The core and dual core inverses of morphisms with kernels

Tingting Li^{*}, Jianlong Chen[†], Mengmeng Zhou[‡] School of Mathematics, Southeast University Nanjing, Jiangsu 210096, China

Dingguo Wang§

School of Mathematical Sciences, Qufu Normal University Qufu, Shandong 273165, China

Let \mathscr{C} be an additive category with an involution *. Suppose that $\varphi : X \to X$ is a morphism with kernel $\kappa : K \to X$ in \mathscr{C} , then φ is core invertible if and only if φ has a cokernel $\lambda : X \to L$ and both $\kappa \lambda$ and $\varphi^* \varphi^3 + \kappa^* \kappa$ are invertible. In this case, we give the representation of the core inverse of φ . We also give the corresponding result about dual core inverse.

Keywords: Core inverse; morphism; kernel; cokernel; invertibility

AMS subject classifications: 15A09, 18A20, 18A99

1 Introduction

Throughout this paper, \mathscr{C} is an additive category with an involution *, that is to say, there is a unary operation * on the morphisms such that $\varphi : X \to Y$ implies $\varphi^* : Y \to X$ and that $(\varphi^*)^* = \varphi, (\varphi\psi)^* = \psi^*\varphi^*$ for any $\psi : Y \to Z$ and $(\varphi + \phi)^* = \varphi^* + \phi^*$ for any $\phi : X \to Y$. (See for example, [1, p. 131].) And R is a *-ring, which is an associative ring with 1 and an involution *.

Let $\varphi : X \to Y$ be a morphism of \mathscr{C} , we say that φ is regular (or $\{1\}$ -invertible) if there is a morphism $\chi : Y \to X$ in \mathscr{C} such that $\varphi \chi \varphi = \varphi$. In

^{*}E-mail: littnanjing@163.com

[†]Corresponding author. E-mail: jlchen@seu.edu.cn

[‡]E-mail: mmz9209@163.com

[§]E-mail: dingguo95@126.com

this case, χ is said to be an inner inverse of φ and is denoted by φ^- . If such a regular element φ also satisfies $\chi \varphi \chi = \chi$, then we call that χ is a reflexive inverse of φ . When X = Y, if χ is a reflexive inverse of φ and commutes with φ , then φ is group invertible and such a χ is called the group inverse of φ . The group inverse of φ is unique if it exists and is denoted by $\varphi^{\#}$.

Recall that φ is Moore-Penrose invertible if there is a morphism $\chi: Y \to X$ in \mathscr{C} satisfying the following four equations:

(1) $\varphi \chi \varphi = \varphi$, (2) $\chi \varphi \chi = \chi$, (3) $(\varphi \chi)^* = \varphi \chi$, (4) $(\chi \varphi)^* = \chi \varphi$.

If such a χ exists, then it is unique and denoted by φ^{\dagger} . Let $\varphi\{i, j, \dots, l\}$ denote the set of morphisms χ which satisfy equations $(i), (j), \dots, (l)$ from among equations (1)-(4), and in this case, χ is called the $\{i, j, \dots, l\}$ -inverse of φ . If $\chi \in \varphi\{1, 3\}$, then χ is called a $\{1, 3\}$ -inverse of φ and is denoted by $\varphi^{(1,3)}$. A $\{1, 4\}$ -inverse of φ can be similarly defined. Also, a regular element and a reflexive invertible element can be called a $\{1\}$ -invertible element and a $\{1, 2\}$ -invertible element, respectively.

Baksalary and Trenkler [2] introduced the core and dual core inverses for a complex matrix. Then, Rakić et al. [3] generalized this concept to an arbitrary *-ring, and they use five equations to characterize the core inverse. Later, Xu et al. [4] proved that these five equations can be dropped to three equations. In the following, we rewrite these three equations in the category case. Let $\varphi : X \to X$ be a morphism of \mathscr{C} , if there is a morphism $\chi : X \to X$ satisfying

$$(\varphi\chi)^* = \varphi\chi, \ \varphi\chi^2 = \chi, \ \chi\varphi^2 = \varphi,$$

then φ is core invertible and χ is called the core inverse of φ . If such χ exists, then it is unique and denoted by φ^{\oplus} . And the dual core inverse can be given dually and denoted by φ_{\oplus} .

Group inverses and Moore-Penrose inverses of morphisms were investigated some years ago. (See,[1] and [5]-[9].) In [5], Robinson and Puystjens give the characterizations about the Moore-Penrose inverse and the group inverse of a morphism with kernels. In [6], Miao and Robinson investigate the group and Moore-Penrose inverses of regular morphisms with kernel and cokernel. Inspired by them, we consider the core invertibility and dual core invertibility of a morphism with kernels and give their representations. In the process of proving the above results, we obtain some characterizations for core inverse and dual core inverse of an element in a *-ring by the properties of annihilators and units. The following notations will be used in this paper: $aR = \{ax \mid x \in R\}$, $Ra = \{xa \mid x \in R\}$, $a = \{x \in R \mid xa = 0\}$, $a^{\circ} = \{x \in R \mid ax = 0\}$, $R^{\oplus} = \{a \in R \mid a \text{ is core invertible}\}$, $R_{\oplus} = \{a \in R \mid a \text{ is dual core invertible}\}$. Before beginning, there are some lemmas presenting for the further reference. It should be pointed out, the following Lemma 1.1 - 1.3 were put forward in a *- ring. It is easy to prove that they are valid in an additive category with an involution *. Thus, we rewrite them in the category case.

