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NILPOTENT GRAPH

DHIREN KUMAR BASNET, AJAY SHARMA AND RAHUL DUTTA

Abstract. In this article, we introduce the concept of nilpotent graph of a finite
commutative ring. The set of all non nilpotent elements of a ring is taken as the
vertex set and two vertices are adjacent if and only if their sum is nilpotent. We
discuss some graph theoretic properties of nilpotent graph.

1. Introduction

In this article, rings are finite commutative rings with non zero identity. The set
of nilpotent elements of a ring R and the n × n matrix ring over R are denoted by
Nil(R) and Mn(R) respectively. Here, by graph, we mean simple undirected graph.
For a graph G, the set of vertices and the set of edges are denoted by V (G) and E(G)
respectively. For a positive integer n, P. Grimaldi[4] defined and studied various
properties of the unit graph G(Zn), of the ring of integers modulo n, with vertex set
Zn and two distinct vertices are adjacent if and only if their sum is a unit. Further in
[1], authors generalized G(Zn) to unit graph G(R), where R is an arbitrary associative
ring with non zero identity.

In this article we have introduced nilpotent graph G(R) associated with a finite ring
R. We define the nilpotent graph G(R) of a ring R taking R \Nil(R) as the vertex
set and two vertices x and y are adjacent if and only if x + y is a nilpotent element
in R. The properties like girth, clique number, chromatic index, dominating number,
spectrum, Laplacian spectrum and signless Laplacian spectrum of G(R) have been
studied.

For this article, we mention some preliminaries about graph theory. Let G be a
graph. The degree of the vertex v ∈ G is the number of edges adjacent with v,
denoted by deg(v). A graph G is said to be connected if for any two distinct vertices
of G, there is a path in G connecting them. Also girth of G, denoted by gr(G) is the
length of the shortest cycle in G and if there is no cycle in G then gr(G) = ∞. A
complete graph is a simple undirected graph in which every pair of distinct vertices
is connected by a unique edge. A bipartite graph G is a graph whose vertices can be
divided into two disjoint parts V1 and V2, such that V (G) = V1 ∪ V2 and every edge
in G has the form e = (x, y) ∈ E(G), where x ∈ V1 and y ∈ V2. A complete bipartite
graph is a graph where every vertex of V1 is connected to every vertex of V2, denoted
by Km,n, where |V1| = m and |V2| = n. A complete bipartite graph K1,n is called star
graph.
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A clique is a subset of vertices of a graph such that its induced subgraph is complete.
A clique having n number of vertices is called n-clique. The maximum clique of a
graph is a clique such that there is no clique with more vertices. The clique number of
a graph G is denoted by ω(G) and defined by the number of vertices in the maximal
clique of G. An edge colouring of a graph G is a map ξ : E(G) → S, where S is a set
of colours such that for all e1, e2 ∈ E(G), if e1 and e2 are adjacent then ξ(e1) 6= ξ(e2).
The chromatic index of a graph G is denoted by χ′(G) and is defined as the minimum
number of colours needed for a proper colouring of G.

2. Nilpotent graphs

Definition 2.1. The nilpotent graph of a ring R denoted by G(R) is defined by
setting R \Nil(R) as the vertex set and two distinct vertices x and y are adjacent if
x+ y is nilpotent. Here we are not considering any loop at a vertex in the graph.

The nilpotent graphs of Z12 and Z18 are given below,
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Figure 1. Nilpotent graph of Z12.
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Figure 2. Nilpotent graph of Z18.

From the above two graphs, it is clear that gr(G(Z12)) and gr(G(Z18)) are 2 and 3
respectively.

Lemma 2.2. Let G(R) be the nilpotent graph of a ring R. Then for x ∈ V (G(R))
we have the following:

(1) If 2x ∈ N(R) then deg(x) = |N(R)| − 1.
(2) If 2x /∈ N(R) then deg(x) = |N(R)|.
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Proof. Proof is similar to Lemma 2.4 [2]. �

Corollary 2.3. Every graph G(Zn) with n = 2k where k ≥ 1 is a complete graph.

Corollary 2.4. Every graph G(Zn) such that Nil(Zn) = {0} has chromatic number

equal to 2.

