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SHEAF QUANTIZATION OF LEGENDRIAN ISOTOPY

PENG ZHOU

Abstract. Let {Λ∞

t } be an isotopy of Legendrians (possibly singular) in a
unit cosphere bundle S∗M . Let Ct = Sh(M,Λ∞

t ) be the differential graded
(dg) derived category of constructible sheaves on M with singular support at
infinity contained in Λ∞

t . We prove that if the isotopy of Legendrians embeds
into an isotopy of Weinstein hypersurfaces, then the categories Ct are invariant.

Let M be a smooth compact manifold of real dimension m, T ∗M the cotangent
bundle, and

Ṫ ∗M = T ∗M − T ∗
MM, T∞M := Ṫ ∗M/R>0

be the punctured cotangent bundle and contact cosphere bundle at infinity. Let
Λ∞ ⊂ T∞M be a (singular) Legendrian, by which we mean a Whitney stratifiable
subspace whose top dimensional strata are smooth Legendrian, and

Λ̇ = R>0 · Λ
∞, Λ = Λ̇ ∪ T ∗

MM

be two associated conical Lagrangians. We denote by Sh(M,Λ∞) the the dg derived
category of constructible sheaves on M where objects are sheaves F with singular
support at infinity SS∞(F ) ⊂ Λ∞, i.e. SS(F ) ⊂ Λ. 1

Definition 0.1. Let I ⊂ R be an open interval, (C, ξ) be a contact manifold.
An isotopy of Legendrian in C over I is a Whitney stratifiable closed subset
LI ⊂ C × I, such that Lt := LI ∩ C × {t} is a (singular) Legendrian for all t ∈ I.
We also denote an isotopy as {Lt}t∈I or simply {Lt}.

Remark 0.2. If we choose a contact form α on (C, ξ), we may form a new contact
manifold (C × T ∗I, α + τdt), and lift LI to a Legendrian in C × T ∗I. The two
description of isotopy are equivalent.

We are interested in the following question:
Main Question: Given an isotopy of Legendrians {Λ∞

t } in T
∞M , when is it ’non-

characteristic’ [N3], that is, the sheaf category Sh(M,Λ∞
t ) remains invariant? Or

more concretely, if we deform Λ∞, can we deform the sheaf F such that SS∞(F )
remains in Λ∞?

Before we state our main result, we first review two important results in this
direction. The first one is due to Guillermou-Kashiwara-Schapira, which quantizes
isotopy of the entire contact manifold T∞M .

Theorem 0.3 ([GKS] Theorem 3.7, Proposition 3.12). Let I be an open interval
containing 0, and ϕ : I × T∞M → T∞M be a smooth map with ϕt = ϕ(t,−).

Date: October 31, 2018.
This work is supported by an IHES Simons Postdoctoral Fellowship as part of the Simons

Collaboration on HMS. .
1One can work with either ’large’, or ’traditional’, or ’wrapped’ constructible sheaves [N4].

Here for simplicity, we work with traditional constructible sheaf.
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Assume ϕ satisfies (1) ϕ0 = id, and (2) ϕt are contactomorphisms for all t ∈ I.
Then for each t ∈ I, we have equivalences of category

ϕ̂t : Sh(M)
∼
−→ Sh(M), such that SS∞(ϕ̂tF ) = ϕt(SS

∞(F )).

One immediately get the following corollary.

Corollary 0.4. If the isotopy of Legendrian {Λ∞
t }t∈I can be embedded into an

isotopy {ϕt}t∈I : S∗M → S∗M of the contact manifold, that is, Λ∞
t = ϕt(Λ

∞
0 ).

Then we have equivalence of categories

ϕ̂t : Sh(M,Λ∞
0 )

∼
−→ Sh(M,Λ∞

t ).

Remark 0.5. Any isotopy of smooth Legendrian can be extended to a contact
isotopy of the ambient manifold. If the Legendrian is singular, and if the home-
omorphism type of the Legendrian changes during the isotopy, then it cannot be
extended to a contact isotopy.

Figure 1. An example of Legendrian isotopy (shown as front
projection from S∗R2 → R2, with ‘hairs’ indicating co-direction)
which cannot be embedded in a contact isotopy.

The second result is due to Nadler [N3], where he proves that any Legendrian
singularity admits a non-characteristic deformation to an arboreal singularity (in-
troduced in [N2]). In [N3], Nadler proposed the following geometric condition on
Legendrian isotopies.

Definition 0.6 (Displaceable Legendrian). Let (T∞M, ξ = kerα,Rα) be the co-
sphere bundle with a choice of Reeb vector field Rα, and let Rt

α : T∞M → T∞M be
the Reeb flow for time t.2 Let ǫ > 0. A Legendrian Λ∞ ⊂ T∞M is displaceable

for Rα if there exists a constant ǫ > 0, such that

Λ∞ ∩Rs
α(Λ

∞) = ∅, ∀0 < |s| < ǫ. (1)

We say a family of Legendrian {Λ∞
t } is uniformly displaceable for Rα, if

each Λ∞
t is displaceable for the same constant ǫ.

2Throughout the paper, we will use the notation Xt for the flow generated by a vector field X

for time t.
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yesno

Figure 2. The deformation to the right is uniformly displaceable,
and the one to the left is not, due to the appearance of new short
Reeb chord (marked in red). (c.f. [N3], Example 1.5)

It turns out just having the uniform displaceablity for Legendrian is not enough,
one need to impose some control on the topology of the Legendrians as well.

Example 0.7. Let C = J1R, α = dz−ydx,Rα = ∂z. For t ∈ [0, 1), define a family
of Legendrians

Lt = {(x, 0, 0) : x ∈ R} ∪ {(x, x2 + t, x3/3 + tx) : x ∈ R}

there are no Reeb chords ending on Lt even at t = 0. However the sheaf category
Ct associated to Lt (after identifying J1R with S∗R2 with matching contact forms)
jumps as t→ 0+, since the topology of the Legendrian changed.

Figure 3. The deformation of Legendrian L in J1R ≃ T ∗R × R,
draw as the Lagrangian projection to T ∗R. Note there is no Reeb
chord ending on L throughout the deformation.

0.1. Definitions and Result. To state our main result, we need some definitions.
Recall that a hypersurface in a contact manifold is convex [Gi] if it admits a trans-
verse contact vector field. We want to consider nested tubular neighborhoods of
Legendrians with convex boundaries.

Definition 0.8. Let L be a singular Legendrian in (C, ξ). A convex tubular

neighborhood for L is the following data (U, ρ,X),
(1) U =: U(L) is an open tubular neighborhood of L,
(2) ρ : U → [0, 1) is a C1-function,
(3) X is a smooth contact vector field on U .
Such that if we define

Ur(L) = {x ∈ U : ρ(x) < r}, ∀0 < r < 1

then, ∩rUr(L) = L ; ∂Ur(L) are C1-smooth and C1-diffeomorphic; X is transverse
to all ∂Ur(L); and dρ(X) > cρ for some constant c > 0.