Lemma 1.1. [4, Theorem 2.6 and 2.8] Let $\varphi : X \to X$ be a morphism of \mathscr{C} , we have the following results:

(1) φ is core invertible if and only if φ is group invertible and $\{1,3\}$ -invertible. In this case, $\varphi^{\oplus} = \varphi^{\#} \varphi \varphi^{(1,3)}$.

(2) φ is dual core invertible if and only if φ is group invertible and $\{1,4\}$ -invertible. In this case, $\varphi_{\oplus} = \varphi^{(1,4)} \varphi \varphi^{\#}$.

Lemma 1.2. [10, p. 201] Let $\varphi : X \to Y$ be a morphism of \mathscr{C} , we have the following results:

(1) φ is {1,3}-invertible with {1,3}-inverse $\chi : Y \to X$ if and only if $\chi^* \varphi^* \varphi = \varphi$;

(2) φ is $\{1,4\}$ -invertible with $\{1,4\}$ -inverse $\zeta : Y \to X$ if and only if $\varphi \varphi^* \zeta^* = \varphi$.

Lemma 1.3. [11, Theorem 2.10] Let $\varphi : X \to X$ be a morphism of \mathscr{C} and $n \ge 2$ a positive integer, we have the following results:

(i) φ is core invertible if and only if there exist morphisms $\varepsilon : X \to X$ and $\tau : X \to X$ such that $\varphi = \varepsilon(\varphi^*)^n \varphi = \tau \varphi^n$. In this case, $\varphi^{\oplus} = \varphi^{n-1} \varepsilon^*$. (ii) φ is dual core invertible if and only if there exist morphisms $\theta : X \to X$ and $\rho : X \to X$ such that $\varphi = \varphi(\varphi^*)^n \theta = \varphi^n \rho$. In this case, $\varphi_{\oplus} = \theta^* \varphi^{n-1}$.

Lemma 1.4. [10, Proposition 7] Let $a \in R$. $a \in R^{\#}$ if and only if $a = a^2x = ya^2$ for some $x, y \in R$. In this case, $a^{\#} = yax = y^2a = ax^2$.

2 The Core and Dual Core Inverse of a Morphism with Kernel

In [5], Robinson and Puystjens gave the characterizations about the Moore-Penrose inverse and the group inverse of a morphism with kernels, see the following two lemmas.

Lemma 2.1. [5, Theorem 1] Let $\varphi : X \to Y$ be a morphism in \mathscr{C} . If $\kappa : K \to X$ is a kernel of φ , then φ has a Moore-Penrose inverse φ^{\dagger} with

respect to * if and only if

$$\varphi \varphi^* + \kappa^* \kappa : X \to X$$

is invertible. In this case, κ also has a Moore-Penrose inverse κ^{\dagger} , $\kappa\kappa^{*}$ is invertible,

$$\kappa^{\dagger} = \kappa^* (\kappa \kappa^*)^{-1} = (\varphi \varphi^* + \kappa^* \kappa)^{-1} \kappa^*,$$

and

$$\varphi^{\dagger} = \varphi^* (\varphi \varphi^* + \kappa^* \kappa)^{-1}.$$

Dually, if $\lambda : Y \to L$ is a cohernel of φ , then φ has a Moore-Penrose inverse φ^{\dagger} with respect to * if and only if

$$\varphi^*\varphi + \lambda\lambda^* : Y \to Y$$

is invertible. In this case, λ also has a Moore-Penrose inverse λ^{\dagger} , $\lambda^*\lambda$ is invertible,

$$\lambda^{\dagger} = (\lambda^* \lambda)^{-1} \lambda^* = \lambda^* (\varphi^* \varphi + \lambda \lambda^*)^{-1},$$

and

$$\varphi^{\dagger} = (\varphi^* \varphi + \lambda \lambda^*)^{-1} \varphi^*.$$

Lemma 2.2. [5, Corollary 2] Let $\varphi : X \to X$ be a morphism in \mathscr{C} . If $\kappa : K \to X$ is a kernel of φ , then φ has a group inverse if and only if φ has a cokernel $\lambda : X \to L$ and both $\kappa \lambda : K \to L$ and $\varphi^2 + \lambda(\kappa \lambda)^{-1}\kappa : X \to X$ are invertible. In this case, $\gamma = \lambda(\kappa \lambda)^{-1} : X \to K$ is a cokernel of φ , $\varphi \varphi^{\#} + \gamma \kappa = 1_X$, and

$$\varphi^{\#} = \varphi(\varphi^2 + \gamma \kappa)^{-1} = (\varphi^2 + \gamma \kappa)^{-1} \varphi.$$

There are some papers characterizing the core and dual core inverse by units. (See for example, [12] and [11].) Inspired by them and the above two lemmas, we get characterizations of the core invertibility of a morphism with kernel.

