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ON ALGORITHMS TO OBTAIN LINEAR DETERMINANTAL
REPRESENTATIONS OF SMOOTH PLANE CURVES OF HIGHER
DEGREE

YASUHIRO ISHITSUKA, TETSUSHI ITO, AND TATSUYA OHSHITA

1. INTRODUCTION

Let C' C P? be a smooth plane curve of degree d > 1 defined over a field k. It is
defined by a single homogeneous polynomial

F=F(X,Y,Z)€k[X,Y,Z]

of degree d. A linear determinantal representation of C' over k is a square matrix
M = (l; ;) of size d whose entries [; ; = 1; ;(X,Y, Z) are k-linear forms in the variables
X, Y, Z satistying

C={[X:Y:Z]€P?|det(M) =0} C P

Equivalently, the determinant of M coincides with F' as a polynomial in X, Y, Z up to
a non-zero constant.

Two linear determinantal representations M, M’ are said to be equivalent if there
exist two invertible matrices A, B € GLg4(k) such that M’ = AM B. If M is symmetric,
we say that M is a symmetric linear determinantal representation. Two symmetric
linear determinantal representations are said to be equivalent if they are equivalent as
linear determinantal representations.

Studying linear determinantal representations is a classical topic in algebraic geom-
etry [I 2]. Recently it also appears in the study of derived categories [3], semi-definite
programming [4]. There are also studies from arithmetic viewpoints [5] 6] [7, []].

In this paper, we continue and extend the first author’s results in [9], where an
algorithm computing linear determinantal representations of smooth plane cubics was
given. Here we shall give two algorithms to compute linear determinantal represen-
tations explicitly for smooth plane curves of any degree. As particular examples, we
give all linear determinantal representations, up to equivalence, of the Klein quartic
and the Fermat quartic over the field QQ of rational numbers.

2. LINEAR DETERMINANTAL REPRESENTATIONS AND LINE BUNDLES

Let k be a field, d > 1 a positive integer, and C' C P? a smooth plane curve of degree
d. Tts genus ¢ is equal to (d—1)(d—2)/2. The canonical bundle we of C' is isomorphic
to the Serre twist O¢(d —3). A line bundle £ on C'is said to be non-effective if it has
no non-zero global sections, i.e. H*(C, L) = 0. A theta characteristic on C is a line
bundle £ on C satisfying £%? = wo. The degree of a theta characteristic is equal to

qg—1.
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The following classical theorem is a foundation of our algorithms.

Theorem 2.1. Let C' C P? be a smooth plane curve of degree d defined over k.

(1) There is a natural bijection between the following two sets:
e the set of equivalence classes of linear determinantal representations of C'
over k, and
e the set of isomorphism classes of non-effective line bundles on C' of degree
g—1=d(d—-3)/2.
In this bijection, the operation of transpose M +— M corresponds to the oper-
ation
L LY = r%0777,(90<£, Oc(d — 3)),
where J€ome,, is the sheaf Hom between Oc-modules.
(2) This bijection induces a bijection between the following two subsets:
e the set of equivalence classes of symmetric linear determinantal represen-

tations of C' over k, and
e the set of isomorphism classes of non-effective theta characteristics on C'.

For the proof of this theorem and related results, see [1], 2, [10]. For plane cubics,
see also [9].

We briefly explain the construction of the bijection in Theorem 211 (1). Let us take
a non-effective line bundle £ of degree g — 1 on the curve C. Let R = k[X,Y, Z] be
the homogeneous coordinate ring of P2. It is well-known that the graded R-module

N :=T.(C, L) = @ H(C, L(n))

has a minimal free resolution of the form

0= R(—2) @ Wi £ R(—1) @ Wy -~ N - 0.
Here Wy, W; are d-dimensional k-vector spaces defined by

Wy == H°(C, L(1)),

Wi :=ker (m: H°(C, L(1)) @ H*(C, Oc(1))

— HY(C, £(2)))

After fixing bases of these vector spaces, the R-homomorphism M can be written as a
square matrix M of size d whose entries are k-linear forms in the variables X, Y, Z. This
matrix M gives a linear determinantal representation corresponding to L. It can be
shown that the equivalence class of M is uniquely determined by the isomorphism class

of the line bundle £, and every equivalence class of linear determinantal representations
of C'is obtained in this way.

3. ALGORITHMS TO OBTAIN LINEAR DETERMINANTAL REPRESENTATIONS

In this section, we describe two algorithms to obtain (symmetric) linear determinan-
tal representations of C' from the data of line bundles on C'. The following algorithm
is an extension of [9, Algorithm 1].

