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ABSTRACT. In this paper, we classify all prime Hopf algebras H of GK-dimension
one satisfying the following two conditions: 1) H has a 1-dimensional representation
of order Pl.deg(H) and 2) the invariant components of H with respect to this 1-
dimensional representation are domains (see Section 2 for related definitions). As
consequences, 1) a number of new Hopf algebras of GK-dimension one are found
and some of them are not pointed, 2) we give a partial answer to a question posed
in [9] and 3) two new series of finite-dimensional Hopf algebras are found which in
particular gives us a Hopf algebra of dimension 24 (see [6]).

1. INTRODUCTION

Throughout this paper, k denotes an algebraically closed field of characteristic 0,
all vector spaces are over k. All algebras considered in this paper are noetherian
and affine unless stated otherwise. The antipode of a Hopf algebra is assumed to be
bijective.

1.1. Motivation. We are motivated by the following three seemingly irrelevant but
indeed related phenomenons. The first one is based on the next simple observation.
It is well-known that the affine line A! is a commutative algebraic group of dimension
one. If we consider the infinite dimensional Taft algebra T'(n,t,£) (see Subsection 2.3
for its definition), then we find that the affine line (here and the following we identify
an affine variety with its coordinate algebra) is also a Hopf algebra in the braided
tensor category %:yD of Yetter-Drinfeld modules of kZ,,. Intuitively,

€ ZzyD.

From this, a natural question is:

(1.1) Can we realize other irreducible curves as Hopf algebras in %ZJJD?

2010 Mathematics Subject Classification. 16E65, 16T05 (primary), 16P40, 16S34 (secondary).
Key words and phrases. GK-dimension one, Hopf algebra, Prime.
fSupported by NSFC 11722016.

1


http://arxiv.org/abs/1804.08973v2

2 GONGXIANG LIU

In order to answer this question, we need give two remarks at first. Firstly, observe
that above line is smooth and thus the infinite dimensional Taft algebra is regular,
i.e. has finite global dimension. Secondly, it is harmless to assume that the action of
Zy, on the curve is faithful since otherwise one can take a smaller group Z,, with m|n
to substitute Z,. This assumption implies the infinite dimensional Taft algebra is
prime. Put them together, the the infinite dimensional Taft algebra is prime regular
of Gelfand-Kirillov dimension (GK-dimension for short) one. Under this assumption,
one can show that the affine line k[x] and the multiplicative group k[z*!] are the only
smooth curves which can be realized as Hopf algebras in %ZJJD (see Corollary 2.14).
Therefore, the only left chance is to consider singular curves. We find that at least
for some special curves the answer is “Yes”! As an illustration, consider the example
T({2,3},1,&) (see Subsection 4.1) and from this example we find the the cusp 3% = y3
is a Hopf algebra in %2))1). That is,

So above analysis tell us that we need consider the structures of prime Hopf algebras
of GK-dimension one which are not reqular if we want to find the answer to question
(1.1).