Proof. From Lemma 2.2, we have deg(x) = 1, for all x ∈ V (G(Zn)). Hence chromatic
number is 2. �

Theorem 2.5. Every graph G(Zn), where n = pnqm, n > m and p, q are distinct

primes has the following properties:

(1) Let p = 2 and q be an odd prime then

• If |Nil(Zn)| > 2 then G(Zn) is not bipartite and has a complete subgraph

of order Nil(Zn) and its complement is bipartite.

• If |Nil(Zn)| ≤ 2 then G(Zn) is bipartite.

(2) If p, q > 2 then G(Zn) is bipartite.

Proof. (i) Let p = 2 and consider |Nil(Zn)| = k. Now we partition our vertex set given
by P1 = {1, 2, · · ·, pq−1}, P2 = {pq+1, pq+2, · · ·, 2pq−1}, · · ·, Pkl = {pq(pn−1qm−1−
1) + 1, pq(pn−1qm−1 − 1) + 2, · · ·, pnqm − 1}. Observe that kl = k = |Nil(Zn)|. As
p = 2, we see that |P1| = |P2| = · · · = |Pk| = pq − 1 =odd. Since |P1| is odd so,
there exists r1 ∈ P1 such that 2r1 = pq. Similarly r2 ∈ P2 such that 2r2 = 3pq and
we get r1 + r2 = 2pq ∈ Nil(Zn). Similarly as above we can easily show that for any
Pi, there exists ri ∈ Pi such that 2ri = (2i − 1)pq. Let C = {r1, r2, · · ·, rk}. Then
for any pair ri, rj ∈ C, we get ri + rj = (i + j − 1)pq ∈ Nil(Zn). Hence induced
subgraph of C forms a complete subgraph of G(Zn) and G(Zn) is not bipartite.
Now by Lemma 2.2, the complete subgraph induced by C is not connected with
any vertex in G \ C. Consider Bi = {rpq + i : 0 ≤ r ≤ (pn−1qm−1 − 1)} and
B−i = {spq − i : 0 ≤ s ≤ (pn−1qm−1 − 1)}, where 1 ≤ i < pq

2
. It is clear that every

element of Bi is adjacent to every element of B−i. For x ∈ Bi if x + y ∈ Nil(R)
then y = n1 − x = (n1 − n2) − i ∈ B−i, where x = n2 + i and n1, n2 ∈ Nil(R). Let
A = B1 ∪ B2 ∪ · · · ∪ B pq

2
−1 and B = B−1 ∪ B−2 ∪ · · · ∪ B−(pq

2
−1). Observe that no

two elements of A are adjacent as, i+ j /∈ Nil(R), for 1 ≤ i, j < pq

2
. Similarly no two

elements of B are adjacent and hence the result. If |Nil(Zn)| ≤ 2 then clearly G(R)
is bipartite.

(ii) If p and q are two distinct odd primes, then Pi is even for 1 ≤ i ≤ k. Now in
Pi we see that 1 is adjacent to ipq − 1, more generally rpq + 1 is adjacent to spq− 1,
where 0 ≤ r ≤ (pn−1qm−1 − 1) and 0 ≤ s ≤ (pn−1qm−1 − 1). Let B1 = {rpq + 1 :
0 ≤ r ≤ (pn−1qm−1 − 1)} and B−1 = {spq − 1 : 0 ≤ s ≤ (pn−1qm−1 − 1)}, then
clearly each vertex of B1 and each vertex of B−1 are adjacent. But no two elements
of B1 and no two elements of B−1 are adjacent. For x ∈ B1 if x + y ∈ Nil(R) then
y = n1 − x = (n1 − n2) − i ∈ B−i, where x = n2 + i and n1, n2 ∈ Nil(R), implies
G(B1 ∪B−1) is a subgraph which is bipartite. In general we can get G(Bw ∪B−w) is
a subgraph which is bipartite, where 1 ≤ w ≤ [pq

2
]. Now we partition G(Zn) into two

parts viz. A1 = B1 ∪ B2 ∪ · · · ∪ B[ pq
2
] and A2 = B−1 ∪B−2 ∪ · · · ∪ B−[ pq

2
]. If possible

let a, b ∈ A, such that a+ b ∈ Nil(Zn), then a+ b = (r + s)pq + (a1 + b1) ∈ Nil(Zn),
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where a1, b1 ≤ [pq
2
], which is a contradiction to the fact that a1 + b1 ∈ Nil(Zn), as

a1, b1 < pq, so no two vertices of A1 are adjacent. Similarly we can show that no two
vertices of A2 are adjacent. Hence G(Zn) is bipartite. �

Corollary 2.6. If n = pr11 p
r2
2 · · · prkk , where pi’s are distinct odd primes, then

G(Zn) is bipartite and it consists of [p1p2···pk
2

] disjoint complete bipartite subgraphs

K|Nil(Zn)|,|Nil(Zn)|.

