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Rate of approximation by logarithmic derivatives of polynomials
whose zeros lie on a circle1

M. A. Komarov2

Abstract We obtain an estimate for uniform approximation rate of bounded analytic in
the unit disk functions by logarithmic derivatives of C-polynomials, i.e., polynomials, all
of whose zeros lie on the unit circle C : |z| = 1.

Keywords logarithmic derivatives of polynomials, simple partial fractions,
C-polynomials, uniform approximation

Mathematics Subject Classification 41A25, 41A20, 41A29, 30E10

1. Let C denote the unit circle |z| = 1 and D denote the unit disk |z| < 1. It’s
proved in [12] for any bounded analytic in D function f and in [11] for any analytic in D
function, that there is a sequence of rational functions Sn(z) = Sn(f ; z) of the form

Sn(z) =
mn
∑

k=1

(z − zn,k)
−1, |zn,k| = 1,

which converges to f(z) uniformly on every closed subset of D. Obviously, Sn is a log-
arithmic derivative of C-polynomial (z − zn,1) . . . (z − zn,mn

) (C-polynomials defined in
abstract). Analogous problems with more general constraints on poles (for example, if
zn,k belong to rectifiable Jordan curve) investigated in [6, 1, 2]. Approximation by sums
∑n

k=1
(z − zk)

−1 with free poles studied in [3, 7, 5] (see also bibliography in [5]).
We study a rate of approximation of bounded analytic in D functions by logarithmic

derivatives of C-polynomials on closed subsets of D.

Theorem. For any bounded analytic in D function f(z) there is a sequence of C-poly-

nomials PN(z), N ≥ N0, such that degPN(z) = N and
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P ′
N(z)

PN(z)
− f(z)

∣

∣

∣

∣

<
(a+ ε)n+1

ε(1− a− ε)
(1 + o(1)), n = [N/2], as N → ∞ (1)

in any disk Ka = {|z| ≤ a} (a < 1) for every ε ∈ (0, 1− a).

Let dn(f,Ka) denote the error in best approximation to f on the diskKa by logarithmic
derivatives Q′/Q of polynomials Q of degree at most n with free zeros. It’s interesting,
that, generally speaking, the convergence dn(f,Ka) is also geometric (sf. (1)):

lim sup
n→∞

n

√

dn(f,Ka) ≤ a.

This estimate follows from [7] (see also [3]), where the analog of polynomial Walsh’s
theorem was proved for the problem of approximation by such fractions Q′/Q.

2. To construct polynomials PN(z) we use the approach [10]. We need the next
lemma, stated in [10] (for the case m = 0 see [8, p. 108]). Further D = D + C.
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Lemma [10]. Let Q(z) = a0(z−z1) . . . (z−zq), a0 6= 0, be a polynomial of degree q ≥ 1 and

Q∗(z) := zqQ(1/z) = a0(1−z1z) . . . (1−zqz). If Q(z) zero free in D, then Q(z)+zmQ∗(z)
is C-polynomial for every m = 0, 1, 2, . . . , and |Q∗(z)| ≤ |Q(z)| in D.

To prove this lemma it is sufficient to consider the equation

Φ(z) = −a0/a0, Φ(z) :=
a0
a0

zmQ∗(z)

Q(z)
≡ zm

q
∏

j=1

1− zjz

z − zj
, |zj| > 1. (2)

Absolute values of all factors in last product are less, equal or more than 1 iff |z| < 1,
|z| = 1 or |z| > 1, respectively, therefore all roots of equation (2) (and so, all zeros of
Q(z) + zmQ∗(z)) lie on C, and in the disk D we have |Φ(z)| ≤ 1 and |Q∗(z)| ≤ |Q(z)|.

Remark 1. If Q(z) ≡ a0 = const 6= 0, then Q∗(z) ≡ a0, consequently, Q(z) + zmQ∗(z) ≡
a0 + zma0 is C-polynomial for m > 0 only.

