.

Theorem 2.6. Let a ∈ R and n > 3 a positive integer. Then a ∈ R#© if and
only if there exists b ∈ R such that ◦a = Rb and u = a∗an+ b∗b is invertible.
In this case,

a#© = an−1u−1a∗.

Proof. Suppose that a is core invertible with core inverse a#©. Let b =
1 − aa#©, then b∗ = b = b2 and Rb = R(1 − aa#©) = ◦(aa#©). Obviously ◦a ⊆
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◦(aa#©); if xaa#© = 0, then xa = xaa#©a = 0, hence ◦(aa#©) ⊆ ◦a. Therefore,
◦a = ◦(aa#©) = Rb. In addition,

u = a∗an + b∗b = a∗an + 1− aa#© = (a∗ + 1− aa#©)(an + 1− aa#©).

It is easy to verify that (a#© + 1 − a#©a)∗ and (a#©)n + 1 − a#©a are inverses
of a∗ + 1 − aa#© and an + 1 − aa#©, respectively. Thus a∗ + 1 − aa#© and
an + 1− aa#© are both invertible, which implies that u = a∗an + 1− aa#© is
invertible.

Conversely, assume that there exists b ∈ R such that ◦a = Rb and u =
a∗an + b∗b is invertible, where n > 3 is a positive integer. Then b ∈ ◦a, that
is to say, ba = 0 = a∗b∗. Since (a∗)n−1u = (a∗)nan is symmetric, namely,
(a∗)n−1u = u∗an−1, which implies the following equation

(u∗)−1(a∗)n−1 = an−1u−1. (4)

Also, a∗u = (a∗)2an implies a∗ = (a∗)2anu−1, hence we have

a = (u∗)−1(a∗)na2 = [(u∗)−1(a∗)n−1]a∗a2

(4)
= an−1u−1a∗a2 ∈ a2R ∩Ra2,

so a is group invertible with group inverse a# according to Lemma 1.4. Since
1− a#a ∈ ◦a = Rb, thus 1− a#a = yb for some y ∈ R. Pre-multiplication of
1− a#a = yb by a and b yield ayb = 0 and b = byb, respectively. Therefore,
u = a∗an + b∗b can be decomposed as

u = a∗an + b∗b = (a∗a+ b∗b)(an−1 + yb).

Since u is invertible and a∗a + b∗b is symmetric, thus both a∗a + b∗b and
an−1 + yb are invertible. Set x = an−1u−1a∗ = an−1(an−1 + yb)−1(a∗a +
b∗b)−1a∗, we show that x is the core inverse of a. Since

ax = an(an−1 + yb)−1(a∗a+ b∗b)−1a∗

= a(an−1 + yb)(an−1 + yb)−1(a∗a+ b∗b)−1a∗

= a(a∗a+ b∗b)−1a∗

shows that (ax)∗ = ax,

ax2 = (ax)x = a(a∗a+ b∗b)−1a∗an−1(an−1 + yb)−1(a∗a+ b∗b)−1a∗

= a(a∗a+ b∗b)−1(a∗a+ b∗b)an−2(an−1 + yb)−1(a∗a+ b∗b)−1a∗

= aan−2(an−1 + yb)−1(a∗a+ b∗b)−1a∗ = x,
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and

xa2 = an−1(an−1 + yb)−1(a∗a+ b∗b)−1a∗a2

= an−1(an−1 + yb)−1(a∗a+ b∗b)−1(a∗a+ b∗b)a

= an−1(an−1 + yb)−1a = (an−1 + yb)−1an−1a

= (an−1 + yb)−1(an−1 + yb)a = a,

thus x = a#©.

In the same way, there is a corresponding result for dual core inverse.

Theorem 2.7. Let a ∈ R and n > 3 a positive integer, then a ∈ R#© if and
only if there exists c ∈ R such that a◦ = cR and v = ana∗+ cc∗ is invertible.
In this case,

a#© = a∗v−1an−1.

Let ϕ : X → Y be a morphism in C . If ηϕ = 0 : N → Y is the zero
morphism, then we shall call the morphism η : N → X an annihilator of the
morphism ϕ. Dually, we call ϕ a coannihilator of η. (See for example, [9].)

