The core and dual core inverses of
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Let ¥ be an additive category with an involution *. Suppose that
¢ : X — X is a morphism with kernel x : K — X in ¥, then ¢ is
core invertible if and only if ¢ has a cokernel A : X — L and both s\
and p*@3 + k*k are invertible. In this case, we give the representation
of the core inverse of . We also give the corresponding result about
dual core inverse.
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1 Introduction

Throughout this paper, € is an additive category with an involution *, that
is to say, there is a unary operation * on the morphisms such that ¢ : X — Y
implies ¢* : Y — X and that (¢*)* = ¢, (py)* = ¢*¢* for any ¢ : Y — Z
and (¢ + ¢)* = p* + ¢* for any ¢ : X — Y. (See for example, [1, p. 131].)
And R is a *-ring, which is an associative ring with 1 and an involution .
Let ¢ : X — Y be a morphism of €, we say that ¢ is regular (or {1}-
invertible) if there is a morphism y : Y — X in % such that ox¢ = ¢. In
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this case, x is said to be an inner inverse of ¢ and is denoted by ¢~ . If such
a regular element ¢ also satisfies ypx = ¥, then we call that x is a reflexive
inverse of . When X =Y, if y is a reflexive inverse of ¢ and commutes
with ¢, then ¢ is group invertible and such a x is called the group inverse
of . The group inverse of ¢ is unique if it exists and is denoted by p#.

Recall that ¢ is Moore-Penrose invertible if there is a morphism y : ¥ —
X in ¥ satisfying the following four equations:

M exp=9, 2)xpx=x, ) ()" =wex, 1) (x¥)* = xp

If such a y exists, then it is unique and denoted by o'. Let ©{i,j,--- 1}
denote the set of morphisms x which satisfy equations (i), (j),--- ,(l) from
among equations (1)-(4), and in this case, x is called the {i,j,--- ,{}-inverse
of p. If x € p{1, 3}, then x is called a {1, 3}-inverse of ¢ and is denoted by
L3 A {1,4}-inverse of ¢ can be similarly defined. Also, a regular element
and a reflexive invertible element can be called a {1}-invertible element and
a {1,2}-invertible element, respectively.

Baksalary and Trenkler [2] introduced the core and dual core inverses
for a complex matrix. Then, Raki¢ et al. [3] generalized this concept to an
arbitrary x-ring, and they use five equations to characterize the core inverse.
Later, Xu et al. [4] proved that these five equations can be dropped to three
equations. In the following, we rewrite these three equations in the category
case. Let ¢ : X — X be a morphism of ¢, if there is a morphism y : X — X
satisfying

@) =ex, o> =X, x¢* = ¢,

then ¢ is core invertible and x is called the core inverse of . If such x
exists, then it is unique and denoted by ¢®. And the dual core inverse can
be given dually and denoted by ¢g.

Group inverses and Moore-Penrose inverses of morphisms were investi-
gated some years ago. (See,|l] and [5]-[9].) In ]3], Robinson and Puystjens
give the characterizations about the Moore-Penrose inverse and the group
inverse of a morphism with kernels. In [6], Miao and Robinson investigate
the group and Moore-Penrose inverses of regular morphisms with kernel and
cokernel. Inspired by them, we consider the core invertibility and dual core
invertibility of a morphism with kernels and give their representations. In
the process of proving the above results, we obtain some characterizations for
core inverse and dual core inverse of an element in a *-ring by the properties
of annihilators and units.



The following notations will be used in this paper: aR = {az | x € R},
Ra = {xa|x € R}, ‘a={r € R| za =0}, a° ={z € R|ax = 0},
R% = {a € R | ais core invertible}, Rg = {a € R | a is dual core invertible}.
Before beginning, there are some lemmas presenting for the further reference.
It should be pointed out, the following Lemma [[1] - [[.3] were put forward
in a % ring. It is easy to prove that they are valid in an additive category
with an involution *. Thus, we rewrite them in the category case.

