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GRAPHS WITH SPARSITY ORDER AT MOST TWO: THE

COMPLEX CASE

S. TER HORST AND E.M. KLEM

Abstract. The sparsity order of a (simple undirected) graph is the highest
possible rank (over R or C) of the extremal elements in the matrix cone that

consists of positive semidefinite matrices with prescribed zeros on the positions
that correspond to non-edges of the graph (excluding the diagonal entries).
The graphs of sparsity order 1 (for both R and C) correspond to chordal
graphs, those graphs that do not contain a cycle of length greater than three,
as an induced subgraph, or equivalently, is a clique-sum of cliques. There exist
analogues, though more complicated, characterizations of the case where the
sparsity order is at most 2, which are different for R and C. The existing
proof for the complex case, is based on the result for the real case. In this
paper we provide a more elementary proof of the characterization of the graphs
whose complex sparsity order is at most two. Part of our proof relies on a
characterization of the {P4,K3}-free graphs, with P4 the path of length 3

and K3 the stable set of cardinality 3, and of the class of clique-sums of such
graphs.

1. Introduction

Let G = (V,E) be a simple undirected graph with vertex set V = {1, . . . n} and
edge set E ⊂ V ×V . Let F be either C or R. We write HG for the linear space over
R that consists of Hermitian n×n matrices over F (hence symmetric in case F = R)
with the property that for i 6= j the (i, j)-th entry is equal to 0 whenever (i, j) /∈ E.
With PSDG we denote the set of positive semidefinite matrices in HG. Then PSDG

forms a convex cone in HG, i.e., PSDG is closed under sums and multiplication by
positive scalars. Furthermore, any element of PSDG can be written as a finite sum
of extremal elements of PSDG. Recall that an element X of PSDG is called extremal

whenever the only way to have X = X ′ + X ′′ with X ′, X ′′ ∈ PSDG is when X ′

and X ′′ are positive scalar multiples of X . In particular, the only way to write an
extremal element X of PSDG as a sum of extremals, is if all extremals are positive
scalar multiples of X itself. The sparsity order of the graph G, as introduced in
[1], is defined to be the maximum rank among all extremal elements of PSDG and
is denoted by ordF(G). In other words, any element of PSDG can be written as
a sum of (extremal) elements of PSDG with rank at most ordF(G), and there are
elements of PSDG for which this is the best that can be achieved.

The notation and terminology used in this paper is mostly standard. However,
at the end of the introduction we will recall some graph theory preliminaries, mostly
notation, used throughout the paper.
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Sparsity order 1. In case G is a complete graph Kn, i.e., E = V × V , PSDG is
simply the cone of n×n positive semidefinite matrices, and using the singular value
decomposition it is easily seen that any positive semidefinite matrix can be written
as a sum of rank-one positive semidefinite matrices. Hence the sparsity order is
equal to 1, for both F = C and F = R.

The complete characterization of graphs that have sparsity order 1 was presented
in [1]. It turns out that, again for both F = C and F = R, a graph G has sparsity
order equal to 1 if and only if G is chordal, that is, if and only if G has no induced
cycles of length greater than three. This result is closely connected to the positive
semidefinite matrix completion problem. The connection between the latter prob-
lem and chordal graphs was first observed in [11]. Viewing HG as a Hilbert space
over R with the trace inner product, the dual cone of PSDG in HG consists precisely
of the elements of HG that can be ‘completed’ to a positive semidefinite matrix by
replacing the prescribed zeros with other elements of F. For this to work, it is
essential that the elements of PSDG can be written as sums of rank one elements
from PSDG. See [4] for a recent account, and the references given there for further
background. In view of the results to come, we mention here that G is chordal if
and only if G can be written as a clique-sum of cliques; a result that goes back to
work of Dirac [8]. The results discussed above that are relevant in the sequel are
listed in the following theorem.

Theorem 1.1. Let G be a simple undirected graph. For both F = C and F = R the

following are equivalent:

(i) G has sparsity order 1, i.e., ordF(G) = 1;
(ii) G is chordal, i.e., for n ≥ 4 the cycle Cn does not appear as an induced

subgraph of G;

(iii) G is a clique-sum of cliques.

Sparsity order at most 2. There exists a characterization for the case where
ordF(G) ≤ 2, analogous to that for ordF(G) = 1 in Theorem 1.1. However, this
result is significantly more complicated, and the characterizations differ for the
cases F = C and F = R. The following result was obtained by Laurent in [13,
Theorem 13] for the case F = C.

Theorem 1.2. Let G be a simple undirected graph. Then the following are equiv-

alent:

(i) G has complex sparsity order less than or equal to 2, i.e., ordC(G) ≤ 2;
(ii) G does not contain the cycles Cn, n ≥ 5, as induced subgraphs, nor any of

the graphs D1 −D6 depicted in Figure 1.

D1 D2 D3 D4 D5 D6

Figure 1. The complementary graphs D1 −D6
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(iii) G is a clique-sum of graphs from the classes K2 and K3 depicted in Figure

2.

K2 K3K2 K3

Figure 2. The graph classes K2, K3 and their complementary classes

The classes of graphs K2 and K3, their complements K2 and K3, and subsequent
graph classes below are to be interpreted in the following way. A small dot indicates
a single vertex, a dark circle indicates a clique, while a white circle indicates a
stable set; edges are indicated by thin lines, while a thick line between two spheres
or between two sets of vertices implies that every vertex in one set is adjacent to
every vertex in the other set.

The graphs listed in Figure 1 are referred to as the (complex) 3-blocks; see [1]
where this terminology originates from. They are exactly the graphs with (complex)
sparsity order 3, for which each induced subgraph has strictly smaller sparsity order.

The analogous result for F = R, also proved by Laurent [13, Theorem 9], is even
more complicated. In the variation on (ii), besides the cycles Cn, n ≥ 5, another 15
graphs ([13, Figure 2]) are excluded as induced subgraphs, while the analogue on
(iii) states that G is the clique-sum of graphs from 4 different classes ([13, Figure
1]), namely the classes G1, G2, G3 and G4 depicted in Figure 3 below (note that
G4 = K2).

G1 G2 G2

chordal graph

G3 G3 G4 G4

Figure 3. The graph classes G1 − G4 and their complementary classes
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In [13], Theorem 1.2 is derived from the result for the case F = R, which in turn
relies on a long series of technical lemmas. In the present paper we prove Theorem
1.2 directly, without going through the case F = R. An important feature of our
approach is the observation that the classes K2 and K3 can be seen as special cases
of the larger class of graphs F = ∪∞

k=0Fk, where Fk is the class of graphs depicted
in 4.

X1 X2 Xk-1 Xk

Y1 Y2 Yk-1 Yk

Z

Fk

X1 X2 Xk-1 Xk

Y1 Y2 Yk-1 Yk

Z

Fk

Figure 4. The graph classes Fk and Fk

To guarantee that Fk and Fl are disjoint whenever k 6= l, we demand that the
cliques Xj 6= ∅ and Yj 6= ∅, j = 1, . . . , k, but Z = ∅ is allowed.

Note that we have K2 = F2 and K3 ⊂ F3. Furthermore, the classes G2 and G3

that appear in the characterization of the real case are also subclasses of F , namely,
G2 ⊂ F3 and G3 ⊂ F4. Thus, only the class G1 differs in the sense that it is not a
subclass of F .