Algorithm 3.1 (First algorithm to obtain M).
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Input:: a homogeneous polynomial F' = F(X,Y,Z) € k[X,Y,Z] of degree d
defining a smooth plane curve C' C P?, and a non-effective line bundle £ on C
of degree g — 1 =d(d — 3)/2.
Output:: a linear determinantal representation M corresponding to £ by Theo-
rem 2] (1).
Step 1 (Global sections): Compute a k-basis {v; }1<;<q of Wy = H(C, L(1)).
Step 2 (First syzygy): Compute a k-basis {e;}1<i<q of the kernel W; of
the multiplication map

m: H°(C, L(1)@H(C,0c(1)) — H°(C, L(2)).
Step 3 (Output matrix): Write the k-basis {e;}1<i<q as
d
e =Y v ®lLii(X,Y,7),
j=1
where [; j(X,Y,Z) € H(C,0¢(1)) are k-linear forms. Output the matrix
M = (l;;(X,Y, Z)h<ij<a-

Note that even if £ is a theta characteristic, the matrix M obtained by Algorithm
[3.1] is not necessarily symmetric. To obtain a symmetric linear determinantal repre-
sentation, we take another approach: we compute the adjugate matrix of the linear
determinantal representation. This is a classical approach; refer [4, Section 2], [10]
Section 6.

Algorithm 3.2 (Second algorithm to obtain M).

Input:: a homogeneous polynomial F' = F(X,Y,Z) € k[X,Y,Z] of degree d
defining a smooth plane curve C' C P?, and a non-effective line bundle £ on C
of degree g — 1 =d(d — 3)/2.

Output:: a linear determinantal representation M corresponding to £ by Theo-
rem 2.1] (1).

Step 1 (Global sections): Compute a k-basis {v;}i1<i<qa of H°(C, L(1))
and a k-basis {w;}1<;<q of H(C,L£Y(1)). (Here the line bundle £V is
defined as in Theorem 211 (1).)

Step 2 (Compute adjugate matrices): For each 1 < i,5 < d, compute
the image

m(v;w;) € H(C,Oc(d — 1))
of the multiplication map
m: H°(C,L£(1)) @ H°(C, LY(1))
— H°(C,0c(d — 1)).

Obtain a matrix Ma = (m(UZ’UJ]))1§ZJ§d

Step 3 (Output Matrix): It can be shown that all of the entries of the
adjugate matrix M of M, are polynomials of degree (d — 1)? divisible by
F?=2. Take the adjugate matrix M! of the matrix M,. Output the matrix

M= F~=20
a
To obtain a symmetric linear determinantal representation corresponding to a non-

effective theta characteristic £ by Theorem 2.1](2), we choose an isomorphism £Y = L,
take w; = v; for each 1 < j < d, and apply Algorithm .2l Then the resulting
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matrix M is symmetric because the matrix M, = (m(v;v;))i<; j<a is symmetric. This
algorithm is justified by a similar argument to [10, 6.23.3].

3.1. Remarks on computation. In the following section, we study the problem of
computing representatives of all equivalence classes of linear determinantal represen-
tations of a smooth plane curve. We often have the data of k-rational divisor classes
on C, instead of the data of line bundles on C' (or equivalently, k-rational divisors).
Recall the exact sequence

0 = Pic(C) - Piceyi(k) > Br(k) = Br(k(C)).

Here Picgyy, is the Picard scheme representing the relative Picard functor. Its identity
component Picy, I 18 isomorphic to the Jacobian variety Jac(C'). Because of this
sequence, a k-rational divisor class A € Picci(k) comes from a line bundle on C' if
and only if the Brauer obstruction 6(A) vanishes in Br(k) (see [8, Section 3]).

When C' has a k-rational point, the obstruction homomorphism ¢ is the zero map,
and every k-rational divisor class comes from a k-rational divisor [8, Proposition 3.2].
Moreover, using Grobner basis, we can compute a k-rational divisor representing a
k-rational divisor class, and check whether the divisor is effective or not.

In the following examples, we can easily find rational points, hence we can apply
our algorithms to each element of the Picard scheme. We plan to study linear deter-
minantal representations of smooth plane curves without rational points in the future
(see [0, Example 9.5], [9, Example 8] for the case of cubics without rational points).

4. EXAMPLES

In this section, we apply our algorithms to two special quartics, the Klein quartic
and the Fermat quartic over Q. We give representatives of all equivalence classes of
linear determinantal representations of these curves over Q. We use symmetries of

these curves to describe results simply. Note that the linear equivalence class of a
divisor D is denoted by [D].

4.1. Example 1: the Klein quartic over Q. We apply our algorithms to the Klein
quartic Kl over QQ, which is the plane quartic defined by

XY +Y3Z+72°X =0.
There are only three QQ-rational points on this curve,
P =[1:0:0, P=[0:1:0], Ps=[0:0:1],
and only two points over quadratic fields (see [11])
Qu=1[1:C:Gl, Q=[1:¢:¢l

Here (3 = (—1 + +/—3)/2 is a primitive third root of unity. The automorphism group
Autg(Kl) of Kl defined over Q is generated by the cyclic permutation

0:[X:Y: Zl—[Y:Z:X].

The Mordell-Weil group Jac(K1)(Q) is a finite cyclic group of order 14 generated
by [D], where [D] is the divisor class of the divisor

D:=P+P—Q1—Q
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(see [I1]). Note that
0([2P1]) = [2P + 8D, 0(ID]) = [-3D].
The set of Q-rational divisor classes of degree 2 is
Pic?ﬂ/@(@) = Jac(K1)(Q) + [2P].

