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Abstract. This paper is a continuation of our study of a class of Toeplitz-

like operators with a rational symbol which has a pole on the unit circle.
A description of the spectrum and its various parts, i.e., point, residual and

continuous spectrum, is given, as well as a description of the essential spectrum.

In this case, the essential spectrum need not be connected in C. Various
examples illustrate the results.

1. Introduction

This paper is a continuation of our earlier paper [9] where Toeplitz-like operators
with rational symbols which may have poles on the unit circle where introduced.
While the aim of [9] was to determine the Fredholm properties of such Toeplitz-like
operators, in the current paper we will focus on properties of the spectrum. For
this purpose we further analyse this class of Toeplitz-like operators, specifically in
the case where the operators are not Fredholm.

We start by recalling the definition of our Toeplitz-like operators. Let Rat de-
note the space of rational complex functions. Write Rat(T) and Rat0(T) for the
subspaces of Rat consisting of the rational functions in Rat with all poles on T
and the strictly proper rational functions in Rat with all poles on the unit circle
T, respectively. For ω ∈ Rat, possibly having poles on T, we define a Toeplitz-like
operator Tω(Hp → Hp), for 1 < p <∞, as follows:

(1.1) Dom(Tω)={g ∈ Hp |ωg = f + ρ with f ∈Lp, ρ∈Rat0(T)} , Tωg = Pf.

Here P is the Riesz projection of Lp onto Hp.
In [9] it was established that this operator is a densely defined, closed operator

which is Fredholm if and only if ω has no zeroes on T. In case the symbol ω of
Tω is in Rat(T) with no zeroes on T, i.e., Tω Fredholm, explicit formulas for the
domain, kernel, range and a complement of the range were also obtained in [9].
Here we extend these results to the case that ω is allowed to have zeroes on T,
cf., Theorem 2.2 below. By a reduction to the case of symbols in Rat(T), we then
obtain for general symbols in Rat, in Proposition 2.4 below, necessary and sufficient
conditions for Tω to be injective or have dense range, respectively.
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Main results. Using the fact that λIHp − Tω = Tλ−ω, our extended analysis of
the operator Tω enables us to describe the spectrum of Tω, and its various parts.
Our first main result is a description of the essential spectrum of Tω, i.e., the set of
all λ ∈ C for which λIHp − Tω is not Fredholm.

Theorem 1.1. Let ω ∈ Rat. Then the essential spectrum σess(Tω) of Tω is an
algebraic curve in C which is given by

σess(Tω) = ω(T) := {ω(eiθ) | 0 ≤ θ ≤ 2π, eiθ not a pole of ω}.

Furthermore, the map λ 7→ Index(Tλ−ω) is constant on connected components of
C\ω(T) and the intersection of the point spectrum, residual spectrum and resolvent
set of Tω with C\ω(T) coincides with sets of λ ∈ C\ω(T) with Index(Tλ−ω) being
strictly positive, strictly negative and zero, respectively.

Various examples, specifically in Section 5, show that the algebraic curve ω(T),
and thus the essential spectrum of Tω, need not be connected in C.

Our second main result provides a description of the spectrum of Tω and its
various parts. Here and throughout the paper P stands for the subspace of Hp

consisting of all polynomials and Pk for the subspace of P consisting of all polyno-
mials of degree at most k.

Theorem 1.2. Let ω ∈ Rat, say ω = s/q with s, q ∈ P co-prime. Define

(1.2)

kq = ]{roots of q inside D} = ]{poles of λ− ω inside D},
k−λ = ]{roots of λq − s inside D} = ]{zeroes of λ− ω inside D},
k0λ = ]{roots of λq − s on T} = ]{zeroes of λ− ω on T},

where in all these sets multiplicities of the roots, poles and zeroes are to be taken into
account. Then the resolvent set ρ(Tω), point spectrum σp(Tω), residual spectrum
σr(Tω) and continuous spectrum σc(Tω) of Tω are given by

(1.3)

ρ(Tω) = {λ ∈ C | k0λ = 0 and kq = k−λ },
σp(Tω) = {λ ∈ C | kq > k−λ + k0λ}, σr(Tω) = {λ ∈ C | kq < k−λ },

σc(Tω) = {λ ∈ C | k0λ > 0 and k−λ ≤ kq ≤ k
−
λ + k0λ}.

Furthermore, σess(Tω) = ω(T) = {λ ∈ C | k0λ > 0}.

Again, in subsequent sections various examples are given that illustrate these
results. In particular, examples are given where Tω has a bounded resolvent set,
even with an empty resolvent set. This is in sharp contrast to the case where ω
has no poles on the unit circle T. For in this case the operator is bounded, the
resolvent set is a nonempty unbounded set and the spectrum a compact set, and
the essential spectrum is connected.

Both Theorems 1.1 and 1.2 are proven in Section 3.
Discussion of the literature. In the case of a bounded selfadjoint Toeplitz oper-
ator on `2, Hartman and Wintner in [11] showed that the point spectrum is empty
when the symbol is real and rational and posed the problem of specifying the spec-
tral properties of such a Toeplitz operator. Gohberg in [7], and more explicitly in
[8], showed that a bounded Toeplitz operator with continuous symbol is Fredholm
exactly when the symbol has no zeroes on T, and in this case the index of the
operator coincides with the negative of the winding number of the symbol with
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respect to zero. This implies immediately that the essential spectrum of a Toeplitz
operator with continuous symbol is the image of the unit circle.

Hartman and Wintner in [12] followed up their earlier question by showing that in
the case where the symbol, ϕ, is a bounded real valued function on T, the spectrum
of the Toeplitz operator on H2 is contained in the interval bounded by the essential
lower and upper bounds of ϕ on T as well as that the point spectrum is empty
whenever ϕ is not a constant. Halmos, after posing in [10] the question whether
the spectrum of a Toeplitz operator is connected, with Brown in [1] showed that
the spectrum cannot consist of only two points. Widom, in [16], established that
bounded Toeplitz operators on H2 have connected spectrum, and later extended
the result for general Hp, with 1 ≤ p ≤ ∞. That the essential (Fredholm) spectrum
of a bounded Toeplitz operator in H2 is connected was shown by Douglas in [5].
For the case of bounded Toeplitz operators in Hp it is posed as an open question in
Böttcher and Silbermann in [2, Page 70] whether the essential (Fredholm) spectrum
of a Toeplitz operator in Hp is necessarily connected. Clark, in [3], established
conditions on the argument of the symbol ϕ in the case ϕ ∈ Lq, q ≥ 2 that would
give the kernel index of the Toeplitz operator with symbol ϕ on Lp, where 1

p+ 1
q = 1,

to be m ∈ N.
Janas, in [13], discussed unbounded Toeplitz operators on the Bargmann-Siegel

space and showed that σess(Tϕ) ⊂ ∩R>0 closure {ϕ(z) : |z| ≥ R}.
Overview. The paper is organized as follows. Besides the current introduction,
the paper consists of five sections. In Section 2 we extend a few results concerning
the operator Tω from [9] to the case where Tω need not be Fredholm. These results
are used in Section 3 to compute the spectrum of Tω and various of its subparts, and
by doing so we prove the main results, Theorems 1.1 and 1.2. The remaining three
sections contain examples that illustrate our main results and show in addition that
the resolvent set can be bounded, even empty, and that the essential spectrum can
be disconnected in C.
Figures. We conclude this introduction with a remark on the figures in this paper
illustrating the spectrum and essential spectrum for several examples. The color
coding in these figures is as follows: the white region is the resolvent set, the
black curve is the essential spectrum, and the colors in the other regions codify the
Fredholm index, where red indicates index 2, blue indicates index 1, cyan indicates
index −1, magenta indicates index −2.