Theorem 2.3. Let $\varphi : X \to X$ be a morphism in \mathscr{C} . If $\kappa : K \to X$ is a kernel of φ , then φ has a core inverse in \mathscr{C} if and only if φ has a cokernel $\lambda : X \to L$ and both $\kappa\lambda : K \to L$ and $\varphi^*\varphi^3 + \kappa^*\kappa : X \to X$ are invertible. In this case, $\gamma = \lambda(\kappa\lambda)^{-1} : X \to K$ is a cokernel of $\varphi, \varphi^{\oplus}\varphi + \gamma\kappa = 1_X$, and

$$\varphi^{\oplus} = \varphi^2 (\varphi^* \varphi^3 + \kappa^* \kappa)^{-1} \varphi^*$$

Proof. Let $\lambda : X \to L$ be a cokernel of φ with both $\kappa \lambda$ and $\varphi^* \varphi^3 + \kappa^* \kappa$ invertible, and set $\gamma = \lambda(\kappa \lambda)^{-1}$. Since $\kappa \varphi = 0 = \varphi \lambda$ and $\varphi^* \kappa^* = 0 = \lambda^* \varphi^*$, then

$$\varphi^*\varphi^3 + \kappa^*\kappa = (\varphi^*\varphi + \kappa^*\kappa)(\varphi^2 + \gamma\kappa),$$

because $\varphi^* \varphi + \kappa^* \kappa$ is symmetric, both $\varphi^* \varphi + \kappa^* \kappa : X \to X$ and $\varphi^2 + \gamma \kappa : X \to X$ are invertible. In addition,

$$(\varphi^*\varphi + \kappa^*\kappa)\varphi = \varphi^*\varphi^2,$$

and for $s \ge 0$ an integer,

$$\varphi^{1+s}(\varphi^2 + \gamma\kappa) = \varphi^{3+s} = (\varphi^2 + \gamma\kappa)\varphi^{1+s}.$$

Consequently,

$$\varphi = (\varphi^* \varphi + \kappa^* \kappa)^{-1} \varphi^* \varphi^2, \tag{1}$$

$$\varphi^{1+s} = \varphi^{3+s} (\varphi^2 + \gamma \kappa)^{-1} = (\varphi^2 + \gamma \kappa)^{-1} \varphi^{3+s}, \qquad (2)$$

$$\varphi^{1+s}(\varphi^2 + \gamma\kappa)^{-1} = (\varphi^2 + \gamma\kappa)^{-1}\varphi^{1+s}.$$
(3)

Let $\chi = \varphi^2 (\varphi^* \varphi^3 + \kappa^* \kappa)^{-1} \varphi^* = \varphi^2 (\varphi^2 + \gamma \kappa)^{-1} (\varphi^* \varphi + \kappa^* \kappa)^{-1} \varphi^*$, we now show that χ is the core inverse of φ . Since

$$\varphi\chi = \varphi\varphi^{2}(\varphi^{2} + \gamma\kappa)^{-1}(\varphi^{*}\varphi + \kappa^{*}\kappa)^{-1}\varphi^{*}$$
$$= [\varphi^{3}(\varphi^{2} + \gamma\kappa)^{-1}](\varphi^{*}\varphi + \kappa^{*}\kappa)^{-1}\varphi^{*}$$
$$\stackrel{(2)}{=} \varphi(\varphi^{*}\varphi + \kappa^{*}\kappa)^{-1}\varphi^{*},$$

thus $(\varphi \chi)^* = \varphi \chi$. In addition,

$$\chi \varphi^2 = \varphi^2 (\varphi^2 + \gamma \kappa)^{-1} (\varphi^* \varphi + \kappa^* \kappa)^{-1} \varphi^* \varphi^2 \stackrel{(1)}{=} \varphi^2 (\varphi^2 + \gamma \kappa)^{-1} \varphi$$
$$\stackrel{(3)}{=} \varphi^2 \varphi (\varphi^2 + \gamma \kappa)^{-1} \stackrel{(2)}{=} \varphi,$$

and

$$\begin{split} \varphi\chi^2 &= \varphi\varphi^2(\varphi^2 + \gamma\kappa)^{-1}(\varphi^*\varphi + \kappa^*\kappa)^{-1}\varphi^*\varphi^2(\varphi^2 + \gamma\kappa)^{-1}(\varphi^*\varphi + \kappa^*\kappa)^{-1}\varphi^*\\ &= [\varphi^3(\varphi^2 + \gamma\kappa)^{-1}][(\varphi^*\varphi + \kappa^*\kappa)^{-1}\varphi^*\varphi^2](\varphi^2 + \gamma\kappa)^{-1}(\varphi^*\varphi + \kappa^*\kappa)^{-1}\varphi^*\\ &\stackrel{(1)(2)}{=} \varphi\varphi(\varphi^2 + \gamma\kappa)^{-1}(\varphi^*\varphi + \kappa^*\kappa)^{-1}\varphi^* = \chi. \end{split}$$

Therefore, φ is core invertible with core inverse $\varphi^{\oplus} = \varphi^2 (\varphi^* \varphi^3 + \kappa^* \kappa)^{-1} \varphi^*$.

Conversely, suppose that φ has a core inverse φ^{\oplus} , then φ is group invertible and $\varphi^{\#}\varphi = \varphi^{\oplus}\varphi$ by Lemma 1.1. Therefore, by applying Lemma 2.2, φ has a cokernel $\lambda : X \to L$, both $\kappa\lambda : K \to L$ and $\varphi^2 + \lambda(\kappa\lambda)^{-1}\kappa : X \to X$ are invertible and $1_X = \varphi\varphi^{\#} + \gamma\kappa = \varphi^{\#}\varphi + \gamma\kappa = \varphi^{\oplus}\varphi + \gamma\kappa$, where $\gamma = \lambda(\kappa\lambda)^{-1} : X \to K$ is a cokernel of φ . In addition, since $\kappa\varphi = 0 = \varphi\lambda$, thus $\kappa\varphi^{\oplus} = \kappa\varphi\varphi^{\oplus}\varphi^{\oplus} = 0$, $\varphi\gamma = 0$ and $\kappa\gamma = 1_K$, furthermore,

$$(\varphi^{\oplus}(\varphi^{\oplus})^* + \gamma\gamma^*)(\varphi^*\varphi + \kappa^*\kappa)$$

