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THE VARIATIONAL STRUCTURE AND TIME-PERIODIC

SOLUTIONS FOR MEAN-FIELD GAMES SYSTEMS

MARCO CIRANT AND LEVON NURBEKYAN

Abstract. Here, we observe that mean-field game (MFG) systems admit a two-
player infinite-dimensional general-sum differential game formulation. We show
that particular regimes of this game reduce to previously known variational prin-
ciples. Furthermore, based on the game-perspective we derive new variational
formulations for first-order MFG systems with congestion. Finally, we use these
findings to prove the existence of time-periodic solutions for viscous MFG systems
with a coupling that is not a non-decreasing function of density.
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1. Introduction

In this note, we discuss the variational structure of mean-field game (MFG) sys-
tems and apply our findings to the construction of time-periodic solutions for systems
with decreasing coupling.

MFG systems independently introduced by Lasry and Lions in [52, 53, 54] and
by Huang, Malhamé and Caines [46, 47] is a framework to model populations that
have a huge number of indistinguishable agents that play a differential game. In this
framework, as in statistical physics, one models a huge population as a continuum
of agents in some state space. Furthermore, the state of this population is modeled
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by the distribution of the agents in the state space. Hence, each agent in this game
devises an optimal strategy based on the distribution of the population; that is,
on the statistical rather than individual information about the positions of other
agents. As a result, one obtains a system of PDE, a MFG system, that characterizes
the optimal actions of the agents and the evolution of their distribution in the state
space. MFG systems are analogs of macroscopic equations from statistical physics
in the game-theoretic framework.

Currently, MFG theory is a very active research direction with numerous appli-
cations in economics [45, 3, 37], finance [45, 17, 48], industrial engineering [46, 47],
crowd dynamics [28], knowledge growth [13, 14] and more. For further details on
MFG theory we refer to [55, 15, 45, 12, 40, 39, 21, 22] and references therein.

From the PDE perspective, a typical MFG system has the form










−ut − ε∆u+H (x,∇u,m) = 0,

mt − ε∆m− div (m∇pH (x,∇u,m)) = 0,

m > 0, m(x, 0) = m0(x), u(x, T ) = uT (x), (x, t) ∈ T
d × [0, T ].

(1.1)

Here, we denote by T
d the d-dimensional flat torus that is the state-space for a

continuum of agents. Next,m(·, t), 0 6 t 6 T, denotes the density of the distribution
of the agents in the state-space at time t. In this model, each agent faces a stochastic
optimal control problem with an independent Brownian motion of intensity ε > 0,
terminal time T , terminal cost function uT , and a Lagrangian that depends on the
distribution m and gives rise to a Hamiltonian H : T

d × R
d × R++ → R. The

dependence of H on m is called the coupling of the MFG system. Furthermore,
(x, t) 7→ u(x, t) denotes the value function of this optimal control problem, and
m0 is the initial distribution density of the agents. We assume that m0 > 0, and
∫

Td m
0 = 1. The unknowns in (1.1) are u and m.

The first equation in (1.1) is the Hamilton-Jacobi equation corresponding to the
optimal control problem faced by each agent. The second equation in (1.1) is the
Fokker-Planck equation that governs the evolution of the density of the agents that
act optimally. The ergodic version of (1.1) is















−ε∆u+H(x,∇u,m) = H̄,

−ε∆m− div (m∇pH(x,∇u,m)) = 0,

m > 0,
∫

Td

m(x)dx = 1, x ∈ T
d.

(1.2)

This previous system corresponds to a model where agents solve an ergodic (long-
time average) optimal control problem. In (1.1) the unknowns are u,m and H.
Latter, is the ergodic constant or the effective Hamiltonian and can be thought of
as the Lagrange multiplier for the constraint

∫

Td m = 1.
We are interested in variational formulations of (1.1) and (1.2); that is, we aim

at finding functionals of (m,u) that yield (1.1) and (1.2) as first-order optimality
conditions.

The variational structure of MFG systems is not new. In a seminar paper on
MFG, [54], Lasry and Lions pointed out that if H has a form

H(x, p,m) = H0(x, p)− f(x,m), (x, p,m) ∈ T
d × R

d × R++, (1.3)

for some H0 : T
d×R

d → R, f : Td×R+ → R then (1.1), (1.2) can be interpreted as
optimality conditions for two dual optimal control problems of PDE – (5.2) and (5.4).
Latter are reminiscent of the dynamical formulation of the Optimal Transportation
Problem by Benamou and Brenier [9]. These ideas were successfully used to analyze
(1.1), (1.2) in various settings where there are no direct regularizing mechanisms
from elliptic and parabolic PDE theory. In particular, first-order systems were
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addressed in [18, 44, 19, 43], degenerate second-order systems were treated in [16],
and problems with constraints on m were considered in [56, 20]. Moreover, the
optimal control formulations in [54] yield numerical solution methods for (1.1), (1.2)
by optimization techniques as in [9]. We refer to [10, 11] and references therein for
an account on these numerical methods. Additionally, similar ideas were used to
treat mean-field type control problems with congestion in [4, 5].

Unfortunately, the optimal control formulation in [54] does not extend to systems
where H is not of the form (1.3). As a result, there is no systematic approach to
analyze (1.1), (1.2) when H is not of the form (1.3) and there is no regularization
due to ellipticity. For instance, suppose that

H(x, p,m) = mαH0

(

x,
p

mα

)

− f(x,m), (x, p,m) ∈ T
d × R

d ×R++, (1.4)

for some H0 : T
d × R

d → R, f : Td × R+ → R, and α > 0. In this case, (1.1), (1.2)
correspond to so called soft congestion models. In these models, agents pay more
for moving in denser areas. The congestion strength is modeled by α. Note that the
no-congestion case, α = 0, corresponds to (1.3).

As mentioned before, for H as in (1.4) there is no optimal control formulation of
(1.1), (1.2) analogous to the one in [54]. Additionally, the singularity of H at m = 0
creates substantial difficulties when using purely PDE methods – see [41, 36, 42, 30,
1] for second-order systems.

However, for a specificH it may still be possible to find a non-standard variational
formulation for (1.1), (1.2). In [29], for instance, authors found a new variational
formulation for (1.2) when ε = 0 and

H(x, p,m) =
|p+Q|γ

γmα
− f(x,m), (x, p,m) ∈ T

d × R
d × R++, (1.5)

for some f : Td×R++ → R, Q ∈ R
d, and 1 < α 6 γ. The formulation in [29] yielded

well-defined variational solutions that are unique and can be numerically calculated
by optimization techniques.

In [6, 32], authors used yet another variational approach to MFG systems that is
closely related to the uniqueness of solutions for (1.1), (1.2). In [55], Lions derived a
sufficient condition that guarantees uniqueness of smooth solutions for (1.1), (1.2).
The condition reads as

(

2∇2
pH(x, p,m) ∂

∂m∇pH(x, p,m)
∂
∂m∇⊤

p H(x, p,m) − 2
m

∂H(x,p,m)
∂m

)

> 0, (1.6)

for all (x, p,m) ∈ T
d × R

d × R++. In [6, 32], Gomes and coauthors observed that
under (1.6) the map

A :

(

m
u

)

7→

(

ut + ε∆u−H(x,∇u,m)
mt − ε∆m− div (m∇pH(x,∇u,m))

)

is a monotone operator. Therefore, (1.2) reduces to finding the zeros of a monotone
operator. Furthermore, in [6, 32] authors defined weak solutions of (1.2) using varia-
tional inequalities and proved their existence using Minty’s method from monotone
operators theory. Moreover, Gomes and coauthors developed numerical solution
methods for (1.2) and finite-state version of (1.1) in [6] and [34], respectively, using
monotone flows. For an overview of monotonicity methods for MFG systems we
refer to [33].

In this note, we aim at developing a systematic way to search for non-standard
variational formulations for MFG systems. We formally show that solutions of (1.1)
and (1.2) correspond to critical points of suitable functionals. Furthermore, we ob-
serve that under standard monotonicity assumptions these critical points correspond
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to Nash equilibria of two-player infinite-dimensional differential games (3.3), (3.10),
(3.20): Propositions 3.1, 3.2, 3.6.

Interestingly, when H is of the form (1.3) we obtain zero-sum games, Corollaries
4.1, 4.2, 4.3, that are directly linked to the optimal control formulations in [54].
More precisely, in Section 5 we observe that these zero-sum game formulations are
the Hamiltonian forms of the optimal control problems in [54].

For stationary first-order systems with H of the form (1.5) and parameter range
0 < α < 1 6 γ we again obtain a zero-sum game and thus find a saddle point
formulation of (1.2) that is new in the literature: Corollaries 4.5, 4.6. Furthermore,
in analogy with [9], we find a convex optimization formulation of this saddle point
problem that is also new: Remark 4.7. Moreover, as we observe in Section 5, this
convex optimization formulation is a generalization of the transformation in [29] that
was used to solve (1.2) for H of the form (1.5) and parameter range 0 < α < 1 6 γ
in the two-dimensional case.

For stationary first-order systems with H of the form (1.5) and parameter range
1 < α, 1 6 γ we recover a potential game instead of a zero-sum game, Corollaries
4.8, 4.9 and Remark 4.10. Furthermore, when 1 < α 6 γ the potential of this game
is concave, and therefore Nash equilibria are the maximizers of this potential. Thus,
in Section 5, we recover the variational principle in [29].

Additionally, we discuss some interpretations of our results in terms of the mean-
field type or McKean-Vlasov control theory: Remarks 3.3, 3.4, 3.5.