2. Review and new results concerning Tω

In this section we recall some results concerning the operator Tω defined in (1.1)
that were obtained in [9] and will be used in the present paper to determine spectral
properties of Tω. A few new features are added as well, specifically relating to the
case where Tω is not Fredholm.

The first result provides necessary and sufficient conditions for Tω to be Fred-
holm, and gives a formula for the index of Tω in case Tω is Fredholm.

Theorem 2.1 (Theorems 1.1 and 5.4 in [9]). Let ω ∈ Rat. Then Tω is Fredholm
if and only if ω has no zeroes on T. In case Tω is Fredholm, the Fredholm index of
Tω is given by

Index(Tω) = ]

{
poles of ω in D multi.
taken into account

}
− ]
{

zeroes of ω in D multi.
taken into account

}
,
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and Tω is either injective or surjective. In particular, Tω is injective, invertible
or surjective if and only if Index(Tω) ≤ 0, Index(Tω) = 0 or Index(Tω) ≥ 0,
respectively.

Special attention is given in [9] to the case where ω is in Rat(T), since in that
case the kernel, domain and range can be computed explicitly; for the domain and
range this was done under the assumption that Tω is Fredholm. In the following
result we collect various statements from Proposition 4.5 and Theorems 1.2 and 4.7
in [9] and extend to or improve some of the claims regarding the case that Tω is
not Fredholm.

Theorem 2.2. Let ω ∈ Rat(T), say ω = s/q with s, q ∈ P co-prime. Factor
s = s−s0s+ with s−, s0 and s+ having roots only inside, on, or outside T. Then

(2.1)
Ker(Tω) = {r0/s+ | deg(r0) < deg(q)− deg(s−s0)} ;

Dom(Tω) = qHp + Pdeg(q)−1; Ran(Tω) = sHp + P̃,

where P̃ is the subspace of P given by

(2.2) P̃ = {r ∈ P | rq = r1s+ r2 for r1, r2 ∈ Pdeg(q)−1} ⊂ Pdeg(s)−1.

Furthermore, Hp = Ran(Tω) + Q̃ forms a direct sum decomposition of Hp, where

(2.3) Q̃ = Pk−1 with k = max{deg(s−)− deg(q), 0},
following the convention P−1 := {0}.

The following result will be useful in the proof of Theorem 2.2.

Lemma 2.3. Factor s ∈ P as s = s−s0s+ with s−, s0 and s+ having roots only
inside, on, or outside T. Then sHp = s−s0H

p and sHp = s−H
p.

Proof. Since s+ has no roots inside D, we have s+H
p = Hp. Furthermore, s0 is

an H∞ outer function (see, e.g., [14], Example 4.2.5) so that s0Hp = Hp. Since
s− has all it’s roots inside D, Ts− : Hp → Hp is an injective operator with closed
range. Consequently, we have

sHp = s−s0s+Hp = s−s0Hp = s−s0Hp = s−H
p,

as claimed. �

Proof of Theorem 2.2. In case Tω is Fredholm, i.e., s0 constant, all statements
follow from Theorem 1.2 in [9]. Without the Fredholm condition, the formula for
Ker(Tω) follows from [9, Lemma 4.1] and for Dom(Tω) and Ran(Tω) Proposition
4.5 of [9] provides

(2.4)
qHp + Pdeg(q)−1 ⊂ Dom(Tω);

Tω(qHp + Pdeg(q)−1) = sHp + P̃ ⊂ Ran(Tω).

Thus in order to prove (2.1), it remains to show that Dom(Tω) ⊂ qHp +Pdeg(q)−1.
Assume g ∈ Dom(Tω). Thus there exist h ∈ Hp and r ∈ Pdeg(q)−1 so that

sg = qh+ r. Since s and q are co-prime, there exist a, b ∈ P such that sa+ qb ≡ 1.
Next write ar = qr1 + r2 for r1, r2 ∈ P with deg(r2) < deg(q). Thus sg = qh+ r =
qh+ qbr + sar = q(h+ br + sr1) + sr2. Hence g = q(h+ br + sr1)/s+ r2. We are

done if we can show that h̃ := (h+ br + sr1)/s is in Hp.
The case where g is rational is significantly easier, but still gives an idea of

the complications that arise, so we include a proof. Hence assume g ∈ Rat ∩Hp.
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Then h = (sg − r)/q is also in Rat ∩ Hp, and h̃ is also rational. It follows that

q(h + br + sr1)/s = qh̃ = g − r2 ∈ Rat ∩ Hp and thus cannot have poles in
D. Since q and s are co-prime and h cannot have poles inside D, it follows that

h̃ = (h+ br+ sr1)/s cannot have poles in D. Thus h̃ is a rational function with no

poles in D, which implies h̃ ∈ Hp.

Now we prove the claim for the general case. Assume qh̃ + r2 = g ∈ Hp, but

h̃ = (h + br + sr1)/s 6∈ Hp, i.e., h̃ is not analytic on D or
∫
T |h̃(z)|pdz = ∞. Set

ĥ = h + br + sr1 ∈ Hp, so that h̃ = ĥ/s. We first show h̃ must be analytic on D.

Since h̃ = ĥ/s and ĥ ∈ Hp, h̃ is analytic on D except possibly at the roots of s.

However, if h̃ would not be analytic at a root z0 ∈ D of s, then also g = qh̃ + r2
should not be analytic at z0, since q is bounded away from 0 on a neighborhood

of z0, using that s and q are co-prime. Thus h̃ is analytic on D. It follows that∫
T |h̃(z)|pdz =∞.

Since s and q are co-prime, we can divide T as T1 ∪ T2 with T1 ∩ T2 = ∅ and
each of T1 and T2 being nonempty unions of intervals, with T1 containing all roots
of s on T as interior points and T2 containing all roots of q on T as interior points.
Then there exist N1, N2 > 0 such that |q(z)| > N1 on T1 and |s(z)| > N2 on T2.
Note that∫

T2

|h̃(z)|pdz =

∫
T2

|ĥ(z)/s(z)|pdz ≤ N−p2

∫
T2

|ĥ(z)|pdz ≤ N−p2 ‖ĥ‖
p
Hp <∞.

Since
∫
T |h̃(z)|pdz = ∞ and

∫
T2
|h̃(z)|pdz < ∞, it follows that

∫
T1
|h̃(z)|pdz = ∞.

