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Rate of approximation by logarithmic derivatives of polynomials
whose zeros lie on a circlé]

M. A. Komarov@

Abstract We obtain an estimate for uniform approximation rate of bounded analytic in
the unit disk functions by logarithmic derivatives of C'-polynomials, i.e., polynomials, all
of whose zeros lie on the unit circle C': |z| = 1.
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1. Let C denote the unit circle |z| = 1 and D denote the unit disk |z| < 1. It’s
proved in [12] for any bounded analytic in D function f and in [I1] for any analytic in D
function, that there is a sequence of rational functions S, (z) = S, (f; z) of the form

Mmn

Su(2) = (2= z0p) 7, |zn k] = 1,

k=1

which converges to f(z) uniformly on every closed subset of D. Obviously, S, is a log-
arithmic derivative of C-polynomial (2 — 2,,1)...(2 — 2pm,) (C-polynomials defined in
abstract). Analogous problems with more general constraints on poles (for example, if
Zn.r belong to rectifiable Jordan curve) investigated in [0, [I 2]. Approximation by sums
Son_i(z — 2)7! with free poles studied in [3, [7, 5] (see also bibliography in [5]).

We study a rate of approximation of bounded analytic in D functions by logarithmic
derivatives of C-polynomials on closed subsets of D.

Theorem. For any bounded analytic in D function f(z) there is a sequence of C-poly-
nomials Py(z), N > Ny, such that deg Py(z) = N and

Py(z) . (a+e)"!
Puis) )‘ R

(14 0(1)), n = [N/2], as N —o0 (1)

in any disk K, = {|z| < a} (a <1) for every e € (0,1 — a).

Let d,,(f, K,) denote the error in best approximation to f on the disk K, by logarithmic
derivatives @)'/Q of polynomials @) of degree at most n with free zeros. It’s interesting,
that, generally speaking, the convergence d,,(f, K,) is also geometric (sf. ()):

limsup v/d,(f, K,) < a.

n—oo

This estimate follows from [7] (see also [3]), where the analog of polynomial Walsh’s
theorem was proved for the problem of approximation by such fractions Q'/Q.

2. To construct polynomials Py(z) we use the approach [10]. We need the next
lemma, stated in [I0] (for the case m = 0 see [8, p.108]). Further D = D + C.
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Lemma [10]. Let Q(z) = ag(z—21) ... (2—2,), a0 # 0, be a polynomial of degree ¢ > 1 and
Q*(2) = 29Q(1/z) = @(1-712) ... (1=%42). If Q(2) zero free in D, then Q(2)+2"Q*(2)
is C-polynomial for every m =0,1,2,..., and |Q*(2)| < |Q(z)| in D.

To prove this lemma it is sufficient to consider the equation
ao zmQ

O(2) = —ag/qy,  B(z) = 2 =2 H N R )

Absolute values of all factors in last product are less, equal or more than 1 iff |z| < 1,
|z| = 1 or |z| > 1, respectively, therefore all roots of equation () (and so, all zeros of
Q(z) + 2™Q*(2)) lie on C, and in the disk D we have |®(2)| < 1 and |Q*(2)| < |Q(2)].

Remark 1. If Q(z) = ap = const # 0, then Q*(z) = ap, consequently, Q(z) + 2" Q*(z)
ap + 2™ay is C-polynomial for m > 0 only.

Remark 2. Lemma is also true, if zeros of Q(z) (but not all of them) lie on C, because
Z; = 1/z; and |1 — Z;2|/|z — z;| = 1 as |z;] = 1. But if Q(z) is C-polynomial, then
Q*(2) =tQ(z), t = Q(0)/ay, and we need again to assume m > 0, if 1 +¢ = 0.

3. Proof of the theorem. Set g(z) = exp (foz f(()d(),

9(2) = sn(2) + Ru(2), sp(2) =14+ ngzk, R,.(2) = Z Rzt
k=1

k=n+1

Derivative ¢’ = gf is bounded and analytic in D. In particular, ¢’ belongs to the Hardy
space H'(D), hence the series Y |gx| converges [4, Theorem 15].

Function ¢(z,y) = Re [} f(¢)d( is bounded in D, so ¢ > —oo and infp|g(z)| =
infp exp p(z,y) = My > 0. Choose ng € N, such that % |gx| < My — My/2 as n > ny.
Hence polynomials s, (z) are zero free in D as n > ny.

Further N > 2ny and n := [N/2] > ng. Set p(z) = si(z) = 295,(1/z), where
q = degs,(z), 0 < ¢ < n. By lemma and remark 1 we have |p(z)| < |s,(2)| in D, and
sums

P(2) = Ppym(2) i= sn(2) + 2"p(2) as m=12 ...

are C-polynomials. Rewrite P as P(z) = g(z) + 2™p(z) — R.(2). We now have

P'(z) = g(2)f(2) +m2"""p(2) + 2" (2) = R, (2),

P'(z) gy _ A m = 2f())p(2) + 270 (2) = Ri(2) + f(2) Ra(2)
- 1) b B

Denote M; = max{1,|gi1|,...,|ga|}. Since |gx| < My (as k > ng + 1), we have
p(2)] < [su(2)] < Mi/(1—a),  |Ra(2)| < Moa™/(1—a) as |2[<a,  (4)

[P(2)] = |g(2)] = [2"p(2) = Ru(2)| > Mo— (Mia™ + Mpa™ ") /(1—a)  as [z[ <a. (5)

If |z| < r <1 and function F is analytic in D, then
/ F(Qdc | _ |d¢] 2mr
I¢|=r (C—2)?%

ax |F'(Q)] :maX\F(C)\TW

o2m| F’ =
7T| (Z>| |C| Cler |C — Z|2 icler r




(we apply Poisson’s integral), and hence if r = a 4+ ¢ < 1, then

|F'(2)] < &' max|¢j—ase | F(Q)] as |z| <a.
Thus, by this and ({]) we have
Ml Mg(a+5)”+1
/ < —7 R < —F < a. 6
PEl< e RGOS T s E<e @

We put m = N — ¢ > n and obtain (1) from B)—(@), and theorem follows.

Remark 3. Py(2)/Pn(2) — f(2) = O(2!) as Il > n — 1 (see [@)).

Remark 4. Tt follows from ¢’ € H'(D), that g(z) continuous in D and absolutely continu-
ous on C [0, Ch.II, §5(5.7)]. In particular, g(e??) has bounded variation and |gi| = O(1/k),
so we can to write O(1/n) instead of 1+0(1) in (1). If g is a zero free in D polynomial of

degree ¢ > 0 and f = ¢'/g, then R,(z) = 0 as n > ¢, and approximation rate is higher.
For example, if f(z) = 0, then Py(z) = 1+2" and supy, |Py/Pn—f| = Na¥1/(1—a").
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