We would like to stress that our discussion on differential-game formulations for
(1.1) and (1.2) are formal; that is, we perform our analysis at the level of smooth
functions. Accordingly, we do not address the existence and regularity theory of
suitable weak solutions. These are extremely interesting and apparently challenging
problems.

In the final section of this work, we propose an application of the differential-
game formulation of (1.1) to systems where the uniqueness condition (1.6) is vio-
lated. We aim in particular at finding time-periodic solutions in the special case
H(x, p,m) = |p|2/2 − f(m), where f is a decreasing function. Previously, a simi-
lar result with completely different techniques was obtained in [35] for a congestion

model H(x, p,m) = |p±
√
2K|2

2m +Km, K > 0.
Recently, an increasing interest has been devoted to the study of models where

multiplicity of equilibria arises [7, 23, 24, 26, 38, 35, 57] (also in the multi-population
setting, see e.g. [2, 27, 51]). In a previous work [25], it has been proven the existence
of solutions in simple models with separable Hamiltonians that exhibit an oscillatory
behaviour on [0, T ]. Such results have been obtained by means of bifurcation meth-
ods, looking in particular at branches of non-trivial solutions as the time horizon T
varies. The arise of periodic patterns led naturally to the question of existence of
truly time-periodic solutions, namely a couple m,u defined for all t ∈ (−∞,+∞)
and such that m(·, t + T ) = m(·, t) for some T > 0 and for all t. Here, we provide
a positive answer to this question (see Theorem 6.1), under the assumption that
−f ′(1) is large enough.

The result again relies on bifurcation techniques, that in turn exploit an analysis
of the linearized system similar to the one in [25]. A crucial point is that such
techniques require that solutions to the linearized system consist of a vector space of
dimension one (or odd); here, we overcome this issue using the variational structure
of (1.1), that enables us to implement bifurcation for potential operators (namely
Theorem 6.3). These are not restricted to odd dimension of eigenspaces. We finally
observe that the equilibria that we find have non-trivial dependance in time (see
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Remark 1.1); this is remarkable in view of the autonomous nature of (1.1), where
no periodic force acts explicitly.

The paper is organized as follows. In Section 2 we introduce the notation and
hypotheses. Section 3 is devoted to the two-player infinite-dimensional game formu-
lations (3.3), (3.10), (3.20) of (1.1) and (1.2) for a general Hamiltonian. Further-
more, in Section 4 we discuss particular Hamiltonians for which these games have
more structure. Next, in Section 5 we discuss the connections among (3.3), (3.10),
(3.20) and previously known variational principles. Finally, in Section 6 we prove
the existence of time-periodic solutions for (1.1) when (1.6) is violated.

2. Notation and assumptions

We denote by T
d, R

d, R+, R++, respectively, the d-dimensional flat torus, the
d-dimensional Euclidean space, the set of nonnegative real numbers and the set of
positive real numbers. For T > 0 we denote by

ΩT = T
d × [0, T ].

For real positive and non-integer β, Cβ,β/2(ΩT ) will be the standard Hölder parabolic
space.

Throughout the note we assume that H ∈ C2(Td × R
d × R++) and m0, uT ∈

C2(Td), m0 > 0. Furthermore, for the differential-game formulation of (1.1) and
(1.2) we need the following monotonicity assumption.

Assumption 1. For all (x, p,m) ∈ T
d × R

d × R++ one has that

∇2
ppH(x, p,m) > 0, ∂mH(x, p,m) 6 0. (2.1)

Note that (2.1) is necessary for (1.6). Furthermore, we define FH by

FH(x, p,m) =

m
∫

H(x, p, z)dz, (x, p,m) ∈ T
d × R

d × R++. (2.2)

For arbitrary functional n 7→ K(n) we denote by δK
δn its variational derivative.

3. A two-player infinite-dimensional differential game

In this section, we show that under (2.1) the smooth solutions of (1.1) and (1.2)
are Nash equilibria of a suitable two-player infinite-dimensional differential game.
For (m,u) ∈ C2(ΩT ), m > 0 consider the following functionals:

Ψ1(m,u) =

∫

ΩT

m(−ut − ε∆u) + FH(x,∇u,m)dxdt+

∫

Td

m(x, T )u(x, T )dx

−

∫

Td

m0(x)u(x, 0)dx −

∫

Td

m(x, T )uT (x)dx

=

∫

ΩT

u(mt − ε∆m) + FH(x,∇u,m)dxdt+

∫

Td

m(x, 0)u(x, 0)dx

−

∫

Td

m0(x)u(x, 0)dx −

∫

Td

m(x, T )uT (x)dx,

(3.1)



6 MARCO CIRANT AND LEVON NURBEKYAN

and

Ψ2(m,u) =

∫

ΩT

m(−ut − ε∆u) +mH(x,∇u,m)dxdt +

∫

Td

m(x, T )u(x, T )dx

−

∫

Td

m0(x)u(x, 0)dx −

∫

Td

m(x, T )uT (x)dx

=

∫

ΩT

u(mt − ε∆m) +mH(x,∇u,m)dxdt +

∫

Td

m(x, 0)u(x, 0)dx

−

∫

Td

m0(x)u(x, 0)dx −

∫

Td

m(x, T )uT (x)dx.

(3.2)

Now, we consider the following differential game:

Player 1 sup
m∈C2(ΩT ), m>0

Ψ1(m,u)

Player 2 inf
u∈C2(ΩT )

Ψ2(m,u).

(3.3)

In (3.3), the first player chooses a strategy m ∈ C2(ΩT ), m > 0 and aims at
maximizing Ψ1(m,u). The second player chooses a strategy u ∈ C2(ΩT ) and aims
at minimizing Ψ2(m,u). Note that Ψ1 and Ψ2 are different in general, and hence
(3.3) is a general-sum game.

Proposition 3.1. Suppose that (2.1) holds. Then, for any m∗, u∗ ∈ C2(ΩT ) such
that m∗ > 0 one has that

Ψ1(m
∗, u∗) > Ψ1(m,u

∗), for all m ∈ C2(ΩT ), m > 0, (3.4)

and

Ψ2(m
∗, u∗) 6 Ψ2(m

∗, u), for all u ∈ C2(ΩT ), (3.5)

if and only if (m∗, u∗) is a classical solution of (1.1).

Proof. A straightforward calculation of the variational derivatives of Ψ1,Ψ2 yields
that (1.1) can be written as

{

δΨ1
δm (m,u) = 0, m > 0,
δΨ2
δu (m,u) = 0.

Then, the proof follows from the fact that m 7→ Ψ1(m,u), m > 0 is a concave func-
tional, and u 7→ Ψ2(m,u) is a convex functional when m > 0. Although elementary,
we present the proof here for the sake of completeness.

We start by the direct implication; that is, we assume that (m∗, u∗), m∗ > 0 is a
solution of (1.1), and we aim at proving (3.4), (3.5). Pick an arbitrary test function
m ∈ C2(ΩT ), m > 0 and consider

I1(h) = Ψ1(m
∗ + hφ, u∗) = Ψ1(mh, u

∗), (3.6)
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where φ = m−m∗. Note that I1 is well defined in some neighborhood of h = 0 that
contains h = 1 because m, m∗ > 0. Then, we have that

dI1(h)

dh
=

∫

ΩT

φ (−u∗t − ε∆u∗ +H (x,∇u∗,mh)) dxdt+

∫

Td

φ(x, T )u∗(x, T )dx

−

∫

Td

φ(x, T )uT (x)dx

=

∫

ΩT

φ (−u∗t − ε∆u∗ +H (x,∇u∗,mh)) dxdt.

Therefore, we have that

I ′1(0) =
∫

ΩT

φ (−u∗t − ε∆u∗ +H (x,∇u∗,m∗)) dxdt = 0,

because (m∗, u∗) is a solution of (1.1). Furthermore, we have that

d2I1(h)

dh2
=

∫

ΩT

φ2
∂H (x,∇u∗,m)

∂m

∣

∣

∣

∣

mh

dxdt 6 0,

by (2.1). Hence, h 7→ I1(h) is a concave function, and its critical points are points
of maxima. Therefore, I1(1) 6 I1(0) which is exactly (3.4).

Next, we prove (3.5). For arbitrary u ∈ C2(ΩT ) consider

I2(h) = Ψ2(m
∗, u∗ + hψ) = Ψ2(m

∗, uh), (3.7)

where ψ = u− u∗. Then, we have that

dI2(h)

dh
=

∫

ΩT

ψ(m∗
t − ε∆m∗) +m∗∇pH (x,∇uh,m

∗) · ∇ψdxdt+
∫

Td

m∗(x, 0)ψ(x, 0)dx

−

∫

Td

m0(x)ψ(x, 0)dx

=

∫

ΩT

ψ (m∗
t − ε∆m∗ − div (m∗∇pH (x,∇uh,m

∗))) dxdt.

Hence, we obtain that

I ′2(0) =
∫

ΩT

ψ (m∗
t − ε∆m∗ − div (m∗∇pH (x,∇u∗,m∗))) dxdt = 0,

because (m∗, u∗) is a solution of (1.1). Furthermore, we have that

d2I2(h)

dh2
=

∫

ΩT

∇ψ · ∇2
ppH (x,∇uh,m

∗)∇ψdxdt > 0,

by (2.1). Hence, h 7→ I2(h) is a convex function, and its critical points are minima.
Thus, I2(1) > I2(0) which yields (3.5).