Let {Lt} be an isotopy of Legendrian in (C, ξ). An isotopy of convex tubular

neighborhoods {(U, ρ,X)t} of {Lt} is a one-parameter family of such data with
uniform bound on constant.
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The notion of Weinstein hypersurface is introduced in [Av]. We recall its defini-
tion following [Eli, Section 2].

Definition 0.9. (1) A codimension-1 submanifold H in a contact manifold
(C, ξ) with boundary ∂H is called Weinstein hypersurface if there exists
a contact form α such that (H, λ := α|H) is compatible with a Weinstein
structure on H, i.e. dλ is symplectic and the Liouville vector field X on
H dual to the Liouville form λ is outward transverse to ∂H and admits a
Lyapunov function φ : H → R.

We denote a Weinstein hypersurface (including a specification of com-
patible Weinstein structure) by (H, λ,X, φ).

(2) If L is the skeleton of (H, λ,X, φ), we say H is a Weinstein hypersurface

thickening of L.
(3) An isotopy of Weinstein hypersurface is a smooth family of {(H, λ,X, φ)t}

where the choice of contact 1-form αt has smooth and bounded variation
with t.

We can show that if the Legendrian admits a Weinstein hypersurface thickening
and is uniformly displaceable, then it admits a canonical tube thickening (Proposi-
tion 1.10).

Main Theorem (Theorem 3.1). Let {Λ∞
t }t∈I be an isotopy of Legendrian in

T∞M , such that Λ∞
t is constant for t outside a closed interval [a, b] ⊂ I. If {Λ∞

t }
is uniformly displaceable for some Reeb vector field Rα on T∞M , and

(1) there exists an isotopy of convex tubular neighborhoods {(U(Λ∞
t ), ρt, Xt)}

of {Λ∞
t }

(2) or, there exists an isotopy of Weinstein hypersurface thickening {(H,λ,X, φ)t}
of {Λ∞

t },

then the sheaf categories Sh(M,Λ∞
t ) remain invariant.

Remark 0.10. The notion of convex tubular neighborhood is related to the ‘frozen
boundary’ for a Liouville sector [GPS], and the Weinstein hypersurface is related to
‘stop’ in partially wrapped Fukaya category [Syl]. See [Eli, Section 2,3] for related
work on Weinstein hypersurface and Weinstein pair.

0.2. Idea of the Proof. We first give an heuristic derivation for why we might
expect such a theorem, though we do not follow this approach literally. See the
previous section for notationsXs, Ur(Ls), · · · . The main idea is to use the retracting
contact flow −Xs toward Λ∞

s , properly cut-off outside Uδ(Ls) for some 1/2 < δ < 1,
to deform and squeeze a nearby Legendrian skeleton Λ∞

t ⊂ Uδ(Λ
∞
s ) into Λ∞

s in the
limit. We consider the sheaf quantization of the retracting flow for time T > 0,

X−T
s : T∞M

∼
−→ T∞M  X̂−T

s : Sh(M)
∼
−→ Sh(M).

Then we define the projection functors as the limit of the flow

Πs : Sh(M,Uδ(Λ
∞
s ))→ Sh(M,Λ∞

s ), Πs(F ) := lim
T→∞

X̂−T
s (Ft), (2)

where Sh(M,Uδ(Λ
∞
s )) means constructible sheaves with SS∞(F ) ⊂ Uδ(Λ

∞
s ). The

limit is not inductive, or projective limit, and is defined (in the style of a nearby
cycle functor) in Section 2.6 . Then, one only need to show that for any t, s closed
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enough (contained in each other’s tubular neighborhoods Uδ), we have a pair of
inverse functors

Πs|Sh(M,Λ∞

t ) : Sh(M,Λ∞
t )

∼
←→ Sh(M,Λ∞

s ) : Πt|Sh(M,Λ∞

s ).

To see they are inverses, we consider a constructible sheaf Ft ∈ Sh(M,Λ∞
t ) as

functors Hom(−, Ft), and test on ’probe’ sheaves P such that

SS∞(P ) ∩ [Uδ(Λ
∞
t ) ∪ Uδ(Λ

∞
s )] = ∅ (3)

then Hom(P, X̂−T1

t X̂−T2

s Ft) is independent of T1, T2. One way to construct such
probe uses wrapped constructible sheaves (see [N4] for definition), we have [N4,
Theorem 1.6]

Sh(M,Λ∞
t )

∼
−→ Funex(Shw(M,Λ∞

t )op,PerfC).

To achieve (3), we use small negative Reeb flow to displace P without changing the
homs (Proposition 2.9). We get, for all P ∈ Shw(M,Λ∞

t ), Ft ∈ Sh(M,Λ∞
t )

Hom(P, Ft) ≃ Hom(R̂−ǫP, Ft) ≃ Hom(R̂−ǫP,Πs(Ft))

≃ Hom(R̂−ǫP,ΠtΠs(Ft)) ≃ Hom(P,ΠtΠs(Ft)))

Hence Πt,Πs are inverses.

Our actual approach is as following: let Λ∞
I ⊂ T∞(M × I) be an isotopy of

Legendrians and let Ft ∈ Sh(M,Λ∞
t ). We will extend Ft to a sheaf FI ⊂ Sh(M ×

I,Λ∞
I ) such that FI |t = Ft.
One first show that such extension is unique (if exists), this is equivalent to show

that restriction functor FI 7→ Ft is fully-faithful, i.e. (Proposition 3.2)

Hom(FI , GI)
∼
−→ Hom(Ft, Gt), ∀FI , GI ∈ Sh(M × I,Λ

∞
I ).

One need to show that Hom(FI , GI)(M×(a, b)) is independent of the size of the in-
terval, hence one can interpolate from (a, b) = I to infinitesimal small neighborhood
around t. The key technical point is to use the uniform displaceability condition
to perturb GI slice-wise by positive Reeb flow for time s, GI → K !

sGI , to separate
SS∞(FI) and SS

∞(K !
sGI).

One then show that such extension exists locally, i.e., given Ft, we may find a
small neighborhood (t − δ, t+ δ), where δ is uniform, to extend Ft on M × {t} to
M × (t− δ, t+ δ). This is done using limit of the retracting flow, as done in defining
Πs in (2). For general contact flow, there is no way to take limit. Here we can take
limit since the singular support of the sheaf SS∞(Ft) converges under −Xs to the
sink of the flow Λ∞

s . We thus get the limiting sheaf with desired bound on singular
support.

Finally, we use uniqueness of extension to patch together local extensions, and
get the global extension result. (c.f. Lemma 1.13 in [GKS]).

Remark 0.11. We thank V. Shende for informing us the up-coming work of
Nadler-Shende about quantization of exact symplectic category, which include a
result on invariance of microlocal sheaf category Sh(W ) for Weinstein manifold
(W,λ) [Sh] under Weinstein homotopy.
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1. Convex Tubular Neighborhoods and Weinstein Hypersurfaces

We give basic definition and construction for Weinstein hypersurface and convex
tubular neighborhood. We will work with general contact manifold (C, ξ) instead
of S∗M so that the results may generalize to other Weinstein domain.

