Rate of approximation by logarithmic derivatives of polynomials whose zeros lie on a circle¹

M. A. Komarov²

Abstract We obtain an estimate for uniform approximation rate of bounded analytic in the unit disk functions by logarithmic derivatives of C-polynomials, i.e., polynomials, all of whose zeros lie on the unit circle C : |z| = 1.

Keywords logarithmic derivatives of polynomials, simple partial fractions, C-polynomials, uniform approximation

Mathematics Subject Classification 41A25, 41A20, 41A29, 30E10

1. Let C denote the unit circle |z| = 1 and D denote the unit disk |z| < 1. It's proved in [12] for any bounded analytic in D function f and in [11] for any analytic in D function, that there is a sequence of rational functions $S_n(z) = S_n(f; z)$ of the form

$$S_n(z) = \sum_{k=1}^{m_n} (z - z_{n,k})^{-1}, \qquad |z_{n,k}| = 1,$$

which converges to f(z) uniformly on every closed subset of D. Obviously, S_n is a logarithmic derivative of C-polynomial $(z - z_{n,1}) \dots (z - z_{n,m_n})$ (C-polynomials defined in abstract). Analogous problems with more general constraints on poles (for example, if $z_{n,k}$ belong to rectifiable Jordan curve) investigated in [6, 1, 2]. Approximation by sums $\sum_{k=1}^{n} (z - z_k)^{-1}$ with free poles studied in [3, 7, 5] (see also bibliography in [5]).

We study a rate of approximation of bounded analytic in D functions by logarithmic derivatives of C-polynomials on closed subsets of D.

Theorem. For any bounded analytic in D function f(z) there is a sequence of C-polynomials $P_N(z)$, $N \ge N_0$, such that deg $P_N(z) = N$ and

$$\left|\frac{P_N'(z)}{P_N(z)} - f(z)\right| < \frac{(a+\varepsilon)^{n+1}}{\varepsilon(1-a-\varepsilon)}(1+o(1)), \qquad n = [N/2], \qquad \text{as} \quad N \to \infty \tag{1}$$

in any disk $K_a = \{|z| \le a\}$ (a < 1) for every $\varepsilon \in (0, 1 - a)$.

Let $d_n(f, K_a)$ denote the error in best approximation to f on the disk K_a by logarithmic derivatives Q'/Q of polynomials Q of degree at most n with *free* zeros. It's interesting, that, generally speaking, the convergence $d_n(f, K_a)$ is also geometric (sf. (1)):

$$\limsup_{n \to \infty} \sqrt[n]{d_n(f, K_a)} \le a$$

This estimate follows from [7] (see also [3]), where the analog of polynomial Walsh's theorem was proved for the problem of approximation by such fractions Q'/Q.

2. To construct polynomials $P_N(z)$ we use the approach [10]. We need the next lemma, stated in [10] (for the case m = 0 see [8, p. 108]). Further $\overline{D} = D + C$.

e-mail: kami9@yandex.ru

¹This work supported by RFBR project 18-31-00312 mol_a.

²Department of Functional Analysis and Its Applications, Vladimir State University, Gor'kogo street 87, 600000 Vladimir, Russia

Lemma [10]. Let $Q(z) = a_0(z-z_1) \dots (z-z_q)$, $a_0 \neq 0$, be a polynomial of degree $q \geq 1$ and $Q^*(z) := z^q \overline{Q}(1/z) = \overline{a}_0(1-\overline{z}_1 z) \dots (1-\overline{z}_q z)$. If Q(z) zero free in \overline{D} , then $Q(z) + z^m Q^*(z)$ is C-polynomial for every $m = 0, 1, 2, \dots$, and $|Q^*(z)| \leq |Q(z)|$ in \overline{D} .