However, since |q(z)| > N1 on T1, this implies that

‖g − r2‖pHp =

∫
T
|g(z)− r2(z)|pdz =

∫
T
|q(z)h̃(z)|pdz ≥

∫
T1

|q(z)h̃(z)|pdz

≥ Np
1

∫
T1

|h̃(z)|pdz =∞,

in contradiction with the assumption that g ∈ Hp. Thus we can conclude that

h̃ ∈ Hp so that g = qh̃+ r2 is in qHp + Pdeg(q)−1.

It remains to show that Hp = Ran(Tω) + Q̃ is a direct sum decomposition of
Hp. Again, for the case that Tω is Fredholm this follows from [9, Theorem 1.2].
By the preceding part of the proof we know, even in the non-Fredholm case, that

Ran(Tω) = sHp + P̃. Since P̃ is finite dimensional, and thus closed, we have

Ran(Tω) = sHp + P̃ = s−H
p + P̃,

using Lemma 2.3 in the last identity. We claim that

Ran(Tω) = s−H
p + P̃ = s−H

p + P̃−,

where P̃− is defined by

P̃− := {r ∈ P | qr = r1s− + r2 for r1, r2 ∈ Pdeg(q)−1} ⊂ Pdeg(s−)−1.

Once the above identity for Ran(Tω) is established, the fact that Q̃ is a complement

of Ran(Tω) follows directly by applying Lemma 4.8 of [9] to s = s−.

We first show that Ran(Tω) = s−H
p + P̃ is contained in s−H

p + P̃−. Let

g = s−h + r with h ∈ Hp and r ∈ P̃, say qr = r1s + r2 with r1, r2 ∈ Pdeg(q)−1.
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Write r1s0s+ = r̃1q + r̃2 with deg(r̃2) < deg(q). Then

qr = r1s−s0s+ + r2 = qr̃1s− + r̃2s− + r2, so that q(r − r̃1s−) = r̃2s− + r2,

with r2, r̃2 ∈ Pdeg(q)−1. Thus r − r̃1s− ∈ P̃−. Therefore, we have

g = s−(h+ r̃1) + (r − r̃1s−) ∈ s−Hp + P̃−,

proving that Ran(Tω) ⊂ s−Hp + P̃−.

For the reverse inclusion, assume g = s−h+ r ∈ s−Hp + P̃−. Say qr = r1s−+ r2
with r1, r2 ∈ Pdeg(q)−1. Since s0s+ and q are co-prime and deg(r1) < deg(q) there
exit polynomials r̃1 and r̃2 with deg(r̃1) < deg(q) and deg(r̃2) < deg(s0s+) that
satisfy the Bézout equation r̃1s0s+ + r̃2q = r1. Then

r̃1s+ r2 = r̃1s0s+s− + r2 = (r1 − r̃2q)s− + r2 = r1s− + r2 − qr̃2s− = q(r − r̃2s−).

Hence r− r̃2s− is in P̃, so that g = s−h+ r = s−(h+ r̃2) + (r− r̃2s−) ∈ s−Hp + P̃.
This proves the reverse inclusion, and hence completes the proof of Theorem 2.2. �

The following result makes precise when Tω is injective and when Tω has dense
range, even in the case where Tω is not Fredholm.

Proposition 2.4. Let ω ∈ Rat. Then Tω is injective if and only if

]

{
poles of ω in D multi.
taken into account

}
≤ ]

{
zeroes of ω in D multi.
taken into account

}
.

Moreover, Tω has dense range if and only if

]

{
poles of ω in D multi.
taken into account

}
≥ ]

{
zeroes of ω in D multi.
taken into account

}
.

In particular, Tω is injective or has dense range.

Proof. First assume ω ∈ Rat(T). By Corollary 4.2 in [9], Tω is injective if and
only if the number of zeroes of ω inside D is greater than or equal to the number
of poles of ω, in both cases with multiplicity taken into account. By Theorem 2.2,

Tω has dense range precisely when Q̃ in (2.3) is trivial. The latter happens if and
only if the number of poles of ω is greater than or equal to the number of zeroes of
ω inside D, again taking multiplicities into account. Since in this case all poles of
ω are in T, our claim follows for ω ∈ Rat(T).

Now we turn to the general case, i.e., we assume ω ∈ Rat. In the remainder of the
proof, whenever we speak of numbers of zeroes or poles, this always means that the
respective multiplicities are to be taken into account. Recall from [9, Lemma 5.1]
that we can factor ω(z) = ω−(z)zκω0(z)ω+(z) with ω−, ω0, ω+ ∈ Rat, ω− having
no poles or zeroes outside D, ω+ having no poles or zeroes inside D and ω0 having
poles and zeroes only on T, and κ the difference between the number of zeroes of ω
in D and the number of poles of ω in D. Moreover, we have Tω = Tω−Tzκω0Tω+ and
Tω− and Tω+ are boundedly invertible on Hp. Thus Tω is injective or has closed
range if and only it Tzκω0

is injective or has closed range, respectively.
Assume κ ≥ 0. Then zκω0 ∈ Rat(T) and the results for the case that the symbol

is in Rat(T) apply. Since the zeroes and poles of ω0 coincide with the zeroes and
poles of ω on T, it follows that the number of poles of zκω0 is equal to the number
of poles of ω on T while the number of zeroes of zκω0 is equal to κ plus the number
of zeroes of ω on T which is equal to the number of zeroes of ω in D minus the
number of poles of ω in D. It thus follows that Tzκω0

is injective, and equivalently
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Tω is injective, if and only if the number of zeroes of ω in D is greater than or equal
to the number of poles of ω in D, as claimed.

Next, we consider the case where κ < 0. In that case Tzκω0 = TzκTω0 , by Lemma
5.3 of [9]. We prove the statements regarding injectivity and Tω having closed range
separately.

First we prove the injectivity claim for the case where κ < 0. Write ω0 = s0/q0
with s0, q0 ∈ P co-prime. Note that all the roots of s0 and q0 are on T. We need
to show that Tzκω0 is injective if and only if deg(s0) ≥ deg(q0) − κ (recall, κ is
negative).

Assume deg(s0) + κ ≥ deg(q0). Then deg(s0) > deg(q0), since κ < 0, and thus
Tω0

is injective. We have Ker(Tzκ) = P|κ|−1. So it remains to show P|κ|−1 ∩
Ran(Tω0) = {0}. Assume r ∈ P|κ|−1 is also in Ran(Tω0). So, by Lemma 2.3 in [9],
there exist g ∈ Hp and r′ ∈ Pdeg(q0)−1 so that s0g = q0r+ r′, i.e., g = (q0r+ r′)/s0.
This shows that g is in Rat(T)∩Hp, which can only happen in case g is a polynomial.
Thus, in the fraction (q0r + r′)/s0, all roots of s0 must cancel against roots of
q0r + r′. However, since deg(s0) + κ ≥ deg(q0), with κ < 0, deg(r) < deg |κ| − 1
and deg(r′) < deg(q0), we have deg(q0r + r′) < deg(s0) and it is impossible that
all roots of s0 cancel against roots of q0r + r′, leading to a contradiction. This
shows P|κ|−1 ∩ Ran(Tω0

) = {0}, which implies Tzκω0 is injective. Hence also Tω is
injective.