1.1. Basic of Contact Geometry. We recall the definition of co-oriented contact
manifold as follow. Let C be a 2n+ 1 dimensional manifold, ξ ⊂ TC be a rank 2n
sub-bundle, such that there exists a one-form (contact one-form) α (up to multi-
plication of non-negative function) satisfying ξ = kerα and α ∧ (dα)n 6= 0. If we
fix such a α, we have a Reeb vector field Rα given by

ιRα
α = 1, ιRα

dα = 0.

We note that different choices of α will lead to different choices of Rα.
A contact vector field X is one that perserves ξ.

Definition 1.1. Given a smooth function H : C → R, the contact Hamiltonian

vector field XH is uniquely determined by
{
〈XH , α〉 = H

ιXH
dα = 〈H,R〉α− dH

(4)

Reeb vector field is a speical case of XH for H = 1.

Proposition 1.2 ([Ge] Theorem 2.3.1). With a fixed choice of contact form α there
is a one-to-one correspondence between contact vector field X and smooth functions
H : C → R. The correspondence is given by

X 7→ H = 〈α,X〉, H 7→ XH .

Unlike symplectic Hamiltonian vector field, XH does not preserve level set of H .

Lemma 1.3.

〈XH , dH〉 = H〈R, dH〉

In particular, XH preserves the zero set of H.

Proof. Since XH = HR+X
‖
H , where X

‖
H ∈ ker(α), we have

〈XH −HR, dH〉 = 〈XH −HR, dH − α〉 = 〈XH −HR,−ιXH
(dα)〉

= dα(XH −HR,XH) = 0

where we have used R ∈ ker(dα). �

Example 1.4. Let M be a smooth manifold, and T ∗M the cotangent bundle with
canonical Liouville one-form λ and symplectic two-form ω = dλ. If we put local
Darboux coordinate (q, p) = (q1, · · · , qm; p1, · · · , pm) on T ∗M where m = dimRM ,
then λ =

∑m
i=1 pidqi and ω =

∑
i dpi ∧ dqi, and we will suppress the indices and
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summation to write λ = pdq, ω = dpdq. Also define Ṫ ∗M = T ∗M\T ∗
MM , T∞M =

Ṫ ∗M/R>0. The Liouville vector field for λ is defined by defined by ιVλ
ω = λ, and

here it is given by Vλ = p∂p. On T (Ṫ ∗M), the symplectic orthogonal to the Liouville
vector field defines a distribution

ξ̃ = {(q, p; vq, vp) ∈ T (Ṫ
∗M) : ω((vq, vp), Vλ) = 0},

which project to a canonical contact distribution ξ on T∞M . Let g be any Rie-
maninan metric on M , then T ∗M has induced norm. Let S∗M = {(q, p) ∈ T ∗M |
|p| = 1} be the unit cosphere bundle with contact form α = λ|S∗M , then the contact
distribution can also be written as ξ = ker(α).

Define the symplectization of (C, ξ = kerα) by

S := C × Ru, λ = euα, ωS = d(euα).

We have projection along Ru, and inclusion of zero section as:

πS : S → C, ιC : C ≃ C × {0} →֒ S.

Different choice of α gives the same S up to fiber preserving symplectomorphism,
that identifies the ’zero-section’ Im(ιC).

A Hamiltonian function H : C → R can be extended to a homoegeneous degree

one function H̃ : S → R by H̃ = euH . Then the symplectic Hamiltonian vector

field ξH̃ , given by ωS(−, ξH̃) = dH̃(−), preserves the fiber of πS and descend to
XH .

1.2. Weinstein Hypersurface. Let (H, λ,X, φ) be a Weinstein hypersurface in
(C, ξ = ker(α)), in particular λ = α|H (Definition 0.9). 3 For small enough ǫ > 0,
we may thicken H to Uǫ(H) by Reeb flow for time |t| < ǫ. We will take contact
Hamiltonian function H = t on Uǫ(H), where t is the time coordinate (not to be
confused with the isotopy parameter later). Then

〈R, dH〉 = 〈∂t, dt〉 = 1, H = {H = 0}.

Proposition 1.5. Under the identification Uǫ(H) ≃ H× (−ǫ, ǫ), the contact form
α and Reeb vector field can be written as

α = λ+ dt, R = ∂t

The contact vector field XH can be written as

XH = X + t∂t,

where λ is the Liouville form on H, X the Liouville vector field along H.

Proof. We call H the horizontal direction and (−ǫ,+ǫ) the vertical direction. Since
the Reeb flow is translation the t coordinate, and the Reeb flow preserves α, we
have α = λ on the horizontal direction. Since ιRα = 1, we have α = dt along the
vertical direction. Thus α = λ + dt. We note that ιXλ = ιX(ιX(dλ)) = 0, and
ιX(dt) = 0, hence X ∈ kerα. Thus we may easily check the given formula XH

satisfy the definition. �

3 If we only fix H but allowing λ and α to vary, then we may change α to efα for some smooth
function f as long as k := 1+ 〈df,X〉 > 0 on H, in this case the Liouville field changes to 1

k
X, and

is gradient-like for the same φ. Moreover, the skeleton for H remains the same. See [Eli, Section
2] and [CE, Lemma 12.1].
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Corollary 1.6. Let (H, λ,X, φ) →֒ (C, ξ = kerα) be a Weinstein hypersurface. If
{(H, λδ, Xδ, φδ)}|δ|<c is an isotopy of Weinstein domain, where

λδ = λ+ δdf

for some smooth and uniformly bounded f : H → R. Then there exists an isotopy of
Weinstein hypersurface realizing the given isotopy of Weinstein domain for |δ| < c′

where c′ < c.

Proof. We work in the neighborhood Uǫ(H) ≃ H × (−ǫ, ǫ) with coordinate (x, t).
Since α = λ+ dt in Uǫ(H), we may define a family of hypersurface as graph of δf

Hδ = {(x, t) ∈ H× (−ǫ, ǫ) | t = δf(x)}, ∀|δ| < c′

where

c′ := max{δ | δ < c, sup
x∈H

δf(x) < ǫ}.

We have canonical identification πδ : Hδ → H by project away the t coordinate,
and λHδ

:= α|H = λ+ δdf . �

1.3. Construction of Convex Tubular Neighborhood.

Proposition 1.7. Let (H, λ,X, φ) be a Weinstein domain, such that ∂H = φ−1(c).
There exists a unique C1-function ψ : H → [0, 1], such that ψ is smooth on H\(∂H∪
L), ψ|∂H = 1, ψ|L = 0, and 〈X, dψ〉 = 2ψ on H\L.

Proof. We have a diffeomorphism generated by the downward Liouville flow −X

Ψ : ∂H× R≥0
∼
−→ H\L, (x, t) 7→ X−t(x).

Thus we may define ψ on H\L by

ψ|H\L(Ψ
−1(x, t)) = e−2t.