Now, we turn to the inverse implication. Pick an arbitrary test function φ ∈
C2(ΩT ) and consider I1 given by (3.6). Then, h 7→ I1(h) is defined in the neigh-
borhood of h = 0 because m∗ > 0. Since, (m∗, u∗) satisfies (3.4) we have that
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I1(h) 6 I1(0) for h ∈ dom I1. Hence, we have that I ′1(0) = 0. From the previous
calculations we have that

I ′1(0) =
∫

ΩT

φ (−u∗t − ε∆u∗ +H (x,∇u∗,m∗)) dxdt

+

∫

Td

φ(x, T )u∗(x, T )dx−

∫

Td

φ(x, T )uT (x)dx.

Since φ is arbitrary we obtain
{

−u∗t − ε∆u∗ +H (x,∇u∗,m∗) = 0,

u∗(x, T ) = uT (x), (x, t) ∈ ΩT .

Furthermore, let ψ ∈ C2(ΩT ) and consider I2 given by (3.7). Then, we have that
I2(h) > I2(0), h ∈ R by (3.5). Consequently, we obtain that I ′2(0) = 0. But we have
that

I ′2(0) =
∫

ΩT

ψ (m∗
t − ε∆m∗ − div (m∗∇pH (x,∇u∗,m∗))) dxdt

+

∫

Td

m∗(x, 0)ψ(x, 0)dx −

∫

Td

m0(x)ψ(x, 0)dx = 0.

Since ψ is arbitrary, we obtain that
{

m∗
t − ε∆m∗ − div (m∗∇pH (x,∇u∗,m∗)) = 0,

m∗(x, 0) = m0(x), (x, t) ∈ ΩT ,

and the proof is complete. �

For the ergodic version of (3.3) we introduce the payoff functionals

Ψ̂1(m,u) =

∫

Td

−εm∆u+ FH(x,∇u,m)dx

=

∫

Td

−εu∆m+ FH(x,∇u,m)dx,

(3.8)

and

Ψ̂2(m,u) =

∫

Td

−εm∆u+mH (x,∇u,m) dx

=

∫

Td

−εu∆m+mH (x,∇u,m) dx,

(3.9)

for m,u ∈ C2(Td), m > 0. Then, we consider the following game:

Player 1 sup







Ψ̂1(m,u) : m ∈ C2(Td), m > 0,

∫

Td

m = 1







Player 2 inf
{

Ψ̂2(m,u) : u ∈ C2(Td)
}

.

(3.10)
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Proposition 3.2. Suppose that (2.1) holds. Then, for any m∗, u∗ ∈ C2(Td) such
that m∗ > 0 and

∫

Td

m∗ = 1 one has that

Ψ̂1(m
∗, u∗) > Ψ̂1(m,u

∗), for all m ∈ C2(Td), m > 0,

∫

Td

m = 1.

and

Ψ̂2(m
∗, u∗) 6 Ψ̂2(m

∗, u), for all u ∈ C2(Td),

if and only if (m∗, u∗) is a classical solution of (1.2) for some H
∗
∈ R.

Moreover, for both cases above one has that

H
∗
= Ψ̂2(m

∗, u∗).

Proof. The proof is analogous to the one of Proposition 3.1. �

Remark 3.3. As we pointed out in the Introduction, (1.1) and (1.2) are Nash
equilibrium conditions in a differential game with infinitely many agents that interact
through the distribution of the whole population, the mean-field. Interestingly, Ψ2

and Ψ̂2 can be interpreted in terms of the average payoff of the population. More
precisely, for a given control r : ΩT 7→ R

d consider the functional

S(r) =

∫

ΩT

L
(

x,−r(x, s),m(x, s)
)

m(x, s)dxds +

∫

Td

uT (x)m(x, T )dx,

where L(x, v,m) = sup
p
v · p−H(x, p,m), and the dynamics is given by

{

mt − ε∆m+ div(mr) = 0,

m(x, 0) = m0(x), (x, t) ∈ ΩT .
(3.11)

The mean-field type or McKean-Vlasov optimal control problem reduces to

inf{S(r) s.t. (3.11) holds}. (3.12)

Here, S(r) is interpreted as average payoff or the social cost of the population when
control r is applied. Thus, (3.12) is an optimal control problem for a central planner
that aims at minimizing the average cost per agent. We refer to [21] for a detailed
discussion on McKean-Vlasov optimal control problems and their relation to MFG
systems.

Suppose that m,u ∈ C2(ΩT ), m > 0 are such that m(x, 0) = m0(x), u(x, T ) =
uT (x), x ∈ T

d, and

mt − ε∆m− div(m∇pH(x,∇u,m)) = 0, (x, t) ∈ ΩT . (3.13)

Then, t 7→ m(·, t) evolves according to (3.11), where the control r is given by

rm,u(x, t) = −∇pH(x,∇u(x, t),m(x, t)), (x, t) ∈ ΩT . (3.14)

Thus, using the identity

L(x,∇pH(x, p,m),m) = p · ∇pH(x, p,m)−H(x, p,m)
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we obtain that

S(rm,u) =

∫

ΩT

L
(

x,−rm,u(x, s),m(x, s)
)

m(x, s)dxds +

∫

Td

uT (x)m(x, T )dx

=

∫

ΩT

(

∇u · ∇pH(x,∇u,m)−H(x,∇u,m)
)

mdxds+

∫

Td

uT (x)m(x, T )dx

=

∫

ΩT

−u · div (m∇pH(x,∇u,m)) −H(x,∇u,m)mdxds +

∫

Td

uT (x)m(x, T )dx

=

∫

ΩT

−u(mt − ε∆m)−H(x,∇u,m)mdxds +

∫

Td

uT (x)m(x, T )dx

=−Ψ2(m,u).
(3.15)

Now, suppose that (m∗, u∗) ∈ C2(ΩT ), m
∗ > 0 is a Nash equilibrium of (3.3). Then,

by Proposition 3.1 (m∗, u∗) is a classical solution of (1.1), and hence (3.13) is valid for
(m,u) = (m∗, u∗). Therefore, from (3.15) one has that the social cost corresponding
to the MFG equilibrium is equal to −Ψ2(m

∗, u∗); that is, the negative of the Player
2 value in (3.3).

Similarly, from Proposition 3.2 we have that if (m∗, u∗) ∈ C2(Td), m∗ > 0 is

a Nash equilibrium in (3.10), then (m∗, u∗,H
∗
) is a classical solution of (1.2) for

some H
∗

∈ R, and −Ψ̂2(m
∗, u∗) is the ergodic social cost. But we have that

−Ψ̂2(m
∗, u∗) = −H

∗
. Hence, −H

∗
in (1.2) can be interpreted as an ergodic so-

cial cost.

Remark 3.4. The PDE system corresponding to the optimality conditions of
(3.12) is given by











−ut − ε∆u+H (x,∇u,m) +m∂mH (x,∇u,m) = 0,

mt − ε∆m− div (m∇pH (x,∇u,m)) = 0,

m > 0, m(x, 0) = m0(x), u(x, T ) = uT (x), (x, t) ∈ T
d × [0, T ].

(3.16)

Suppose that (m̂, û) ∈ C2(ΩT ) is a solution of this system. Then rm̂,û given by
(3.14) is a solution of (3.12) [12, 21]. Thus, if (m∗, u∗) ∈ C2(ΩT ) is a solution of
(1.1), and rm∗,u∗ is the corresponding control given by (3.14), then

S(rm̂,û) 6 S(rm∗,u∗).

Furthermore, using (3.15) we get that

Ψ2(m
∗, u∗) 6 Ψ2(m̂, û). (3.17)

Interestingly, (3.17) can be obtained in a simple and direct manner without going
through McKean-Vlasov or PDE optimal control approach. Indeed, one can check
that smooth solutions of (3.16) are the critical points of the functional Ψ2. Hence,
similar to Proposition 3.1, if p 7→ H(x, p,m) is convex and m 7→ mH(x, p,m) is
concave, then smooth solutions of (3.16) are Nash equilibria of a two-player zero-
sum game

Player 1 sup
m∈C2(ΩT ), m>0

Ψ2(m,u)

Player 2 inf
u∈C2(ΩT )

Ψ2(m,u).

(3.18)
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Now, suppose that (m∗, u∗) and (m̂, û) are Nash equilibria for (3.3) and (3.18)
respectively. Then, û is a suboptimal strategy for Player 2 in (3.3) so

Ψ2(m
∗, u∗) 6 Ψ2(m

∗, û).

Furthermore, m∗ is a suboptimal strategy for Player 1 in (3.18) so

Ψ2(m
∗, û) 6 Ψ2(m̂, û),

and we arrive at (3.17).

Remark 3.5. In contrast with (1.1) and (1.2), system (3.16) always admits a
variational formulation [4]. One way to explain this phenomenon is that (1.1) and
(1.2) correspond to Nash equilibria of a nonzero-sum game and (3.16) corresponds
to a zero-sum game. Moreover, when H is separable (1.3) we observe in Corollaries
4.1, 4.2 that games (3.3), (3.10) are equivalent to zero-sum games (4.6), (4.8). Thus,
it is expected that (1.1) and (1.2) admit variational formulations for separable H.
This is indeed the case as observed in [54].

In Proposition 3.2, the first player faces an optimization problem with constraint
∫

Td m = 1 that yields a Lagrange multiplier H
∗
. Moreover, H

∗
is the value of the

second player in the equilibrium. In fact, one can incorporate H
∗
in the differential

game. For that, we define

Ψ̃1(m,u,H) =

∫

Td

−εm∆u+ FH(x,∇u,m) +H(1−m)dx,

Ψ̃2(m,u,H) =

∫

Td

−εm∆u+mH (x,∇u,m) +H(1−m)dx,

(3.19)

for m,u ∈ C2(Td), m > 0, H ∈ R and consider the game

Player 1 sup
m∈C2(Td), m>0

Ψ̃1(m,u,H)

Player 2 inf
u∈C2(Td), H∈R

Ψ̃2(m,u,H).