Graph structure theorems. Elements of F are disjoint unions of complete bi-
partite graphs Kl,m, where the single stable set at the bottom should be viewed as
Kl,0. Hence graphs in F can be described as the complements of disjoint unions of
complete bipartite graphs. We now provide a different characterization of the class
F in terms of forbidden induced subgraphs.

Theorem 1.3. Let G be a simple undirected graph. Then G ∈ F if and only if G
does not contain P4 or K3 as induced subgraphs, i.e., G contains no induced path

of length 3 nor a stable set of cardinality 3.

Note that P4 and K3 are elements of the class G1. Hence, as claimed above, G1

is indeed not a subclass of F . Furthermore, the fact that P4 is excluded as induced
subgraph implies that the cycles Cn, n ≥ 5, are also excluded.

There are many relevant classes of graphs that are characterized by excluding a
set L of graphs as induced subgraphs, the so-called L-free graphs. See Chapter 7
in [3] for an overview of several of such classes and further references. Of particular
interest to our class F is the class of cographs, graphs whose modular decomposition
tree contains only parallel and series nodes; [3, Section 11.3]. One characterization
of cographs is that they are P4-free. Hence, all graphs in F are cographs, and
consequently, are non-prime, have the clique-kernel intersection property and every
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connected subgraph has diameter at most 2. More results can be found in Sections
1.5 and 11.3 of [3] and the references given there. Many of these results can easily
be understood from the graphical representation in Figure 4.

A type of graph that is included in F is the cocktail party graph, cf., [10]. Each
class Fk contains exactly one cocktail party graph, the graph in Fk with the minimal
number of vertices, namely one where the ‘single’ clique is empty and all the ‘paired’
cliques are singletons (forming a pair at the cocktail party). If one does allow the
‘single’ clique (which may be interpreted as the collection of singles attending the
cocktail party), these graphs can be characterized as the simple undirected graph
that contain no induced P4, K3 or P 3; see the last part of the proof of Theorem
1.2, (ii) ⇔ (iii) in Section 2 to see how excluding P 3 compresses the ‘paired’ cliques
to singletons. See [7, 5, 6] for some recent developments.

For the purposes of the present paper, however, we are interested in clique-
sums of elements of F . Note that P4 and K3 can appear as induced subgraphs
of such clique-sums, since P4 and K3 themselves have clique cut-sets. This is why
the characterization of the graphs that are clique-sums of elements of F involves
different graphs, namely the graphs Cn, n ≥ 5, and D1 −D4.

Theorem 1.4. Let G be a simple undirected graph. Then G is a clique-sum of

graphs from F if and only if G does not have any of the graphs Cn, n ≥ 5, and
D1 −D4 from Theorem 1.2 as an induced subgraph.

We prove Theorems 1.3 and 1.4 in Section 2. Once these results are established,
the equivalence of (ii) and (iii) in Theorem 1.2 readily follows; it is exactly when
the graphs D5 and D6 in Figure 1 are excluded as induced subgraphs, that a graph
from the graph class F must belong to K2 ∪ K3.

Complex sparsity order. The second part of the paper (Section 3) has more of
a linear algebra flavour. Here we give a brief sketch of the implication (i) ⇒ (ii) of
Theorem 1.2 and a proof of the implication (iii) ⇒ (i) of Theorem 1.2. The latter
proof is also valid for the case F = R. Our aim here is to approach the result more
from a matrix analysis perspective and to avoid usage of the so-called Dimension
Theorem (Theorem 3.1 and Corollary 3.1 in [1]), also referred to as the Frame
Theorem in [14]. The Dimension Theorem provides an easy way to determine if
a matrix in PSDG is extremal, but usage of this result sometimes conceals the
argumentation.

Part of our proof is based on a solution to a seemingly independent question in
linear algebra. Let Fp have two orthogonal sum decompositions

F
p = X1 ⊕X2 and F

p = Y1 ⊕ Y2.

We seek a subspace Z ⊂ Fp of dimension two that splits over both orthogonal
decompositions, that is, Z = (Z ∩ X1)⊕ (Z ∩ X2) = (Z ∩ Y1)⊕ (Z ∩ Y2). It turns
out that such a subspace Z can always be constructed, see Proposition 3.2 below,
however, the construction we present is not trivial.

Notation and terminology. We conclude this introduction with a brief discussion
of some of the notation and terminology used throughout the paper.

Throughout, we use Cn and Pn to denote the (chordless) cycle and (chordless)
path with n vertices. The complete graph with n vertices is denoted by Kn and
we write Kl,m for the complete bipartite graph of l + m vertices with a bipartite
partitioning of the vertices in subsets of l and m vertices.
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Let G = (V,E) be a simple undirected graph. Then G denotes the complement
of G. For a subset S ⊂ V , we write G[S] for the subgraph of G induced by S,
that is G[S] = (S,ES) with ES = E ∩ (S × S). We say that a graph G′ is an
induced subgraph of G whenever there exists a S ⊂ V such that G′ is isomorphic
to G[S]. A subset S of V is called a clique if G[S] is complete and a stable set if
G[S] is complete. If G is connected, then a clique S in G is called a clique cut-set
in G if G[E\S] is no longer connected. If two graphs Gi = (Vi, Ei), i = 1, 2, both
have a clique of the same cardinality, then the clique-sum of G1 and G2 is the
graph G = (V1 ∪ V2, E1 ∪E2) where the clique vertices in V1 and V2 are identified.
Clique-sums of more than two graphs are defined inductively.

2. Graph structure theorems

In this section we prove the two structure theorems stated in the introduction,
i.e., Theorems 1.3 and 1.4. We also prove the equivalence of statements (ii) and
(iii) in Theorem 1.2. We start with a proof of Theorem 1.3.

Proof of Theorem 1.3. Clearly, if G ∈ Fk it can not contain P4 or K3 as an
induced subgraph.

Conversely, assume G does not contain P4 or K3 as an induced subgraph. If G is
a complete graph, then G ∈ F0 and we are done. Thus assume G is not a complete
graph. Then there exist x1, y1 ∈ V which are non-adjacent. We now define the sets

X1 = {v ∈ V : v 6= y1, (v, y1) /∈ E} and Y1 = {u ∈ V : u 6= x1, (u, x1) /∈ E}.

Then x1 ∈ X1 and y1 ∈ Y1. We claim that X1 and Y1 are disjoint cliques, with no
edges between them and that every vertex in X1 ∪Y1 is adjacent to every vertex in
V \ [X1 ∪ Y1].

Indeed, if X1 is not a clique, say x, x′ ∈ X1 are non-adjacent, then {x, x′, y1}
is a stable set of cardinality 3, a contradiction. Thus X1 is a clique. Similarly we
obtain that Y1 is a clique. If X1 ∩ Y1 6= ∅, say v ∈ X1 ∩ Y1, then {v, x1, y1} is a
stable set of cardinality 3, again a contradiction. Thus X1 ∩ Y1 = ∅. Next, assume
that there exists some vertex x ∈ X1 adjacent to a vertex y ∈ Y1. Note that x 6= x1

and y 6= y1, per the definition of X1 and Y1. Furthermore, x is adjacent to x1 and
y is adjacent to y1, since X1 and Y1 are cliques. Then {x1, x, y, y1} induces a P4, a
contradiction. Thus, there are no edges between X1 and Y1.