Thus −∂te
−2t = 〈dψ,X〉 = 2ψ. ψ has a C1 extension by zero to L, since dψ|L =

0. �

Let U = Uǫ(H) ≃ H×(−ǫ, ǫ) with x coordinate on H and t coordinate on (−ǫ, ǫ).
We define

ρ(x, u) = ψ(x) + t2 : U → R. (5)

Then

Proposition 1.8. ρ is a C1-function on U , vanishing only on L; and 〈dρ,X〉 =
2ρ > 0 on U\L.

Proof. The regularity and vanishing statement is clear. Using Proposition 1.5 and
1.7, we have

〈d(ψ + t2), XH〉 = 〈dψ + 2tdt,X + t∂t〉 = 2ψ + 2t2 = 2ρ

away from L. �

Proposition 1.9. If (H, λ, V, φ) is a Weinstein hypersurface thickening of Leg-
endrian L, then there exist a convex tubular neighborhood thickening (U, ρ,X) of
L.
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Proof. Let α be the family of contact 1-form, such that λ = α|H. Let 1≫ ǫ > 0 be
small enough, such that

Rτ
α(H) ∩H = ∅, ∀0 < |τ | < 2ǫ.

Then we define U0 = Uǫ(H) and H using 1-form α and the associated Reeb flow.
Let ρ0 be the C1-function ρ as constructed in (5). We see U0 and ρ0 depends on
(H, λ,X, φ) and α canonically, hence U0 has piecewise smooth boundary

∂U0 = ∂H× (−ǫ, ǫ) ∪H × {−ǫ, ǫ}

and ρ0 is a globally C1-function defined on U0 and it is smooth away from L×(−ǫ, ǫ).
The vector field XH is smooth in U and is smoothly varying in t.

Since {ρ0(x) < ǫ2} is contained in U0, we can trim U0 and rescale ρ0 by

U := {ρ0(x) < ǫ2}, ρ := ρ0/ǫ2.

Let X := XH , we still have

〈X, dρ〉 = ǫ−2〈X, dρ0〉 = 2ǫ−2ρ0 = 2ρ.

Then the data (U, ρ,X) forms a convex tubular neighborhood thickening L. �

Proposition 1.10. Assume {Lt}t∈I is an isotopy of Legendrian, uniformly dis-
placeable for some Reeb vector field, and can be thickened to a Weinstein hypersur-
face isotopy {(H, λ, V, φ)t}. Then there exist a convex tubular neighborhood thick-
ening {(U, ρ,X)t}.

Proof. Since all the parameters have smooth and bounded dependence on t (needed
if I is not compact), hence the proof of Proposition 1.10 goes through verbatim. �

2. Non-Characteristic Isotopy of Sheaves

2.1. Constructible Sheaves. We give a quick working definition for constructible
sheaf used here, and point to [KS, S] for proper treatment. A constructible sheaf F
onM is a sheaf valued in chain complex ofC-vector spaces, such that its cohomology
is locally constant with finite rank with respect to some Whitney stratification
S = {Sα}α∈A on M , where Sα are disjoint locally closed smooth submanifolds
with nice adjacency condition and M = ⊔α∈ASα. The singular support SS(F )
of F is a closed conical Lagrangian in T ∗M , contained in ∪α∈AT

∗
Sα
M , such that

SS(F ) ∩ T ∗
MM equals the support of F , and (p, q) ∈ SS(F )\T ∗

MM if there exists
a locally defined function f with f(q) = 0, df(q) = p, such that the restriction map
F (Bǫ(q) ∩ {f < δ}) → F (Bǫ(q) ∩ {f < −δ}) fails to be a quasi-isomorphism for
0 < δ ≪ ǫ≪ 1. We denote by SS∞(F ) = SS(F ) ∩ S∗M the singular support of F
at infinity.

If Λ ⊂ T ∗M is a conical Lagrangian containing zero section (as always), we write
Sh(M,Λ∞) for the dg derived category of constructible sheaves [N1] with object F
satisfying SS∞(F ) ⊂ Λ∞.

Example 2.1. For example, on R, if C[0,1] (resp. C(0,1)) denote constant sheaf
with stalk C on [0, 1] (resp. on (0, 1)) and zero stalk elsewhere, then their singular
supports in T ∗R are

SS(C[0,1]) = , SS(C(0,1)) = .
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Example 2.2. Let j : U = B(0, 1) →֒ R2 be the inclusion of an open unit ball in
R2. Then j∗CU is supported on the closed set U , with singular support at infinity
as

SS∞(j∗CU ) = {(x, η) ∈ S
∗
R

2 | x ∈ ∂U, η = −d|x|} =

And j!CU is supported on the open set U , with singular support at infinity as

SS∞(j!CU ) = {(x, η) ∈ S
∗
R

2 | x ∈ ∂U, η = d|x|} =

Here the Legendrians are represented by co-oriented hypersurfaces in R2 with hairs
indicating the co-orientation.

2.2. Operation on Constructible Sheaves. Let X,Y be manifolds. We use
f∗, f∗, f

!, f!,Hom,⊗ to mean the corresponding dg derived functors:

−⊗ F : Sh(X)↔ Sh(X) : Hom(F,−)

f∗ : Sh(X)↔ Sh(Y ) : f∗

f! : Sh(Y )↔ Sh(X) : f !

where f : Y → X is a map of real analytic manifolds.
The Verdier duality D : Sh(X) → Sh(X) is an anti-involution. It interchanges

shriek with star

DD = id, f! = Df∗D, f ! = Df∗
D.

The shrieks and stars are directly related in two cases: when f is proper f! = f∗;
when f is a smooth morphism of relative dimension df , f

!(−) ≃ f∗(−) ⊗ ωY/X ≃
f∗(−)⊗ orY/X [df ], where orY/X is the orientation sheaf of the fiber.

Given an open subset U of X and its closed complement Z,

open inclusion: U
j
−֒→ X

i
←−֓ Z, closed inclusion,

we have j∗ = j! and i∗ = i!. Furthermore, there are exact triangles

i!i
! → id→ j∗j

∗ [1]
−→, j!j

! → id→ i∗i
∗ [1]
−→ .

These are sheaf-theoretic incarnations of excisions: applied to the constant sheaf
on X and taking global sections, we get

H∗(Z, i!C)→ H∗(X,C)→ H∗(U,C)
[1]
−→, H∗

c (U,C)→ H∗
c (X,C)→ H∗

c (Z,C)
[1]
−→ .

If Y is a locally closed C-submanifold of X , we use jY : Y →֒ X to denote the
inclusion. Let CY ∈ Sh(Y ) denote the constant sheaf on Y , and ωY = DCY be
the Verdier dualizing complex of Y , then ωY is the canonically isomorphic to the
shifted orientation sheaf orY [dimY ] on Y . The standard sheaf on Y is jY ∗CY , and
the costandard sheaf on Y is jY !ωY .

Let Xi, i = 1, 2, be spaces, and K ∈ Sh(X1 ×X2). We define the following pair
of adjoint functors

K! : Sh(X1)↔ Sh(X2) : K
! (6)

K! : F 7→ π2!(K ⊗ π
∗
1F ), K ! : G 7→ π1∗(Hom(K,π!