Lemma 1.1. [/, Theorem 2.6 and 2.8] Let ¢ : X — X be a morphism of
€, we have the following results:

(1) ¢ is core invertible if and only if ¢ is group invertible and {1,3}-
invertible. In this case, p® = p#pp1:3),

(2) ¢ is dual core invertible if and only if ¢ is group invertible and {1,4}-
invertible. In this case, pg = oD ot

Lemma 1.2. [10, p. 201/ Let ¢ : X — Y be a morphism of €, we have the
following results:

(1) ¢ is {1,3}-invertible with {1,3}-inverse x : Y — X if and only if
X"t = ¢;

(2) ¢ is {1,4}-invertible with {1,4}-inverse ¢ : Y — X if and only if
PPt = .

Lemma 1.3. [11, Theorem 2.10] Let ¢ : X — X be a morphism of € and
n = 2 a positive integer, we have the following results:

(i) ¢ is core invertible if and only if there exist morphisms ¢ : X — X and
7:X — X such that ¢ = e(p*)"p = 7" In this case, ¢® = " le*.

(ii) ¢ is dual core invertible if and only if there exist morphisms 6 : X — X
and p: X — X such that ¢ = @(p*)"0 = ©"p. In this case, pg = 0*p" L.

Lemma 1.4. [10, Proposition 7] Let a € R. a € R* if and only if a =

a’x = ya® for some x,y € R. In this case, a” = yar = y*a = ax?.

2 The Core and Dual Core Inverse of a Morphism
with Kernel

In [5], Robinson and Puystjens gave the characterizations about the Moore-
Penrose inverse and the group inverse of a morphism with kernels, see the
following two lemmas.

Lemma 2.1. [4, Theorem 1] Let ¢ : X — Y be a morphism in €. If
k: K — X is a kernel of ¢, then ¢ has a Moore-Penrose inverse o with



respect to * if and only if
o+ KKk X - X

is invertible. In this case, k also has a Moore-Penrose inverse k!, kk* is
invertible,

HT — H*(HH*)_I — (QO(,D* + H*H)_llﬁl*,

and

1

F= o*(pp* + K" k)

®

Dually, if A\ :' Y — L is a cokernel of @, then ¢ has a Moore-Penrose inverse
b with respect to * if and only if

o+ AN Y Y

is invertible. In this case, \ also has a Moore-Penrose inverse AT, \*\ is

invertible,
)\T — (}\*)\)—1)\* — )\*((,0*(,0+)\)\*)_17

and
Pf = (" + )l
Lemma 2.2. [4, Corollary 2] Let ¢ : X — X be a morphism in €. If
k: K — X is a kernel of v, then @ has a group inverse if and only if ¢ has
a cokernel A : X — L and both kX : K — L and ©* + \(kA) "'k : X — X
are invertible. In this case, v = A(kA)~! : X — K is a cokernel of ¢,
oo + vk = 1x, and
o =@ +r) 7 = (P +R) e

There are some papers characterizing the core and dual core inverse by
units. (See for example, [12] and [11].) Inspired by them and the above
two lemmas, we get characterizations of the core invertibility of a morphism
with kernel.

Theorem 2.3. Let ¢ : X — X be a morphism in €. If k : K — X is a
kernel of ¢, then ¢ has a core inverse in € if and only if ¢ has a cokernel
A: X — L and both kX : K — L and ¢*¢* 4+ k*k : X — X are invertible.
In this case, v = AN(kA)"' : X — K is a cokernel of ¢, 2o +~vk = 1x, and

1 =x

® = P (p*p® + K k) .
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Proof. Let A\ : X — L be a cokernel of ¢ with both kA and p*¢? + K*k
invertible, and set v = A(kA)™'. Since kp = 0 = pA and P*k* = 0 = \**,
then

O* O + Kk = (pF o + K R) (9% + YK),

because ¢*p + k*k is symmetric, both *¢ + k*x : X — X and ©? + vk :
X — X are invertible. In addition,

(P* 0 + KR = "7,

and for s > 0 an integer,

O (0% 4 i) = 0P = (2 4 i)
Consequently,

o= (¢ o+ rR) TP, (1)

P = (2 i) = (0 4 )Lt 2)

PP+ R) T = (07 FR) Tl (3)

Let x = @?(¢*¢® + 1*k) 71" = p(@® + 98) (¥ @ + K7K) T1p*, we now

show that x is the core inverse of ¢. Since
px = (0 +R) T e e + KR)T

= [*(¢® +v6) (¢ 0 + K*K)”

(m) * * — *
= o(p*p + K*r) " Lo",

1%0*
1(,0*

thus (px)* = px. In addition,

1*2@

xe? = @? (0" + )T (Pre + K)ot !