Theorem 2.8. Let ϕ : X → X be a morphism in C and n > 2 a positive
integer. Then ϕ is core invertible if and only if there exists an annihilator
η : N → X of ϕ such that µ = ϕn + η∗η : X → X is invertible. In this case,

ϕ#© = ϕn−1µ−1.

Proof. Suppose that ϕ is core invertible with core inverse ϕ#©. Since (1X −
ϕϕ#©)ϕ = 0, then η = 1X −ϕϕ#© is a annihilator of ϕ such that η∗ = η = η2.
In this case, µ = ϕn + η∗η = ϕn + 1X − ϕϕ#©. Since

(ϕn+1X−ϕϕ#©)((ϕ#©)n+1X−ϕ#©ϕ) = 1X = ((ϕ#©)n+1X−ϕ#©ϕ)(ϕn+1X−ϕϕ#©),

µ = ϕn + η∗η is invertible.
Conversely, if there exists an annihilator η : N → X of ϕ such that

µ = ϕn+η∗η : X → X is invertible, where n > 2 is a positive integer. On the
one hand, ϕ∗µ = ϕ∗ϕn, which implies ϕ∗ = ϕ∗ϕnµ−1, so ϕ = (µ−1)∗(ϕ∗)nϕ.
On the other hand, µϕ = ϕn+1 shows that ϕ = µ−1ϕn+1. Therefore, ϕ is
core invertible with ϕ#© = ϕn−1µ−1 by Lemma 1.3.

Corollary 2.9. Let a ∈ R and n > 2 a positive integer, then a ∈ R#© if and
only if there exists b ∈ ◦a such that u = an + b∗b is invertible. In this case,

a#© = an−1u−1.

Analogously, there are similar conclusions for dual core inverses, which
are not to be repeated here.
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3 Core and Dual Core Inverses of Regular Mor-

phisms with Kernels and Cokernels

In [6], Miao and Robinson investigated the group and Moore-Penrose in-
verses of regular morphisms with kernels and cokernels, and they showed us
two results as follows. Let ϕ : X → Y be a morphism with kernel κ : K → X

and cokernel λ : Y → L in an additive category C . (1) If X = Y , then ϕ
has a group inverse ϕ# if and only if ϕ is regular and κλ is invertible. (2)
ϕ has a Moore-Penrose inverse ϕ† if and only if ϕ is regular and both κκ∗

and λ∗λ are invertible.
Inspired by them, we investigate the core and dual core inverses of regular

morphisms with kernels and cokernels.

Lemma 3.1. Let ϕ : X → Y be a morphism with kernel κ : K → X, then ϕ
is {1, 3}-invertible if and only if ϕ is regular and κκ∗ : K → K is invertible.
In this case, if ψ : Y → X is such that ϕψϕ = ϕ, then

ψ[1X − κ∗(κκ∗)−1κ] ∈ ϕ{1, 3}.

Proof. Suppose that ϕ is {1, 3}-invertible with {1, 3}-inverse ϕ(1,3). Since
ϕϕ(1,3)ϕ = ϕ, then ϕ is regular. Moreover, since (1X − ϕϕ(1,3))ϕ = 0, then
by the definition of a kernel, 1X − ϕϕ(1,3) = ζκ for some ζ : X → K. In
addition, since κϕ = 0, then κζκ = κ(1X − ϕϕ(1,3)) = κ, and since κ is
monic, κζ = 1K . Therefore, ζκζ = ζ. Consequently, κ is Moore-Penrose
invertible with κ† = ζ. Since,

(κκ∗)(ζ∗ζ) = κ(ζκ)∗ζ = κζκζ = 1K

and κκ∗ is symmetric, then κκ∗ is invertible with (κκ∗)−1 = ζ∗ζ = (κ∗)†κ†.
Conversely, suppose that ϕψϕ = ϕ and that κκ∗ : K → K is invertible,

where ψ : Y → X is morphism. We prove that χ = ψ[1X − κ∗(κκ∗)−1κ] is
a {1, 3}-inverse of ϕ. Indeed, since (1X −ϕψ)ϕ = 0, then 1X −ϕψ = δκ for
some δ : X → K. Therefore,

ϕχ = ϕψ[1X − κ∗(κκ∗)−1κ] = (1X − δκ)[1X − κ∗(κκ∗)−1κ]

= 1X − δκ− κ∗(κκ∗)−1κ+ δκκ∗(κκ∗)−1κ

= 1X − κ∗(κκ∗)−1κ

is symmetric. Furthermore, Since κϕ = 0, then

ϕχϕ = (1X − κ∗(κκ∗)−1κ)ϕ = ϕ.