2G)) (7)

In [KS],K! = ΦK and K ! = ΨK and with X1, X2 switched. The notation here is
suggestive for them to be adjoint functors.
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2.3. Isotopy of Legendrian and Sheaves. Let I = (0, 1) ⊂ R. For any t ∈ I,
let

jt :Mt :=M × {t} →֒MI :=M × I

be the inclusion of t-slice Mt into the total space MI , and let πI : MI → I be the
projection. Let CMt

be the constant sheaf on Mt with stalk C. We have then

SS(CMt
) = {(x, t; 0, τ) ∈ T ∗MI}, SS∞(CMt

) = {(x, t; 0,±1) ∈ S∗MI ≃ T
∞M}.

We give another definition of isotopy of Legendrian and sheaves, equivalent to
the one given in the introduction for the case C = S∗M .

Definition 2.3. Let M be a smooth manifold, I an open interval of R.

(1) An isotopy of Legendrians over I is a Legendrian Λ∞
I ⊂ T∞(M × I)

such that

Λ∞ ∩ SS∞(CMt
) = ∅, for all t ∈ I.

For any t ∈ I, we define the restriction of Λ∞
I at t as the Legendrian Λ∞

t

for the conical Lagrangian Λt,

Λt = {(x, ξ) ∈ T
∗M | ∃(x, t; ξ, τ) ∈ ΛI}.

(2) An isotopy of sheaves is a sheaf FI ∈ Sh(M × I), such that

SS∞(FI) ∩ SS
∞(CMt

) = ∅, for all t ∈ I.

For any t ∈ I, we define restriction of FI at t as

Ft := FI |Mt
∈ Sh(M).

(3) Two isotopies of sheaves FI , GI ∈ Sh(M × I) are non-characteristic if

SS∞(Ft) ∩ SS
∞(Gt) = ∅, for all t ∈ I.

Some easy to check properties are in order.

Proposition 2.4. (1) If FI is an isotopy of sheaf, Λ∞
I = SS∞(FI), then

Λ∞
t = SS∞(Ft).

(2) If FI is an isotopy of sheaf, πI :MI → I, then (πI)∗FI is a local system on I.

2.4. Invariance of morphism under non-characteristic isotopy. We use the
same notations for MI =M × I,Mt,CMt

, · · · as in the previous subsection.

Lemma 2.5. Let F ∈ Sh(M). Let ϕ : M → R be a C1 function, such that
dϕ(x) 6= 0 for x ∈ ϕ−1([0, 1]).
(1) For s ∈ (0, 1), let Us = {x : ϕ(x) < s}, and let U1 = ∪sUs. If

SS∞(CUs
) ∩ SS∞(F ) = ∅, ∀ 0 < s < 1,

then

Hom(CU1
, F )

∼
−→ Hom(CUs

, F ), ∀ 0 < s < 1.

(2) For s ∈ (0, 1), let Zs = {x : ϕ(x) ≤ s}, and let Z0 = ∩sZs. If

SS∞(CZs
) ∩ SS∞(F ) = ∅, ∀ 0 < s < 1,

then

Hom(CZs
, F )

∼
−→ Hom(CZ0

, F ), ∀ 0 < s < 1.
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Proof. (1) is a special case in [GKS, Prop 1.8]. (2) follows from (1) and

0→ CM\Zs
→ CM → CZs

→ 0.

�

The following lemma is also often used.

Lemma 2.6 (Petrowsky theorem for sheaves, Corollary 4.6 [S]). Let F,G ∈ Sh(M).
If SS∞(F ) ∩ SS∞(G) = ∅, then the natural morphism

Hom(F,CM )⊗G→ Hom(F,G)

is an isomorphism.

Corollary 2.7. If FI be an isotopy of sheaves, then

Hom(CMt
, FI) ≃ CMt

[−1]⊗ FI

Proposition 2.8. Let GI and FI be non-characteristic isotopy of sheaves, then
Hom(FI , GI) is an isotopy of sheaves. In particular,

Hom(Ft, Gt) ≃ Hom(Fs, Gs) for all t, s ∈ I

Proof. GI and FI being non-characteristic implies SS∞(GI)∩SS∞(FI) = ∅, hence
we can bound singular support of the hom sheaf as [KS]

SS(Hom(FI , GI)) ⊂ SS(GI) + SS(FI)
a.

Again, using GI and FI being non-characteristic, we have

SS∞(Hom(FI , GI)) ∩ SS
∞(CMt

) = ∅ for all t, s ∈ I.

Hence Hom(FI , GI)) is an isotopy of sheaves. For the second statement, we have

Hom(Ft, Gt)

= Hom(jt
∗FI , jt

∗GI) ≃ Hom(FI , jt∗j
∗
tGI) ≃ Hom(FI ,CMt

⊗GI)

≃ Hom(FI ,Hom(CMt
, GI)[1]) ≃ Hom(CMt

,Hom(FI , GI))[1]

≃ Hom(Ct, πI∗Hom(FI , GI))[1] ≃ [πI∗Hom(FI , GI)]t (8)

then the result follows since πI∗(Hom(FI , GI)) is a local system. �

2.5. Invariance of Morphism under Reeb Perturbation. Sometimes we want
to vary G,F while preserving Hom(F,G), but SS∞(G)∩SS∞(F ) 6= ∅, e.g. F = G.
Here we borrow an idea from infinitesimally wrapped Fukaya-category [NZ], that to
compute HomFuk(L1, L2) one need to do perturbation to separate L1, L2 at infinity,
one can perturb L2  RtL2 or L1  R−tL1 where Rt is Reeb flow 4 for positive
small time t, small enough so that no new intersections are created between L1, L2

at infinity.5

Fix a Riemannian metric g on M , and identify S∗M with T∞M , so that Reeb
flow Rt is the unit speed geodesic flow. Let rinj(M, g) be the injective radius

of (M, g). Let R̂t be the GKS quantization of Rt. The remaining part of this
subsection will be devoted to prove the following Proposition.

4Note that in (partially) wrapped Fukaya category, one wraps L1 positively (or L2 negatively)
in Reeb direction. This difference in sign is due to an opposite sign convention for ω. Hence Reeb
flow here should be termed ’geodesic flow’ to be precise.

5We thank P. Schapira and S. Guillermou for discussion about positive Reeb perturbation on
sheaves.
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Proposition 2.9. Let Λ∞ ⊂ T∞M be a Legendrian, and 0 < ǫ < rinj(M, g) be
small enough such that

Λ∞ ∩RtΛ∞ = ∅, ∀ 0 < |t| < ǫ.

(1) For any F ∈ Sh(M,Λ), 0 ≤ t < ǫ, we have canonical morphism

F → R̂tF.

(2) For any F,G ∈ Sh(M,Λ), 0 ≤ t < ǫ, we have canonical quasi-isomorphisms

Hom(F,G)
∼
−→ Hom(F, R̂tG), Hom(F,G)

∼
−→ Hom(R̂−tF,G)

Proof. For any 0 ≤ t < ǫ, define

Kt = C{(x,y)|dg(x,y)≤t} ∈ Sh(M ×M).