If V \[X1∪Y1] is empty, we are done. If not let z ∈ V \[X1∪Y1], then z is adjacent
to x1 and y1, else z ∈ X1 ∪Y1. Suppose now that u ∈ X1 ∪ Y1 is non-adjacent to z.
Then u 6= x1, y1 and u is adjacent to exactly one of x1 and y1, since X1 and Y1 are
disjoint cliques. Thus {u, x1, y1, z} induces a P4 in G, a contradiction. This proves
our claim.

Set V1 = V \ [X1 ∪ Y1]. If V1 is a clique in G, then G ∈ F1 with Z = V1 and we
are done. Else, set G1 = G[V1]. Then G1 does not contain P4 or K3 as an induced
subgraph. We now repeat the process described above with G1, until we are left
with a (possibly empty) clique; in case the process is repeated k times before the
clique appears, we find that G ∈ Fk. �

The proof of Theorem 1.4 is more involved. We start with an important ob-
servation. Different from P4 and K3, the graphs D1 −D4 have no clique cut-set.
Therefore, for j = 1, . . . , 4, if Dj appears as an induced subgraph of G, and G has a
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clique cut-set, then Dj must appear in one of the subgraphs from the clique cut-set
decomposition of G. This has two implications:

• The necessity claim of Theorem 1.4 follows directly from the easy observa-
tion that D1, . . . , D4 /∈ F .

• For the sufficiency claim of Theorem 1.4 we may assume without loss of
generality that G has no clique cut-set. In particular, we may assume G is
connected, since the null graph is a clique cut-set for the connected parts
of a graph.

Hence it remains to prove the sufficiency claim of Theorem 1.4. In the remainder
of this section we shall assume G has no clique cut-set. We shall also assume G is
not a complete graph, since F0 is precisely the set of complete graphs, and so, if G
is complete the theorem clearly holds.

Proposition 2.1. Let G = (V,E) be a simple undirected graph. If G is not a

complete graph and has no clique cut-sets, then V can be partitioned as

V = X0 ∪ V0 ∪ Y0,

with X0, V0 and Y0 non-empty, G[X0] connected, no edges between vertices in X0

and Y0, the set V0 is not a clique, every vertex in Y0 is adjacent to every vertex in

V0 and every vertex in V0 is adjacent to, at least, one vertex in X0.

Proof. For X ⊂ V , define

VX = {v ∈ V \X : (v, x) ∈ E for some x ∈ X} and YX = V \ (X ∪ VX).

Then V = X ∪ VX ∪ YX is a partitioning of V . Now chose X0 ⊂ V to be a subset
of V of maximal cardinality so that G[X0] is connected and Y0 := YX0

6= ∅. Since
G is not complete, there exists an x ∈ V which is not adjacent to all other vertices
in V . Hence for X = {x} we have YX 6= ∅ and G[X ] is connected. This shows that
X0 6= ∅. By construction, there can be no vertices between edges in X0 and Y0 and
any v0 ∈ V0 := VX0

must be adjacent to a vertex in X0. The graph G has no clique
cut-sets, and hence is connected. Therefore, also V0 6= ∅. If V0 were a clique, then
it would be a clique cut-set, which we assume not to exist.

It remains to show that every vertex in Y0 is adjacent to every vertex in V0. If
this were not the case, then there would be a v0 ∈ V0 which is not adjacent to all
vertices in Y0. However, then we could add v0 to X0, contradicting the maximality
assumption. �

For the previous result it was not needed to exclude the graphs Cn, n ≥ 5,
or D1 − D4 as induced subgraphs. Excluding these graphs leads to the following
proposition, which in turn allows us to apply Theorem 1.3 to G[V0], since the
proposition shows that the graph induced by V0 contains no K3 or P4.

Proposition 2.2. Let G = (V,E) be a simple undirected graph which is not a

complete graph and has no clique cut-sets. Assume that the cycles Cn, n ≥ 5, and
the graphs D1 − D4 are not induced subgraphs of G. Let V = X0 ∪ V0 ∪ Y0 be a

partitioning as in Proposition 2.1. Then K3 and P4 are not induced subgraphs of

G[V0].

Before proving this result we will need the following lemma and its corollary.
The lemma and its corollary do not only play an important role in the proof of
Proposition 2.2, but also in several results in the remainder of this section. These

7



two results also appear in [13], as Claims 3 and 5, except that Claim 5 in [13]
also includes a uniqueness claim, for which additional graphs have to be excluded.
Proofs are added for the sake of completeness.

Lemma 2.3. Assume that the cycles Cn, n ≥ 5, are not induced subgraphs of G.

For any non-adjacent vertices v, w ∈ V0 there exists a x ∈ X0 adjacent to both v
and w.

Proof. Let v, w ∈ V0 such that there exists no vertex in X0 adjacent to both v and
w. Let P be a shortest path between v and w whose intermediate vertices are in
X0. Since v and w are adjacent to vertices in X0 and G[X0] is connected, such a
path exists, and it must consist of at least four vertices. Choose y ∈ Y0 arbitrarily.
Then y is adjacent to v and w, but not to any other vertex in P . Thus, adding y
we find an induced cycle Cn of length n ≥ 5, unless when v and w are adjacent. We
conclude that if v, w ∈ V0 are non-adjacent, then there must be a x ∈ X0 adjacent
to both v and w. �

Corollary 2.4. If the cycles Cn, k ≥ 5, are not induced subgraphs of G and

{v, w, z} ⊂ V0 is a stable set in G, then there exists a vertex x ∈ X0 adjacent to v,
w and z.

Proof. Assume there is no vertex in X0 adjacent to v, w and z. By Lemma 2.3,
there exist vertices x, s, t ∈ X0 with x adjacent to v and w, s adjacent to v and
z, and t adjacent to w and z, and by our assumption x, s and t must be distinct.
Moreover, x, s and t are pairwise non-adjacent, since if this were not the case,
we would obtain an induced C5 on one of the subsets {y, v, x, s, z}, {y, w, s, t, v} or
{y, w, x, t, z}, with y ∈ Y1 arbitrary. However, with x, s and t pairwise non-adjacent
the subset {x,w, s, z, t, v} ⊂ V induces a C6, a contradiction. Thus there must be
a vertex in X0 adjacent to v, w and z. �

Proof of Proposition 2.2. Assume {v, w, z} is a stable set inG[V0]. By Corollary
2.4, there exists a x0 ∈ X0 adjacent to v, w and z. Then {v, w, z, x0, y}, with y ∈ Y0

arbitrary, induces a D4 in G. Hence G[V0] cannot contain a stable set of size 3.
Assume that [v, w, r, s] is an induced P4 in G[V0]. Then (v, s) /∈ E. By Lemma

2.3, there exists a x0 ∈ X0 adjacent to v and s. Let y ∈ Y0. Depending on whether
x0 is adjacent to both, one or none of w and r, we obtain an induced D3, D1 or C5

(on {v, w, r, s, x0}, since C5 = C5), respectively; see Figure 5.

x0y

w s v r

Figure 5. The complementary graph on the set {v, w, r, s, x0, y}

Each case leads to a contradiction, hence we obtain that G[V0] cannot contain P4

as an induced subgraph. �

In light of Proposition 2.2 we may apply Theorem 1.3 to obtain G[V0] ∈ Fk for
some k ≥ 1; k = 0 cannot occur, since V0 is not a clique. Denote the ‘paired’ cliques
in Figure 4 by Xi, Yi, for i = 1, . . . , k, and the ‘single’ clique by Z. The structure
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of G[V0] and the interaction between the vertices in Y0 and V0 and vertices in X0

and Y0 is now understood. It remains to show that Y0 is a clique and that X0 is
a clique all of whose vertices are adjacent to all vertices in V0. The former is now
easy to prove.