Thus, ψ[1X − κ∗(κκ∗)−1κ] ∈ ϕ{1, 3}.
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Similarly, we have the following result.

Lemma 3.2. Let ϕ : X → Y be a morphism with cokernel λ : Y → L,
then ϕ is {1, 4}-invertible if and only if ϕ is regular and λ∗λ : L → L is
invertible. In this case, if ψ : Y → X is such that ϕψϕ = ϕ, then

[1X − λ(λ∗λ)−1λ∗]ψ ∈ ϕ{1, 4}.

Theorem 3.3. Let ϕ : X → X be a morphism with kernel κ : K → X and
cokernel λ : X → L in an additive category C , then ϕ has a core inverse in
C if and only if ϕ is regular and both κλ : K → L and κκ∗ : K → K are
invertible. In this case, if ψ : X → X is such that ϕψϕ = ϕ, then

ϕ#© = [1X − λ(κλ)−1κ]ψ[1X − κ∗(κκ∗)−1κ].

Proof. By Lemma 1.1, Lemma 3.1 and [6, Theorem], it is clear that ϕ is core
invertible if and only if ϕ is regular and both κλ : K → L and κκ∗ : K → K

are invertible.
Suppose that ψ : X → X is such that ϕψϕ = ϕ, we show that χ =

[1X − λ(κλ)−1κ]ψ[1X − κ∗(κκ∗)−1κ] is the core inverse of ϕ. Indeed, since
(1X − ϕψ)ϕ = 0 = ϕ(1X − ψϕ), then 1X − ϕψ = δκ and 1X − ψϕ = λζ for
some δ : X → K and ζ : L→ X, respectively. Since κϕ = 0 = ϕλ, then

ϕχ = ϕ[1X − λ(κλ)−1κ]ψ[1X − κ∗(κκ∗)−1κ]

= ϕψ[1X − κ∗(κκ∗)−1κ]

= (1X − δκ)[1X − κ∗(κκ∗)−1κ]

= 1X − κ∗(κκ∗)−1κ

is symmetric. In addition,

χϕ2 = [1X − λ(κλ)−1κ]ψ[1X − κ∗(κκ∗)−1κ]ϕ2

= [1X − λ(κλ)−1κ]ψϕ2 = [1X − λ(κλ)−1κ](1X − λζ)ϕ

= [1X − λ(κλ)−1κ]ϕ = ϕ

and

ϕχ2 = [1X − κ∗(κκ∗)−1κ][1X − λ(κλ)−1κ]ψ[1X − κ∗(κκ∗)−1κ]

= [1X − λ(κλ)−1κ]ψ[1X − κ∗(κκ∗)−1κ = χ.

Therefore, ϕ is core invertible with core inverse ϕ#© = [1X−λ(κλ)−1κ]ψ[1X−
κ∗(κκ∗)−1κ].
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Similarly, we can get a dually result about dual core inverse.

Theorem 3.4. Let ϕ : X → X be a morphism with kernel κ : K → X and
cokernel λ : X → L in an additive category C , then ϕ has a dual core inverse
in C if and only if ϕ is regular and both κλ : K → L and λ∗λ : L → L are
invertible. In this case, if ψ : X → X is such that ϕψϕ = ϕ, then

ϕ#© = [1X − λ(λ∗λ)−1λ∗]ψ[1X − λ(κλ)−1κ].

Corollary 3.5. Let ϕ : X → X be a morphism with kernel κ : K → X and
cokernel λ : X → L in an additive category C , then the following statements
are equivalent:
(1) ϕ is both core invertible and dual core invertible in C ;
(2) ϕ is both Moore-Penrose invertible and group invertible in C ;
(3) ϕ is regular and κλ : K → L, κκ∗ : K → K and λ∗λ : L → L are all
invertible.
In this case, if ψ : X → X is such that ϕψϕ = ϕ, then

ϕ† = [1X − λ(λ∗λ)−1λ∗]ψ[1X − κ∗(κκ∗)−1κ],

ϕ# = [1X − λ(κλ)−1κ]ψ[1X − λ(κλ)−1κ],

ϕ#© = [1X − λ(κλ)−1κ]ψ[1X − κ∗(κκ∗)−1κ],

ϕ#© = [1X − λ(λ∗λ)−1λ∗]ψ[1X − λ(κλ)−1κ].