Then from [GKS], we have

R̂tF = π1∗Hom(Kt, π
!
2F ),

and

R̂−tF = π2!Hom(Kt ⊗ π
∗
1F ),

where π1 and π2 are the projection from M ×M to the first and second factor,
and Hom is the (dg derived) sheaf-hom. From the canonical restriction morphism
Kt → K0 = C∆, where ∆ ⊂M ×M is the diagonal subset, we have

F = π1∗Hom(K0, π
!
2F )→ π1∗Hom(Kt, π

!
2F ) = R̂tF.

For the second statement, we first prove the following lemma.

Lemma 2.10.

SS∞(Kt) ∩ SS
∞(Hom(π∗

1F, π
!
2G)) = ∅, ∀0 < t < ǫ. (9)

Proof. Assuming the intersection is non-empty and contains (x1, x2; p1, p2) in its
cone. Since (x1, x2; p1, p2) ∈ R>0 · SS∞(Kt), we have

dg(x1, x2) = t.

Using the boundary defining inequality d(x1, x2) ≤ t for Kt, we found its inward
conormal at point (x1, x2) is given by

(p1, p2) ∈ R>0 · (−∂x1
dg(x1, x2),−∂x2

dg(x1, x2)),

In particular, since 0 < dg(x1, x2) = t < ǫ < rinj(M, g), x1, x2 are conjugate pairs,
hence from the geometry of geodesic flow, we have

Rt(x1, p1) = (x2,−p2), Rt(x2, p2) = (x1,−p1), p1, p2 6= 0 (10)

On the other hand, since (x1, x2; p1, p2) ∈ R>0 ·SS
∞(Hom(π∗

1F, π
!
2G)), and since

p1, p2 6= 0, we have

(x1,−p1) ∈ R>0 · SS
∞(F ), (x2, p2) ∈ R>0 · SS

∞(G). (11)

Hence, combining (10) and (11), we have

[(x1,−p1)] ∈ R
t(SS∞(G)) ∩ SS∞(F ) ⊂ RtΛ∞ ∩ Λ∞

This contradicts with the condition on ǫ, hence finishes the proof of the Lemma. �
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Now we come back to the proof of the main proposition. We have

Hom(F,G) ≃ Γ(M,Hom(F,G))

≃ Γ(M ×M,Hom(C∆,Hom(π∗
1F, π

!
2G))

∼
−→ Γ(M ×M,Hom(Kt,Hom(π∗

1F, π
!
2G))

≃ Γ(M ×M,Hom(π∗
1F,Hom(Kt, π

!
2G))

≃ Γ(M,Hom(F, π1∗Hom(Kt, π
!
2G))

≃ Hom(F, R̂tG).

where in the third step when we replace C∆ by Kt, we used the canonical mor-
phism Kt → C∆, and used Lemma 2.10 and Lemma 2.5(2) to show it is an quasi-
isomorphism. �

We will use the following purely sheaf-theoretical statement later to study family
of GKS quantization.

Proposition 2.11. Let I = (0, 1), and KI ∈ Sh(M ×M × I) be an isotopy of
sheaves, such that Kt = C∆t

for some closed subsets {∆t}0<t<1 satisfying

∆t ⊂ ∆s, ∀0 < t < s < 1, and
⋂

t∈I

∆t = ∆M = {(x, x) : x ∈M}

Let F,G ∈ Sh(M,Λ), and Hom(π∗
1F, π

!
2G) ∈ Sh(M×M) be the hom-sheaf. Assume

SS∞(Kt) ∩ SS
∞(Hom(π∗

1F, π
!
2G)) = ∅, ∀t ∈ I

then
Hom(F,G) ≃ Hom(F,K !

tG) ≃ Hom(Kt!F,G), ∀t ∈ I

where K !
t,Kt! are defined in (7).

Its proof is exactly as in Proposition 2.9 (2), where the condition provided in
Lemma 2.10 is put into the hypothesis, hence we do not repeat here.

2.6. Limit of Contact Isotopy. Here we consider the compactification of I =
(0, 1) at 0 to [0, 1). Let Λ∞

I ,Λ
∞
t be as before.

Denote the inclusions as

(0, 1)
jI
−֒→ [0, 1)

j0
←−֓ {0}.

Proposition 2.12. Let FI be an isotopy of sheaves, and Λ∞
I = SS∞(FI). Suppose

the family (Λ∞
t , t) ⊂ T

∞M×(0, 1) has a closure in T∞M×[0, 1) whose intersection
with T∞M × {0} is a Legendrian Λ∞

0 . Then the sheaf

F0 := (j0)
∗(jI)∗FI . (12)

is a constructible sheaf with SS∞(F0) ⊂ Λ∞
0 .

Proof. Suppose (x, ξ) /∈ Λ0, with ξ 6= 0. We build test function f in a small
coordinate ball B around x, that f(x) = 0, df(x) = ξ. We then want to show the
following

FI((B ∩ {f < ǫ})× (0, δ))
∼
−→ FI((B ∩ {f < −ǫ})× (0, δ)) (13)

for small enough ǫ, δ and B. Since the limit of Λ∞
t does not contain [(x, ξ)], hence

for 0 < t < t0 ≪ 1, we have an open conic neighborhood Ω ⊂ Ṫ ∗M of (x, ξ) ∈ Λ̇0,
such that Λt ∩ Ω = ∅. In particular, we have

(Ω× T ∗(0, t0)) ∩ ΛI = ∅
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Thus, we may choose ǫ, δ and B small enough, that the retraction (B ∩ {f <
ǫ})× (0, δ) to (B ∩ {f < −ǫ})× (0, δ) is non-characteristic, hence (13) is an quasi-
isomorphism. �

Remark 2.13. We thank E. Zaslow for suggesting this condition on the family.
For general behavior of how singular support of sheaves behave under pushforward
or pullback of constructible sheaf, we refer the reader to [KS, Chapter 5,6].

3. Existence and Uniqueness of Extension

Theorem 3.1. Let {Λ∞
t }t∈I be an isotopy of Legendrian in T∞M , such that Λ∞

t

is constant for t outside a closed interval [a, b] ⊂ I. Assume {Λ∞
t } is uniformly

displaceable for some Reeb vector field Rα on T∞M , and there exists an isotopy of
convex tubular neighborhoods {(U(Λ∞

t ), ρt, Xt)} of {Λ∞
t }. Denote the inclusion of

slice by
ιt :Mt :=M × {t} →֒ MI :=M × I.

Then the restriction functor

ι∗t : Sh(MI ,Λ
∞
I )→ Sh(Mt,Λ

∞
t )

is an equivalence of category for all t ∈ I.

This theorem together with Proposition 1.10 implies our main theorem in the
introduction.

In the remaining part of this section, we will sometimes identify Λ∞
t ⊂ T∞M

with Lt ⊂ S∗M , and identify Reeb flow with geodesic flow.

3.1. Uniqueness of Extension.

Proposition 3.2. Let Λ∞
t be a family of Legendrian in T∞M that are uniformly

displaceable with parameter ǫ. Then, the restriction functor ι∗t is fully-faithful for
all t.