Conversely, assume deg(s0) + κ < deg(q0), i.e., deg(s0) < deg(q0) + |κ| =: b,
since κ < 0. Then

s0 ∈ Pb−1 = q0P|κ|−1 + Pdeg(q0)−1.

This shows there exist r ∈ P|κ|−1 and r′ ∈ Pdeg(q0)−1 so that s0 = q0r+r′. In other
words, the constant function g ≡ 1 ∈ Hp is in Dom(Tω0

) and Tω0
g = r ∈ P|κ|−1 =

Ker(Tzκ), so that g ∈ Ker(Tzκω0
). This implies Tω is not injective.

Finally, we turn to the proof of the dense range claim for the case κ < 0. Since
κ < 0 by assumption, ω has more poles in D (and even in D) than zeroes in D. Thus
to prove the dense range claim in this case, it suffices to show that κ < 0 implies
that Tzκω0 has dense range. We have Tzκω0 = TzκTω0 and Tzκ is surjective. Also,
ω0 ∈ Rat(T) has no zeroes inside D. So the proposition applies to ω0, as shown in
the first paragraph of the proof, and it follows that Tω0

has dense range. But then
also Tzκω0

= TzκTω0
has dense range, and our claim follows. �

3. The spectrum of Tω

In this section we determine the spectrum and various subparts of the spectrum
of Tω for the general case, ω ∈ Rat, as well as some refinements for the case where
ω ∈ Rat(T) is proper. In particular, we prove our main results, Theorems 1.1 and
1.2.

Note that for ω ∈ Rat and λ ∈ C we have λI − Tω = Tλ−ω. Thus we can
relate questions on the spectrum of Tω to question on injectivity, surjectivity, closed
rangeness, etc. for Toeplitz-like operators with an additional complex parameter.
By this observation, the spectrum of Tω, and its various subparts, can be determined
using the results of Section 2.

Proof of Theorem 1.1. Since λI−Tω = Tλ−ω and Tλ−ω is Fredholm if and only
if λ − ω has no zeroes on T, by Theorem 2.1, it follows that λ is in the essential
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spectrum if and only if λ = ω(eiθ) for some 0 ≤ θ ≤ 2π. This shows that σess(Tω)
is equal to ω(T).

To see that ω(T) is an algebraic curve, let ω = s/q with s, q ∈ P co-prime. Then
λ = u+ iv = ω(z) for z = x+ iy with x2 + y2 = 1 if and only if λq(z)− s(z) = 0.
Denote q(z) = q1(x, y) + iq2(x, y) and s(z) = s1(x, y) + is2(x, y), where z = x+ iy
and the functions q1, q2, s1, s2 are real polynomials in two variables. Then λ = u+iv
is on the curve ω(T) if and only if

q1(x, y)u− q2(x, y)v = s1(x, y),

q2(x, y)u+ q1(x, y)v = s2(x, y),

x2 + y2 = 1.

Solving for u and v, this is equivalent to

(q1(x, y)2 + q2(x, y)2)u− (q1(x, y)s1(x, y) + q2(x, y)s2(x, y)) = 0,

(q1(x, y)2 + q2(x, y)2)v − (q1(x, y)s2(x, y)− q2(x, y)s1(x, y)) = 0,

x2 + y2 = 1.

This describes an algebraic curve in the plane.
For λ in the complement of the curve ω(T) the operator λI − Tω = Tλ−ω is

Fredholm, and according to Theorem 2.1 the index is given by

Index(λ− Tω) = ]{ poles of ω in D} − ]{zeroes of ω − λ inside D},

taking the multiplicities of the poles and zeroes into account. Indeed, λ−ω = λq−s
q

and since q and s are co-prime, λq − s and q are also co-prime. Thus Theorem
2.1 indeed applies to Tλ−ω. Furthermore, λ − ω has the same poles as ω, i.e., the
roots of q. Likewise, the zeroes of λ− ω coincide with the roots of the polynomial
λq − s. Since the roots of this polynomial depend continuously on the parameter
λ the number of them is constant on connected components of the complement of
the curve ω(T).

That the index is constant on connected components of the complement of the
essential spectrum in fact holds for any unbounded densely defined operator (see
[15, Theorem VII.5.2]; see also [4, Proposition XI.4.9] for the bounded case; for a
much more refined analysis of this point see [6]).

Finally, the relation between the index of Tλ−ω and λ being in the resolvent set,
point spectrum or residual spectrum follows directly by applying the last part of
Theorem 2.1 to Tλ−ω. �

Next we prove Theorem 1.2 using some of the new results on Tω derived in
Section 2.

Proof of Theorem 1.2. That the two formulas for the numbers kq, k
−
λ and k0λ co-

incides follows from the analysis in the proof of Theorem 1.1, using the co-primeness
of λq − s and q. By Theorem 2.1, Tλ−ω is Fredholm if and only if k0λ = 0, proving
the formula for σess(Tω). The formula for the resolvent set follows directly from the
fact that the resolvent set is contained in the complement of σess(Tω), i.e., k0λ = 0,
and that it there coincides with the set of λ’s for which the index of Tλ−ω is zero,
together with the formula for Index(Tλ−ω) obtained in Theorem 2.1.

The formulas for the point spectrum and residual spectrum follow by applying
the criteria for injectivity and closed rangeness of Proposition 2.4 to Tλ−ω together
with the fact that Tλ−ω must be either injective or have dense range.
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For the formula for the continuous spectrum, note that σc(Tω) must be contained
in the essential spectrum, i.e., k0λ > 0. The condition k−λ ≤ kq ≤ k−λ + k0λ excludes
precisely that λ is in the point or residual spectrum. �

For the case where ω ∈ Rat(T) is proper we can be a bit more precise.

Theorem 3.1. Let ω ∈ Rat(T) be proper, say ω = s/q with s, q ∈ P co-prime.
Thus deg(s) ≤ deg(q) and all roots of q are on T. Let a be the leading coefficient
of q and b the coefficient of s corresponding to the monomial zdeg(q), hence b = 0 if
and only if ω is strictly proper. Then σr(Tω) = ∅, and the point spectrum is given
by

σp(Tω) = ω(C\D) ∪ {b/a}.
Here ω(C\D) = {ω(z) | z ∈ C\D}. In particular, if ω is strictly proper, then
0 = b/a is in σp(Tω). Finally,

σc(Tω) = {λ ∈ C | k0λ > 0 and all roots of λq − s are in D}.

Proof. Let ω = s/q ∈ Rat(T) be proper with s, q ∈ P co-prime. Then kq = deg(q).
Since deg(s) ≤ deg(q), for any λ ∈ C we have

k−λ + k0λ ≤ deg(λq − s) ≤ deg(q) = kq.

It now follows directly from (1.3) that σr(Tω) = ∅ and σc(Tω) = {λ ∈ C | k0λ >
0, k−λ + k0λ = deg(q)}. To determine the point spectrum, again using (1.3), one
has to determine when strict inequality occurs. We have deg(λq − s) < deg(q)
precisely when the leading coefficient of λq is cancelled in λq − s or if λ = 0 and
deg(s) < deg(q). Both cases correspond to λ = b/a. For the other possibility of
having strict inequality, k−λ + k0λ < deg(λq − s), note that this happens precisely

when λq − s has a root outside D, or equivalently λ = ω(z) for a z 6∈ D. �

4. The spectrum may be unbounded, the resolvent set empty

In this section we present some first examples, showing that the spectrum can
be unbounded and the resolvent set may be empty.