4 Bordered Inverses

Recall that a morphism ϕ : X → Y is ∗-left invertible if there is a morphism
ψ : Y → X such that ψϕ = 1Y and (ϕψ)∗ = ϕψ. Similarly, ϕ : X → Y is
∗-right invertible if there is a morphism ψ : Y → X such that ϕψ = 1X and
(ψϕ)∗ = ψϕ. (See, [5, p. 76].)

Lemma 4.1. [5, Lemma] If ϕ : X → Y is a morphism in a category with
an involution. Then
(1) ϕ is ∗-left invertible if and only if ϕ∗ϕ is invertible, and in this case,
ϕ† = (ϕ∗ϕ)−1ϕ∗;
(2) ϕ is ∗-right invertible if and only if ϕϕ∗ is invertible, and in this case,
ϕ† = ϕ∗(ϕϕ∗)−1.

Lemma 4.2. [5, Corollary 3] Let ϕ : X → X be a morphism of an additive
category C . If κ : K → X is a kernel and λ : X → L is a cokernel of ϕ,
then ϕ has a group inverse in C if and only if

G =

(

ϕ λ

κ 0

)

: (X,K) → (X,L)

11



is invertible in MC . In this case, κλ : K → L is invertible and

G
−1 =

(

ϕ# λ(κλ)−1

(κλ)−1κ 0

)

: (X,L) → (X,K).

Theorem 4.3. Let ϕ : X → X be a morphism of an additive category C

with an involution ∗. If κ : K → X is a kernel of ϕ and λ : X → L is a
cokernel of ϕ, then ϕ has a core inverse ϕ#© in C if and only if

(

ϕ

κ

)

: (X,K) → (X)

is ∗-left invertible in MC and

G =

(

ϕ λ

κ 0

)

: (X,K) → (X,L)

is invertible in MC . In this case, κλ : K → L is invertible and

G
−1 =

(

(ϕ#©)2ϕ λ(κλ)−1

(κλ)−1κ 0

)

: (X,L) → (X,K).

Proof. By Theorem 2.3, ϕ has a core inverse in C if and only if both κλ and
ϕ∗ϕ3 + κ∗κ are invertible. Since ϕ∗ϕ3 + κ∗κ = (ϕ∗ϕ+ κ∗κ)(ϕ2 + λ(κλ)−1κ)
and ϕ∗ϕ + κ∗κ is symmetric, then ϕ∗ϕ3 + κ∗κ is invertible if and only if
ϕ∗ϕ+κ∗κ and ϕ2+λ(κλ)−1κ are both invertible. By Lemma 4.1, ϕ∗ϕ+κ∗κ

is invertible if and only if

(

ϕ

κ

)∗ (
ϕ

κ

)

is invertible in C if and only if
(

ϕ

κ

)

is ∗-left invertible in MC . Therefore, the conclusion is obtained by

the previous proof, Lemma 2.2 and Lemma 4.2. And it is easy to verify that
(

(ϕ#©)2ϕ λ(κλ)−1

(κλ)−1κ 0

)

: (X,L) → (X,K) is the inverse of G .

We have a dually theorem about dual core inverse.

Theorem 4.4. Let ϕ : X → X be a morphism of an additive category C

with an involution ∗. If κ : K → X is a kernel of ϕ and λ : X → L is a
cokernel of ϕ, then ϕ has a dual core inverse ϕ#© in C if and only if

(ϕ, λ) : (X) → (X,L)

is ∗-right invertible and

G =

(

ϕ λ

κ 0

)

: (X,K) → (X,L)

12



is invertible in MC . In this case, κλ : K → L is invertible and

G
−1 =

(

ϕϕ2
#© λ(κλ)−1

(κλ)−1κ 0

)

: (X,L) → (X,K).
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