Proof. For 0 ≤ s < ǫ, we define a family of kernels in Sh((M1 × I1)× (M2 × I2)).

Ks := Cd(x1,x2)≤s ⊠ Ct1=t2 .

One can check that Ks generate slice-wise geodesic flow, i.e., if FI ∈ Sh(MI), and

K !
sFI := π1∗Hom(Ks, π

!
2FI)

then we have
SS∞((K !

sFI)|Mt
) = RsSS∞(FI |Mt

)

where πi is the projection from (M1 × I1) × (M2 × I2) to Mi × Ii, and Rs is the
Reeb (geodesic) flow for time s.

We first prove the following claim: for any FI , GI ∈ Sh(MI ,Λ
∞
I ), we have

Hom(CM×(a,b),Hom(FI , GI)) is independent of a < b.

Suffice to prove the case for the right end-point b. To use the estimate of the
singular support of the hom-sheaf, we would like to perturb GI by the fiberwise
Reeb flow.

Lemma 3.3. For any 0 < s < ǫ, we have

Hom(CM×{t},Hom(FI , GI))
∼
−→ Hom(CM×{t},Hom(FI ,K

!
sGI)).

The same is true if we replace {t} by any sub-interval, eg. [a, b], (a, b) of I. Fur-
thermore, Hom(CM×{t},Hom(FI ,K

!
sGI)) is independent of t.
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Proof. Unwind the definition of K !
s, we have

Hom(CM×{t},Hom(FI ,K
!
sGI))

= Hom(CM×{t},Hom(FI , π1∗Hom(Ks, π
!
2GI)))

= Hom(CM×{t}, π1∗Hom(π∗
1FI ,Hom(Ks, π

!
2GI)))

= Hom(π∗
1CM×{t},Hom(Ks,Hom(π∗

1FI , π
!
2GI)))

We claim that

SS∞(π∗
1CM×{t}) ∩ SS

∞Hom(Ks,Hom(π∗
1FI , π

!
2GI)) = ∅, ∀ 0 < s < ǫ. (14)

By the same argument as Proposition 2.9 and Lemma 2.10, we have

SS∞(Ks) ∩ SS
∞(Hom(π∗

1FI , π
!
2GI)) = ∅, ∀ 0 < s < ǫ.

Hence

SS(Hom(Ks,Hom(π∗
1FI , π

!
2GI))) ⊂ (−ΛI ,ΛI)− SS(Ks). (15)

On the other hand

SS∞(π∗
1CM×{t}) = {[(x1, t1; ξ1, τ1), (x2, t2; ξ2, τ2)] :

ξ1 = ξ2 = 0, τ2 = 0, (t1, τ1) = (t,±1)} (16)

If (14) is false, and contains a non-empty intersection point, then at the intersection
we have

τ1 + τ2 = ±1 6= 0, ξ1 = ξ2 = 0

from (16). From (15), suppose that we

(x′1, t
′
1; ξ

′
1, τ

′
1), (x

′
2, t

′
2; ξ

′
2, τ

′
2) ∈ (−ΛI ,ΛI)

where ξ′i = 0 imply τ ′i = 0 for i = 1, 2 respectively, and

(x′1, t
′
1; ξ

′′
1 , τ

′′
1 ), (x

′
2, t

′
2; ξ

′′
2 , τ

′′
2 ) ∈ −SS(Ks)

where t′1 = t′2, τ
′′
1 +τ ′′2 = 0, and if ξ′′1 6= 0 iff ξ′2 6= 0 and if true implies d(x′1, x

′
2) = s.

Since Ks|t ◦ Λt is disjoint from Λt away from zero-section, hence there is no non-
trivial solution to

ξ′1 + ξ′′1 = 0, ξ′2 + ξ′′2 = 0

ie. each summand in each equation vanishes. That implies τ ′i = 0. Then τ ′′1 +τ
′′
2 = 0

contracdicts with τ1 + τ2 6= 0. Hence we proved the Lemma.
From this claim, and

Hom(π∗
1CM×{t},Hom(Ks,Hom(π∗

1FI , π
!
2GI)))

≃ Hom(π∗
1CM×{t} ⊗Ks,Hom(π∗

1FI , π
!
2GI)))

we may apply Lemma 2.5 (2) on shrinking closed set, to get

Hom(π∗
1CM×{t}⊗K0,Hom(π∗

1FI , π
!
2GI))) ≃ Hom(π∗

1CM×{t}⊗K0,Hom(π∗
1FI , π

!
2GI)))

for all 0 < s < ǫ. This proves the first statement of the Lemma.
The final statement of the Lemma follows from (14), then we may apply Proposi-

tion 2.8 where the first slot is CM×{t} and the second slot in hom Hom(FI ,K
!
sGI)

is taken as a constant isotopy of sheaf with any fixed 0 < s < ǫ. The case for
sub-interval can be proved similarly, and we omit the details. �
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Now, we finish to prove the proposition. By Lemma 3.3,

Hom(CM×(a,b),Hom(FI , GI))

is independent of (a, b), hence we may shrink from (0, 1) to an arbitrary small
neighborhood of t. Then we have

Hom(FI , GI)) ≃ [πI∗(Hom(FI , GI)]t ≃ [πI∗(Hom(FI ,K
!
sGI)]t

≃ Hom(ι∗tFI , ι
∗
tK

!
sGI) ≃ Hom(Ft, R

sGt) ≃ Hom(Ft, Gt)

where 0 < s < ǫ, and we used small Reeb perturbation to make FI ,K
!
sGI non-

charactersitic isotopy of sheaves, then apply (8) in Proposition 2.8. �

Proposition 3.4. Let {Λ∞
t } be a family of Legendrian in T∞M that are uniformly

displaceable with parameter ǫ. For a given t, let Ft ∈ Sh(M,Λ∞
t ). Suppose we have

F ′
I and F ′′

I in Sh(MI ,Λ
∞
I ) and isomorhpism

f : F ′
I |t

∼
−→ Ft, g : F ′′

I |t
∼
−→ Ft,

then there exist canonical isomorphism

Φ : F ′
I → F ′′

I

such that Φ|t = g−1 ◦ f : F ′
I |t → F ′′

I |t.

Proof. By Proposition 3.2, we have Hom(F ′
I |t, F

′′
I |t) ≃ Hom(F ′

I , F
′′
I ). Thus,

g−1 ◦ f ∈ Hom(F ′
I |t, F

′′
I |t) 7→ Φ ∈ Hom(F ′

I , F
′′
I ).

Similarly
f ◦ g−1 ∈ Hom(F ′′

I |t, F
′
I |t) 7→ Ψ ∈ Hom(F ′′

I , F
′
I).

Hence we have

Φt ◦Ψt ≃ idF ′′

t
∈ Hom(F ′′

I |t, F
′′
I |t) 7→ Φ ◦Ψ ≃ idF ′′

I
∈ Hom(F ′′

I , F
′′
I ).

and similarly Ψ ◦ Φ ≃ idF ′

I
. �

3.2. Existence of Local Extension.

Proposition 3.5. Let {Lt} be a family of Legendrian in S∗M that admits a fam-
ily of convex tubular neighborhood thickening {(U, ρ,X)t}. Then for any compact
subset K ⊂ I, there exists δ > 0 such that for any t ∈ K and Ft ∈ Sh(M,Lt), there

exists FJ ∈ Sh(M × J,LJ ) where J = I ∩ (t − δ, t+ δ) ⊂ I, such that FJ |t
∼
−→ Ft

canonically.