(o + yr) L
(B} 1 @
= Q*o(? +9x)t = g,

and
ox® = 0 (O* +vr) T (P e 4+ KUR) TP (0 + k) TH (et 4+ KFR) T

= [P + vr) (@ o + £ K) L") (O + yr) TR e + KFR) T

(III)(E) - * * \—1 %
=" po(@? +98) " He o + k' R) TLe* = x.



Therefore, ¢ is core invertible with core inverse p® = ?(p*® + k*K) 1"

Conversely, suppose that ¢ has a core inverse ¢®, then ¢ is group invert-
ible and 7@ = @y by Lemma [[Il Therefore, by applying Lemma 22} ¢
has a cokernel \ : X — L, both kA : K — L and ¢? + A(k\) 7'k : X — X
are invertible and 1x = @™ + vk = " p + y5 = Py + vk, where
v = AKN) ! : X — K is a cokernel of ¢. In addition, since kp = 0 = @),
thus kp® = kP& P® =0, oy = 0 and ky = 1k, furthermore,

(@2 (P®)" + 17" ) (@ e + K"K)
= 0?2 (%) "0 + ®(P®) KK+ 1Y 0 + Y KR
= 0®(0p®) 0 + 0P (kp®) "k +v(p7) 0 + Y (KY) K
= pPo+ = 1x.

Since ¢*p + Kk*k is symmetric, it follows that ¢*p + k*k is invertible with
inverse p®(p®)* + yy*. Consequently, ¢*p3 + k*k = (p*p + K*K)(¢? +
A(kA)71k) is invertible. O

Dually, we obtain the following result.

Theorem 2.4. Let ¢ : X — X be a morphism of an additive category
€. If \: X — L is a cokernel of ¢, then ¢ has a dual core inverse in
€ if and only if ¢ has a kernel Kk : K — X and both kA : K — L and
3" + A\ 1 X — X are invertible. In this case, 6 = (k)\)"'k: L — X isa
kernel of ¢, pgp + 0k = 1x, and

va = ¢ (P20 + M) Tl

Remark 2.5. In fact, one can easily find that Theorem[2.3 is true when we
raise the 3 power to n power, that is to say, change ¢*p>+K*k to P*E"+K*K,
where n > 3. And in this case, p® = " L(p*" + k*Kk)"Lp*. Similarly, it
1s valid for dual core inverse.

Consider Theorem [2.3] in the ring case, we obtain the following result.

Theorem 2.6. Let a € R and n > 3 a positive integer. Then a € R® if and
only if there exists b € R such that °a = Rb and u = a*a™ + b*b is invertible.
In this case,

@ _ n—lu—la*‘

a a

Proof. Suppose that a is core invertible with core inverse a®. Let b =
1 — aa®, then b* = b = b? and Rb = R(1 — aa®) = (aa®). Obviously %@ C



(aa®); if zaa® = 0, then za = zaa®a = 0, hence (aa®) C %. Therefore,
%a = (aa®) = Rb. In addition,

u=a*a"+b'b=a*a"+1—-0aa® = (a*+1—aa®)(a" +1— aa®).

It is easy to verify that (a® + 1 —a®a)* and (a®)" 4+ 1 — a®a are inverses

of a* +1 — aa® and a™ + 1 — aa®, respectively. Thus a* + 1 — aa® and

a"™ + 1 — aa® are both invertible, which implies that v = a*a™ + 1 — aa® is
invertible.