= $\varphi^{\oplus}(\varphi^{\oplus})^*\varphi^*\varphi + \varphi^{\oplus}(\varphi^{\oplus})^*\kappa^*\kappa + \gamma\gamma^*\varphi^*\varphi + \gamma\gamma^*\kappa^*\kappa$
= $\varphi^{\oplus}(\varphi\varphi^{\oplus})^*\varphi + \varphi^{\oplus}(\kappa\varphi^{\oplus})^*\kappa + \gamma(\varphi\gamma)^*\varphi + \gamma(\kappa\gamma)^*\kappa$
= $\varphi^{\oplus}\varphi + \gamma\kappa = 1_X.$

Since $\varphi^* \varphi + \kappa^* \kappa$ is symmetric, it follows that $\varphi^* \varphi + \kappa^* \kappa$ is invertible with inverse $\varphi^{\oplus}(\varphi^{\oplus})^* + \gamma \gamma^*$. Consequently, $\varphi^* \varphi^3 + \kappa^* \kappa = (\varphi^* \varphi + \kappa^* \kappa)(\varphi^2 + \lambda(\kappa\lambda)^{-1}\kappa)$ is invertible.

Dually, we obtain the following result.

Theorem 2.4. Let $\varphi : X \to X$ be a morphism of an additive category \mathscr{C} . If $\lambda : X \to L$ is a cohernel of φ , then φ has a dual core inverse in \mathscr{C} if and only if φ has a kernel $\kappa : K \to X$ and both $\kappa \lambda : K \to L$ and $\varphi^3 \varphi^* + \lambda \lambda^* : X \to X$ are invertible. In this case, $\delta = (\kappa \lambda)^{-1} \kappa : L \to X$ is a kernel of $\varphi, \varphi_{\oplus} \varphi + \delta \kappa = 1_X$, and

$$\varphi_{\textcircled{B}} = \varphi^* (\varphi^3 \varphi^* + \lambda \lambda^*)^{-1} \varphi^2$$

Remark 2.5. In fact, one can easily find that Theorem 2.3 is true when we raise the 3 power to n power, that is to say, change $\varphi^* \varphi^3 + \kappa^* \kappa$ to $\varphi^* \varphi^n + \kappa^* \kappa$, where $n \ge 3$. And in this case, $\varphi^{\oplus} = \varphi^{n-1} (\varphi^* \varphi^n + \kappa^* \kappa)^{-1} \varphi^*$. Similarly, it is valid for dual core inverse.

Consider Theorem 2.3 in the ring case, we obtain the following result.

Theorem 2.6. Let $a \in R$ and $n \ge 3$ a positive integer. Then $a \in R^{\oplus}$ if and only if there exists $b \in R$ such that ${}^{\circ}a = Rb$ and $u = a^*a^n + b^*b$ is invertible. In this case,

$$a^{\oplus} = a^{n-1}u^{-1}a^*.$$

Proof. Suppose that a is core invertible with core inverse a^{\oplus} . Let $b = 1 - aa^{\oplus}$, then $b^* = b = b^2$ and $Rb = R(1 - aa^{\oplus}) = {}^{\circ}(aa^{\oplus})$. Obviously ${}^{\circ}a \subseteq$

 (aa^{\oplus}) ; if $xaa^{\oplus} = 0$, then $xa = xaa^{\oplus}a = 0$, hence $(aa^{\oplus}) \subseteq a$. Therefore, $a = (aa^{\oplus}) = Rb$. In addition,

$$u = a^* a^n + b^* b = a^* a^n + 1 - aa^{\oplus} = (a^* + 1 - aa^{\oplus})(a^n + 1 - aa^{\oplus}).$$

It is easy to verify that $(a^{\oplus} + 1 - a^{\oplus}a)^*$ and $(a^{\oplus})^n + 1 - a^{\oplus}a$ are inverses of $a^* + 1 - aa^{\oplus}$ and $a^n + 1 - aa^{\oplus}$, respectively. Thus $a^* + 1 - aa^{\oplus}$ and $a^n + 1 - aa^{\oplus}$ are both invertible, which implies that $u = a^*a^n + 1 - aa^{\oplus}$ is invertible.

Conversely, assume that there exists $b \in R$ such that a = Rb and $u = a^*a^n + b^*b$ is invertible, where $n \ge 3$ is a positive integer. Then $b \in a$, that is to say, $ba = 0 = a^*b^*$. Since $(a^*)^{n-1}u = (a^*)^n a^n$ is symmetric, namely, $(a^*)^{n-1}u = u^*a^{n-1}$, which implies the following equation

$$(u^*)^{-1}(a^*)^{n-1} = a^{n-1}u^{-1}.$$
(4)