The second one is a wide range of recent researches and interest on the classification
of Hopf algebras of finite GK-dimensions. See for instance [3, 2, 9, 14, 21, 23, 32, 33,
34, 36]. Up to the authors’s knowledge, there are two different lines to classify such
Hopf algebras. One line focuses on pointed versions, in particular about braidings
(i.e. Nichols algebras). The first celebrated work in this line is the Rosso’s basic ob-
servation about the structure of Nichols algebras of finite GK-dimension with positive
braiding (see [29, Theorem 21.]). Then the pointed Hopf algebra domains of finite GK-
dimension with generic infinitesimal braiding were classified by Andruskiewitsch and
Schneider [3, Theorem 5.2.] and Andruskiewitsch and Angiono [1, Theorem 1.1.]. Re-
cently, Andruskiwwitsch-Angiono-Heckenberger [2] conjectured that a Nichols algebra
of diagonal type has finite GK-dimension if and only if the corresponding generalized
root system is finite, and under assuming the validity of this conjecture they classified
a natural class of braided spaces whose Nichols algebra has finite GK-dimension |2,
Theorem 1.10.]. Another line focuses more on algebraic and homological properties of
these Hopf algebras, which is motivated by noncommutative algebras and noncommu-
tative algebraic geometry. Historically, Lu, Wu and Zhang initiated the the program
of classifying Hopf algebras of GK-dimension one [23]. Then the author found a new
class of examples about prime regular Hopf algebras of GK-dimension one [21]. Brown
and Zhang [9, Theorem 0.5] made further efforts in this direction and classified all
prime regular Hopf algebras H of GK-dimension one under an extra hypothesis. In
2016, Wu, Ding and the author [36, Theorem 8.3] removed this hypothesis and gave
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a complete classification prime regular Hopf algebras of GK-dimension one at last.
One interesting fact is that some non-pointed Hopf algebras of GK-dimension one
were found in [36] and as far as we know they are the only non-pointed Hopf algebras
with finite GK-dimension (except GK-dimension zero) until today. For Hopf algebras
H of GK-dimension two, all known classification results are given under the condi-
tion of H being domains. In [14, Theorem 0.1.], Goodearl and Zhang classified all
Hopf algebras H of GK-dimension two which are domains and satisfy the condition
Ext}{(]k, k) # 0. For those with vanishing Ext-groups, some interesting examples
were constructed by Wang-Zhang-Zhuang [33, Section 2.] and they conjectured these
examples together with Hopf algebras given in [14] exhausted all Hopf algebra do-
mains with GK-dimension two. In order to study Hopf algebras H of GK-dimensions
three and four, a more restrictive condition was added: H is connected, that is, the
coradical of H is 1-dimensional. All connected Hopf algebras with GK-dimension
three and four were classified by Zhuang in [38, Theorem 7.6] and Wang, Zhang and
Zhuang [34, Theorem 0.3.] respectively. So, as a natural development of this line we
want to classify prime Hopf algebras of GK-dimension one without regularity.

The third one is the lack of knowledge about non-pointed Hopf algebras. In the last
two decades, the people achieved an essential progress in understanding the struc-
tures and even classifications of pointed Hopf algebras under many experts’s, like
Andruskiewitsch, Schneider, Heckenberger etc., efforts. See for example [4, 15, 16].
On the contrast, we know very little about non-pointed Hopf algebras. In fact, we
almost can’t or are very hard to provide any nontrivial examples of them. The short
of examples of non-pointed Hopf algebras obviously hampers our research and un-
derstanding of non-pointed Hopf algebras. Inspired by our previous work [36] on the
classification of prime regular Hopf algebras, which prompted us to find a series of
new examples of non-pointed Hopf algebras, we expect to get more examples through
classifying prime Hopf algebras of GK-dimension one without regularity.

1.2. Setting. As the research continues, we gradually realize that the condition “reg-
ular” is very delicate and strong. The situation becomes much worse if we just remove
the regularity condition directly. In another word, we still need some ingredients from
regularity at present. To get suitable ingredients, let’s go back to the question (1.1)
and in such case the Hopf algebra has a natural projection to the group algebra kZ,,.
The first question is: what is this natural number n? In the Taft algebra H case, it
is not hard to see that this n is just the PI degree of H, that is, n =Pl.deg(H). So
crudely speaking n measures how far is a Hopf algebra from a commutative one. At
the same time, the Hopf algebra who has a projection to kZ,, will have a 1-dimensional
representation M with order n, that is M®" = k. Putting them together, we form
our first hypothesis about prime Hopf algebras of GK-dimension one:

(Hypl): The Hopf algebra H has a 1-dimensional representation 7 : H — k whose order
is equal to Pl.deg(H).