Conversely, assume that there exists b € R such that ‘@ = Rb and u =

a™ 4+ b*b is invertible, where n > 3 is a positive integer. Then b € “a, that

is to say, ba = 0 = a*b*. Since (a*)" 'u = (a*)"a" is symmetric, namely,

(a*)" 'y = u*a™"!, which implies the following equation

(u*)—l(a*)n—l — an—lu—l. (4)

Also, a*u = (a*)?a™ implies a* = (a*)?a"u~"!, hence we have

a = (u*)—l(a*)na2 — [(u*)—l(a*)n—l]a*a2

@n1—1*2

v ta*a® € a®>RN Ra?,

s0 a is group invertible with group inverse a# according to Lemmal[l-4l Since
1 —a#a € % = Rb, thus 1 — a#a = yb for some y € R. Pre-multiplication of
1 —a*a = yb by a and b yield ayb = 0 and b = byb, respectively. Therefore,
u = a*a”™ + b*b can be decomposed as

u:a*a"+b*b: (a*a—{—b*b)(a"_l—{—yb).

Since w is invertible and a*a + b*b is symmetric, thus both a*a + b*b and
a™ ! + yb are invertible. Set x = " lu"la* = a" (a" ! + yb)"l(a*a +
b*b)~la*, we show that z is the core inverse of a. Since
ar — an(an—l —|—yb)_1(a*a+ b*b)_l
= a(@"™ +yb)(a" " +yb) " (a"a +b*b)”
=a(a*a +b*b) 7}

shows that (ax)*

)=
= (ax)z = a(a*a +b*b) " ta*a" a7 +yb) " (a*a + b*b) !
= a(a*a + b*b) " Ha*a + b*b)a" (@™ + yb) " (a*a + b*b) a*
= aa"2(a" ' 4 yb)"Ha*a + b*b) ta* = =z,



and
xa a" Ha" ™ + yb)Hata + b*b) tata?
a" Ha" ! + yb)H(a*a + b*b) "L (a*a + b*b)a
Ya" +yb)ta= ("' +yb)ta" a
= (" +y0) 7@ + yb)a = a,

thus z = a®. O

aTL

In the same way, there is a corresponding result for dual core inverse.

Theorem 2.7. Let a € R and n > 3 a positive integer, then a € Rg if and

only if there exists c € R such that a° = cR and v = a™a* + cc* is invertible.
In this case,
ag = a*vta" L.

Let ¢ : X — Y be a morphism in €. If np =0: N — Y is the zero

morphism, then we shall call the morphism 7 : N — X an annihilator of the

morphism ¢. Dually, we call ¢ a coannihilator of 1. (See for example, [9].)

Theorem 2.8. Let ¢ : X — X be a morphism in € and n > 2 a positive

integer. Then ¢ is core invertible if and only if there exists an annihilator

n: N — X of ¢ such that p = " +n*n: X — X is invertible. In this case,
® ="t

Proof. Suppose that ¢ is core invertible with core inverse p®. Since (1x —

©e®)p = 0, then n = 1x — e® is a annihilator of ¢ such that n* = n = n°.

In this case, 1 = @™ +n*n = " + 1x — pp®. Since

(" +1x—pe®)((¢®)"+1x —p®p) = 1x = (¢®)"+1x —p® ) (P"+1x—pp®),

uw =" + n*n is invertible.

Conversely, if there exists an annihilator n : N — X of ¢ such that
w=@"+n*n: X — X is invertible, where n > 2 is a positive integer. On the
one hand, ¢*u = p*", which implies p* = *" !, s0 @ = (L™1)*(¢*) .
On the other hand, pue = "' shows that ¢ = u~ 1" Therefore, ¢ is
core invertible with ¢® = "~ ~! by Lemma L3 O

Corollary 2.9. Let a € R and n > 2 a positive integer, then a € R® if and
only if there exists b € “a such that u = a™ + b*b is invertible. In this case,

a® =g 1yt

Analogously, there are similar conclusions for dual core inverses, which
are not to be repeated here.



3 Core and Dual Core Inverses of Regular Mor-
phisms with Kernels and Cokernels

In [6], Miao and Robinson investigated the group and Moore-Penrose in-
verses of regular morphisms with kernels and cokernels, and they showed us
two results as follows. Let ¢ : X — Y be a morphism with kernel x : K — X
and cokernel A : Y — L in an additive category %. (1) If X =Y, then ¢
has a group inverse o if and only if ¢ is regular and s\ is invertible. (2)
¢ has a Moore-Penrose inverse o' if and only if ¢ is regular and both kk*
and A\*\ are invertible.