(3.20)

Then, we have the following proposition.

Proposition 3.6. Suppose that (2.1) holds. Then, for any m∗, u∗ ∈ C2(Td), H
∗
∈

R such that m∗ > 0 one has that

Ψ̃1(m
∗, u∗,H

∗
) > Ψ̃1(m,u

∗,H
∗
), for all m ∈ C2(Td), m > 0.

and

Ψ̃2(m
∗, u∗,H

∗
) 6 Ψ̃2(m

∗, u,H), for all (u,H) ∈ C2(Td)×R,

if and only if (m∗, u∗,H
∗
) is a classical solution of (1.2).

Proof. The proof is analogous to the one of Proposition 3.1. The key point is that
the m 7→ Ψ̃1(m,u

∗,H
∗
) is a concave functional, and (u,H) 7→ Ψ̃2(m

∗, u,H) is a
convex functional. �
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4. Various regimes of the game

In this section, we consider several types of H for which (3.3) and (3.10) can be
simplified. In particular, we consider separable and power-like Hamiltonians with
congestion.

4.1. Separable Hamiltonian. In this section, we assume that H is of the form
(1.3) for some H0 ∈ C2(Td × R

d) and f ∈ C1(Td × R++). In this case, (1.1) and
(1.2) respectively become











−ut − ε∆u+H0 (x,∇u) = f(x,m),

mt − ε∆m− div (m∇pH0 (x,∇u)) = 0,

m > 0, m(x, 0) = m0(x), u(x, T ) = uT (x),

(4.1)

and















−ε∆u+H0(x,∇u) = f(x,m) + H̄,

−ε∆m− div (m∇pH0(x,∇u)) = 0,

m > 0,
∫

Td

m(x)dx = 1.
(4.2)

The assumption (2.1) in this case is equivalent to the following one.

Assumption 2. For all (x, p,m) ∈ T
d × R

d × R++ one has that

∇2
ppH0(x, p) > 0, ∂mf(x,m) > 0. (4.3)

Furthermore, FH in (2.2) is given by

FH(x, p,m) = mH0(x, p)− F (x,m), (x, p,m) ∈ T
d ×R

d × R++.

where F (x,m) =
m
∫

f(x, z)dz. Hence, Ψ1 in (3.1) has the form

Ψ1(m,u) =

∫

ΩT

m(−ut − ε∆u) +mH0(x,∇u)− F (x,m)dxdt +

∫

Td

m(x, T )u(x, T )dx

−

∫

Td

m0(x)u(x, 0)dx −

∫

Td

m(x, T )uT (x)dx

=

∫

ΩT

u(mt − ε∆m) +mH0(x,∇u)− F (x,m)dxdt +

∫

Td

m(x, 0)u(x, 0)dx

−

∫

Td

m0(x)u(x, 0)dx −

∫

Td

m(x, T )uT (x)dx.

(4.4)
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Furthermore, Ψ2 in (3.2) has the form

Ψ2(m,u) =

∫

ΩT

m(−ut − ε∆u) +mH0 (x,∇u)−mf(x,m)dxdt+

∫

Td

m(x, T )u(x, T )dx

−

∫

Td

m0(x)u(x, 0)dx −

∫

Td

m(x, T )uT (x)dx

=

∫

ΩT

u(mt − ε∆m) +mH0 (x,∇u)−mf(x,m)dxdt+

∫

Td

m(x, 0)u(x, 0)dx

−

∫

Td

m0(x)u(x, 0)dx −

∫

Td

m(x, T )uT (x)dx.

(4.5)

Proposition 3.1 asserts that an optimal u∗ is a minimizer of u 7→ Ψ2(m
∗, u).

Therefore, if we modify Ψ2(m,u) by adding a functional that depends only on m
the minimization problem in u will not change. From (4.4) and (4.5) we observe
that for H as in (1.3) the functional Ψ2 differs from Ψ1 only by an m-dependent
term

∫

−mf(x,m) + F (x,m). Thus, in this case, Proposition 3.1 is valid with Ψ2

replaced by Ψ1.

Corollary 4.1. Suppose that (4.3) holds. Furthermore, let Ψ1 be given by (4.4).
Then, for any m∗, u∗ ∈ C2(ΩT ) such that m∗ > 0 one has that

Ψ1(m
∗, u∗) > Ψ1(m,u

∗), for all m ∈ C2(ΩT ),

and

Ψ1(m
∗, u∗) 6 Ψ1(m

∗, u), for all u ∈ C2(ΩT ),

if and only if (m∗, u∗) is a classical solution of (4.1).

This previous corollary asserts that for H as in (1.3) the smooth solutions of (1.1)
are Nash equilibria of the infinite-dimensional zero-sum game

Player 1 sup
m∈C2(ΩT ), m>0

Ψ1(m,u)

Player 2 inf
u∈C2(ΩT )

Ψ1(m,u).

(4.6)

Furthermore, for H of the form (1.3) we have that Ψ̂1, Ψ̃1 from (3.8) and (3.19)
take the form

Ψ̂1(m,u) =

∫

Td

−εm∆u+mH0(x,∇u)− F (x,m)dx,

Ψ̃1(m,u,H) =

∫

Td

−εm∆u+mH0(x,∇u)− F (x,m) +H(1−m)dx,

(4.7)

for m,u ∈ C2(Td), m > 0, H ∈ R. Then, the following corollaries of Propositions
3.2 and 3.6 hold.
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Corollary 4.2. Suppose that (4.3) holds. Furthermore, let Ψ̂1 be given by (4.7).
Then, for any m∗, u∗ ∈ C2(Td) such that m∗ > 0 one has that

Ψ̂1(m
∗, u∗) > Ψ̂1(m,u

∗), for all m ∈ C2(Td), m > 0,

∫

Td

m = 1.

and

Ψ̂1(m
∗, u∗) 6 Ψ̂1(m

∗, u), for all u ∈ C2(Td),

if and only if (m∗, u∗) is a classical solution of (4.2) for some H
∗
∈ R.

Moreover, for both cases above one has that

H
∗
=Ψ̂2(m

∗, u∗) = Ψ̂1(m
∗, u∗)−

∫

Td

m∗f(x,m∗)− F (x,m∗)dx

=Ψ̂1(m
∗, u∗)−

∫

Td

F ∗(x, f(x,m∗))dx,

where F ∗(x,w) = sup
z∈R+

wz − F (x, z), w ∈ R, is the convex conjugate of F .

The differential game corresponding to this previous corollary is

Player 1 sup







Ψ̂1(m,u) : m ∈ C2(Td), m > 0,

∫

Td

m = 1







Player 2 inf
{

Ψ̂1(m,u) : u ∈ C2(Td)
}

.

(4.8)

Next, we incorporate H in the game as in Proposition 3.6.

Corollary 4.3. Suppose that (4.3) holds. Furthermore, let Ψ̃1 be given by (4.7).

Then, for any m∗, u∗ ∈ C2(Td), H
∗
∈ R such that m∗ > 0 one has that

Ψ̃1(m
∗, u∗,H

∗
) > Ψ̃1(m,u

∗,H
∗
), for all m ∈ C2(Td), m > 0.

and

Ψ̃1(m
∗, u∗,H

∗
) 6 Ψ̃1(m

∗, u,H), for all (u,H) ∈ C2(Td)×R,

if and only if (m∗, u∗,H
∗
) is a classical solution of (4.2).

The corresponding differential game is

Player 1 sup
m∈C2(ΩT ), m>0

Ψ̃1(m,u,H)

Player 2 inf
u∈C2(ΩT ), H∈R

Ψ̃1(m,u,H).

(4.9)

Remark 4.4. Note that the special structure of (1.1) when H is separable stems
from the Hamiltonian nature of the system. Indeed, (1.1) has the form

{

ut =
δΨ̂1
δm (m,u),

mt = − δΨ̂1
δu (m,u),
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where Ψ̂1 is given by (4.7). Note that if (u,m) is a solution to (1.1), then Ψ̂1(m,u)
is a quantity that does not vary in time. It is well known (and easily observed) that
solutions of Hamiltonian systems are associated to the corresponding functional

T
∫

0

1

2





∫

Td

−utm+mtudx



+ Ψ̂1(m,u)dt,

that indeed coincides with Ψ1 once it is equipped with initial-final data m0, uT (see
(4.4)). We will come back to the Hamiltonian nature of (1.1) in Section 5 where we
discuss connections among (4.6) and optimal-control formulations of (1.1) from [54].

4.2. First-order stationary problems with congestion and a power-like

Hamiltonian. In this section, we consider the first-order (ε = 0) version of (1.2)
with a Hamiltonian (1.5), where (Q,α, γ) ∈ R

d+1 × R++ are given parameters, and
f ∈ C1(Td × R++). More precisely, we consider the system















|∇u+Q|γ
γmα = f(x,m) + H̄,

−div
(

m1−α|∇u+Q|γ−2(∇u+Q)
)

= 0,

m > 0,
∫

Td

m(x)dx = 1.
(4.10)

Furthermore, (2.1) is equivalent to the following assumption.

Assumption 3. One has that

α > 0, γ > 1 and ∂mf(x,m) > 0, (x,m) ∈ T
d × R++. (4.11)

Next, we have that

FH(x, p,m) =
m1−α|p+Q|γ

(1− α)γ
− F (x,m),

where F (x,m) =
m
∫

f(x, z)dz. Therefore, Ψ̂1, Ψ̂2 in (3.8), (3.9) are given by

Ψ̂1(m,u) =

∫

Td

m1−α|∇u+Q|γ

(1− α)γ
− F (x,m)dx,

Ψ̂2(m,u) =

∫

Td

m1−α|∇u+Q|γ

γ
−mf(x,m)dx, m, u ∈ C2(Td), m > 0.