Lemma 2.5. Assume a simple undirected graph G is not a complete graph, has no

clique cut-sets, and does not contain, as induced subgraphs, any of the graphs Cn,

n ≥ 5, or D1 −D4. Then Y0 from the partitioning of Proposition 2.1 is a clique.

Proof. Assume y0, y
′
0 ∈ Y0 are non-adjacent. Let x1 ∈ X1, y1 ∈ Y1 and let x0 ∈ X0

be adjacent to x1 and y1, which is possible according to Lemma 2.3. Then y0 and
y′0 are adjacent to both x1 and y1 and y0, y

′
0 and x0 are pairwise non-adjacent.

This shows that {x1, y1, x0, y0, y
′
0} induces a D4 in G, a contradiction. Hence all

vertices in Y0 are adjacent, as claimed. �

To determine the structure of X0 and its interaction with V0 we first consider
the subset

(2.1) X̃0 = {x0 ∈ X0 : (x0, v) ∈ E for every v ∈ Xj ∪ Yj , for j = 1, . . . , k},

which we later show to be equal to X0.

Lemma 2.6. The set X̃0 is also given by

X̃0 =

{x0 ∈ X0 : (x0, xj), (x0, yj) ∈ E for some xj ∈ Xj and some yj ∈ Yj}.(2.2)

Proof. Write X̂0 for the right hand side of (2.2). Clearly, X̃0 ⊂ X̂0. Now assume

x0 ∈ X̂0. Without loss of generality, j = 1, that is, there exist x1 ∈ X1 and y1 ∈ Y1

adjacent to x0.
We first show x0 is adjacent to all vertices in X1 ∪ Y1. Assume this is not the

case, say (x0, y
′
1) /∈ E for a y′1 ∈ Y1; the case (x0, x

′
1) /∈ E for a x′

1 ∈ X1 goes
analogously. Since (x1, y

′
1) /∈ E, by Lemma 2.3, there exists a x′

0 ∈ X0 adjacent
to x1 and y′1. Let y0 ∈ Y0. Since the structure of Y0 and X1 and Y1 and their
interaction is known, the only remaining possible adjacencies are between x′

0 and
x0 and between x′

0 and y1. Below is a table of the various adjacency cases of x′
0,

a check in the appropriate box means that x′
0 is adjacent to the relevant vertex in

G. Figure 6 gives a sketch of the subgraph of G induced by {y0, x0, x
′
0, x1, y1, y

′
1};

for the last case, note that the complement of a C5 is again a C5.

x0 y1 Vertex set Induced subgraph
X X {y0, x0, y

′
1, x1, y

′
1, x

′
0} D1

X {y0, x0, y
′
1, x1, y

′
1, x

′
0} D2

X {y0, x0, x
′
0, x1, y

′
1} D4

{x′
0, x0, y

′
1, x1, y1} C5

We see that each case leads to a contradiction, hence x0 is adjacent to all vertices
in X1 ∪ Y1.

Next we show x0 is adjacent to all vertices in Xj ∪ Yj for j > 1. Assume this
is not the case for a j > 1. Without loss of generality there exists a xj ∈ Xj

non-adjacent to x0. Choose yj ∈ Yj and y0 ∈ Y0 arbitrarily. All adjacency relations
are known apart from whether x0 is adjacent to yj, which gives an induced D3,
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y1x′
0

y0

x0 y′1

x1

Figure 6. The complementary graph on the set {y0, x0, y
′
1, x1, y

′
1, x

′
0}

xj

yj y0

x0 x1

y1

Figure 7. The complementary graph on the set {x1, y1, xj , yj, x0, y0}

or whether x0 and yj are non-adjacent, in which case we find D4 as an induced
subgraph; see Figure 7.

Since all cases lead to a forbidden induced subgraph, we reach a contradiction.

Hence x0 is adjacent to all vertices inXj∪Yj for j > 1 as well, and thus x0 ∈ X̃0. �

Proposition 2.7. The set X̃0 is a non-empty clique in G.

Proof. Since X̃0 is also given by (2.2) and, by Lemma 2.3, for x1 ∈ X1 and y1 ∈ Y1

there exists a x0 ∈ X0 adjacent to x1 and y1, we obtain that X̃0 6= ∅.
Assume X̃0 is not a clique, say x0, x

′
0 ∈ X̃0 are non-adjacent. Let x1 ∈ X1,

y1 ∈ Y1 and Y0 ∈ Y0. Then {x0, x
′
0, y0} forms a stable set (hence an induced K3 in

G) whose vertices are all adjacent to both x1 and y1. Since (x1, y1) /∈ E, we obtain
that {x0, x

′
0, y0, x1, y1} induces D4 in G. �

Proposition 2.8. Every vertex in X̃0 is adjacent to every vertex in V0.

Proof. By definition, any vertex in X̃0 is adjacent to all vertices in Xj ∪ Yj for
j = 1, . . . k. Hence it remains to show they are adjacent to the vertices in Z as

well. Assume this is not the case, say z ∈ Z and x0 ∈ X̃0 are non-adjacent. Choose
y0 ∈ Y0, x1 ∈ X1 and y1 ∈ Y1 arbitrarily.

Since z ∈ V0, it must be adjacent to a vertex in X0, see Proposition 2.1, and
since G[X0] is connected there exists a path from z to x0 whose internal vertices

are all in X0. Clearly j ≥ 1, for x0 is not adjacent to z. Let [z, x
(1)
0 , . . . , x

(j)
0 , x0] be

a shortest path of this type. Now, x
(1)
0 cannot be in X̃0. Indeed, if x

(1)
0 ∈ X̃0, then

z, x0, x
(1)
0 would all be adjacent to both x1 and y1, and (x0, x

(1)
0 ) ∈ E since X̃0 is

a clique. Thus, with x
(1)
0 ∈ X̃0 we find D3 as an induced subgraph on the vertex

set {y0, x0, x
′
0, x1, y1, z}. Since there is no shorter path from z to x0 none of the

internal vertices can be adjacent to z, apart from x
(1)
0 , or to x0, apart from x

(j)
0 .

Without loss of generality x
(i)
0 /∈ X̃0 for all i, otherwise change x0 to x

(i)
0 ∈ X̃0.

We show that j = 1. Assume j ≥ 2. Note that [z, x
(1)
0 , . . . , x

(j)
0 , x0, x1] and

[z, x
(1)
0 , . . . , x

(j)
0 , x0, y1] are both cycles of length j + 3 in G. If none of the vertices
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x
(i)
0 are adjacent to either x1 and y1, then we find C3+j as an induced subgraph.

Hence both cycles must contain chords, that is, x1 must be adjacent to an internal

vertex and y1 must be adjacent to an internal vertex. Let x
(i)
0 be the first vertex

in the path adjacent to x1. Then [z, x
(1)
0 , . . . , x

(i)
0 , x1] is an induced cycle of length

i + 2. Hence i ≤ 2. Thus, x1 is adjacent to either x
(1)
0 or x

(2)
0 . Similarly, y1

is adjacent to either x
(1)
0 or x

(2)
0 . However, x1 and y1 cannot be adjacent to the

same internal vertex, since all x
(i)
0 are in X0 \ X̃0; see Lemma 2.6. Thus, without

loss of generality, (x
(1)
0 , x1) ∈ E and (x

(2)
0 , y1) ∈ E. If j = 2, then it follows that

x
(2)
0 is adjacent to x0 and we find D2 as an induced subgraph on the vertex set

{x0, x
(1)
0 , x

(2)
0 , x1, y1, z}. If j ≥ 3 it follows that x

(2)
0 is non-adjacent to x0 and so

[x0, x1, x
(1)
0 , x

(2)
0 , y1] is an induced cycle in G of length 5. All possibilities lead to a

contradiction, hence j = 1.