Among them, we find that there exist exactly seven effective Q-rational divisor classes
of degree 2 on the Klein quartic. They are:

2P, [P, + P = [6D + 2P],

2P] = [12D + 2P], [P, + P3] = [AD + 2P],
[P, + P3] = [10D + 2Py], [2P;] = [8D + 2P,
[Q1 + Q2] = [9D + 2Py].

Thus there exist exactly seven non-effective Q-rational divisor classes of degree 2.
Their representatives under Autg(Kl)-action are

[2D + 2P, (theta characteristic; fixed by ),

(D +2P],

[5D +2P;] (corresponds to O¢(D + 2P;)Y).

By Algorithm [B.1] and Algorithm [B.2] we see that these divisor classes correspond
respectively to

X 0 0 Y
0Y 0 Z
M'_OOZX’

Y Z X 0

X 0 Y Y
N |-z Y+Z Y-Z Y

XY.z-—1 o X -Z Y-Z|
0 Y X-Y -Z

‘Nxyz (the transpose of Nxy 7).
In conclusion, we have the following theorem.

Theorem 4.1. The Klein quartic Kl over Q admits exactly seven equivalence classes
of linear determinantal representations over Q. They are represented by

M, Nxyz, DNyvzx, Nzxy,
¢ ¢ t
Nxyz, Nyzx, ‘Nzxy.

Among them, M gives the only equivalence class of symmetric linear determinantal
representations.

The uniqueness of symmetric linear determinantal representations of the Klein quar-
tic over Q was proved by the first and second authors; see [7, Theorem 1.4].
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4.2. Example 2: the Fermat quartic over Q. Next we apply our algorithms to
the Fermat quartic Fj over QQ, which is the plane quartic defined by

X‘+vi—Z4=0.

See [12], T3] for details of the results in this subsection.
The points on Fy defined over quadratic fields are exhausted by the following sixteen
points [13]:

(0<y<3),

Among them, there exist exactly four Q-rational points Ay, As, By, and Bs. The points
A; and B; are hyperflexes, where the tangents meet Fy with multiplicity four. The
automorphism group Autg(F}) is generated by

O: [X:Y: Z]—[-X:Y:Z]
Oy: [ XY : Z]—=[Y:X:Z].

They satisfy the relation 62 = 05 = (6,6,)* = 1.
The Mordell-Weil group Jac(Fy)(Q) of the Jacobian variety of the Fermat quartic
F, is equal to

(Z/AZ)[D1] ® (Z/AZ)[D.] & (Z/2Z)| D3],
where

Dy = Ay — By, Dy = By — By,
D3:A0+BQ—A2—BQ.

The Autg(Fy)-action on Jac(Fy)(Q) is described by

01([D1]) = [D1 — Dy, 0s([D1]) = [-D1 — Ds,
01([Do]) = [ Dsl, 02([Dso]) = [=Dy — D3,
01([Ds]) = [2D2 + D3], 02([Ds]) = [Ds].

The set of Q-rational divisor classes of degree 2 is

Pict, 10(Q) = Jac(Fy)(Q) + [2Bo).

Among them, we find that there exist exactly sixteen effective Q-rational divisor classes
of degree 2 on Fy. Ten of them are sums of two QQ-rational points on Fj:

[2By), [A2 + B, [242], [Bo + B,
[Ay + Ba], 2Ba], [Ao + B, [Ao + Ag],
[Ap + Bs), [2A,],
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and six of them are sums of conjugate pairs of points on Fj defined over quadratic
fields:

[A; + As], [B; + Bs,
By gq + Eoy 4], By q— 4 Eoy ],
(B -+ + Ea 4], (B - + B -],

Thus there exist exactly sixteen non-effective Q-rational divisor classes of degree 2 on
Fy. Their representatives under Autg(F})-action and the stabilizer groups in Autg(Fy)
are

(D3 + 2By (Stab = {id, 61 }),
Dy — Dy + 2By| (Stab = {id, 6, }),
[—D; + Dy + 2By] (Stab = {id, 6,}),
2Dy + Dy + 2B (Stab = {id, 61626, }).

By Algorithm Bl and Algorithm B.2] we see that these divisor classes correspond
respectively to

X+7Z -Y 0 Y
4 | Y —X+Z 0 Y
XY, Z -— O O _Y_'_Z _X )
Y Y -X -Y-Z
X -z Z Y +Z
B =Y X+Z 0 0
XY.z-— 1 -Y X-Z 0 ’

—7Z A Y+7Z X

tBX7y7Z (the transpose of By y.z),

X+2Z —Z 0 Y + 7
o | Y x-Zz 0 0
XYz = 0 -Y+2Z X+2Z —Z

—27Z 0 Y X-Z

In conclusion, we have the following theorem:

Theorem 4.2. The Fermat quartic Fy over Q admits exactly sixteen equivalence
classes of linear determinantal representations over Q. They are represented by
t
Ax vz, Avaixz Bixivz, ‘Bixaivzs
Cxa+viz, Cvixz

Among them, the four equivalence classes represented by Ax 1y z, Ay1x 7 give the
only equivalence classes of symmetric linear determinantal representations.
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