(4.12)

Furthermore, we observe that

Ψ̂1(m,u) =
1

1− α
Ψ̂2(m,u) +

∫

Td

1

1− α
mf(x,m)− F (x,m)dx. (4.13)

Hence, for α < 1 minimizations in u of Ψ̂1 and Ψ̂2 are equivalent, and Proposition
3.2 is valid with Ψ̂2 replaces by Ψ̂1.

Corollary 4.5. Suppose that (4.11) holds and α < 1. Furthermore, let Ψ̂1 be given
by (4.12). Then, for any m∗, u∗ ∈ C2(Td) such that m∗ > 0 and

∫

Td m
∗ = 1 one has

that

Ψ̂1(m
∗, u∗) > Ψ̂1(m,u

∗), for all m ∈ C2(Td), m > 0,

∫

Td

m = 1.
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and

Ψ̂1(m
∗, u∗) 6 Ψ̂1(m

∗, u), for all u ∈ C2(Td),

if and only if (m∗, u∗) is a classical solution of (4.10) for some H
∗
∈ R.

Moreover, for both cases above one has that

H
∗
=Ψ̂2(m

∗, u∗)

=(1− α)Ψ̂1(m
∗, u∗)−

∫

Td

m∗f(x,m∗)− (1− α)F (x,m∗)dx. (4.14)

Furthermore, Ψ̃1, Ψ̃2 in (3.19) are given by

Ψ̃1(m,u,H) =

∫

Td

m1−α|p+Q|γ

(1− α)γ
− F (x,m) +H(1−m)dx,

Ψ̃2(m,u,H) =

∫

Td

m1−α|p+Q|γ

γ
−mf(x,m) +H(1−m)dx,

(4.15)

for m,u ∈ C2(Td), m > 0. Similarly, for α < 1 minimizations in u of Ψ̃1 and Ψ̃2 are
equivalent, and an analog of Proposition 3.6 is valid.

Corollary 4.6. Suppose that (4.11) holds and α < 1. Furthermore, let Ψ̃1 be given

by (4.15). Then, for any m∗, u∗ ∈ C2(Td), H
∗
∈ R such that m∗ > 0 one has that

Ψ̃1(m
∗, u∗,H

∗
) > Ψ̃1(m,u

∗,H
∗
), for all m ∈ C2(Td), m > 0.

and

Ψ̃1(m
∗, u∗,H

∗
) 6 Ψ̃1(m

∗, u,H), for all (u,H) ∈ C2(Td)×R,

if and only if (m∗, u∗,H
∗
) is a classical solution of (4.10).

To the best of our knowledge, zero-sum game formulations of (4.10) for the pa-
rameters range 0 6 α < 1 < γ in Corollaries 4.5, 4.6 are new in the literature.

Remark 4.7. Using the zero-sum game formulation of (4.10) in Corollary 4.5 one
can formally derive a convex optimization formulation of (4.10) in the spirit of [9].
Indeed, one has that

inf
u

sup
m

Ψ̂1(m,u)

= inf
u

sup
m

∫

Td

m1−α|∇u+Q|γ

(1− α)γ
− F (x,m)dx

= inf
u

sup
m

sup
r

∫

Td

m1−α

(1− α)

(

r · (∇u+Q)−
|r|γ

′

γ′

)

− F (x,m)dx

=sup
m,r

inf
u

∫

Td

− div

(

m1−α

(1− α)
r

)

u+
m1−α

(1− α)

(

r ·Q−
|r|γ

′

γ′

)

− F (x,m)dx,

where γ′ = γ
γ−1 . Since the last expression in the previous formula is linear in u we

have that inf
u

is finite only when

div(m1−αr) = 0. (4.16)
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Therefore, we obtain that

inf
u

sup
m

Ψ̂1(m,u)

= sup
m,r







∫

Td

m1−α

(1− α)

(

r ·Q−
|r|γ

′

γ′

)

− F (x,m)dx s.t. (4.16) holds







.

Next, we denote by w = m1−αr, and (4.16) becomes

div(w) = 0. (4.17)

Furthermore, we have that

sup
m,r







∫

Td

m1−α

(1− α)

(

r ·Q−
|r|γ

′

γ′

)

− F (x,m)dx s.t. (4.16) holds







=sup
m,w







∫

Td

1

(1− α)
w ·Q−

|w|γ
′

(1− α)γ′m(γ′−1)(1−α)
− F (x,m)dx s.t. (4.17) holds







=− inf
m,w







∫

Td

−
1

(1− α)
w ·Q+

|w|γ
′

(1− α)γ′m(γ′−1)(1−α)
+ F (x,m)dx s.t. (4.17) holds







.

For m ∈ C1(Td),m > 0 and w ∈ C1(Td;Rd) denote by

Φ(m,w) =

∫

Td

−
1

(1− α)
w ·Q+

|w|γ
′

(1− α)γ′m(γ′−1)(1−α)
+ F (x,m)dx.

Therefore, (4.10) can be seen as optimality conditions for the variational problem

inf
m,w







Φ(m,w) s.t. m > 0,

∫

Td

m = 1 and (4.17) holds







, (4.18)

where u is the adjoint variable corresponding to (4.17). The transformation from
(m,u) to (m,w) and vice versa is given by

w = m1−α|∇u+Q|γ−2(∇u+Q),

and

∇u+Q = m(α−1)(γ′−1)|w|γ
′−2w.

The key property of (4.18) is that (4.17) is a linear constraint, and (m,w) 7→ Φ(m,w)
is a convex functional when 0 6 α < 1 < γ. Indeed, for α, γ in this range we have

that the function (a, b) 7→ |b|γ′

a(γ′−1)(1−α)
, a > 0 is convex. Furthermore, (m,w) 7→

F (x,m) is convex by (4.11).

For α > 1 we observe from (4.13) that the minimization of u 7→ Ψ̂2(m,u) cor-

responds to the maximization of u 7→ Ψ̂1(m,u). Therefore, we have the following
versions of Corollaries 4.5, 4.6.

Corollary 4.8. Suppose that (4.11) holds and α > 1. Furthermore, let Ψ̂1 be given
by (4.12). Then, for any m∗, u∗ ∈ C2(Td) such that m∗ > 0 and

∫

Td m
∗ = 1 one has
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that

Ψ̂1(m
∗, u∗) > Ψ̂1(m,u

∗), for all m ∈ C2(Td), m > 0,

∫

Td

m = 1.

and

Ψ̂1(m
∗, u∗) > Ψ̂1(m

∗, u), for all u ∈ C2(Td),

if and only if (m∗, u∗) is a classical solution of (4.10) for some H
∗
∈ R.

Moreover, for both cases above, (4.14) holds.

Corollary 4.9. Suppose that (4.11) holds and α > 1. Furthermore, let Ψ̃1 be given

by (4.15). Then, for any m∗, u∗ ∈ C2(Td), H
∗
∈ R such that m∗ > 0 one has that

Ψ̃1(m
∗, u∗,H

∗
) > Ψ̃1(m,u

∗,H
∗
), for all m ∈ C2(Td), m > 0.

and

Ψ̃1(m
∗, u∗,H

∗
) > Ψ̃1(m

∗, u,H), for all (u,H) ∈ C2(Td)×R,

if and only if (m∗, u∗,H
∗
) is a classical solution of (4.10).

Remark 4.10. Corollaries 4.8, 4.9 assert that (1.2) corresponds to Nash equilibria
of

Player 1 sup







Ψ̂1(m,u) : m ∈ C2(Td), m > 0,

∫

Td

m = 1







Player 2 sup
{

Ψ̂1(m,u) : u ∈ C2(Td)
}

,

(4.19)

and

Player 1 sup
m∈C2(ΩT ), m>0

Ψ̃1(m,u,H)

Player 2 sup
u∈C2(ΩT ), H∈R

Ψ̃1(m,u,H),

(4.20)

Unlike (4.8) and (4.9) that are zero-sum games (4.19) and (4.20) are potential games

with potentials Ψ̂1 and Ψ̃1, respectively.

5. Previously known variational principles

In this section, we discuss how infinite-dimensional differential game formulations
in Propositions 3.1, 3.2, 3.6 are related to the variational principles in the MFG
literature.

5.1. Infinite-dimensional optimal control formulation. Throughout this sec-
tion we assume that H is given by (1.3), whereH0 ∈ C

2(Td×R
d), f ∈ C1(Td×R++),

and (4.3) holds. As before, F (x,m) =
m
∫

f(x, z)dz, m > 0, and

F ∗(x,w) = sup
z∈R+

wz − F (x, z), w ∈ R.

Furthermore, denote by

L0(x, q) = sup
p∈Rd

q · p−H0(x, p),
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the convex conjugate of p 7→ H0(x, p). If p 7→ H0(x, p) is strictly convex and coercive
uniformly in x then L0 ∈ C2(Td,Rd), and q 7→ L0(x, q) is strictly convex and coercive
uniformly in x. Moreover,

H0(x, p) + L0(x, q) > p · q, for all (x, p, q) ∈ T
d × R

d ×R
d

with an equality if and only if

q = ∇pH0(x, p) or p = ∇qL0(x, q).