To prove this lemma it is sufficient to consider the equation

$$\Phi(z) = -a_0/\overline{a}_0, \qquad \Phi(z) := \frac{a_0}{\overline{a}_0} \frac{z^m Q^*(z)}{Q(z)} \equiv z^m \prod_{j=1}^q \frac{1 - \overline{z}_j z}{z - z_j}, \qquad |z_j| > 1.$$
(2)

Absolute values of all factors in last product are less, equal or more than 1 iff |z| < 1, |z| = 1 or |z| > 1, respectively, therefore all roots of equation (2) (and so, all zeros of $Q(z) + z^m Q^*(z)$) lie on C, and in the disk \overline{D} we have $|\Phi(z)| \leq 1$ and $|Q^*(z)| \leq |Q(z)|$.

Remark 1. If $Q(z) \equiv a_0 = \text{const} \neq 0$, then $Q^*(z) \equiv \overline{a}_0$, consequently, $Q(z) + z^m Q^*(z) \equiv a_0 + z^m \overline{a}_0$ is C-polynomial for m > 0 only.

Remark 2. Lemma is also true, if zeros of Q(z) (but not all of them) lie on C, because $\overline{z}_j = 1/z_j$ and $|1 - \overline{z}_j z|/|z - z_j| \equiv 1$ as $|z_j| = 1$. But if Q(z) is C-polynomial, then $Q^*(z) \equiv tQ(z), t = \overline{Q(0)}/a_0$, and we need again to assume m > 0, if 1 + t = 0.

3. Proof of the theorem. Set $g(z) = \exp\left(\int_0^z f(\zeta) d\zeta\right)$,

$$g(z) = s_n(z) + R_n(z),$$
 $s_n(z) = 1 + \sum_{k=1}^n g_k z^k,$ $R_n(z) = \sum_{k=n+1}^\infty g_k z^k.$

Derivative $g' \equiv gf$ is bounded and analytic in D. In particular, g' belongs to the Hardy space $H^1(D)$, hence the series $\sum |g_k|$ converges [4, Theorem 15].

Function $\varphi(x,y) = \operatorname{Re} \int_0^z f(\zeta) d\zeta$ is bounded in D, so $\varphi > -\infty$ and $\inf_D |g(z)| = \inf_D \exp \varphi(x,y) = M_0 > 0$. Choose $n_0 \in \mathbb{N}$, such that $\sum_{n+1}^\infty |g_k| \le M_0 - M_0/2$ as $n \ge n_0$. Hence polynomials $s_n(z)$ are zero free in \overline{D} as $n \ge n_0$.

Further $N \ge 2n_0$ and $n := [N/2] \ge n_0$. Set $p(z) = s_n^*(z) = z^q \overline{s}_n(1/z)$, where $q = \deg s_n(z), \ 0 \le q \le n$. By lemma and remark 1 we have $|p(z)| \le |s_n(z)|$ in \overline{D} , and sums

$$P(z) = P_{q+m}(z) := s_n(z) + z^m p(z)$$
 as $m = 1, 2, ...$

are C-polynomials. Rewrite P as $P(z) \equiv g(z) + z^m p(z) - R_n(z)$. We now have

$$P'(z) = g(z)f(z) + mz^{m-1}p(z) + z^m p'(z) - R'_n(z),$$

$$\frac{P'(z)}{P(z)} - f(z) = \frac{z^{m-1}(m - zf(z))p(z) + z^m p'(z) - R'_n(z) + f(z)R_n(z)}{P(z)}.$$
(3)

Denote $M_1 = \max\{1, |g_1|, \dots, |g_n|\}$. Since $|g_k| < M_0$ (as $k \ge n_0 + 1$), we have

$$|p(z)| \le |s_n(z)| < M_1/(1-a), \qquad |R_n(z)| < M_0 a^{n+1}/(1-a) \qquad \text{as} \quad |z| \le a,$$
 (4)

$$|P(z)| \ge |g(z)| - |z^m p(z) - R_n(z)| > M_0 - (M_1 a^m + M_0 a^{n+1})/(1-a) \quad \text{as} \quad |z| \le a.$$
(5)