Corollary 2.7. If n = pr11 pr22 · · · prkk , where p1 = 2 and pi’s are distinct odd primes

for 2 ≤ i ≤ k, then G(Zn) consists of one complete subgraph of order |Nil(R)| and
its complement is bipartite, which is a union of disjoint complete bipartite subgraphs

K|Nil(Zn)|,|Nil(Zn)|.

3. Girth

Theorem 3.1. For the graph of G(Zn) the following hold:

(1) If n is odd then girth of G(Zn) is 4 provided |Nil(Zn)| ≥ 3 and girth of G(Zn)
is infinite otherwise.

(2) Let n be an even number. Then

• If |Nil(Zn)| ≥ 3, then girth of G(Zn) is 3.
• If |Nil(Zn)| = 2, then girth of G(Zn) is 4, provided |R \ Nil(R)| > 4
otherwise girth of G(Zn) is infinite.

• If |Nil(Zn)| = 1, then girth of G(Zn) is infinite.

Proof. (1) If |Nil(Zn)| ≥ 3 then there exists x ∈ Zn such that n1 − x, n1 + x,
n2−x and x are not nilpotent elements, where 0, n1, n2 ∈ Nil(Zn) are distinct
elements. So we have a 4 cycle x − (n1−x) − (n1+x) − (n2−x) − x, hence
from Theorem 2.5, gr(G(Zn)) = 4. If |Nil(Zn)| < 3, then |Nil(Zn)| = 1 as
|Nil(Zn)| divides n.

(2) Proof is obvious from Theorem 2.5.
�

Lemma 3.2. Let R be a commutative ring of odd order and x ∈ R. Then x ∈ Nil(R)
if 2x ∈ Nil(R).

Proof. Let 2x ∈ Nil(R). There exists n ∈ N such that 2nxn = 0. Since (R,+) is an
abelian group, as an abelian group, Ord(xn) divides 2n, so Ord(xn) = 2k, for some
0 ≤ k ≤ n. But as an abelian group, Ord(xn) divides |R|, implies k = 0. Hence
xn = 0 i.e. x ∈ Nil(R). �

Lemma 3.3. Let R be a commutative ring of even order. Then there exists x ∈
R \Nil(R) such that 2x ∈ Nil(R).

Proof. Consider |R| = 2km, where 2 does not divides m. Let x = m.1, where m.1 =
(1 + 1 + · · · + 1)(m − times). Observe that for n ∈ N, xn = mn.1. If possible let
x = m.1 = 0 then for any a ∈ R, m.a = (1 + 1 + · · · + 1).a = (m.1)a = 0, which
is a contradiction as by cauchy theorem there exists an element in R having order
2 in (R,+). So x 6= 0. Suppose xn = 0 for n ∈ N then mn.1 = 0 implies O(1)
divides mn, where O(1) represents order of 1 in (R,+). Also O(1) divides 2km, so
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O(1) divides m i.e., m.1 = x = 0 a contradiction. Hence x ∈ R \ Nil(R). Now
(2x)k = (2m)k.1 = (2kmk).1 = mk−1((2km).1)) = 0 i.e., 2x ∈ Nil(R). �

Theorem 3.4. Let R be a commutative ring of odd order and |Nil(R)| ≥ 3 then

gr(G(R)) is 4 and gr(G(R)) is infinite otherwise.