In [54], Lasry and Lions observed that (1.1) is equivalent to two infinite-dimensional
optimal control problems. For the first problem, consider the cost functional

B(r) =

∫

ΩT

L0(x,−r(x, t))m(x, t) + F (x,m(x, t))dxdt +

∫

Td

uT (x)m(x, T )dx,

where r : ΩT → R
d is the control, m is the state, and the dynamics is according to

a Fokker-Planck equation
{

mt(x, t)− ε∆m(x, t) + div
(

m(x, t)r(x, t)
)

= 0,

m(x, 0) = m0(x), (x, t) ∈ ΩT .
(5.1)

Thus, the first optimal control problem is

inf{B(r) s.t. (5.1) holds} (5.2)

For the second problem consider the functional

A(s) =

∫

ΩT

F ∗(x, s(x, t))dxdt −
∫

Td

u(x, 0)m0(x)dx,

where s : ΩT → R is the control, u is the state, and the dynamics is given by
{

−ut(x, t)− ε∆u(x, t) +H0

(

x,∇u(x, t)
)

= s(x, t),

u(x, T ) = uT (x), (x, t) ∈ ΩT .
(5.3)

Hence, the second optimal control problem is

inf{A(s) s.t. (5.3) holds} (5.4)

In [54], the authors observe that (5.2), (5.4) are dual optimization problems (in the
sense of Fenchel-Rockafellar) that yield (1.1) as optimality conditions. Additionally,
under convexity assumptions for p 7→ H0(x, p) andm 7→ F (x,m) the cost functionals
s 7→ A(s) and r 7→ B(r) are convex.

Here, we observe that the differential-game formulation (4.6) is the Hamiltonian
viewpoint for the optimal control problems (5.2) and (5.4). For that, we briefly
recall the Hamiltonian formalism for finite-dimensional optimal control problems
and apply it to (5.2), (5.4) to arrive at (4.6).

Consider a finite-dimensional optimal control problem

inf
c

b
∫

a

l(γ(τ), c(τ))dτ + φ(γ(b))

γ̇(τ) = k(γ(τ), c(τ)), τ ∈ (a, b)

γ(a) = x0

(5.5)

In (5.5) γ is the state variable and c is the control. To obtain the Hamiltonian
formulation of (5.5) one introduces an adjoint variable, p, and transforms (5.5) into
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an equivalent problem

inf
γ,c

sup
p

b
∫

a

l(γ(τ), c(τ)) − p(τ)
(

γ̇(τ)− k(γ(τ), c(τ))
)

dτ + φ(γ(b))

γ(a) = γ0

Next, we proceed by formally interchanging the inf sup order and eliminating the
control (Pontryagin maximum principle):

inf
γ,c

sup
p

b
∫

a

l(γ(τ), c(τ)) − p(τ)
(

γ̇(τ)− k(γ(τ), c(τ))
)

dτ + φ(γ(b))

= sup
p

inf
γ,c

b
∫

a

l(γ(τ), c(τ)) − p(τ)
(

γ̇(τ)− k(γ(τ), c(τ))
)

dτ + φ(γ(b))

= sup
p

inf
γ

inf
c

b
∫

a

l(γ(τ), c(τ)) − p(τ)
(

γ̇(τ)− k(γ(τ), c(τ))
)

dτ + φ(γ(b))

= sup
p

inf
γ

b
∫

a

−p(τ)γ̇(τ)− h(γ(τ), p(τ))dτ + φ(γ(b)),

where

h(γ, p) = sup
c

−p · k(γ, c) − L(γ, c).

Therefore, (5.5) is formally equivalent to the problem

sup
p

inf
γ

b
∫

a

−p(τ)γ̇(τ)− h(γ(τ), p(τ))dτ + φ(γ(b))

γ(a) = γ0.

(5.6)

If we calculate the variational derivatives of (5.6) with respect to p and γ we arrive
at the system

{

γ̇(τ) = −∇ph(γ(τ), p(τ)), γ(a) = γ0,

ṗ(τ) = ∇γh(γ(τ), p(τ)), p(b) = ∇φ(γ(b)).

This previous system is the Hamiltonian formulation of (5.5). Now, let us formally
apply the procedure above to (5.2) and (5.4).
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For (5.2) one has that

inf
r, m(x,0)=m0(x)

∫

ΩT

L0(x,−r)m+ F (x,m)dxdt +

∫

Td

uT (x)m(x, T )dx

= inf
m,r

sup
u

∫

ΩT

L0(x,−r)m+ F (x,m)− u
(

mt − ε∆m+ div(mr)
)

dxdt

+

∫

Td

uT (x)m(x, T )dx −

∫

Td

u(x, 0)m(x, 0)dx +

∫

Td

m0(x)u(x, 0)dx

=sup
u

inf
m

inf
r

∫

ΩT

L0(x,−r)m+mr∇u+ F (x,m) +m(ut + ε∆u)dxdt

+

∫

Td

uT (x)m(x, T )dx −

∫

Td

u(x, T )m(x, T )dx +

∫

Td

m0(x)u(x, 0)dx

=sup
u

inf
m

∫

ΩT

−mH0(x,∇u) + F (x,m) +m(ut + ε∆u)dxdt

+

∫

Td

uT (x)m(x, T )dx −

∫

Td

u(x, T )m(x, T )dx +

∫

Td

m0(x)u(x, 0)dx

=sup
u

inf
m

−Ψ1(m,u) = − inf
u

sup
m

Ψ1(m,u),

where Ψ1 is given by (4.4). Therefore, we arrive at (4.6) where Player 1 makes the
first move.

For (5.4) one has that

inf
s, u(x,T )=uT (x)

∫

ΩT

F ∗(x, s)dxdt−
∫

Td

u(x, 0)m0(x)dx

= inf
s,u

sup
m

∫

ΩT

F ∗(x, s) +m(−ut − ε∆u+H0

(

x,∇u
)

− s)dxdt+

∫

Td

u(x, T )m(x, T )dx

−

∫

Td

uT (x)m(x, T )dx −

∫

Td

u(x, 0)m0(x)dx

= sup
m

inf
u
inf
s

∫

ΩT

F ∗(x, s)−ms+m
(

− ut − ε∆u+H0(x,∇u)
)

dxdt+

∫

Td

u(x, T )m(x, T )dx

−

∫

Td

uT (x)m(x, T )dx −

∫

Td

u(x, 0)m0(x)dx

=sup
m

inf
u

∫

ΩT

F (x,m) +m
(

− ut − ε∆u+H0(x,∇u)
)

dxdt+

∫

Td

u(x, T )m(x, T )dx

−

∫

Td

uT (x)m(x, T )dx −

∫

Td

u(x, 0)m0(x)dx

=sup
m

inf
u
Ψ1(m,u),

where Ψ1 is again given by (4.4). Thus, we obtain (4.6) where Player 2 makes the
first move.
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In [18] and subsequent papers [44, 19, 43, 16, 56, 20] the authors considered a
modification of (5.2) in the spirit of [9]. More precisely, they chose as a control
w = mr instead of r and considered the optimization problem

inf
m,w

∫

ΩT

L0

(

x,−
w(x, t)

m(x, t)

)

m(x, t) + F (x,m(x, t))dxdt +

∫

Td

uT (x)m(x, T )dx,

mt(x, t)− ε∆m(x, t) + div(w(x, t)) = 0, m(x, 0) = m0(x), (x, t) ∈ ΩT .

(5.7)

The advantage of (5.7) over (5.2) is that the former is a convex optimization problem
in (m,w) with a linear constraint whereas (5.2) is not jointly convex in (m, r) and
(5.1) is not a jointly linear constraint in (m, r).

5.2. First-order stationary MFG with congestion. In [29], the authors ob-
served that under assumptions (4.11) and 1 < α 6 γ (4.10) admits a variational
formulation

min
m,u

J(m,u) = min
m,u

∫

Td

mα−1|∇u+Q|γ

(1− α)γ
+ F (x,m)dx, (5.8)

where F (x,m) =
m
∫

f(x, z)dz.

We observe that J(m,u) = −Ψ̂1(m,u), where Ψ̂1 is given by (4.12). Therefore,
variational formulation (5.8) follows from Corollary 4.8 and the fact that (m,u) 7→

Ψ̂1(m,u), m > 0 is a concave functional for 1 < α 6 γ.
Additionally the authors observed in [29] that (m,u) 7→ J(m,u), m > 0 is not

convex when 0 < α < 1 < γ, and hence (5.8) is not valid. Accordingly, they applied
a suitable transformation to (m,u) and obtained a new pair (m, v) that solves a
related system of the form (4.10) with parameters 1 < α̃ < γ̃. Consequently, they
obtained a convex optimization problem similar to (5.8) for (m, v) that allowed to
find (m,u) by first finding (m, v) and then applying an inverse transformation.

Unfortunately, the technique in [29] is valid only in the two-dimensional setting
because of the special structure of divergence free vector fields in two-dimensions.

Here, we observe that variational formulation (4.18) is the generalization of the
one in [29] to the higher-dimensional setting. Indeed, if d = 2, then (4.17) yields
that

w = (∇v)⊥ +R⊥,

for some v : T2 7→ R and R ∈ R
2, and ⊥ is the rotation by π/2. Therefore, we have

that

Φ(m,w) =

∫

Td

−
1

(1− α)
w ·Q+

|w|γ
′

(1− α)γ′m(γ′−1)(1−α)
+ F (x,m)dx

=

∫

Td

−
1

(1− α)

(

(∇v)⊥ +R⊥
)

·Q+
|(∇v)⊥ +R⊥|γ

′

(1− α)γ′m(γ′−1)(1−α)
+ F (x,m)dx

=

∫

Td

−
1

(1− α)
(∇v +R) ·Q⊥ +

|∇v +R|γ
′

(1− α)γ′m(γ′−1)(1−α)
+ F (x,m)dx

=−
R ·Q⊥

(1− α)
+

∫

Td

|∇v +R|γ
′

(1− α)γ′m(γ′−1)(1−α)
+ F (x,m)dx.
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Therefore, (4.18) is equivalent to

inf
m,v







∫

Td

|∇v +R|γ
′

(1− α)γ′m(γ′−1)(1−α)
+ F (x,m)dx. s.t. m > 0,

∫

Td

m = 1







. (5.9)

This previous formulation is precisely the one obtained in [29] for (m, v). Finally,
note that (5.9) is almost identical to (5.8).