The second question is: where is the curve? It is not hard to see that the curve is
exactly the coinvariant algebra under the projection to kZ,. We will see that for
each 1-dimensional representation of H one has an analogue of coinvariant algebras
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which are called the invariant components with respect to this representation (see
Subsection 2.2 for details.) Due to the (Hypl), our second hypothesis is:

(Hyp2): The invariant components with respect to mz are domains.

By definition, a Hopf algebra H we considered has two invariant components, that is
the left invariant component H(l),w and right invariant component Hj . (see Definition

2.7). By Lemma 2.8, we see that Hé’ﬂ is a domain if and only if Hj . is a domain. So

the (Hyp2) can be weakened to require that any one of two invariant components is
a domain. But, in practice (Hyp2) is more convenient for us.

Usually, one may wonder that (Hypl) is strange and strong. Actually, any noetherian
affine Hopf algebra H has natural 1-dimensional representations: the space of right
(resp. left) homological integrals. The order of any one of these 1-dimensional modules
is called the integral order (see Subsection 2.2 for related definitions) of H and we
denote it by io(H ), which is used widely in the regular case. So a plausible alternative
of (Hypl) is

(Hypl)  io(H) = Pl.deg(H).

Clearly, (Hypl)’ is stronger than (Hypl) and should be easier to use (Hypl)’ instead
of (Hypl). But we will see that the (Hypl)’ is not so good because it excludes some
nice and natural examples (see Remark 4.2).

Note that all prime regular Hopf algebras of GK-dimension one satisfy both (Hyp1)’
and (Hyp2) automatically (see [23, Theorem 7.1.]). Since we have examples which
satisfy (Hypl) and (Hyp2) while they are not regular (see, say, the example about
the cusp given above), regularity is a really more stronger than (Hypl) + (Hyp2) for
prime Hopf algebras of GK-dimension one.

The main result of this paper is to give a classification of all prime Hopf algebras of
GK-dimension one satisfying (Hypl) + (Hyp2) (see Theorem 7.1). As byproducts,
a number of new Hopf algebras, in particular some non-pointed Hopf algebras, were
found and the answer to question (1.1) was given easily. Moreover, many new, up
to the author’s knowledge, finite-dimensional Hopf algebras were gotten which in
particular helps us to find a Hopf algebra of dimension 24 (see [6]).

1.3. Strategy and organization. In a word, the idea of this paper just is to build
a “relative version” (i.e. with respect to any 1-dimensional representation rather
than just the 1-dimensional representation of homological integrals) and extend the
methods of [9, 36] to our general setting. So the strategy of the proof of the main result
is divided into two parts: the ideal case and the remaining case. However, we need
point out that the most significant difference between the regular Hopf algebras of
GK-dimension one and our setting is: In the regular case, the invariant components
are Dedekind domains (see [9, Theorem 2.5 (f)]) while in our case they are just
required to be general domains! At the first glance, there is a huge distance between
a general domain and a Dedekind domain. A contribution of this paper is to overcome
this difficulty and prove that we can classify these domains under the requirement
that they are the invariant components of prime Hopf algebra of GK-dimension one.
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To overcome this difficulty, a new concept called a fraction of natural number is
introduced (see Definition 3.1).