Also, $a^*u = (a^*)^2 a^n$ implies $a^* = (a^*)^2 a^n u^{-1}$, hence we have

$$a = (u^*)^{-1} (a^*)^n a^2 = [(u^*)^{-1} (a^*)^{n-1}] a^* a^2$$

$$\stackrel{(4)}{=} a^{n-1} u^{-1} a^* a^2 \in a^2 R \cap Ra^2,$$

so a is group invertible with group inverse $a^{\#}$ according to Lemma 1.4. Since $1 - a^{\#}a \in {}^{\circ}a = Rb$, thus $1 - a^{\#}a = yb$ for some $y \in R$. Pre-multiplication of $1 - a^{\#}a = yb$ by a and b yield ayb = 0 and b = byb, respectively. Therefore, $u = a^*a^n + b^*b$ can be decomposed as

$$u = a^*a^n + b^*b = (a^*a + b^*b)(a^{n-1} + yb).$$

Since u is invertible and $a^*a + b^*b$ is symmetric, thus both $a^*a + b^*b$ and $a^{n-1} + yb$ are invertible. Set $x = a^{n-1}u^{-1}a^* = a^{n-1}(a^{n-1} + yb)^{-1}(a^*a + b^*b)^{-1}a^*$, we show that x is the core inverse of a. Since

$$ax = a^{n}(a^{n-1} + yb)^{-1}(a^{*}a + b^{*}b)^{-1}a^{*}$$

= $a(a^{n-1} + yb)(a^{n-1} + yb)^{-1}(a^{*}a + b^{*}b)^{-1}a^{*}$
= $a(a^{*}a + b^{*}b)^{-1}a^{*}$

shows that $(ax)^* = ax$,

$$ax^{2} = (ax)x = a(a^{*}a + b^{*}b)^{-1}a^{*}a^{n-1}(a^{n-1} + yb)^{-1}(a^{*}a + b^{*}b)^{-1}a^{*}$$

= $a(a^{*}a + b^{*}b)^{-1}(a^{*}a + b^{*}b)a^{n-2}(a^{n-1} + yb)^{-1}(a^{*}a + b^{*}b)^{-1}a^{*}$
= $aa^{n-2}(a^{n-1} + yb)^{-1}(a^{*}a + b^{*}b)^{-1}a^{*} = x,$

and

$$\begin{aligned} xa^2 &= a^{n-1}(a^{n-1} + yb)^{-1}(a^*a + b^*b)^{-1}a^*a^2 \\ &= a^{n-1}(a^{n-1} + yb)^{-1}(a^*a + b^*b)^{-1}(a^*a + b^*b)a \\ &= a^{n-1}(a^{n-1} + yb)^{-1}a = (a^{n-1} + yb)^{-1}a^{n-1}a \\ &= (a^{n-1} + yb)^{-1}(a^{n-1} + yb)a = a, \end{aligned}$$

thus $x = a^{\oplus}$.

In the same way, there is a corresponding result for dual core inverse.

Theorem 2.7. Let $a \in R$ and $n \ge 3$ a positive integer, then $a \in R_{\oplus}$ if and only if there exists $c \in R$ such that $a^{\circ} = cR$ and $v = a^{n}a^{*} + cc^{*}$ is invertible. In this case,

$$a_{\oplus} = a^* v^{-1} a^{n-1}.$$

Let $\varphi : X \to Y$ be a morphism in \mathscr{C} . If $\eta \varphi = 0 : N \to Y$ is the zero morphism, then we shall call the morphism $\eta : N \to X$ an annihilator of the morphism φ . Dually, we call φ a coannihilator of η . (See for example, [9].)

Theorem 2.8. Let $\varphi : X \to X$ be a morphism in \mathscr{C} and $n \ge 2$ a positive integer. Then φ is core invertible if and only if there exists an annihilator $\eta : N \to X$ of φ such that $\mu = \varphi^n + \eta^* \eta : X \to X$ is invertible. In this case,

$$\varphi^{\oplus} = \varphi^{n-1} \mu^{-1}.$$

Proof. Suppose that φ is core invertible with core inverse φ^{\oplus} . Since $(1_X - \varphi \varphi^{\oplus})\varphi = 0$, then $\eta = 1_X - \varphi \varphi^{\oplus}$ is a annihilator of φ such that $\eta^* = \eta = \eta^2$. In this case, $\mu = \varphi^n + \eta^* \eta = \varphi^n + 1_X - \varphi \varphi^{\oplus}$. Since

$$(\varphi^n + 1_X - \varphi\varphi^{\oplus})((\varphi^{\oplus})^n + 1_X - \varphi^{\oplus}\varphi) = 1_X = ((\varphi^{\oplus})^n + 1_X - \varphi^{\oplus}\varphi)(\varphi^n + 1_X - \varphi\varphi^{\oplus})$$

 $\mu = \varphi^n + \eta^* \eta$ is invertible.

Conversely, if there exists an annihilator $\eta : N \to X$ of φ such that $\mu = \varphi^n + \eta^* \eta : X \to X$ is invertible, where $n \ge 2$ is a positive integer. On the one hand, $\varphi^* \mu = \varphi^* \varphi^n$, which implies $\varphi^* = \varphi^* \varphi^n \mu^{-1}$, so $\varphi = (\mu^{-1})^* (\varphi^*)^n \varphi$. On the other hand, $\mu \varphi = \varphi^{n+1}$ shows that $\varphi = \mu^{-1} \varphi^{n+1}$. Therefore, φ is core invertible with $\varphi^{\oplus} = \varphi^{n-1} \mu^{-1}$ by Lemma 1.3.

Corollary 2.9. Let $a \in R$ and $n \ge 2$ a positive integer, then $a \in R^{\oplus}$ if and only if there exists $b \in a$ such that $u = a^n + b^*b$ is invertible. In this case,

$$a^{\oplus} = a^{n-1}u^{-1}$$

Analogously, there are similar conclusions for dual core inverses, which are not to be repeated here.