6. Existence of non-trivial periodic solutions to variational MFG

In this section, we present some results on the existence of periodic in time so-
lutions that are based on the aforementioned variational structure. We will assume
that H(x, p,m) = 1

2 |p|
2 − f(m), where f is a smooth decreasing function. For

simplicity, ε = 1.
We look for a solution to (1.1) such that m(·, t) is defined for all t ∈ (−∞,+∞)

and m(·, t + T ) = m(·, t) for some T > 0 and for all t. Periodicity in time of u is
more subtle and cannot be expected in general: for Hamilton-Jacobi equations with
periodic data one usually looks for quasi-periodic solutions; that is, solutions φ such
that φ(·, t+ T ) = φ(·, t) +HT, ∀t for some H ∈ R and period T (see, e. g., [8, 31]).
For such φ, the function u(·, t) = φ(·, t)−Ht is T -periodic. Therefore, we search for
a triple (u,H,m), where u,m are T -periodic in the t variable and solve















−ut −∆u+ 1
2 |∇u|

2 = f(m) + H̄,

mt −∆m− div (∇um) = 0,

m > 0,
∫

Td

m(x, 0)dx = 1.

Note, that for smooth solution of this system the t 7→
∫

Td m(x, t)dx is a conserved
quantity. Therefore, for smooth solutions this previous system is equivalent to















−ut −∆u+ 1
2 |∇u|

2 = f(m) + H̄,

mt −∆m− div (∇um) = 0,

m > 0,
∫

ΩT

m(x, t)dxdt = T.
(6.1)

Our first observation is that concerning periodic solutions (6.1) can be cast as a
stationary (ergodic) MFG system rather than a time-dependent one. The only dif-
ference with (1.2) is that the suitable Hamiltonian is linear in the gradient variable ut
and the Laplacian is degenerate in the t direction. Indeed, consider the Hamiltonian

H̃(x, t, p, q,m) = −q +
|p|2

2
,

and a degenerate diffusion

Au(x, t) = ∆xu(x, t).

Then, (6.1) can be written as


















−Au+ H̃(x, t,∇xu, ut) = f(m) + H̄,

−A∗m− divx,t

(

∇p,qH̃(x, t,∇xu, ut)m
)

= 0,

m > 0,
∫

ΩT

m(x, t)dxdt = T.

(6.2)

Furthermore, as we observed before, this previous system can be fitted into a vari-
ational framework. Indeed, (6.2) has precisely the same analytic structure as (1.2).
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Therefore, from Corollary 4.3 we have that (6.2) can be cast as










δΨ̃1
δm (u,m,H) = 0,
δΨ̃1
δu (u,m,H) = 0,
δΨ̃1

δH
(u,m,H) = 0,

(6.3)

where

Ψ̃1(u,m,H) =

∫

ΩT

−m Au+mH̃(x, t,∇xu, ut)− F (m) +H(T −m)dx, (6.4)

and F (m) =
∫m

f(z)dz. The fact that (6.1) can be written as (6.3) is crucial in
our analysis. To take advantage of bifurcation methods, we perform a change of
variables as follows:

{

U(x, t) := u(x, T t) + tTf(1),

M(x, t) := m(x, T t)− 1.

Then, U and M are functions over Q = T
d+1 and solve















− 1
T Ut −∆U + 1

2 |∇U |2 = f(M + 1)− f(1) + H̄,
1
TMt −∆M −∆U − div (∇U M) = 0,

M > 0,
∫

Q

Mdxdt =
∫

Q

Udxdt = 0.
(6.5)

We require
∫

QUdxdt = 0 since U in the Hamilton-Jacobi equation is defined up to

an addition of constants. Note that T itself should be regarded as an unknown of
the problem.

As (6.2), the system (6.5) can also be cast as an equation for critical points of a

suitable functional, g, that we obtain below by expressing Ψ̃1 in (6.4) in (U,M,H)
variables. First, (6.5) can be restated in terms of the zero-locus of a suitable func-
tional G. Let α ∈ (0, 1), X be the Banach space

X :=

{

(U,M) ∈ C4+α,2+α/2(Q)2 :

∫

Q
Udxdt = 0

}

× R

and G : X × R → C2+α,1+α/2(Q)2 × R by

G(U,M,H, T ) =

(

1

T
Mt −∆M −∆U − div(∇UM),

−
1

T
Ut −∆U +

1

2
|∇U |2 − f(M + 1) + f(1) + λ,

∫

Q
Mdxdt

)

.

Note that
∫

QG1(U,M,H, T )dxdt = 0 for all (U,M,H, T ). Moreover,

G(0, 0, 0, T ) = 0 for all T > 0,

that is, G has a trivial solution for all T > 0. The change of variables is indeed
designed for the trivial solution to be identically zero, to apply bifurcation theory.

In the rest of this section, we will aim at proving the following

Theorem 6.1. Suppose that −8π2 < f ′(1) < −4π2 and let

T =
1

√

−4π2 − f ′(1)

Then, (0, 0, 0, T ) is a bifurcation point for the equation G(U,M,H, T ) = 0. In other
words, there exists a sequence of non-trivial solutions (Un,Mn,Hn, Tn) ⊂ X × R to
(6.5) such that (Un,Mn,Hn, Tn) → (0, 0, 0, T ) as n→ ∞.
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Going back to the original unknowns, Theorem 6.1 states that there exists a
sequence of non-trivial solutions (un,Hn,mn) to (6.1) that is Tn-periodic, that is,
couples (un,mn) solving (1.1) such that mn is Tn-periodic.

Let us start by some comments on the functional setting. Since C4+α,2+α/2(Q) ⊂
L2(Q), we can consider a scalar product onX defined by 〈(U1,M1,H1), (U2,M2,H2)〉 =
∫

QM1M2+U1U2dxdt+H1H2. Passing from (u,m,H) variables to (U,M,H) in (6.4)

we obtain a functional g : X × R → R given by

g(U,M,H, T ) =
∫

Q
−
UtM

T
+∇U · ∇M +

1

2
|∇U |2(M + 1)− F (M + 1) + f(1)M +HM dxdt.

It is quite standard to prove that g is differentiable (when T > 0). Then, G is a
potential operator in the following sense:

D(U,M,H)g(U,M,H, T )[v, µ, ℓ] = 〈G(U,M,H, T ), (v, µ, ℓ)〉 ∀(v, µ, ℓ),

the equality following by integration by parts.
A crucial role will be played by the properties of the linearized problem DG = 0.

We compute the Fréchet derivative of G,

D(U,M,H)G(U,M,H, T )[v, µ, ℓ] =

(

1

T
µt −∆µ−∆v − div(∇Uµ+M∇v),

−
1

T
vt −∆v +∇U · ∇v − f ′(M + 1)µ + ℓ,

∫

Q
µdxdt

)

.

Evaluating it at the trivial solution (0, 0, 0) gives the linear operator A(T )

A(T )[v, µ, ℓ] := D(U,M,H)G(0, 0, 0, T )[v, µ, ℓ]

=

(

1

T
µt −∆µ−∆v,−

1

T
vt −∆v − f ′(1)µ + ℓ,

∫

Q
µdxdt

)

.

Lemma 6.2. Zero is an (isolated) eigenvalue of A(T ) with multiplicity 4d. More-
over, A(T ) is a Fredholm operator of index zero1.

To prove Lemma 6.2, we perform an analysis on the Fourier coefficients of v, µ:
let us denote by (λk)k≥0 the non-decreasing sequence of eigenvalues of −∆ (on T

N ),
with corresponding eigenvectors ψk ∈ C∞(TN ); let (ψk)k≥0 be renormalized such
that it constitutes an orthonormal basis of L2(TN ). Note that the first eigenvalue λ0
is zero, with associated constant eigenfunction ψ0 ≡ 1. Non-zero eigenvalues can be
expressed in the form λk1k2···kN = 4π2

∑N
i=1 k

2
i , where ki are nonnegative integers.

Therefore, λ1 = λ2 = . . . = λ2d = 4π2 < λ2d+1.
We may represent v, µ as follows:

µ(x, t) =
∑

k≥0

µk(t)ψk(x), v(x, t) =
∑

k≥0

vk(t)ψk(x),

where vk, µk is a family of (time) periodic functions of class C2+α/2(T). In gen-
eral, we will refer to the Fourier coefficients by using the subscript k, i.e. fk(·) :=
∫

TN f(x, ·)ψk(x)dx.

1That is, A(T ) has kernel and cokernel of same finite dimension.
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Proof of Lemma 6.2. Consider the equation A(T )[v, µ, ℓ] = 0 in terms of Fourier
coefficients. The 0-th Fourier coefficient of A(T )[v, µ, l] yields the following system.











µ′0 = 0,

−v′0 − Tf ′(1)µ0 + Tℓ = 0,
∫

T
µ0(t)dt = 0.