Example 4.1. Let ω(z) = z−α
z−1 for some 1 6= α ∈ C, say α = a+ ib, with a and b

real. Let L ⊂ C be the line given by

(4.1) L = {z = x+ iy ∈ C | 2by = (a2 + b2 − 1) + (2− 2a)x}
Then we have

ρ(Tω) = ω(D), σess(Tω) = ω(T) = L = σc(Tω),

σp(Tω) = ω(C\D), σr(Tω) = ∅.
Moreover, the point spectrum of Tω is the open half plane determined by L that
contains 1 and the resolvent set of Tω is the other open half plane determined by
L.

To see that these claims are true note that for λ 6= 1

λ− ω(z) =
z(λ− 1) + α− λ

z − 1
=

1

λ− 1

z + α−λ
λ−1

z − 1
,

while for λ = 1 we have λ−ω(z) = α−λ
z−1 . Thus λ = 1 ∈ σp(Tω) for every 1 6= α ∈ C

as in that case kq = 1 > 0 = k−λ + k0λ. For λ 6= 1, λ − ω has a zero at α−α
λ−1 of
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Figure 1. Spectrum of Tω where ω(z) = z−α
z−1 , with α = − i

2 .

Figure 2. Spectrum of Tω where ω(z) = 1
(z−1)2

multiplicity one. For λ = x+iy we have |α−λ| = |λ−1| if and only if (a−x)2+(b−
y)2 = (x− 1)2 + y2, which in turn is equivalent to 2by = (a2 + b2 − 1) + (2− 2a)x.
Hence the zero of λ − ω is on T precisely when λ is on the line L. This shows
σess = L. One easily verifies that the point spectrum and resolvent set correspond
to the two half planes indicated above and that these coincide with the images of
ω under C\D and D, respectively. Since λ−ω can have at most one zero, it is clear
from Theorem 1.2 that σr(Tω) = ∅, so that σc(Tω) = L = σess(Tω), as claimed. �

Example 4.2. Let ω(z) = 1
(z−1)k for some positive integer k > 1. Then

σp(Tω) = σ(Tω) = C, σr(Tω) = σc(Tω) = ρ(Tω) = ∅,

and the essential spectrum is given by

σess(Tω) = ω(T) = {(it− 1
2 )k | t ∈ R}.

For k = 2 the situation is as in Figure 2; one can check that the curve ω(T) is
the parabola Re(z) = 1

4 − Im(z)2. (Recall that different colors indicate different
Fredholm index, as explained at the end of the introduction.)

To prove the statements, we start with the observation that for |z| = 1, 1
z−1 is

of the form it− 1
2 , t ∈ R. Thus for z ∈ T with 1

z−1 = it− 1
2 we have

ω(z) =
1

(z − 1)k
= (z − 1)−k = (it− 1

2 )k.
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This proves the formula for σess(Tω). For λ = reiθ 6= 0 we have

λ− ω(z) =
λ(z − 1)k − 1

(z − 1)k
.

Thus λ − ω(z) = 0 if and only if (z − 1)k = λ−1, i.e., z = 1 + r−1/kei(θ+2πl)/k for
l = 0, . . . , k − 1. Thus the zeroes of λ− ω are k equally spaced points on the circle
with center 1 and radius r−1/k. Clearly, since k > 1, not all zeroes can be inside D,
so kq > k0λ + k−λ , and thus λ ∈ σp(Tω). It follows directly from Theorem 1.2 that
0 ∈ σp(Tω). Thus σp(Tω) = C, as claimed. The curve ω(T) divides the plane into
several regions on which the index is a positive constant integer, but the index may
change between different regions. �

5. The essential spectrum need not be connected

For a continuous function ω on the unit circle it is obviously the case that the
curve ω(T) is a connected and bounded curve in the complex plane, and hence the
essential spectrum of Tω is connected in this case. It was proved by Widom [16]
that also for ω piecewise continuous the essential spectrum of Tω is connected, and
it is the image of a curve related to ω(T) (roughly speaking, filling the jumps with
line segments). Douglas [5] proved that even for ω ∈ L∞ the essential spectrum
of Tω as an operator on H2 is connected. In [2] the question is raised whether or
not the essential spectrum of Tω as an operator on Hp is always connected when
ω ∈ L∞.

Returning to our case, where ω is a rational function possibly with poles on
the unit circle, clearly when ω does have poles on the unit circle it is not a-priori
necessary that σess(Tω) = ω(T) is connected. We shall present examples that show
that indeed the essential spectrum need not be connected, in contrast with the case
where ω ∈ L∞.

Consider ω = s/q ∈ Rat(T) with s, q ∈ P with real coefficients. In that case

ω(z) = ω(z), so that the essential spectrum is symmetric with respect to the real
axis. In particular, if ω(T) ∩ R = ∅, then the essential spectrum is disconnected.
The converse direction need not be true, since the essential spectrum can consist
of several disconnected parts on the real axis, as the following example shows.

Example 5.1. Consider ω(z) = z
z2+1 . Then

σess(Tω) = ω(T) = (−∞,−1] ∪ [1,∞) = σc(Tω), σp(Tω) = C\ω(T),

and thus σr(Tω) = ρ(Tω) = ∅. Further, for λ 6∈ ω(T) the Fredholm index is 1.

Indeed, note that for z = eiθ ∈ T we have

ω(z) =
1

z + z−1
=

1

2 Re(z)
=

1

2 cos(θ)
∈ R.

Letting θ run from 0 to 2π, one finds that ω(T) is equal to the union of (−∞,−1]
and [1,∞), as claimed. Since ω is strictly proper, σr(Tω) = ∅ by Theorem 3.1.
Applying Theorem 2.1 to Tω we obtain that Tω is Fredholm with index 1. Hence
Tω is not injective, so that 0 ∈ σp(Tω). However, since C\ω(T) is connected, it
follows from Theorem 1.1 that the index of Tλ−ω is equal to 1 on C\ω(T), so that
C\ω(T) ⊂ σp(Tω). However, for λ on ω(T) the function λ− ω has two zeroes on T
as well as two poles on T. It follows that ω(T) = σc(Tω), which shows all the above
formulas for the spectral parts hold.
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Figure 3. Spectrum of Tω, where ω(z) = z3+3z+1
z2−1

As a second example we specify q to be z2 − 1 and determine a condition on s
that guarantees σess(Tω) = ω(T) in not connected.

Example 5.2. Consider ω(z) = s(z)
z2−1 with s ∈ P a polynomial with real coeffi-

cients. Then for z ∈ T we have

ω(z) =
zs(z)

z − z
=

zs(z)

−2i Im(z)
=

izs(z)

2 Im(z)
, so that Im(ω(z)) =

Re(zs(z))

2 Im(z)
.

Hence Im(ω(z)) = 0 if and only if Re(zs(z)) = 0. Say s(z) =
∑k
j=0 ajz

j . Then for
z ∈ T we have

Re(zs(z)) =

k∑
j=0

ajRe(zj−1).