If |z| < r < 1 and function F is analytic in D, then

$$2\pi |F'(z)| = \left| \int_{|\zeta|=r} \frac{F(\zeta)d\zeta}{(\zeta-z)^2} \right| \le \max_{|\zeta|=r} |F(\zeta)| \int_{|\zeta|=r} \frac{|d\zeta|}{|\zeta-z|^2} = \max_{|\zeta|=r} |F(\zeta)| \frac{2\pi r}{r^2 - |z|^2}$$

(we apply Poisson's integral), and hence if $r = a + \varepsilon < 1$, then

$$|F'(z)| < \varepsilon^{-1} \max_{|\zeta|=a+\varepsilon} |F(\zeta)|$$
 as $|z| \le a$.

Thus, by this and (4) we have

$$|p'(z)| < \frac{M_1}{\varepsilon(1-a-\varepsilon)}, \qquad |R'_n(z)| < \frac{M_0(a+\varepsilon)^{n+1}}{\varepsilon(1-a-\varepsilon)} \qquad \text{as} \quad |z| \le a.$$
(6)

We put $m = N - q \ge n$ and obtain (1) from (3)—(6), and theorem follows.

Remark 3. $P'_N(z)/P_N(z) - f(z) = O(z^l)$ as $l \ge n - 1$ (see (3)).

Remark 4. It follows from $g' \in H^1(D)$, that g(z) continuous in \overline{D} and absolutely continuous on C [9, Ch.II, §5(5.7)]. In particular, $g(e^{i\theta})$ has bounded variation and $|g_k| = O(1/k)$, so we can to write O(1/n) instead of 1 + o(1) in (1). If g is a zero free in \overline{D} polynomial of degree $q \ge 0$ and f = g'/g, then $R_n(z) \equiv 0$ as $n \ge q$, and approximation rate is higher. For example, if $f(z) \equiv 0$, then $P_N(z) = 1 + z^N$ and $\sup_{K_a} |P'_N/P_N - f| = Na^{N-1}/(1-a^N)$.

References

- Chui, C.K.: On approximation in the Bers spaces. Proc. Amer. Math. Soc. 40, 438–442 (1973)
- [2] Chui, C.K., Shen, X.-C.: Order of approximation by electrostatic fields due to electrons. Constr. Approx. 1(1), 121–135 (1985)
- [3] Danchenko, V.I., Danchenko, D.Y.: Approximation by simplest fractions. Math. Notes 70(4), 502–507 (2001)
- [4] Hardy, G.H., Littlewood, J.E.: Some new properties of Fourier constants. Math. Ann. 97, 159–209 (1927)
- [5] Komarov, M.A.: A criterion for the best uniform approximation by simple partial fractions in terms of alternance. II. Izv. Math. 81(3), 568–591 (2017)
- [6] Korevaar, J.: Asymptotically neutral distributions of electrons and polynomial approximation. Ann. of Math. (2) 80(2), 403–410 (1964)
- [7] Kosukhin, O.N.: Approximation properties of the most simple fractions. Moscow Univ. Math. Bull. 56(4), 36–40 (2001)
- [8] Polya, G., Szegő, G.: Problems and Theorems in Analysis, Vol. I. Springer, Berlin-Heidelberg-New York (1976)
- [9] Priwalow, I.I.: Randeigenschaften analytischer Funktionen, 2. Aufl., 25, VEB Deutscher Verlag der Wissenschaften, Berlin (1956)
- [10] Rubinstein, Z.: On the approximation by C-polynomials. Bull. Amer. Math. Soc. 74, 1091–1093 (1968)
- [11] Rubinstein, Z., Saff, E.B.: Bounded approximation by polynomials whose zeros lie on a circle. Proc. Amer. Math. Soc. 39, 482–486 (1971)
- [12] Thompson, M.: Approximation of bounded analytic functions on the disc. Nieuw Arch. Wisk. (3) 15, 49–54 (1967)