Proof. If possible let gr(G(R)) is 3 then there exists a path z1 −→ z2 −→ z3 −→ z1
in G(R). i.e. {2z1, 2z2, 2z3} ⊂ Nil(R), which is a contradiction by Lemma 3.2, as
zi /∈ Nil(R) for 1 ≤ i ≤ 3.
Consider R \ Nil(R) 6= φ otherwise our graph is empty graph. Let x ∈ R \ Nil(R).
Since |Nil(R)| ≥ 3, so there exists elements 0, n1, n2 ∈ Nil(R) such that all are
distinct. Clearly x −→ n1 − x −→ n2 + x −→ n2 − x −→ x is a cycle in G(R).
Observe that all four elements x, n1 − x, n2 + x, n2 − x are distinct, otherwise either
2x ∈ Nil(R) or ni = nj for i 6= j. Let |Nil(R)| < 3, since |Nil(R)| divides |R|, so
|Nil(R)| = 1 and hence gr(G(R)) is infinite. �

Theorem 3.5. Let R be a commutative ring of even order and |Nil(R)| ≥ 3 then

gr(G(R)) is 3.

Proof. By Lemma 3.3, there exists an element x ∈ R\Nil(R) such that 2x ∈ Nil(R).
Since |Nil(R)| ≥ 3, so there exist elements n1, n2, n3 ∈ Nil(R) such that all are
distinct. It is clear that n3 + x −→ n2 + x −→ n1 + x −→ n3 + x be a cycle in
G(R). Clearly ni + x ∈ R \ Nil(R), for 1 ≤ i ≤ 3 and all are distinct. Hence
gr(G(R)) = 3. �

4. Clique number

Theorem 4.1. For the graph G(Zn) the following hold:

(1) If n is odd, then the clique number of G(Zn) is 2.
(2) If n is even, then the clique number of G(Zn) is |Nil(Zn)| provided |Nil(Zn)| ≥

2 and the clique number of G(Zn) is 2 if |Nil(Zn)| = 1.

Proof. Proof follows from Corollary 2.6 and Corollary 2.7. �

Next we generalise the Theorem 4.1 to arbitrary finite commutative ring R.

Theorem 4.2. Let R be a finite commutative ring

(1) If |R| is odd, then ω(G(R)) = 2.
(2) If |R| is even, then ω(G(R)) = |Nil(R)| provided |Nil(R)| ≥ 2, otherwise

ω(G(R)) = 2.

Proof. (1) Clear from Theorem 3.4.
(2) From definition of nilpotent graph, it is clear that ω(G(R)) ≤ |Nil(R)|. Next

we claim that ω(G(R)) = |Nil(R)|. By Lemma 3.3, there exists x ∈ R\Nil(R)
such that 2x ∈ Nil(R). Let |Nil(R)| = n and a′is are distinct elements of
Nil(R), for 0 ≤ i ≤ n − 1. Consider A = {x + ai : ai ∈ Nil(R)}. Observe
that all pair of distinct elements of A are adjacent and A ⊆ R \ Nil(R).
Hence vertex set A forms a complete subgraph of G(R). If |Nil(R)| = 1 then
obviously ω(G(R)) = 2.

�
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5. Spectrum, Laplacian spectrum and signless Laplacian spectrum of

G(Zn)

For a graph G, let A(G) and D(G) are respectively adjacency matrix and degree
matrix of G. Then Laplacian and signless Laplacian matrix are given by L(G) =
D(G)− A(G) and Q(G) = D(G) + A(G) respectively. The collection of eigen values
of adjacency matrix, Laplacian matrix and signless Laplacian matrix are called spec-
trum, Laplacian spectrum and signless Laplacian spectrum respectively. We denote
spectrum, Laplacian spectrum and signless Laplacian spectrum of G by Spac(G), L-
Spac(G) and Q-Spac(G) respectively. We write Spac(G) = {(a1)

l1 , (a2)
l2 , · · ·, (ap)

lp},
L-Spac(G) = {(b1)

m1 , (b2)
m2 , · · ·, (bq)

mq} and Q-Spac(G) = {(c1)
n1 , (c2)

n2, · · ·, (cr)
nr},

where a1, a2, · · ·, ap are eigenvalues of A(G) with multiplicities l1, l2, · · ·, lp; b1, b2, · · ·, bq
are eigenvalues of L(G) with multiplicities m1, m2, · · ·, mq and c1, c2, · · ·, cr are eigen-
values of Q(G) with multiplicities n1, n2, · · ·, nr respectively. It is well known that
the spectrum, laplacian spectrum and signless laplacian spectrum of the complete
bipartite graph Kn,n are given by {(n)1, (−n)1, (0)2n−2}, {(2n)1, (0)1, (n)2n−2} and
{(2n)1, (0)1, (n)2n−2}. Also the spectrum, laplacian spectrum and signless laplacian
spectrum of the complete graph Kn are given by {(−1)n−1, (n − 1)1}, {(0)1, (n)n−1}
and {(2n− 2)1, (n− 2)n−1}.