Since |Re(zj)| ≤ 1, we obtain that |Re(zs(z))| > 0 for all z ∈ T in case 2|a1| >∑k
j=0 |aj |. Hence in that case ω(T)∩R = ∅ and we find that the essential spectrum

is disconnected in C.
We consider two concrete examples, where this criteria is satisfied.

Firstly, take ω(z) = z3+3z+1
z2−1 . Then

ω(eiθ) =
1

2
(2 cos θ − 1)− i

2

2(cos θ + 1/4)2 + 7/4

sin θ
,

which is the curve given in Figure 3, that also shows the spectrum and resolvent as
well as the essential spectrum.

Secondly, take ω(z) = z4+3z+1
z2−1 . Figure 4 shows the spectrum and resolvent and

the essential spectrum. Observe that this is also a case where the resolvent is a
bounded set.

6. A parametric example

In this section we take ωk(z) = zk+α
(z−1)2 for α ∈ C, α 6= −1 and for various integers

k ≥ 1. Note that the case k = 0 was dealt with in Example 4.2 (after scaling with
the factor 1 + α). The zeroes of λ− ω are equal to the roots of

pλ,α,k(z) = λq(z)− s(z) = λ(z − 1)2 − (zk + α).

Thus, λ is in the resolvent set ρ(Tωk) whenever pλ,α,k has at least two roots in D
and no roots on T. Note that Theorem 3.1 applies in case k = 1, 2. We discuss the
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Figure 4. Spectrum of Tω, where ω(z) = z4+3z+1
z2−1

first of these two cases in detail, and then conclude with some figures that contain
possible configurations of other cases.

Example 6.1. Let ω(z) = ω1(z) = z+α
(z−1)2 for α 6= −1. Then

(6.1) σess(Tω) = ω(T) = {(it− 1
2 ) + (1 + α)(it− 1

2 )2 | t ∈ R}.

Define the circle

T(− 1
2 ,

1
2 ) = {z ∈ C | |z + 1

2 | =
1
2},

and write D(− 1
2 ,

1
2 ) for the open disc formed by the interior of T(− 1

2 ,
1
2 ) and

Dc(− 1
2 ,

1
2 ) for the open exterior of T(− 1

2 ,
1
2 ).

For α /∈ T(− 1
2 ,

1
2 ) the curve ω(T) is equal to the parabola in C given by

ω(T) = {−(α+ 1)(x(y) + iy) | y ∈ R} , where

x(y) =
|α+ 1|4

(|α|2 + Re(α))2
y2 +

(Re(α) + 1)|α+ 1|2Im(α)

(|α|2 + Re(α))2
y +

|α|2(1− |α|2)

(|α|2 + Re(α))2
,

while for α ∈ T(− 1
2 ,

1
2 ) the curve ω(T) becomes the half line given by

ω(T) =

{
−(α+ 1)r − (α+ 1)(1 + 2α)

4(1− |α|2)
| r ≥ 0

}
.

As ω is strictly proper, we have σr(Tω) = ∅. For the remaining parts of the spectrum
we consider three cases.

(i) For α ∈ D(− 1
2 ,

1
2 ) the points − 1

2 and 0 are separated by the parabola ω(T)

and the connected component of C\ω(T) that contains − 1
2 is equal to ρ(Tω),

while the connected component that contains 0 is equal to σp(Tω). Finally,
σess(Tω) = ω(T) = σc(Tω).

(ii) For α ∈ T(− 1
2 ,

1
2 ) we have

ρ(Tω) = ∅, σc(Tω) = ω(T) = σess(Tω), σp(Tω) = C\ω(T),

and for each λ ∈ ω(T), λ− ω has two zeroes on T.
(iii) For α ∈ Dc(− 1

2 ,
1
2 ) we have σp(Tω) = C, and hence ρ(Tω) = σc(Tω) = ∅.

The proof of these statements will be separated into three steps.
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Step 1. We first determine the formula of ω(T) and show this is a parabola. Note
that

ω(z) =
z + α

(z − 1)2
=

z − 1

(z − 1)2
+

1 + α

(z − 1)2
=

1

z − 1
+ (α+ 1)

1

(z − 1)2
.

Let |z| = 1. Then 1
z−1 is of the form it− 1

2 with t ∈ R. So ω(T) is the curve

ω(T) = {(it− 1
2 ) + (α+ 1)(it− 1

2 )2 | t ∈ R}.

Thus (6.1) holds. Now observe that

(it− 1
2 ) + (α+ 1)(it− 1

2 )2 =

= −t2(α+ 1) + t(i− (α+ 1)i) + (− 1
2 + 1

4 (α+ 1))

= −t2(α+ 1) + (−αi)t+ (− 1
4 + 1

4α)

= −(α+ 1)

(
t2 + t

αi

α+ 1
− 1

4

(
α− 1

α+ 1

))
.

The prefactor −(1+α) acts as a rotation combined with a real scalar multiplication,
so ω(T) is also given by

(6.2) ω(T) = −(α+ 1)

{
t2 + t

(
αi

α+ 1

)
− 1

4

(
α− 1

α+ 1

)
| t ∈ R

}
.

Thus if the above curve is a parabola, so is ω(T). Write

x(t) = Re

(
t2 + t

αi

1 + α
− 1

4

(
α− 1

α+ 1

))
,

y(t) = Im

(
t2 + t

αi

1 + α
− 1

4

(
α− 1

α+ 1

))
.

Since

αi

α+ 1
=
−Im(α) + i(|α|2 + Re(α))

|α+ 1|2
and

α− 1

α+ 1
=

(|α|2 − 1) + 2iIm(α)

|α+ 1|2

we obtain that

x(t) = t2 − Im(α)

|α+ 1|2
t− |α|

2 − 1

4|α+ 1|2
, y(t) =

|α|2 + Re(α)

|α+ 1|2
t− Im(α)

2|α+ 1|2
.

Note that |α + 1
2 |

2 = |α|2 + Re(α) + 1
4 . Therefore, we have |α|2 + Re(α) = 0 if

and only if |α+ 1
2 | =

1
2 . Thus |α|2 +Re(α) = 0 holds if and only if α is on the circle

T(− 1
2 ,

1
2 ).

In case α /∈ T(− 1
2 ,

1
2 ), i.e., |α|2 + Re(α) 6= 0, we can express t in terms of y, and

feed this into the formula for x. One can then compute that

x =
|α+ 1|4

(|α|2 + Re(α))2
y2 +

(Re(α) + 1)|α+ 1|2Im(α)

(|α|2 + Re(α))2
y +

|α|2(1− |α|2)

(|α|2 + Re(α))2
.

Inserting this formula into (6.2), we obtain the formula for ω(T) for the case where
α /∈ T(− 1

2 ,
1
2 ).

In case α ∈ T(− 1
2 ,

1
2 ), i.e., |α|2 + Re(α) = 0, we have

|α+ 1|2 = 1− |α|2 = 1 + Re(α), Im(α)2 = |α|2(1− |α|2)
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and using these identities one can compute that

y(t) =
−2Im(α)

4(1− |α|2)
and x(t) =

(
t− Im(α)

2(1− |α|2)

)2

+
1 + 2Re(α)

4(1− |α|2)
.