3 Core and Dual Core Inverses of Regular Morphisms with Kernels and Cokernels

In [6], Miao and Robinson investigated the group and Moore-Penrose inverses of regular morphisms with kernels and cokernels, and they showed us two results as follows. Let $\varphi : X \to Y$ be a morphism with kernel $\kappa : K \to X$ and cokernel $\lambda : Y \to L$ in an additive category \mathscr{C} . (1) If X = Y, then φ has a group inverse $\varphi^{\#}$ if and only if φ is regular and $\kappa\lambda$ is invertible. (2) φ has a Moore-Penrose inverse φ^{\dagger} if and only if φ is regular and both $\kappa\kappa^*$ and $\lambda^*\lambda$ are invertible.

Inspired by them, we investigate the core and dual core inverses of regular morphisms with kernels and cokernels.

Lemma 3.1. Let $\varphi : X \to Y$ be a morphism with kernel $\kappa : K \to X$, then φ is $\{1,3\}$ -invertible if and only if φ is regular and $\kappa \kappa^* : K \to K$ is invertible. In this case, if $\psi : Y \to X$ is such that $\varphi \psi \varphi = \varphi$, then

$$\psi[1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa] \in \varphi\{1, 3\}.$$

Proof. Suppose that φ is $\{1,3\}$ -invertible with $\{1,3\}$ -inverse $\varphi^{(1,3)}$. Since $\varphi\varphi^{(1,3)}\varphi = \varphi$, then φ is regular. Moreover, since $(1_X - \varphi\varphi^{(1,3)})\varphi = 0$, then by the definition of a kernel, $1_X - \varphi\varphi^{(1,3)} = \zeta\kappa$ for some $\zeta : X \to K$. In addition, since $\kappa\varphi = 0$, then $\kappa\zeta\kappa = \kappa(1_X - \varphi\varphi^{(1,3)}) = \kappa$, and since κ is monic, $\kappa\zeta = 1_K$. Therefore, $\zeta\kappa\zeta = \zeta$. Consequently, κ is Moore-Penrose invertible with $\kappa^{\dagger} = \zeta$. Since,

$$(\kappa\kappa^*)(\zeta^*\zeta) = \kappa(\zeta\kappa)^*\zeta = \kappa\zeta\kappa\zeta = 1_K$$

and $\kappa \kappa^*$ is symmetric, then $\kappa \kappa^*$ is invertible with $(\kappa \kappa^*)^{-1} = \zeta^* \zeta = (\kappa^*)^{\dagger} \kappa^{\dagger}$.

Conversely, suppose that $\varphi\psi\varphi = \varphi$ and that $\kappa\kappa^* : K \to K$ is invertible, where $\psi : Y \to X$ is morphism. We prove that $\chi = \psi[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa]$ is a $\{1,3\}$ -inverse of φ . Indeed, since $(1_X - \varphi\psi)\varphi = 0$, then $1_X - \varphi\psi = \delta\kappa$ for some $\delta : X \to K$. Therefore,

$$\varphi\chi = \varphi\psi[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa] = (1_X - \delta\kappa)[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa]$$
$$= 1_X - \delta\kappa - \kappa^*(\kappa\kappa^*)^{-1}\kappa + \delta\kappa\kappa^*(\kappa\kappa^*)^{-1}\kappa$$
$$= 1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa$$

is symmetric. Furthermore, Since $\kappa \varphi = 0$, then

$$\varphi \chi \varphi = (1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa) \varphi = \varphi$$

Thus, $\psi[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa] \in \varphi\{1,3\}.$

Similarly, we have the following result.

Lemma 3.2. Let $\varphi : X \to Y$ be a morphism with cokernel $\lambda : Y \to L$, then φ is $\{1, 4\}$ -invertible if and only if φ is regular and $\lambda^*\lambda : L \to L$ is invertible. In this case, if $\psi : Y \to X$ is such that $\varphi \psi \varphi = \varphi$, then

$$[1_X - \lambda(\lambda^*\lambda)^{-1}\lambda^*]\psi \in \varphi\{1,4\}.$$

Theorem 3.3. Let $\varphi : X \to X$ be a morphism with kernel $\kappa : K \to X$ and cokernel $\lambda : X \to L$ in an additive category \mathscr{C} , then φ has a core inverse in \mathscr{C} if and only if φ is regular and both $\kappa\lambda : K \to L$ and $\kappa\kappa^* : K \to K$ are invertible. In this case, if $\psi : X \to X$ is such that $\varphi\psi\varphi = \varphi$, then

$$\varphi^{\oplus} = [1_X - \lambda(\kappa\lambda)^{-1}\kappa]\psi[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa].$$

Proof. By Lemma 1.1, Lemma 3.1 and [6, Theorem], it is clear that φ is core invertible if and only if φ is regular and both $\kappa\lambda : K \to L$ and $\kappa\kappa^* : K \to K$ are invertible.