Since j = 1, x
(1)
0 is adjacent to both z and x0 and to, at most, one of x1 and

y1. If x
(1)
0 were non-adjacent to both x1 and y1, then we find D4 as an induced

subgraph on the vertex set {x
(1)
0 , x1, y1, z, x0}. Say (x

(1)
0 , x1) ∈ E. Note that y0 is

adjacent to x1, y1, z and non-adjacent to x0, x
(1)
0 . Thus we find D1 as an induced

subgraph on the vertex set {x1, y1, x
(1)
0 , y0, x0, z}. Again a contradiction. Hence

every vertex x0 ∈ X0 must be adjacent to every vertex z ∈ Z. �

Proof of Theorem 1.4. As observed above, the fact that D1 − D4 contains no
clique cut-sets and are not in F (easily checked by comparing the complements)
proves the necessity part of Theorem 1.4.

It remains to show that excluding D1 − D4 leads to G being a clique-sum of
graphs from F . Again using the fact that D1 −D4 contain no clique cut-sets, we
may assume G has no clique cut-set, and in that case we need to show G ∈ F .
Let V = X0 ∪ Y0 ∪ V0 be the partitioning of V from Proposition 2.1. Applying
Proposition 2.2, Theorem 1.3 and Lemma 2.5 all that remains is to prove that
X0 is a clique, each vertex of which is adjacent to every vertex in V0. The subset

X̃0 ⊂ X0 defined in (2.1) turns out to have exactly these properties; see Proposition

2.7. In other words, if we set T = X0 \ X̃0, then G[V \ T ] ∈ Fk+1, if G[V0] ∈ Fk.
Hence, if u, v ∈ V \ T are non-adjacent, then there must be a 0 ≤ j ≤ k such that
u ∈ Xj and v ∈ Yj (or conversely), except for j = 0 where X0 should be replaced

by X̃0. To complete the proof, we show X̃0 = X0, i.e., T = ∅.
Assume T 6= ∅. We claim that for any connected subset S ⊂ T , the set A(S) :=

{w ∈ V \ T : (s, w) ∈ E for a s ∈ S} is a clique. To see that this is the case,
it suffices to consider the case that the vertices in S form a path in T . So, say
S = {t0, . . . , tl} with [t0, . . . , tl] a path in T . Assume A(S) is not a clique. Then
there exists a j such that xj ∈ Xj, yj ∈ Yj with xj , yj ∈ A(S). It cannot occur
that xj and yj are both adjacent to a vertex ti in the path, since Lemma 2.6 would

then imply ti ∈ X̃0. Without loss of generality, we may assume xj is adjacent to t0
and yj is adjacent to tl and xj and yj are non-adjacent to all ti for i = 1, . . . , l− 1,
otherwise, simply take a sub-path with this property. Choose y0 ∈ Y0 arbitrary.
The set {t0, . . . , tl, yj, y0, xj} then induces a cycle C4+l in G. This contradicts our
assumptions, unless we have that l = 0. However, if l = 0, S consists of a single

vertex, and, as seen above, A({t0}) is a clique, since otherwise, t0 ∈ X̃0.
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Now let S be any connected component in T (possibly T itself), then S is non-
empty, A(S) is a clique, S and T \S are disconnected and S and V \ (A(S)∪T ) are
disconnected. Thus A(S) is a clique cut-set in G, separating S and V \ (A(S)∪S),
a contradiction, since G is assumed not to have clique cut-sets. �

A graph from the class of clique-sums of elements in F with no clique cut-set
must be in F itself. The next corollary then follows directly from Theorems 1.3
and 1.4.

Corollary 2.9. Let G be a simple undirected graph which does not contain any

of the cycles Cn, n ≥ 5, or the graphs D1 − D4 from Theorem 1.2 as induced

subgraphs. If G contains no clique cut-set, then P4 and K3 also cannot appear as

induced subgraphs of G.

Proof of Theorem 1.2, (ii) ⇔ (iii). One easily verifies that none of the cycles
Cn, n ≥ 5, or the graphs D1 −D6 are contained in K2 or K3. Hence, they cannot
appear as induced subgraphs of graphs in K2 or K3. Since none of Cn, n ≥ 5, and
D1 − D6 have a clique cut-set, they also cannot appear as induced subgraphs of
clique-sums of graphs from K2 or K3. This proves that (iii) implies (ii).

Conversely, assume G is a graph that does not contain Cn, n ≥ 5, and D1 −D6

as induced subgraphs. By Theorem 1.4, G is a clique-sum of graphs from the graph
class F . Since Cn, n ≥ 5, and D1 −D6 have no clique cut-sets, all graphs in any
clique-sum decomposition of G also cannot contain Cn, n ≥ 5, and D1 − D6 as
induced subgraphs. Hence, without loss of generality, we may assume G has no
clique cut-sets, and therefore G ∈ F . Since D6 ∈ Fj for j ≥ 4, we have G ∈ F2∪F3

(note that graphs in F1 have a clique cut-set, so G /∈ F1). Whenever any of the
cliques in the clique pairs of F3 consists of more than one vertex, D5 appears as an
induced subgraph. Consequently, G will either be in F2 = K2 or in F3 with single
vertex cliques in the clique pairs, that is, in K3. Thus, (ii) implies (iii). �

3. The complex sparsity order

In this section we give a brief sketch of the proof of the implication (i) ⇒ (ii)
of Theorem 1.2, mostly for completeness, and a proof of the remaining implication
(iii) ⇒ (i), thus completing the proof of Theorem 1.2. The known proofs of the
implication (iii) ⇒ (i) all rely strongly on the so-called Dimension Theorem [1,
Corollary 3.1]. Here we present a more elementary proof of (iii) ⇒ (i) that does
not require this result, and which holds for both F = C and F = R. Note that (iii)
⇒ (i) indeed holds for F = R as well, but that this is not the case for (i) ⇒ (ii).
We start with some known general observations regarding the sparsity order of a
graph that we will need in the sequel. Throughout this section F will be equal to
C or R; we use notation and terminology corresponding to F = C which should be
properly interpreted if F = R.

Lemma 3.1. Let G be a simple graph. Then the following holds:

(a) Let H be an induced subgraph of G. Then ordF(H) ≤ ordF(G).

(b) Let G̃ be the graph obtained by adding a clique in such a way that each vertex

in the clique is adjacent to each vertex of G. Then ordF(G̃) = ordF(G).
(c) If G is the clique-sum of graphs G1, . . . , Gp, then

ordF(G) = max
1≤i≤p

(ordF(Gi)).
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Proof. The claims of (a) and (c) can be found in [1, Theorem 4.1] and [12, Theorem
3.1], respectively.

We prove (b). Clearly ordF(G̃) ≥ ordF(G), since any extremal element X ∈
PSDG gives an extremal element X ′ = [X 0

0 0 ] ∈ PSDG̃ of the same rank. Here the
zero-blocks correspond to the added vertices.