By periodicity, we obtain µ0 ≡ 0. Furthermore, ℓ = 0, and v0 ≡ 0 since
∫

T
v0(t)dt =

∫

Q v(x, t)dxdt = 0. On the other hand, for all k ≥ 1 we have
{

µ′k + Tλkµk + Tλkvk = 0,

−v′k + Tλkvk − Tf ′(1)µk = 0

This system of ODEs is equivalent to
{

µ′′k = T
2
λk(λk + f ′(1))µk,

Tλkvk = −µ′k − Tλkµk.
(6.6)

By the standing assumptions, for all k > 2d we have λk + f ′(1) ≥ λ2d+1 + f ′(1) =

8π2+f ′(1) > 0, so µk ≡ 0 (and in turn vk ≡ 0). Finally, since T
2
λk(λk+f

′(1)) = 4π2

when k = 1, . . . , 2d, solutions (µk, vk) to (6.6) consist of a two-dimensional vector
space spanned by

(

cos(2πt),

√

−4π2 − f ′(1)

2π
sin(2πt)− cos(2πt)

)

,

(

sin(2πt),−

√

−4π2 − f ′(1)

2π
cos(2πt) − sin(2πt)

)

.

Therefore, we have that A(T ) has a non-trivial kernel of dimension 4d.
To prove that cokernel A(T ) has the same dimension, we proceed analogously.

For any given triple (ω, ν, a) (note that ω can be assumed such that
∫

Q ω = 0), the

equation A(T )[v, µ, ℓ] = (ω, ν, a) reads as follows. For k = 0,










µ′0 = ω0,

−v′0 − Tf ′(1)µ0 + Tℓ = ν0,
∫

T
µ0(t)dt = a.

The first equation determines µ0, while the other two ones determine first ℓ by
integration on T and then v0, recalling that

∫

T
v0 = 0. For all k > 2d,

{

−µ′′k + T
2
λk(λk + f ′(1))µk = ω′

k − Tλk(ωk + Tℓ− νk),

Tλkvk = ωk − µ′k − Tλkµk.

has uniquely determined solutions µk, vk. For k = 1, . . . , 2d, we have to argue via
Fredholm alternative: µ1 (and therefore v1) if and only if ω′

k − Tλk(ωk − νk) is
L2(T)-orthogonal to cos(2π·) and sin(2π·). Hence, a solution [v, µ, ℓ] exists if and
only if ω′ − Tλk(ω − ν) is L2(Q)-orthogonal to cos(2πt)ψk(x) and sin(2πt)ψk(x) for
all k = 1, . . . , 2d. �

To prove Theorem 6.1, we need to define the crossing number of A(T ) through 0
at T = T . First, for any T > 0, denote by σ<(T ) the sum of the multiplicities of
all perturbed eigenvalues of A(T ) near 0 on the negative real axis. For some δ > 0,
σ<(T ) is constant for all T ∈ (T − δ, T ) and for all T ∈ (T , T + δ). The crossing
number is then defined by

χ(A(T ), T ) = σ<(T − ǫ)− σ<(T + ǫ), 0 < ǫ < δ.
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Proof of Theorem 6.1. We will apply the following result that can be found in [49]
or [50, Theorem II.7.3].

Theorem 6.3. Assume that A(T ) is a Fredholm operator of index zero having an
isolated eigenvalue zero. If χ(A(T ), T ) is nonzero, then (0, 0, 0, T ) is a bifurcation
point for the equation G(u,m, λ, T ) = 0.

The assumptions of this theorem are satisfied in view of Lemma 6.2. Let us
compute the eigenvalues σ = σ(T ) of A(T ) close to zero for T close to T , with their
multiplicities. Consider the equation A(T )[v, µ, ℓ] = σ(v, µ, ℓ) in terms of the Fourier
expansion. For the 0-th order term we get the following system.











µ′0 = σv0,

−v′0 − Tf ′(1)µ0 + Tℓ = σµ0,
∫

T
µ0(t)dt = σℓ.

Integrating the second equation over T we get

−Tf ′(1)σℓ+ Tℓ = σ2ℓ, or ℓ(T − σTf ′(1)− σ2) = 0.

Therefore, if σ is small we get that ℓ = 0. Thus, we arrive at










µ′0 = σv0,

−v′0 − Tf ′(1)µ0 = σµ0,
∫

T
µ0(t)dt = 0.

But then, we get that
{

µ′′0 + σ(σ + Tf ′(1))µ0 = 0,
∫

T
µ0 = 0.

Therefore, if µ0 6= 0 we get that σ(σ + Tf ′(1)) = 4π2n2 for some n > 1 which is
impossible when σ is small. Hence, for σ small enough we have that µ0 ≡ 0. Latter,
in turn, yields v0 ≡ 0.

For all k ≥ 1
{

µ′k + Tλkµk + Tλkvk = σvk,

−v′k + Tλkvk − Tf ′(1)µk = σµk

that is equivalent to

µ′′k = [T 2λk(λk + f ′(1)) + σT (λk − f ′(1))− σ2]µk. (6.7)

As before, we have that µk ≡ 0 for all k > 2d+1 for σ small enough, since T 2λk(λk+
f ′(1)) is positive and bounded away from zero for all T in a neighbourhood of T .
Therefore, we need to consider the equation for 1 6 k 6 2d.

Note that λk = λ1. Let

h(T, σ) := [T 2λ1(λ1 + f ′(1)) + σT (λ1 − f ′(1))− σ2] + 4π2.

We have h(T , 0) = 0 and ∂σh(T , 0) = T (λ1− f
′(1)) > 0, so by the Implicit Function

Theorem, there exists a C1 function σ(·) defined in a neighborhood of T such that
h(T, σ(T )) = 0. One can also verify that σ′(T ) > 0. Indeed, we have that

σ′(T ) = −
∂Th(T , 0)

∂σh(T , 0)
=

2λ1(−λ1 − f ′(1))
λ1 − f ′(1)

> 0.

Whenever h(T, σ(T )) = 0, (6.7) has non-trivial solutions of the form

µk(t) = A cos(2πt) +B sin(2πt), A,B ∈ R.
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In other words, σ(T ) is (the only) eigenvalue in a neighbourhood of zero of A(T ),
with multiplicity 2 · 2d = 4d. The eigenfunctions are (we just write the µ entry for
brevity)

{cos(2πt) cos(2πxi), cos(2πt) sin(2πxi), sin(2πt) cos(2πxi), sin(2πt) sin(2πxi)}
N
i=1.

Since σ(T ) < 0 for T < T and σ(T ) > 0 for T > T (in a neighbourhood of T ), we
have a non-zero crossing number, in particular χ(A(T ), T ) = 4d. Hence Theorem
6.3 applies.

�

Remark 6.4. Very little can be said about qualitative properties of Un,Mn, but we
can rule out the chance that they do not depend on time and that are just functions
of the x-variable. In other words, our bifurcation result does not select non-trivial
solutions that are stationary. We have to go through the proof of Theorem 6.3, that
is based on the well-known Lyapunov-Schmidt reduction (see, e.g., [50]). Denote by
U = (U,M,H) ∈ X and by P : X → ker(A(T )) the L2-orthogonal projection. Then,

G(U , T ) = 0 ⇔

{

PG(V +W, T ) = 0 V = PU ,

(I − P )G(V +W, T ) = 0 W = (I − P )U .

The Implicit Function Theorem assures the solvability of the second equation, namely

W = ψ(V, T ), ψ(0, T ) = 0, ∂Vψ(0, T ) = 0.

On the other hand, the finite dimensional bifurcation equation

PG(V + ψ(V, T ), T ) = 0, V ∈ ker(A(T )) (6.8)

is solved by means of Conley’s index theory applied to the dynamical system V̇ =
PG(V + ψ(V, T ), T ). Bifurcation is actually proven for the finite-dimensional prob-
lem, namely, there exists a sequence of non-trivial solutions (Vn, T ) → (0, T ) to
(6.8). Recall that ker(A(T )) is spanned by functions of the form sin(2πt)ψk(x) and
cos(2πt)ψk(x) in the µ entry (see Lemma 6.2). Therefore, Mn in Un = (Un,Mn,Hn)
cannot be constant in the t-variable, otherwise PUn = Vn would be zero, contradict-
ing the property that Vn is non-trivial.

Note that by the properties of ψ we get the expansion

Un = Vn + o(|Tn − T |+ ‖Vn‖) as Vn → 0.

Remark 6.5. Note that TN = N(−4π2−f ′(1))−1/2 = NT , for any integer N ≥ 2,

are other bifurcation times, namely there are sequences of solutions (UN
n ,M

N
n ,H

N
n , T

N
n )

clustering at (0, 0, 0, TN ). Indeed, arguing as in Lemma 6.2, ker(A(TN )) is non-
trivial. We observe that those solutions should not be qualitatively different from
the ones of Theorem 6.1, at least if one considers the original variables u,m.

Let us analyze the sequence mn, and recall that mn(x, t) = 1 +Mn(x, t/Tn). By
the previous remark, one should get thatMn(x, t/Tn) is approximately an element of
ker(A(T )), so it is a linear combination of sin(2πt/Tn)ψk(x) and cos(2πt/Tn)ψk(x),
with 1/Tn → 1/T . On the other hand, mN

n (x, t) = 1 + MN
n (x, t/TN

n ), where
MN

n (x, t/TN
n ) is approximately an element of ker(A(TN )). Such kernel is spanned

by sin(2πNt)ψk(x) and cos(2πNt)ψk(x), therefore,M
N
n (x, t/TN

n ) is approximately a
linear combination of sin(2πNt/TN

n )ψk(x) and cos(2πNt/TN
n )ψk(x), and N/T

N
n →

1/T independently on N .
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contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679–684, URL
http://dx.doi.org/10.1016/j.crma.2006.09.018 .

[54] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229–260, URL
http://dx.doi.org/10.1007/s11537-007-0657-8.
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