Thus {x(t) + iy(t) | t ∈ R} determines a half line in C, parallel to the real axis and
starting in 1+2α

4(1−|α|2) and moving in positive direction. It follows that ω(T) is the

half line

ω(T) =

{
−(α+ 1)r − (α+ 1)(1 + 2α)

4(1− |α|2)
| r ≥ 0

}
,

as claimed.

Step 2. Next we determine the various parts of the spectrum in C\ω(T). Since
ω is strictly proper, Theorem 3.1 applies, and we know σr(Tω) = ∅ and σp =

ω(C\D) ∪ {0}.
For k = 1, the polynomial pλ,α(z) = pλ,α,1(z) = λz2 − (1 + 2λ)z + λ − α has

roots
−(1 + 2λ)±

√
1 + 4λ(1 + α)

2λ
.

We consider three cases, depending on whether α is inside, on or outside the
circle T(− 1

2 ,
1
2 ).

Assume α ∈ D(− 1
2 ,

1
2 ). Then ω(T) is a parabola in C. For λ = − 1

2 we find that

λ− ω has zeroes ±i
√

1 + 2α, which are both inside D, because of our assumption.
Thus − 1

2 ∈ ρ(Tω), so that ρ(Tω) 6= ∅. Therefore the connected component of

C\ω(T) that contains − 1
2 is contained in ρ(Tω), which must also contain ω(D).

Note that 0 ∈ ω(T) if and only if |α| = 1. However, there is no intersection of the
disc α ∈ D(− 1

2 ,
1
2 ) and the unit circle T. Thus 0 is in σp(Tω), but not on ω(T).

Hence 0 is contained in the connected component of C\ω(T) that does not contain
− 1

2 . This implies that the connected component containing 0 is included in σp(Tω).

This proves our claims for the case α ∈ D(− 1
2 ,

1
2 ).

Now assume α ∈ T(− 1
2 ,

1
2 ). Then ω(T) is a half line, and thus C\ω(T) consists

of one connected component. Note that the intersection of the disc determined by
|α+ 1

2 | <
1
2 and the unit circle consists of −1 only. But α 6= −1, so it again follows

that 0 /∈ ω(T). Therefore the C\ω(T) = σp(Tω). Moreover, the reasoning in the
previous case shows that λ = − 1

2 is in σc(Tω) since both zeroes of − 1
2 − ω are on

T.
Finally, consider that case where α is in the exterior of T(− 1

2 ,
1
2 ), i.e., |α+ 1

2 | >
1
2 .

In this case, |α| = 1 is possible, so that 0 ∈ σp(Tω) could be on ω(T). We show
that α = ω(0) ∈ ω(D) is in σp(Tω). If α = 0, this is clearly the case. So assume
α 6= 0. The zeroes of α− ω are then equal to 0 and 1+2α

α . Note that | 1+2α
α | > 1 if

and only if |1 + 2α|2 − |α|2 > 0. Moreover, we have

|1 + 2α|2 − |α|2 = 3|α|2 + 4Re(α) + 1 = 3|α+ 2
3 |

2 − 1
3 .

Thus, the second zero of α−ω is outside D if and only if |α+ 2
3 |

2 > 1
9 . Since the disc

indicated by |α+ 2
3 | ≤

1
3 is contained in the interior of T(− 1

2 ,
1
2 ), it follows that for

α satisfying |α+ 1
2 | >

1
2 one zero of α−ω is outside D, and thus ω(0) = α ∈ σp(Tω).

Note that
C = ω(C) = ω(D) ∪ ω(T) ∪ ω(C\D),

and that ω(D) and ω(C\D) are connected components, both contained in σp(Tω).
This shows that C\ω(T) is contained in σp(Tω).
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Step 3. In the final part we prove the claim regarding the essential spectrum σess(Tω) =
ω(T). Let λ ∈ ω(T) and write z1 and z2 for the zeroes of λ− ω. One of the zeroes
must be on T, say |z1| = 1. Then λ ∈ σp(T) if and only if |z1z2| = |z2| > 1. From
the form of pλ,α determined above we obtain that

λz2 − (1 + 2λ)z + λ− α = λ(z − z1)(z − z2).

Determining the constant term on the right hand sides shows that λz1z2 = λ− α.
Thus

|z2| = |z1z2| =
|λ− α|
|λ|

.

This shows that λ ∈ σp(Tω) if and only if |λ − α| > |λ|, i.e., λ is in the half
plane containing zero determined by the line through 1

2α perpendicular to the line
segment from zero to α.

Consider the line given by |λ − α| = |λ| and the parabola ω(T), which is a
half line in case α ∈ T(− 1

2 ,
1
2 ). We show that ω(T) and the line intersect only for

α ∈ T(− 1
2 ,

1
2 ), and that in the latter case ω(T) is contained in the line. Hence for

each value of α 6= −1, the essential spectrum consists of either point spectrum or
of continuous spectrum, and for α ∈ T(− 1

2 ,
1
2 ) both zeroes of λ − ω are on T, so

that ω(T) is contained in σc(Tω).
As observed in (6.1), the parabola ω(T) is given by the parametrization (it −

1
2 )2(α + 1) + (it − 1

2 ) with t ∈ R, while the line is given by the parametrization
1
2α+ siα with s ∈ R. Fix a t ∈ R and assume the point on ω(T) parameterized by
t intersects with the line, i.e., assume there exists a s ∈ R such that:

(it− 1
2 )2(α+ 1) + (it− 1

2 ) = 1
2α+ siα,

Thus
(−t2 − it+ 1

4 )(α+ 1) + (it− 1
2 ) = 1

2α+ siα,

and rewrite this as

i(−t(α+ 1) + t− αs) + ((−t2 + 1
4 )(α+ 1)− 1

2 −
1
2α) = 0,

which yields
−αi(t+ s) + (α+ 1)(−t2 − 1

4 ) = 0.

Since t2 + 1
4 > 0, this certainly cannot happen in case α = 0. So assume α 6= 0.

Multiply both sides by −α to arrive at

|α|2i(t+ s) + (|α|2 + α)(t2 + 1
4 ) = 0.

Separate the real and imaginary part to arrive at

(|α|2 + Re(α))(t2 + 1
4 ) + i(|α|2(t+ s)− (t2 + 1

4 )Im(α)) = 0.

Thus
(|α|2 + Re(α))(t2 + 1

4 ) = 0 and |α|2(t+ s) = (t2 + 1
4 )Im(α).

Since t2 + 1
4 > 0, the first identity yields |α|2 + Re(α) = 0, which happens precisely

when α ∈ T(− 1
2 ,

1
2 ). Thus there cannot be an intersection when α /∈ T(− 1

2 ,
1
2 ). On

the other hand, for α ∈ T(− 1
2 ,

1
2 ) the first identity always holds, while there always

exists an s ∈ R that satisfies the second equation. Thus, in that case, for any t ∈ R,
the point on ω(T) parameterized by t intersects the line, and thus ω(T) must be
contained in the line.