To show the reverse inequality, let X ′ ∈ PSDG̃. Then X ′ has the block form

X ′ =

[
X B∗

B Y

]
with X ∈ PSDG,

with no other restrictions on B and Y than that X ′ must be positive semidefinite.
If X = 0, then B = 0 and X ′ is extremal if and only if Y is extremal in the matrix
cone generated by the added clique, which occurs if and only if rankY = 1. Hence
we may assume X 6= 0, which we will do in the remainder of the proof.

We show thatX ′ extremal in PSDG̃ impliesX is extremal in PSDG and rankX =
rankX ′. In particular, for each extremal element in PSDG̃ there is an extremal

element in PSDG of the same rank, and hence, ordF(G̃) ≤ ordF(G), which completes
the proof. Now assume X ′ is extremal in PSDG̃. Since X ′ ≥ 0, we can factor X ′

as X ′ = W ∗W with W = [W1 W2 ] full row rank, i.e., W maps onto Fp with
p = rankX ′; the block decomposition of W corresponds to the decomposition of
X ′ above.

Clearly rankX ≤ rankX ′. Assume rankX < rankX ′. Then rankW1 =
rankX < rankX ′ = p, and hence ImW1 6= Fp. Take any v ∈ Fp with ‖v‖ = 1 and
v ⊥ ImW1. Set X ′

1 = W ∗(I − vv∗)W and X ′
2 = W ∗vv∗W . Then X ′ = X ′

1 +X ′
2

and X ′
1, X

′
2 ≥ 0. Furthermore, since W ∗

1 v = 0, we have

X1 =

[
W ∗

1

W ∗
2

]
(I − vv∗)

[
W1 W2

]
=

[
X B
B W ∗

2 (I − vv∗)W2

]
,

X2 =

[
W ∗

1

W ∗
2

]
vv∗

[
W1 W2

]
=

[
0 0
0 W ∗

2 vv
∗W2

]
.

Both are in PSDG̃, and not a positive scalar multiple of X ′, since X 6= 0. This is
in contradiction with the extremality of X ′, hence rankX = rankX ′.

Now assume X is non-extremal, say X = X1 +X2 with Xi ∈ PSDG, Xi 6= λX
for a λ > 0. Since X,X1, X2 ≥ 0 the identity X = X1 +X2 implies that KerX ⊂

KerXi, hence ImXi ⊂ ImX . Then also ImX
1

2

i ⊂ ImX
1

2 = ImW ∗
1 . By Douglas’

Lemma [9], X
1

2

i = W ∗
1 Ti for a p × p matrix Ti. Hence Xi = X

1

2

i X
1

2

i = W ∗
1RiW1

for Ri = TiT
∗
i . Now Ri 6= λI for all λ > 0, for otherwise Xi = λX . Also, since

W ∗
1W1 = X = X1 + X2 = W ∗

1 (R1 + R2)W1 we may assume R1 + R2 = I. Now
set X ′

i = W ∗RiW , i = 1, 2. Then X ′ = X ′
1 +X ′

2, X
′
1, X

′
2 ≥ 0 and X ′

i 6= λX, since
Ri 6= λI. Moreover, X ′

i has the form X ′
i = [Xi ∗

∗ ∗ ]. Since Xi ∈ PSDG we see that
X ′

i ∈ PSDG̃. Again we reach a contradiction with the extremality of X ′, hence X
must be extremal. �

Sketch of the proof of Theorem 1.2 (i) ⇒ (ii). By Lemma 3.1(a) it follows
that a graph with complex sparsity order less than or equal to 2 cannot contain, as
an induced subgraph, a graph with sparsity order greater than 2. Thus, it suffices
to show that the graphs Cn, n ≥ 5, and D1 −D6 have sparsity order greater than
2. In [14, Lemma 2.8] this is shown to be the case if G is one of Cn, n ≥ 5, and
D1 −D4 and in [13, p.556] it is shown for D5 and D6. To prove these claims one
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constructs an element X ∈ PSDG with rank(X) = p > 2 in the form X = W ∗W .
Let w1, . . . , wn be the columns of W and define

U := span{wiw
∗
j : (i, j) ∈ E}.

A consequence of the Dimension Theorem is that X is extreme in PSDG if and only
if dimC(U) = k2 − 1. For G one of the above graphs, this enables one to explicitly
construct an extreme element X in PSDG with rank(X) > 2. �

The main implication of Lemma 3.1 (b) used in the present paper is that the
unpaired clique in the graphs from the class F is irrelevant for the sparsity order of
the graph, hence we may assume it to be void, which we will do in the sequel. We
start with a few additional reductions for extremal elements in PSDG for G ∈ F .

Assume X ∈ PSDG with G ∈ Fk for some k so that the unpaired clique is void
and the sizes of the paired cliques are given by pi,l for i = 1, . . . , k and l = 1, 2. Set
pi = pi,1 + pi,2. Then X has the following form

X =




M1 A1,2 · · · A1,k

A∗
1,2 M2

...
...

. . . Ak−1,k

A∗
1,k · · · A∗

k−1,k Mk



,(3.1)

Mi =

[
Mi,1 0
0 Mi,2

]
, Ai,j =

[
A1,1

i,j A1,2
i,j

A2,1
i,j A2,2

i,j

]
,

where Mi,l ∈ Fpi,l×pi,l and Al,m
i,j ∈ Fpi,l×pj,m . Note that positive semidefiniteness

is independent of the choice of basis. However, we have to preserve the structure
imposed by G, in this case the zero blocks in Mi. This still allows us to change
the basis for each of the Fki,l . Further, note that since X is a positive semidefinite

block matrix, KerMi,l = CokerMi,l is contained in KerAl,m
i,j and Coker(Al,m

i,j )∗, for

j = 1, . . . , k and m = 1, 2. Write M̃i,l for the compressions of Mi,l to KerM⊥
i,l and

CokerM⊥
i,l and Ãl,m

i,j for the compressions of Al,m
i,j to KerM⊥

i,l and CokerM⊥
j,m, and

define X̃ according to (3.1) with Mi,l and Al,m
i,j replaced by M̃i,l and Ãl,m

i,j , respec-

tively, writing M̃i and Ãi,j instead of Mi and Ai,j . Since Ker M̃i is the orthogonal

direct sum of Ker M̃i,1 and Ker M̃i,1, the matrix M̃i is invertible. Furthermore, X is

extremal if and only if X̃ is extremal in PSDG′ with G′ ∈ Fk obtained by reducing

the paired cliques of G in size accordingly to the size reduction from X to X̃; the
choice of basis for KerM⊥

i,l is irrelevant in this regard. That X is extremal if and

only if X̃ is extremal is easily seen, since if X can be written as X = X1 +X2 for
X1, X2 ∈ PSDG, then the kernel KerMi,l, for i = 1, . . . , k and l = 1, 2, must also
be included in the kernels and co-kernels of the appropriate blocks of X1 and X2

in their block decompositions of the form (3.1). Hence, without loss of generality

we may assume Mi is positive definite. Now set T = diag(M
−1/2
1 , . . . ,M

−1/2
k ) and

X̂ = T ∗XT . Then X̂ is in PSDG, and in it’s block representation (3.1) we have
Mi,l = Ipi,l

, hence Mi = Ipi
. Moreover, the map Y 7→ T ∗Y T is a bijective map

from PSDG onto PSDG, and as a result, X is extremal if and only if X̂ is extremal.
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Hence we may assume that Mi = Ipi
for each i, that is, X takes the form

(3.2) X =




Ip1
C1,2 · · · C1,k

C∗
1,2 Ip2

...
...