Inspired by them, we investigate the core and dual core inverses of regular
morphisms with kernels and cokernels.

Lemma 3.1. Let p : X — Y be a morphism with kernel k : K — X, then ¢
is {1, 3}-invertible if and only if ¢ is reqular and kk* : K — K is invertible.
In this case, if 1Y — X is such that pipp = ¢, then

Y[lx — k*(kK*) k] € ¢{1,3}.

Proof. Suppose that ¢ is {1,3}-invertible with {1, 3}-inverse ¢*®). Since
013 = o then ¢ is regular. Moreover, since (Ix — gpcp(l’?’))cp = 0, then
by the definition of a kernel, 1x — pp(13) = Ck for some ¢ : X — K. In
addition, since kp = 0, then k(k = K(lx — gpcp(l’?’)) = Kk, and since k is
monic, k( = 1x. Therefore, (k¢ = (. Consequently, x is Moore-Penrose
invertible with T = ¢. Since,

(kE7)(C7C) = K(CR)"C = KCRC = 1k

and kk* is symmetric, then xx* is invertible with (kk*)~! = ¢*¢ = (k*)TkT.

Conversely, suppose that pip = ¢ and that kx* : K — K is invertible,
where 1) : Y — X is morphism. We prove that x = [lx — k*(kK*)"1K] is
a {1,3}-inverse of ¢. Indeed, since (1x — ¢1)p = 0, then 1x — pb = dk for
some ¢ : X — K. Therefore,

(1,3)

ex = @o[lx — &5 (k%) TR] = (1x — 0k)[1x — K" (kK") 7 K]
= 1x — 0k — K" (k&™) VK + OkK" (k™) 1K
= 1x — &* (k") "1k

is symmetric. Furthermore, Since k¢ = 0, then
pxp = (1x = &*(ke") " TR)p = ¢.

Thus, Y[lxy — x*(ke*) " k] € p{1,3}. O



Similarly, we have the following result.

Lemma 3.2. Let ¢ : X — Y be a morphism with cokernel A :' Y — L,
then ¢ is {1,4}-invertible if and only if ¢ is reqular and \*\ : L — L is
invertible. In this case, if ¢ 1Y — X is such that o = ¢, then

[1x — AN TNy € o{1,4}.

Theorem 3.3. Let ¢ : X — X be a morphism with kernel k : K — X and
cokernel A : X — L in an additive category €, then ¢ has a core inverse in
€ if and only if ¢ is reqular and both kA : K — L and ks* : K — K are
invertible. In this case, if 1 : X — X is such that oy = @, then

©? = [1x — A(kA) R]y[ly — k% (ke*) LK)

Proof. By Lemmal[llT] LemmaB and [6, Theorem], it is clear that ¢ is core
invertible if and only if ¢ is regular and both kA : K — L and k* : K — K
are invertible.

Suppose that ¢ : X — X is such that piypp = ¢, we show that y =
[x — AN " 1k]Y[lx — x*(kk*)"1k] is the core inverse of . Indeed, since

(Ix =) =0=p(lx — 1), then 1x — @1 =k and 1x — p = A( for
some d : X — K and ¢ : L — X, respectively. Since kp = 0 = @A, then

X = pllx — ARA) T RlY[lx — £ (kr*) 7' A]
= Y[lx — K" (k") " K]
= (1x — 0r)[lx — K*(kK*)"1K]

=1x — k" (k") "k
is symmetric. In addition,

x@® = [Lx = A(kA)”

I
—
S
|
>
—~
=
Rt
Lok
T
<<
—
N
[
=R
<
I3
>
—~
;,_.
Z =
L
;RM
—
S
|
>
o
©

and
ox® =[x — £ (k") K] [1x — A(A) T RJP[lx — £ (k") K]
= [1x — MeN) LRY[ly — 6% (k") "1k = x.