Theorem 5.1. For G(Zn), if |Nil(Zn)| = t then the following hold:

(1) If n = 2r0pr11 p
r2
2 · · · prkk , where pi’s are distinct odd primes. Then

• Spec(G(Zn)) = {(t)p1p2···pk−1, (−t)p1p2···pk−1, (0)(2t−2)(p1p2···pk−1), (−1)t−1, (t−
1)1}.

• L-Spec(G(Zn)) = {(2t)p1p2···pk−1, (0)p1p2···pk−1, (t)(2t−2)(p1p2···pk−1), (0)1, (t)t−1}
• Q-Spec(G(Zn)) = {(2t)p1p2···pk−1, (0)p1p2···pk−1, (t)(2t−2)(p1p2···pk−1), (2t−2)1, (t−
2)t−1}.

(2) If n = pr11 pr22 · · · prkk , where pi’s are distinct odd primes then

• Spec(G(Zn)) = {(t)[
p1p2···pk

2
], (−t)[

p1p2···pk
2

], (0)(2t−2)([
p1p2···pk

2
])}.

• L-Spec(G(Zn)) = {{(2t)[
p1p2···pk

2
], (0)[

p1p2···pk
2

], (t)(2t−2)([
p1p2···pk

2
])}}

• Q-Spec(G(Zn)) = {{(2t)[
p1p2···pk

2
], (0)[

p1p2···pk
2

], (t)(2t−2)([
p1p2···pk

2
])}}.

Proof. (1) Let s = 2p1p2 · · · pk and consider the partition of V (G(Zn)), P1 =
{1, 2, ···, s−1}, P2 = {s+1, s+2, ···, 2s−1}, ··· Pl = {n−s+1, n−s+2, ···, n−1}.
Observe that |Nil(Zn)| = l. Let us collect s

2
, 3 s

2
, · · ·(2l−1) s

2
from the partition

P1, P2, · · ·, Pl respectively and say L = { s
2
, 3 s

2
, · · ·(2l − 1) s

2
}. Consider Qi =

Pi \ {(2i − 1) s
2
}, for 1 ≤ i ≤ l and so |Qi| is even. Since every pair of

elements of L are adjacent and 2a ∈ Nil(Zn), for all a ∈ L, hence span(L)
in G(Zn) is a complete subgraph of G(Zn). Next for 1 ≤ i ≤ s − 1, define
B−i = {m − i ; m ∈ Nil(Zn)} and B+i = {m + i ; m ∈ Nil(Zn)}. Then
proceeding similar to the proof of Theorem 2.5(ii), we conclude that if x and
y are adjacent with x ∈ B+j for some 1 ≤ j ≤ s − 1, then y ∈ B−j. Hence
we get G(Zn) consists of s− 1 complete bipartite subgraphs K|Nil(Zn)|,|Nil(Zn)|

and one complete subgraph KNil(Zn) and all subgraphs mentioned are disjoint.
Hence the result follows.
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(2) It follows from Corollary 2.6.
�

Next we study the spectrum, Laplacian spectrum and signless Laplacian spectrum
of a ring of odd order.

Theorem 5.2. If R be a ring of odd order then the graph G(R) is bipartite having

disjoint complete bipartite subgraphs.