. . . Ck−1,k

C∗
1,k · · · C∗

k−1,k Ipk



,

where the fact that X is positive implies that all Ci,j must be contractions.
We will next specialize to the cases K2 and K3. The following intermezzo will

be of use when dealing with the K2 case.

Intermezzo: Two dimensional subspaces with a 2-way splitting.
Let Fp have two orthogonal sum decompositions:

(3.3) F
p = X1 ⊕X2 and F

p = Y1 ⊕ Y2.

We seek a subspace Z ⊂ Fp of dimension two that splits over both orthogonal
decompositions, that is,

(3.4) Z = (Z ∩ X1)⊕ (Z ∩ X2) = (Z ∩ Y1)⊕ (Z ∩ Y2).

Clearly, we must have p ≥ 2. The following result shows that such a splitting always
exists.

Proposition 3.2. Let p ≥ 2. Assume that Fp has two orthogonal decompositions

Fp = X1 ⊕X2 = Y1 ⊕Y2. Then there exists a two-dimensional linear space Z ⊆ Fp

that splits over both orthogonal decompositions, that is, (3.4) holds.

Proof. The proof is split into three parts.
Part 1. We first show that without loss of generality we may assume that Xi∩Yj =

{0}, for all i, j. To the contrary, assume K := Xi ∩Yj 6= {0}. Set X̂1 = X1 ⊖K and

Ŷ1 = Y1⊖K. Then H := Fp \K = X̂1⊕X2 = Ŷ1⊕Y2 and X̂i∩Ŷj = {0}. Note that
a 2-dimensional subset of H that splits over the two orthogonal decompositions of
H also splits over the two orthogonal decompositions of Fp. If dim(H) > 2, then
we consider the other intersections till we arrive at the case Xi ∩ Yj = {0}, for all
i, j. If dim(H) < 2, then there are two cases to consider:

(1) dim(K) > 2 : Take any Z ⊆ K with dim(Z) = 2.
(2) dim(K) = 1 : Then, necessarily, p = 2 and we take Z = Fp = F2.

Consequently, we need but consider the case where Xi∩Yj = {0}, for all i, j, which
we will do in the sequel.
Part 2. Next we show that p is even, pi := dim(Xi) = p/2 and qi := dim(Yi) = p/2
for i = 1, 2. Note that p = p1 + p2 = q1 + q2. Hence there must exist i, j so that
pi ≥ p/2 and qj ≥ p/2. By assumption we have dim(Xi ∩ Yj) = 0 so that

pi + qj = dim(Xi) + dim(Yj) = dim(Xi ∩ Yj) + dim(Xi + Yj) = dim(Xi + Yj) 6 p.

Hence p ≥ pi + qj ≥ p/2 + p/2 = p, so that pi + qj = p. Since both pi, qj ≥ p/2,
we must have pi = qj = p/2 and p must be even. Also, p− pi = p/2 = p− qj such
that pi = qi = p/2 for i = 1, 2.
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Part 3. In the final part we prove the claim. Set d = p/2. After a change of
coordinates we can assume that

X1 = span{e1, . . . , ed} and X2 = span{ed+1, . . . , ep},

with e1, . . . , ep the standard basis for F
p. Let {f1, . . . , fd} and {fd+1, . . . , fp} be

bases for Y1 and Y2, respectively. For i = 1, 2 and k = 1, . . . , p set f
(i)
k = PXi

fk.
Define

T =

[
T1,1 T1,2

T2,1 T2,2

]
=

[
f
(1)
1 · · · f

(1)
d f

(1)
d+1 · · · f

(1)
p

f
(2)
1 · · · f

(2)
d f

(2)
d+1 · · · f

(2)
p

]
and Ti =

[
T1,i

T2,i

]
.

Note that each Ti,j is a d × d matrix. Moreover, Ti is a one-to-one map from Xi

onto Yi for i = 1, 2 and hence the columns of T1 are orthogonal to the columns
of T2. The latter is equivalent to T ∗

2,2T2,1 + T ∗
1,2T1,1 = 0. We now show that

KerTi,j = {0} for each i, j, hence Ti,j is invertible. Indeed, say 0 6= v ∈ KerT1,j.

Then 0 6= Tjv ∈ Yj and Tjv =
[

0
T2,jv

]
∈ X2. Hence Yj ∩X2 6= {0}, in contradiction

with the assumption Yj ∩Xi = {0} for all i, j. Similarly, a contradiction is obtained
from 0 6= v ∈ KerT2,j . In particular, T1,1 and T2,2 are invertible, so that we can
factor T as

T =

[
Id T1,2T

−1
2,2

T2,1T
−1
1,1 Id

] [
T1,1 0
0 T2,2

]
.

Applying another change of basis to X1 and X2, using T1,1 and T2,2, respectively,
we see that without loss of generality T1,1 = Id = T2,2. The orthogonality of the
columns of T1 and T2 then reduces to T2,1 + T ∗

1,2 = 0, hence T2,1 = −T ∗
1,2. In other

words, we may assume T has the form

T =

[
Id U

−U∗ Id

]
and hence T1 =

[
Id

−U∗

]
, T2 =

[
U
Id

]
,

for some invertible d× d matrix U (viewed as a one-to-one map from X2 onto X1).
Let v ∈ X2 be an eigenvector of U∗U with eigenvalue λ. Note that U∗U is

positive definite, so that λ > 0. Set

Z = span

{(
Uv
0

)
,

(
0
v

)}
.

Then clearly dim(Z) = 2 and Z splits over Fp = X1 ⊕X2. Note that Z can also be
written as

Z = span

{(
Uv
−λv

)
,

(
Uv
v

)}
= span {T1Uv, T2v} .

The latter identity shows that Z also splits over Fp = Y1 ⊕ Y2. �

The case G ∈ K2. Let G ∈ K2 = F2. We show that any extremal element of PSDG

has rank of at most two. Note that in this case an X ∈ PSDG may be assumed to
be of the form

(3.5) X =

[
Ip1

C
C∗ Ip2

]
with C =

[
C1,1 C1,2

C2,1 C2,2

]
,

where the block decomposition of the contraction C is according to p1 = p1,1+ p1,2
and p2 = p2,1 + p2,2. We may assume pi,j 6= 0, for otherwise X may be viewed as
an element of PSDG′ for a G′ ∈ F1, for which we know ordF(G

′) ≤ 1.

Lemma 3.3. Assume X in (3.5) is extremal. Then C is unitary. In particular,

rankX = p1 = p2. Furthermore, p is even and pi,j = p/2 for i, j = 1, 2.
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Proof. Factor X = W ∗W with W =
[
W1 W2

]
and Wi =

[
Wi,1 Wi,2

]
,

where W decomposes according to the decomposition of X and Wi according to
the decomposition of C in (3.5). Then W ∗

i Wi = Ipi
, hence Wi is an isometry.

Assume W has full row rank, hence W maps onto Fp with p = rankX . This
implies p1, p2 ≤ p. Hence for both i = 1, 2 either pi,1 ≤ p/2 or pi,2 ≤ p/2. Assume
there exists i, j ∈ {1, 2} so that pi,j < p/2, which is always the case if p is odd.
Choose i′, j′ ∈ {1, 2} with i 6= i′ so that pi′,j′ ≤ p/2. Then

rank

[
W ∗

i,j

W ∗
i′,j′

]
≤ pi,j + pi′,j′ < p, hence Ker

[
W ∗

i,j

W ∗
i′,j′

]
6= {0}.