Suppose that $\psi : X \to X$ is such that $\varphi \psi \varphi = \varphi$, we show that $\chi = [1_X - \lambda(\kappa\lambda)^{-1}\kappa]\psi[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa]$ is the core inverse of φ . Indeed, since $(1_X - \varphi\psi)\varphi = 0 = \varphi(1_X - \psi\varphi)$, then $1_X - \varphi\psi = \delta\kappa$ and $1_X - \psi\varphi = \lambda\zeta$ for some $\delta : X \to K$ and $\zeta : L \to X$, respectively. Since $\kappa\varphi = 0 = \varphi\lambda$, then

$$\varphi \chi = \varphi [1_X - \lambda(\kappa \lambda)^{-1} \kappa] \psi [1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa]$$

= $\varphi \psi [1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa]$
= $(1_X - \delta \kappa) [1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa]$
= $1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa$

is symmetric. In addition,

$$\chi \varphi^2 = [1_X - \lambda(\kappa \lambda)^{-1} \kappa] \psi [1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa] \varphi^2$$

= $[1_X - \lambda(\kappa \lambda)^{-1} \kappa] \psi \varphi^2 = [1_X - \lambda(\kappa \lambda)^{-1} \kappa] (1_X - \lambda \zeta) \varphi$
= $[1_X - \lambda(\kappa \lambda)^{-1} \kappa] \varphi = \varphi$

and

$$\varphi \chi^2 = [1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa] [1_X - \lambda (\kappa \lambda)^{-1} \kappa] \psi [1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa]$$

= $[1_X - \lambda (\kappa \lambda)^{-1} \kappa] \psi [1_X - \kappa^* (\kappa \kappa^*)^{-1} \kappa = \chi.$

Therefore, φ is core invertible with core inverse $\varphi^{\oplus} = [1_X - \lambda(\kappa\lambda)^{-1}\kappa]\psi[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa]$.

Similarly, we can get a dually result about dual core inverse.

Theorem 3.4. Let $\varphi : X \to X$ be a morphism with kernel $\kappa : K \to X$ and cokernel $\lambda : X \to L$ in an additive category \mathscr{C} , then φ has a dual core inverse in \mathscr{C} if and only if φ is regular and both $\kappa\lambda : K \to L$ and $\lambda^*\lambda : L \to L$ are invertible. In this case, if $\psi : X \to X$ is such that $\varphi \psi \varphi = \varphi$, then

$$\varphi_{\oplus} = [1_X - \lambda(\lambda^* \lambda)^{-1} \lambda^*] \psi [1_X - \lambda(\kappa \lambda)^{-1} \kappa].$$

Corollary 3.5. Let $\varphi : X \to X$ be a morphism with kernel $\kappa : K \to X$ and cokernel $\lambda : X \to L$ in an additive category \mathscr{C} , then the following statements are equivalent:

(1) φ is both core invertible and dual core invertible in \mathscr{C} ;

(2) φ is both Moore-Penrose invertible and group invertible in \mathscr{C} ;

(3) φ is regular and $\kappa \lambda : K \to L$, $\kappa \kappa^* : K \to K$ and $\lambda^* \lambda : L \to L$ are all invertible.

In this case, if $\psi: X \to X$ is such that $\varphi \psi \varphi = \varphi$, then

$$\varphi^{\dagger} = [1_X - \lambda(\lambda^*\lambda)^{-1}\lambda^*]\psi[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa],$$

$$\varphi^{\#} = [1_X - \lambda(\kappa\lambda)^{-1}\kappa]\psi[1_X - \lambda(\kappa\lambda)^{-1}\kappa],$$

$$\varphi^{\oplus} = [1_X - \lambda(\kappa\lambda)^{-1}\kappa]\psi[1_X - \kappa^*(\kappa\kappa^*)^{-1}\kappa],$$

$$\varphi_{\oplus} = [1_X - \lambda(\lambda^*\lambda)^{-1}\lambda^*]\psi[1_X - \lambda(\kappa\lambda)^{-1}\kappa].$$

4 Bordered Inverses

Recall that a morphism $\varphi : X \to Y$ is *-left invertible if there is a morphism $\psi : Y \to X$ such that $\psi \varphi = 1_Y$ and $(\varphi \psi)^* = \varphi \psi$. Similarly, $\varphi : X \to Y$ is *-right invertible if there is a morphism $\psi : Y \to X$ such that $\varphi \psi = 1_X$ and $(\psi \varphi)^* = \psi \varphi$. (See, [5, p. 76].)

Lemma 4.1. [5, Lemma] If $\varphi : X \to Y$ is a morphism in a category with an involution. Then

(1) φ is *-left invertible if and only if $\varphi^*\varphi$ is invertible, and in this case, $\varphi^{\dagger} = (\varphi^*\varphi)^{-1}\varphi^*$;

(2) φ is *-right invertible if and only if $\varphi \varphi^*$ is invertible, and in this case, $\varphi^{\dagger} = \varphi^* (\varphi \varphi^*)^{-1}$.

Lemma 4.2. [5, Corollary 3] Let $\varphi : X \to X$ be a morphism of an additive category \mathscr{C} . If $\kappa : K \to X$ is a kernel and $\lambda : X \to L$ is a cokernel of φ , then φ has a group inverse in \mathscr{C} if and only if

$$\mathscr{G} = \begin{pmatrix} \varphi & \lambda \\ \kappa & 0 \end{pmatrix} : (X, K) \to (X, L)$$

is invertible in $\mathscr{M}_{\mathscr{C}}$. In this case, $\kappa\lambda: K \to L$ is invertible and

$$\mathscr{G}^{-1} = \begin{pmatrix} \varphi^{\#} & \lambda(\kappa\lambda)^{-1} \\ (\kappa\lambda)^{-1}\kappa & 0 \end{pmatrix} : (X,L) \to (X,K)$$