Remark 2. Lemma is also true, if zeros of Q(z) (but not all of them) lie on C, because
zj = 1/zj and |1 − zjz|/|z − zj | ≡ 1 as |zj| = 1. But if Q(z) is C-polynomial, then

Q∗(z) ≡ tQ(z), t = Q(0)/a0, and we need again to assume m > 0, if 1 + t = 0.

3. Proof of the theorem. Set g(z) = exp
(∫ z

0
f(ζ)dζ

)

,

g(z) = sn(z) +Rn(z), sn(z) = 1 +

n
∑

k=1

gkz
k, Rn(z) =

∞
∑

k=n+1

gkz
k.

Derivative g′ ≡ gf is bounded and analytic in D. In particular, g′ belongs to the Hardy
space H1(D), hence the series

∑

|gk| converges [4, Theorem15].
Function ϕ(x, y) = Re

∫ z

0
f(ζ)dζ is bounded in D, so ϕ > −∞ and infD |g(z)| =

infD expϕ(x, y) = M0 > 0. Choose n0 ∈ N, such that
∑∞

n+1
|gk| ≤ M0 −M0/2 as n ≥ n0.

Hence polynomials sn(z) are zero free in D as n ≥ n0.
Further N ≥ 2n0 and n := [N/2] ≥ n0. Set p(z) = s∗n(z) = zqsn(1/z), where

q = deg sn(z), 0 ≤ q ≤ n. By lemma and remark 1 we have |p(z)| ≤ |sn(z)| in D, and
sums

P (z) = Pq+m(z) := sn(z) + zmp(z) as m = 1, 2, . . .

are C-polynomials. Rewrite P as P (z) ≡ g(z) + zmp(z)−Rn(z). We now have

P ′(z) = g(z)f(z) +mzm−1p(z) + zmp′(z)− R′
n(z),

P ′(z)

P (z)
− f(z) =

zm−1(m− zf(z))p(z) + zmp′(z)− R′
n(z) + f(z)Rn(z)

P (z)
. (3)

Denote M1 = max{1, |g1|, . . . , |gn|}. Since |gk| < M0 (as k ≥ n0 + 1), we have

|p(z)| ≤ |sn(z)| < M1/(1− a), |Rn(z)| < M0a
n+1/(1− a) as |z| ≤ a, (4)

|P (z)| ≥ |g(z)|−|zmp(z)−Rn(z)| > M0− (M1a
m+M0a

n+1)/(1−a) as |z| ≤ a. (5)

If |z| < r < 1 and function F is analytic in D, then

2π|F ′(z)| =

∣

∣

∣

∣

∫

|ζ|=r

F (ζ)dζ

(ζ − z)2

∣

∣

∣

∣

≤ max
|ζ|=r

|F (ζ)|

∫

|ζ|=r

|dζ |

|ζ − z|2
= max

|ζ|=r
|F (ζ)|

2πr

r2 − |z|2

2



(we apply Poisson’s integral), and hence if r = a + ε < 1, then

|F ′(z)| < ε−1max|ζ|=a+ε |F (ζ)| as |z| ≤ a.

Thus, by this and (4) we have

|p′(z)| <
M1

ε(1− a− ε)
, |R′

n(z)| <
M0(a + ε)n+1

ε(1− a− ε)
as |z| ≤ a. (6)

We put m = N − q ≥ n and obtain (1) from (3)—(6), and theorem follows.

Remark 3. P ′
N(z)/PN (z)− f(z) = O(zl) as l ≥ n− 1 (see (3)).

Remark 4. It follows from g′ ∈ H1(D), that g(z) continuous in D and absolutely continu-
ous on C [9, Ch.II, §5(5.7)]. In particular, g(eiθ) has bounded variation and |gk| = O(1/k),
so we can to write O(1/n) instead of 1+ o(1) in (1). If g is a zero free in D polynomial of
degree q ≥ 0 and f = g′/g, then Rn(z) ≡ 0 as n ≥ q, and approximation rate is higher.
For example, if f(z) ≡ 0, then PN(z) = 1+zN and supKa

|P ′
N/PN −f | = NaN−1/(1−aN).
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