Take v ∈ Fp, ‖v‖ = 1 so that W ∗
i,jv = 0 and W ∗

i′,j′v = 0. Since i 6= i′, we

obtain that W ∗
k vv

∗Wk = [ ∗ 0
0 ∗ ] for both k = 1, 2. Hence X1 = W ∗(I − vv∗)W and

X2 = W ∗vv∗W are in PSDG. Moreover, rankX2 = 1, since W has full row rank,
hence X1 and X2 are no positive scalar multiples of X . This is in contradiction
with the extremality of X . Hence pi,j = p/2 for all i, j ∈ {1, 2}. Then p1 = p2 = p.
We already observed that W1 and W2 are isometries. Now, p1 = p2 = p implies W1

and W2 are square, hence unitary. Then C = W ∗
1W2 will also be unitary. �

Using Proposition 3.2 and the fact the C in (3.5) is unitary whenever X is
extremal in PSDG, we prove the following result.

Proposition 3.4. Let X in (3.5) be extremal. Then rank(X) ≤ 2.

Proof. Since X is extremal, C in (3.5) is unitary and hence X factors as

X =

[
Ip
C∗

] [
Ip C

]
.

Define

J1 =

[
Ip1,1

0
0 −Ip1,2

]
and J2 = CJ ′

2C
∗ with J ′

2 =

[
Ip2,1

0
0 −Ip2,2

]
.

Then J1 and J2 are signature matrices of size p × p. Let Z be a subspace of Fp

that splits over both orthogonal sum decompositions of Fp associated with J1 and
J2, which exists by Proposition 3.2, and write Q for the orthogonal projection
on Z. Then JiQJi = Q for i = 1, 2. Since J2 = CJ ′

2C
∗ and C is unitary, this

implies J ′
2C

∗QCJ ′
2 = C∗QC. However, the identities J1QJ1 = Q and J ′

2C
∗QCJ ′

2 =
C∗QC imply that Q and C∗QC have a block diagonal form with respect to the
decompositions p = p1,1 + p1,2 and p = p2,1 + p2,2, respectively. Therefore

X1 =

[
Ip
C∗

]
Q
[
Ip C

]
=

[
Q QC

C∗Q C∗QC

]

and

X2 =

[
Ip
C∗

]
(I −Q)

[
Ip C

]

are both in PSDG and X = X1+X2. Since X is extremal, X1 is a positive scalar
multiple of X . However, rankX1 = 2, so that rankX = 2. �
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The case G ∈ K3. Let G ∈ K3. Assume X is extremal in PSDG and of the form
(3.2) with k = 3 and all entries of size 2× 2. Again, factor X as X = W ∗W, where
rank(X) = rank(W ) = p and decompose W as

W =
[
W1 W2 W3

]
with Wi =

[
Wi,1 Wi,2

]
: C2 7→ C

p.

Then W ∗
i Wi = I2, hence Wi is isometric, and W ∗

i,1Wi,2 = 0, for i = 1, 2, 3. The
proof of the following result is based on the ideas behind the proof of the Dimension
Theorem, but instead provides an explicit construction.

Proposition 3.5. Let X ∈ PSDG, with G ∈ K3, be extremal. Then rank(X) ≤ 2.

Proof. Assume X and W are as in the paragraph preceding the proposition, as
we may do without loss of generality. Assume p = rank(X) ≥ 3. We will construct
a p × p matrix R with 0 ≤ R ≤ I, R 6= λI for all λ > 0, and W ∗

i,1RWi,2 = 0, for
i = 1, 2, 3. Once such an R is obtained, we can write X as X = X1 + X2 with
X1 = W ∗RW and X2 = W ∗(I − R)W both in PSDG and not scalar multiples of
X, contradicting the extremality of X . In other words, any extremal element of
PSDG must have rank at most 2.

If p ≥ 4, simply take v ⊥ Wi,1, i = 1, 2, 3, and set R = vv∗. Hence, we need but
consider the case p = 3. Let F = C. We will first determine a Hermitian matrix B
such that W ∗

i,1BWi,2 = 0 for i = 1, 2, 3 and B 6= λI, for all λ ∈ R. A Hermitian
matrix B has the form

B =



r1 c1 c2
c1 r2 c3
c2 c3 r3




with ri ∈ R and ci ∈ C, i = 1, 2, 3. Write out

Wi,j =



w

(1)
i,j

w
(2)
i,j

w
(3)
i,j


 .

Computing W ∗
i,1BWi,2 we obtain the following equation

W ∗
i,1BWi,2 = w

(1)
1,1w

(1)
2,2r1 + w

(2)
1,1w

(2)
2,2r2 + w

(3)
1,1w

(3)
2,2r3 + w

(1)
1,1w

(2)
2,2c1 + w

(2)
1,1w

(1)
2,2c1

+ w
(1)
1,1w

(3)
2,2c2 + w

(3)
1,1w

(1)
2,2c2 + w

(2)
1,1w

(3)
2,2c3 + w

(3)
1,1w

(2)
2,2c3.

Now, setting W ∗
i,1BWi,2 = 0 and splitting all elements in the equation into a real

and imaginary part we obtain two homogeneous linear equations, with real coeffi-
cients and real variables. Doing this for i = 1, 2, 3 we have six equations in nine
real variables. Consequently, the solution space of this system of equations has
a dimension of at least 3. Leaving out the scalar multiples of I3, one still has
a two dimensional space to chose an Hermitian matrix B from with the desired
properties. Now set R = ρI+B

‖ρI+B‖ with ρ = ‖B‖. Then R ≥ 0, ‖R‖ = 1, so that

R ≤ I, and R 6= λI for all λ ≥ 0. Furthermore, since the solution set of the
equations W ∗

i,1SWi,2 = 0, i = 1, 2, 3, is linear and both B and I are solutions, so
is R. We conclude R has the the desired properties. This completes the proof for
the case F = C. If F = R, in a similar way one obtains three linear equations
with six variables, from which one can again construct an R ≥ 0 with the required
properties. �

As a side result of the above proof, we obtain the following corollary, cf., Lemma
3.3 for the case K2.
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Corollary 3.6. Assume X ∈ PSDG, with G ∈ K3, is of the form (3.2), i.e., with
k = 3 and all entries of size 2 × 2. If X is extreme, then C1,2, C1,3 and C2,3 are

unitary. Conversely, if C1,2, C1,3 and C2,3 are unitary, then C∗
1,2C1,3 = C2,3, X

factors as

X =




I
C1,2

C2,3


 [

I C1,2 C2,3

]
,

and hence rank(X) = 2.

Proof. If X ∈ PSDG is extremal, then p = rank(X) = 2. Hence the matrices
W1, W2 and W3 in the above proof are square isometries, hence unitary. Then
C1,2 = W ∗

1W2, C1,3 = W ∗
1W3 and C2,3 = W ∗

2W3 are also unitary.
Assume C1,2, C1,3 and C2,3 are unitary. Again using the factorization X =

W ∗W , we have C∗
1,2C1,3 = W ∗

2W1W
∗
1 W3 = W ∗

2W3 = C2,3. The factorization of X
now follows directly. �

Proof of Theorem 1.2 (iii) ⇒ (i). Combining Propositions 3.4 and 3.5 we ob-
tain that any extremal element of PSDG for a G ∈ K2∪K3 must have rank at most
2. �
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