Proof. Clearly |Nil(R)| is odd as R is a commutative ring. Let Nil(R) = {n1, n2, · ·
·, nk}. For x ∈ R\Nil(R), consider Ax+ = {ni+x : 1 ≤ i ≤ k} and Ax− = {ni−x :
1 ≤ i ≤ k}. Observe that every element of Ax+ is adjacent to every element of Ax−

and no two elements of Ax+ or no two elements of Ax− are adjacent by Lemma 3.2.
So Ax+ ∪ Ax− induces a complete bipartite subgraph of G(R). Let y ∈ R \ Nil(R)
with x 6= y.
Case I: Let x+y ∈ Nil(R), then y = ni−x, for some 1 ≤ i ≤ k. So we get Ax+ = Ay−

and Ax− = Ay+ .
Case II: Let x + y ∈ R \ Nil(R). If x − y ∈ Nil(R) then x = nj + y, for some
1 ≤ i ≤ k and we get Ax+ = Ay+ and Ax− = Ay− . If x − y ∈ R \ Nil(R) then
(Ax+ ∪Ax−) ∩ (Ay+ ∪ Ay−) = ∅.
So for distinct x, y ∈ R \ Nil(R), subgraph induced by Ax+ ∪ Ax− and subgraph
induced by Ay+ ∪ Ay− are either identical or disjoint. Hence the graph G(R) is
bipartite having disjoint complete bipartite subgraphs. �

Theorem 5.3. If R be a ring of odd order, then the number of disjoint complete

bipartite subgraphs of G(R) is |R|−|Nil(R)|
2|Nil(R)|

.

Proof. Let x ∈ R \Nil(R) and Nil(R) = {n1, n2, · · ·, nk}. From the above proof it is
enough to show |Ax+ ∪Ax−| = 2|Nil(R)|. Clearly ni + x = nj + x or ni − x = nj − x
implies i = j. Also ni − x = nj + x implies 2x ∈ Nil(R), a contradiction by Lemma
3.2. Hence the result follows. �

Theorem 5.4. If R be a ring of odd order then

• Spec(G(R)) = {(|Nil(R)|)m, (−|Nil(R)|)m, (0)2m(|Nil(R)|−1)}
• L-Spec(G(R)) = {(2|Nil(R)|)m, (0)m, (|Nil(R)|)2m(|Nil(R)|−1)}
• Q-Spec(G(R)) = {(2|Nil(R)|)m, (0)m, (|Nil(R)|)2m(|Nil(R)|−1)}.

Where m = |R|−|Nil(R)|
2|Nil(R)|

.

Proof. Proof follows from Theorem 5.2 and Theorem 5.3, as Spec(Kn,n) = {(n)1, (−n)1, (0)2n−2},
L-Spec(Kn,n) = {(2n)1, (0)1, (n)2n−2} and Q-Spec(Kn,n) = {(2n)1, (0)1, (n)2n−2}. �

6. Dominating number

For a graph G, a subset D of the vertex set of G is said to be a dominating set of
G if every vertex not in D is adjacent to at least one member of D. The dominating
number is the number of vertices in the smallest dominating set for G. In this section
we study the dominating number of G(Zn) and G(R), where R is a ring of odd order.

Theorem 6.1. For G(Zn), the following hold:
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(1) If n is odd, then the dominating number is
|R|−|Nil(R)|

2
.

(2) If n is even, then the dominating number is
|R|−2|Nil(R)|

2
+ 1.

Proof. (1) From Corollary 2.6, if n is odd, then G(Zn) is a disjoint union of
|R|−|Nil(R)|
2|Nil(R)|

complete bipartite subgraphs K|Nil(Zn)|,|Nil(Zn)|. Hence the result

follows.
(2) Similarly it follows from Corollary 2.7.

�

Theorem 6.2. If R is a finite commutative ring of odd order then the dominating

number is
|R|−|Nil(R)|

2
.

Proof. Proof follows from Theorem 5.2 and Theorem 5.3. �

7. Chromatic index

Vizings Theorem [3] says that △ ≤ χ′(G) ≤ △ + 1, where △ be the maximum
vertex degree of G. Graph satisfying χ′(G) = △ are called graphs of class 1 and
those with χ′(G) = △+ 1 are called graphs of class 2.

Theorem 7.1. Nilpotent graph of any ring R is of class 1.

Proof. Put colour x + y for an edge xy of G(R). Let C = {x + y : xy is an edge
of G(R)} then C is the set of colours of G(R). Therefore G(R) has a |C|-edge
colouring, so χ′(G(R)) ≤ |C|. But C ⊆ Nil(R) and χ′(G(R)) ≤ |C| ≤ |Nil(R)|. Also
△ ≤ |Nil(R)|, hence by Vizings Theorem we get χ′(G(R)) = |Nil(R)| = △. �
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