We conclude by showing that ω(T) ⊂ σp(Tω) when |α+ 1
2 | >

1
2 and that ω(T) ⊂

σc(Tω) when |α+ 1
2 | <

1
2 . Recall that the two cases correspond to |α|2 + Re(α) > 0
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Figure 5. Spectrum of Tω, where ω(z) = z+α
(z−1)2 for some values

of α, with α = 1, and α = 0 (top row left and right), α = 1/2 and
α = −2 (middle row left and right), α = − 1

2 + 1
4 i and α = −2 + i

(bottom row).

and |α|2 + Re(α) < 0, respectively. To show that this is the case, we take the point
on the parabola parameterized by t = 0, i.e., take λ = 1

4 (α + 1) − 1
2 = 1

4 (α − 1).

Then λ− α = − 1
4 (3α+ 1). So

|λ− α|2 = 1
16 (9|α|2 + 6Re(α) + 1) and |λ|2 = 1

16 (|α2| − 2Re(α) + 1).

It follows that |λ− α| > |λ| if and only if

1
16 (9|α|2 + 6Re(α) + 1) > |λ|2 = 1

16 (|α2| − 2Re(α) + 1),

or equivalently,

8(|α|2 + Re(α)) > 0.

This proves out claim for the case |λ+ 1
2 | >

1
2 . The other claim follows by reversing

the directions in the above inequalities.
Figure 5 presents some illustrations of the possible situations. �

The case k = 2 can be dealt with using the same techniques, and very similar
results are obtained in that case.

The next examples deal with other cases of ωk, now with k > 2.

Example 6.2. Let ω = z3+α
(z−1)2 . Then

ω(z) =
z3 + α

(z − 1)2
= (z − 1) + 3 +

3

z − 1
+

1 + α

(z − 1)2
.
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Figure 6. Spectrum of Tω where ω(z) = z3+α
(z−1)2 for several values

of α, with α being (left to right and top to bottom) respectively,
−2,−1.05,−0.95, 0.3, 0.7, 1, 1.3, 2.

For z ∈ T, 1
z−1 has the form − 1

2 + ti, t ∈ R and so ω(T) has the form

ω(T) =

{
1

− 1
2 + ti

+ 3 + 3(−1

2
+ ti) + (1 + α)

(
−1

2
+ ti

)2

, | t ∈ R

}
.

Also λ − ω(z) = λ(z−1)2−z3−α
(z−1)2 and so for invertibility we need the polynomial

pλ,α(z) = λ(z−1)2−z3−α to have exactly two roots in D. Since this is a polynomial
of degree 3 the number of roots inside D can be zero, one, two or three, and the
index of λ− Tω correspondingly can be two, one, zero or minus one. Examples are
given in Figure 6.

Example 6.3. To get some idea of possible other configurations we present some
examples with other values of k.

For ω(z) = z4

(z−1)2 (so k = 4 and α = 0) the essential spectrum of Tω is the curve

in Figure 7, the white region is the resolvent set, and color coding for the Fredholm

index is as earlier in the paper. For ω(z) = z6+1.7
(z−1)2 (so k = 6 and α = 1.7) see Figure

8, and as a final example Figure 9 presents the essential spectrum and spectrum

for ω(z) = z7+1.1
(z−1)2 and ω(z) = z7+0.8

(z−1)2 . In the latter figure color coding is as follows:

the Fredholm index is −3 in the yellow region, −4 in the green region and −5 in
the black region.



UNBOUNDED TOEPLITZ-LIKE OPERATORS II: THE SPECTRUM 19

Figure 7. The spectrum of Tω, with k = 4 and α = 0.

Figure 8. The spectrum of Tω with k = 6 and α = 1.7.

Figure 9. The spectrum of Tω for k = 7 and α = 1.1 (left) and
k = 7, α = 0.8 (right)
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[2] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators. Second edition, Springer Mono-

graphs in Mathematics, Springer–Verlag, Berlin, 2006.



20 G.J. GROENEWALD, S. TER HORST, J. JAFTHA, AND A.C.M. RAN

[3] D.N. Clark, On the point spectrum on a Toeplitz operator, Trans. Amer. Math. Soc. 126

(1967), 251–266.

[4] J.B. Conway, A course in Functional analysis. Second edition, Springer, 1990.
[5] R.G. Douglas, Banach algebra techniques in Operator Theory. Second Edition, Graduate Texts

in Mathematics, 179, Springer, New York, 1988.

[6] K.H. Förster and M.A. Kaashoek. The asymptotic behaviour of the reduced minumum modulus
of a Fredholm operator. Proc. Amer. Math. Soc. 49 (1975), 123–131.

[7] I. Gohberg, On an application of the theory of the theory normed rings to singular integral

equations, Uspehi. Matem. Nauk 7 (1952), 149–156 [Russian].
[8] I. Gohberg, On Toeplitz matrices composed by Fourier coefficients of piecewise continuous

functions, Funkts. Anal. Prilozh 1 (1967), 91–92 [Russian].

[9] G.J. Groenewald, S. ter Horst, J. Jaftha and A.C.M. Ran, A Toeplitz-like operator with
rational symbol having poles on the unit circle I: Fredholm properties, Oper. Theory Adv.

Appl., accepted.
[10] P.R Halmos, A glimpse into Hilbert space. 1963 Lectures on Modern Mathematics, Vol. I pp.

1-22, Wiley, New York

[11] P. Hartman and A. Wintner, On the spectra of Toeplitz’s Matrices, Amer. J. Math. 72
(1950), 359–366.

[12] P. Hartman and A. Wintner, The spectra of Toeplitz’s matrices, Amer. J. Math. 76 (1954),

887–864.
[13] J. Janas, Unbounded Toeplitz operators in the Bargmann-Segal space, Studia Math. 99

(1991), 87–99.

[14] N.K. Nikolskii, Operators, functions and systems: An easy reading. Vol. I: Hardy, Hankel
and Toeplitz, American Mathematical Society, Providence, RI, 2002.

[15] M. Schechter, Principles of functional analysis, Academic Press inc., New York, 1971.

[16] H. Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365–375.

G.J. Groenewald, Department of Mathematics, Unit for BMI, North-West Univer-

sity, Potchefstroom, 2531 South Africa

E-mail address: Gilbert.Groenewald@nwu.ac.za

S. ter Horst, Department of Mathematics, Unit for BMI, North-West University,

Potchefstroom, 2531 South Africa
E-mail address: Sanne.TerHorst@nwu.ac.za

J. Jaftha, Numeracy Centre, University of Cape Town, Rondebosch 7701; Cape Town;

South Africa
E-mail address: Jacob.Jaftha@uct.ac.za

A.C.M. Ran, Department of Mathematics, Faculty of Science, VU Amsterdam, De
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands and Unit for BMI, North-

West University, Potchefstroom, South Africa

E-mail address: a.c.m.ran@vu.nl


	1. Introduction
	2. Review and new results concerning T
	3. The spectrum of T
	4. The spectrum may be unbounded, the resolvent set empty
	5. The essential spectrum need not be connected
	6. A parametric example
	References