Theorem 4.3. Let $\varphi : X \to X$ be a morphism of an additive category \mathscr{C} with an involution *. If $\kappa : K \to X$ is a kernel of φ and $\lambda : X \to L$ is a cokernel of φ , then φ has a core inverse φ^{\oplus} in \mathscr{C} if and only if

$$\left(\begin{array}{c}\varphi\\\kappa\end{array}\right):(X,K)\to(X)$$

is *-left invertible in $\mathcal{M}_{\mathscr{C}}$ and

$$\mathscr{G} = \left(\begin{array}{cc} \varphi & \lambda \\ \kappa & 0 \end{array}\right) : (X, K) \to (X, L)$$

is invertible in $\mathscr{M}_{\mathscr{C}}$. In this case, $\kappa\lambda: K \to L$ is invertible and

$$\mathscr{G}^{-1} = \begin{pmatrix} (\varphi^{\textcircled{\tiny{\oplus}}})^2 \varphi & \lambda(\kappa \lambda)^{-1} \\ (\kappa \lambda)^{-1} \kappa & 0 \end{pmatrix} : (X, L) \to (X, K).$$

Proof. By Theorem 2.3, φ has a core inverse in \mathscr{C} if and only if both $\kappa\lambda$ and $\varphi^*\varphi^3 + \kappa^*\kappa$ are invertible. Since $\varphi^*\varphi^3 + \kappa^*\kappa = (\varphi^*\varphi + \kappa^*\kappa)(\varphi^2 + \lambda(\kappa\lambda)^{-1}\kappa)$ and $\varphi^*\varphi + \kappa^*\kappa$ is symmetric, then $\varphi^*\varphi^3 + \kappa^*\kappa$ is invertible if and only if $\varphi^*\varphi + \kappa^*\kappa$ and $\varphi^2 + \lambda(\kappa\lambda)^{-1}\kappa$ are both invertible. By Lemma 4.1, $\varphi^*\varphi + \kappa^*\kappa$ is invertible if and only if $\begin{pmatrix} \varphi \\ \kappa \end{pmatrix}^* \begin{pmatrix} \varphi \\ \kappa \end{pmatrix}$ is invertible if and only if $\begin{pmatrix} \varphi \\ \kappa \end{pmatrix}^* \begin{pmatrix} \varphi \\ \kappa \end{pmatrix}$ is invertible in \mathscr{C} if and only if $\begin{pmatrix} \varphi \\ \kappa \end{pmatrix} = 1$ is invertible in $\mathscr{M}_{\mathscr{C}}$. Therefore, the conclusion is obtained by the previous proof, Lemma 2.2 and Lemma 4.2. And it is easy to verify that $\begin{pmatrix} (\varphi^{\textcircled{B}})^2\varphi & \lambda(\kappa\lambda)^{-1} \\ (\kappa\lambda)^{-1}\kappa & 0 \end{pmatrix} : (X,L) \to (X,K)$ is the inverse of \mathscr{G} .

We have a dually theorem about dual core inverse.

Theorem 4.4. Let $\varphi : X \to X$ be a morphism of an additive category \mathscr{C} with an involution *. If $\kappa : K \to X$ is a kernel of φ and $\lambda : X \to L$ is a cokernel of φ , then φ has a dual core inverse φ_{\oplus} in \mathscr{C} if and only if

$$(\varphi, \lambda) : (X) \to (X, L)$$

is *-right invertible and

$$\mathscr{G} = \left(\begin{array}{cc} \varphi & \lambda \\ \kappa & 0 \end{array} \right) : (X, K) \to (X, L)$$

is invertible in $\mathscr{M}_{\mathscr{C}}$. In this case, $\kappa\lambda: K \to L$ is invertible and

$$\mathscr{G}^{-1} = \begin{pmatrix} \varphi \varphi_{\oplus}^2 & \lambda(\kappa \lambda)^{-1} \\ (\kappa \lambda)^{-1} \kappa & 0 \end{pmatrix} : (X, L) \to (X, K).$$

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No.11771076 and No.11471186); the Fundamental Research Funds For the Central Universities (No.KYCX17_0037); Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.KYCX17_0037).

References

- [1] Puystjens R, Robinson DW. The Moore-Penrose inverse of a morphism with factorization. Linear Algebra Appl. 1981;40:129-141.
- [2] Baksalary OM, Trenkler G. Core inverse of matrices. Linear Multilinear Algebra. 2010;58:681-697.
- [3] Rakić DS, Dinčić NČ, Djordiević DS. Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 2014;463:115-133.
- [4] Xu SZ, Chen JL, Zhang XX. New characterizations for core and dual core inverses in rings with involution. Front. Math. China. 2017;12(1):231-246.
- [5] Robinson DW, Puystjens R. Generalized inverses of morphisms with kernels. Linear Algebra Appl. 1987;96:65-86.
- [6] Miao JM, Robinson DW. Group and Moore-Penrose inverse of regular morphisms with kernel and cokernel. Linear Algebra Appl. 1988;110:263-270.
- [7] Peška P. The Moore-Penrose inverse of a partitioned morphism in an additive category. Math. Slovaca. 2000;50(4):437-452.
- [8] Puystjens R, Robinson DW. The Moore-Penrose inverse of a morphism in an additive category. Comm. Algebra. 1984;12(3):287-299.
- [9] Puystjens R, Robinson DW. Symmetric morphisms and the existence of Moore-Penrose inverses. Linear Algebra Appl. 1990;131:51-69.

- [10] Hartwig RE. Block generalized inverses. Arch. Rational Mech. Anal. 1976;61:197-251.
- [11] Li TT, Chen JL. Characterizations of core and dual core inverses in rings with involution. Linear Multilinear Algebra. 2018;66(4):717-730.
- [12] Chen JL, Zhu HH, Patrício P, Zhang YL. Characterizations and representations of core and dual core inverses. Canad. Math. Bull. 2017;60(2):269-282.