Proof. Define Q as neighborhood of diagonal in I × I

Q = {(s, t) ∈ I × I | Ls ∈ U1/2(Lt), Lt ∈ U1/2(Ls), }

Then, we may find δ = δ(K, {Ut, ρt}) small enough such that

∆K,δ =
⋃

t∈K

[t− δ, t+ δ]× [t− δ, t+ δ]

is contained in Q.
For any t ∈ K, let J = I ∩ (t − δ, t + δ) ⊂ I. For any s ∈ J , we consider the

trajectory of Lt under the retracting flow −Xs, and get an isotopy of Legendrians
over [0,∞) as X−T

s (Lt). We claim that the Gromov-Hausdorff limit of X−T
s (Lt) ⊂

S∗M is Ls, since

X−T
s (Lt) ⊂ X

−T
s (U1/2(Ls)) ⊂ Ue−csT /2(Ls)→ Ls, as T →∞,
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where cs is the shrinking rate 〈dρs, Xs〉 > csρs in the definition of (U, ρ,X). Thus
we may define the limit of the corresponding isotopy of sheaves

Πs(Ft) := (j∞)∗(j[0,∞))∗(X̂
−[0,∞)
s Ft)

where
X̂−[0,∞)

s : Sh(M)→ Sh(M × [0,∞))

is the sheaf quantization of the flow X−T
s and

j[0,∞) : [0,∞) →֒ [0,∞] ←֓ {∞} : j∞

are inclusion into the compactification, and we also abuse notation to denote idM×j
as j. By Proposition 2.12, we have

SS∞(Πs(Ft)) ⊂ Ls.

We claim that the collection of sheaves {Πs(Ft)}s∈J assemble into an isotopy
of sheaf, ΠJ(Ft) ∈ Sh(MJ ,LJ). Indeed since the contact flow Xs varies smoothly
with parameter s, we have a (tensor) kernel for the family

KJ ∈ Sh(MJ × (MJ × [0,∞))),

such that we have

ΠJ(Ft) := (idMJ
× j∞)∗(idMJ

× j[0,∞))∗((KJ )!(Ft ⊠ CJ )).

Thus we get the extension sheaf ΠJ (Ft), and one can check ΠJ(Ft)|t ≃ Ft since the

retraction flow X−T
t preserves the Legendrian Lt. �

3.3. Proof of Theorem 3.1. Let K = [a, b] ⊂ (0, 1), and we apply Proposition
3.5 to get the positive constant δ > 0, such that for any t ∈ K, we may extend
a sheaf Ft ∈ Sh(M,Lt) to a neighborhood Bδ(t) = (t − δ, t + δ), compatible with
the Legendrian condition LI restricted on the interval. We may take a finite set of
points

A = {tn ∈ I | tn = t+ (n/2)δ/2, n ∈ Z, tn ∈ [a, b]}

and extend the sheaf Ft from M × {t} inductively to M × B(1+n/2)δ(t) for n =
0, 1, 2, · · · , using existence of local extension and uniqueness of extension. Finally,
since the isotopy is constant outside [a, b], we may trivially extend from [a, b] to
(0, 1). This finishes the proof of Theorem 3.1.

References

[Av] Russell Avdek, Liouville hypersurfaces and connect sum cobordisms, arXiv:1204.3145.
[CE] K. Cieliebak and Y. Eliashberg. From Stein to Weinstein and Back: Symplectic Geometry

and Affine Complex Manifolds. AMS Colloquium Publications, vol. 59 (2012)
[Eli] Y. Eliashberg. Weinstein manifolds revisited. arXiv:1707.03442
[Ge] H. Geiges, An Introduction to Contact Topology.
[Gi] E. Giroux, Convexite en topologie de contact, Comment. Math. Helv. 66 (1991), 637677.
[GKS] S. Guillermou, M. Kashiwara, P. Schapira. Sheaf quantization of Hamiltonian isotopies

and applications to nondisplaceability problems. Duke Math. J. Volume 161, Number 2
(2012), 201-245.

[GPS] S. Ganatra, J. Pardon, V. Shende. Covariantly functorial wrapped Floer theory on Li-
ouville sectors. arXiv:1706.03152

[KS] M. Kashiwara, Pierre Schapira, Sheaves on Manifolds
[N1] D. Nadler. Microlocal branes are constructible sheaves, Selecta Math. 15 (2009), no. 4,

563–619.
[N2] D. Nadler. Arboreal Singularities. Geometry & Topology 21 (2017) 1231 –1274
[N3] D. Nadler. Non-characteristic expansions of Legendrian singularities. arXiv:1507.01513
[N4] D. Nadler. Wrapped microlocal sheaves on pairs of pants. arXiv:1604.00114

http://arxiv.org/abs/1204.3145
http://arxiv.org/abs/1707.03442
http://arxiv.org/abs/1706.03152
http://arxiv.org/abs/1507.01513
http://arxiv.org/abs/1604.00114


SHEAF QUANTIZATION OF LEGENDRIAN ISOTOPY 19

[NZ] D. Nadler, E. Zaslow. Constructible Sheaves and the Fukaya Category. J. Amer. Math.
Soc. 22 (2009), 233-286

[S] Pierre Schapira. A short review on microlocal sheaf theory. link.
[Sh] V. Shende. Microlocal category for Weinstein manifolds via h-principle. arXiv:1707.07663
[Syl] Z. Sylvan. On partially wrapped Fukaya categories. arXiv:1604.02540

Institut des Hautes Études Scientifiques. Le Bois-Marie, 35 route de Chartres, 91440

Bures-sur-Yvette France

E-mail address: pengzhou@ihes.fr

https://webusers.imj-prg.fr/~pierre.schapira/lectnotes/MuShv.pdf
http://arxiv.org/abs/1707.07663
http://arxiv.org/abs/1604.02540

	0.1. Definitions and Result
	0.2. Idea of the Proof
	0.3. Acknowledgements
	1. Convex Tubular Neighborhoods and Weinstein Hypersurfaces 
	1.1. Basic of Contact Geometry
	1.2. Weinstein Hypersurface
	1.3. Construction of Convex Tubular Neighborhood

	2. Non-Characteristic Isotopy of Sheaves
	2.1. Constructible Sheaves
	2.2. Operation on Constructible Sheaves
	2.3. Isotopy of Legendrian and Sheaves
	2.4. Invariance of morphism under non-characteristic isotopy
	2.5. Invariance of Morphism under Reeb Perturbation
	2.6. Limit of Contact Isotopy

	3. Existence and Uniqueness of Extension
	3.1. Uniqueness of Extension
	3.2. Existence of Local Extension
	3.3. Proof of Theorem ??

	References