Therefore, ¢ is core invertible with core inverse p® = [1x —A(kA\) " 1k][1x —
K*(kK*)7LE]. m
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Similarly, we can get a dually result about dual core inverse.

Theorem 3.4. Let ¢ : X — X be a morphism with kernel k : K — X and
cokernel A : X — L in an additive category €, then ¢ has a dual core inverse
in € if and only if p is reqular and both kX : K — L and \*\ : L — L are
invertible. In this case, if 1 : X — X is such that oy = @, then

Yo = [1x — AN N) TN [lx — A(kA) A

Corollary 3.5. Let ¢ : X — X be a morphism with kernel k : K — X and
cokernel X : X — L in an additive category €, then the following statements
are equivalent:

(1) ¢ is both core invertible and dual core invertible in € ;

(2) ¢ is both Moore-Penrose invertible and group invertible in € ;

(8) ¢ is reqgular and kKA : K — L, kk* : K — K and \*\ : L — L are all
invertible.

In this case, if ¢ : X — X is such that pipp = ¢, then

ol =[1x — A\ >1A*]w[1x—m*<%*>—lm],

o = [Lx — AN KJY[Lx — A(rA) k],

©® = [1x — A(kA) " R]p[lx — 5" (kK") ],
[ (

Yo = [1x — AN TN JY[1x — AM(sA) 7 k]

4 Bordered Inverses

Recall that a morphism ¢ : X — Y is x-left invertible if there is a morphism
¥ Y — X such that Yo = 1y and (¢90)* = ptp. Similarly, ¢ : X — Y is
x-right invertible if there is a morphism % : Y — X such that ¢y = 1x and
()™ = 1pe. (See, [3, p. 76].)

Lemma 4.1. [5, Lemma] If ¢ : X — Y is a morphism in a category with
an involution. Then

(1) ¢ is x-left invertible if and only if ©*p is invertible, and in this case,
ol = (p*0) e

(2) @ is *-right invertible if and only if pp* is invertible, and in this case,
¢f = o*(pp*) .

Lemma 4.2. [5, Corollary 3] Let ¢ : X — X be a morphism of an additive
category €. If k : K — X is a kernel and A : X — L is a cokernel of o,
then ¢ has a group inverse in € if and only if

g:(ié)meyuxm
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is invertible in My . In this case, kA : K — L is invertible and

# P\
%*:(OﬁqﬁA(yl>4prway

Theorem 4.3. Let ¢ : X — X be a morphism of an additive category €
with an involution x. If k : K — X is a kernel of o and A : X — L is a
cokernel of @, then ¢ has a core inverse ©® in € if and only if

() xm= @

K

is x-left invertible in My and

%:(ié)meyuxm

is invertible in M. In this case, kA : K — L is invertible and

2 K -1
%—P:<(gili A(S) ):L&L)%(XJQ.

Proof. By Theorem 23] ¢ has a core inverse in ¢ if and only if both kA and
©*p3 + Kk*K are invertible. Since ©* > + K*Kk = (P*@ + K*K)(Y? + A(KA) " 1k)
and ¢©*p + k*k is symmetric, then ¢*p3 + k*k is invertible if and only if
0*p+r*k and @? +A(k\) "'k are both invertible. By Lemma @], p*¢+ k*K

*
is invertible if and only if ( (: > < (‘/: ) is invertible in ¥ if and only if
(‘: is *-left invertible in .#«. Therefore, the conclusion is obtained by
the previous proof, Lemma 2.2 and Lemma And it is easy to verify that

®)2 -1
( ((/f)\))_li )‘(/{8‘) ) 1 (X,L) — (X, K) is the inverse of . O

We have a dually theorem about dual core inverse.

Theorem 4.4. Let ¢ : X — X be a morphism of an additive category €
with an involution x. If k : K — X is a kernel of o and A : X — L is a
cokernel of ¢, then ¢ has a dual core inverse pg in € if and only if

(0, A) s (X) = (X, L)

18 *-right invertible and

g:(ié)meyuxm
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is invertible in My . In this case, kA : K — L is invertible and

2 K —1
g1 = ( (,X)Di@lm A 3) > (X, L) - (X, K).
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