As the first step to realize our idea, we construct a number of new prime Hopf algebras
of GK-dimension one which are called the “fraction versions” of known examples of
prime regular Hopf algebras of GK-dimension one. Then we use the concepts so called
representation minor, denoted as im(7), and representation order, denoted as ord(w),
of a noetherian affine Hopf algebra H to deal with the ideal case, that is, the case
either im(7) = 1 or ord(w) = im(w). In the ideal case, we proved that every prime
Hopf algebras of GK-dimension one satisfying (Hypl) + (Hyp2) must be isomorphic
to either a known regular Hopf algebra given in [9, Section 3] or a fraction version
of one of these regular Hopf algebras. Then, we consider the remaining case, that
is the case ord(m) > im(7) > 1 (note that by definition im(7)|ord(7)). We show
that for each prime Hopf algebra H of GK-dimension one in the remaining case one
always can construct a Hopf subalgebra H which lies in the ideal case. As one of
difficult parts of this paper, we show that H indeed determine the structure of H
essentially and from which we can not only get a complete classification of prime
Hopf algebras of GK-dimension one satisfying (Hypl) + (Hyp2) but also find a series
of new examples of non-pointed Hopf algebras. At last, we give some applications of
our results, in particular the questions (1.1) is solved, a partial solution to [9, Question
7.3C.] is given and some new examples of finite dimensional Hopf algebras including
semisimple and nonsemisimple Hopf algebras are found. In particular, we provide an
example of 24-dimensional Hopf algebra, which seems not written out explicitly in [6].
Moreover, at the end of the paper we formulate a conjecture (see Conjecture 7.19)
about the structure of a general prime Hopf algebra of GK-dimension one for further
researches and considerations.

The paper is organized as follows. Necessary definitions, known examples and pre-
liminary results are collected in Section 2. In particular, in order to compare regular
Hopf algebras and non-regular ones, the widely used tool called homological integral
is recalled. The definition of a fraction of natural number, a fraction version of a Taft
algebra and some combinatorial relations, which are crucial to the following analysis,
will be given in Section 3. Section 4 is devoted to construct new examples of prime
Hopf algebras of GK-dimension one which satisfy (Hypl) and (Hyp2). We should
point out that the proof of the example D(m, d,~y), which are not pointed in general,
being a Hopf algebra is quite nontrivial. The properties of these new examples are
also built in this section and in particular we show that they are pivotal Hopf alge-
bras. The question about the classification of prime Hopf algebras of GK-dimension
one satisfying (Hypl) + (Hyp2) in ideal cases is solved in Section 5, and Section 6
is designed to solve the same question in the remaining case. The main result is for-
mulated in the last section and we end the paper with some consequences, questions
and a conjecture on the structure of a general prime Hopf algebra of GK-dimension
one. Among of them, a new kinds of semisimple Hopf algebras are found and stud-
ied. Their fusion rules are given. We also give another series of finite-dimensional
nonsemisimple Hopf algebras in this last section.
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2. PRELIMINARIES

In this section we recall the urgent needs around affine noetherian Hopf algebras
for completeness and the convenience of the reader. About general background
knowledge, the reader is referred to [26] for Hopf algebras, [24] for noetherian rings,
[8, 23, 9, 13] for exposition about noetherian Hopf algebras and [10] for general knowl-
edge of tensor categories.

Usually we are working on left modules (resp. comodules). Let AP denote the
opposite algebra of A. Throughout, we use the symbols A, € and S respectively, for the
coproduct, counit and antipode of a Hopf algebra H, and the Sweedler’s notation for
coproduct A(h) =Y h1®ha = hi®hg = K’ @h" (h € H) will be used freely. Similarly,
the coaction of left comodule M is denoted by d(m) = m_y@m@ € HOM, m € M.

2.1. Stuffs from ring theory and Homological integrals. In this paper, a ring
R is called regular if it has finite global dimension, it is prime if 0 is a prime ideal
and it is affine if it is finitely generated.

e Pl-degree. If Z is an Ore domain, then the rank of a Z-module M is defined to be
the Q(Z)-dimension of Q(Z) @z M, where Q(Z) is the quotient division ring of Z.
Let R be an algebra satisfying a polynomial identity (PI for short). The PI-degree of
R is defined to be

PI-deg(R) = min{n|R — M, (C) for some commutative ring C'}

(see [24, Chapter 13]). If R is a prime PI ring with center Z, then the PI-degree of R
equals the square root of the rank of R over Z.

o Artin-Schelter condition. Recall that an algebra A is said to be augmented if there
is an algebra morphism ¢ : A — k. Let (A4,¢) be an augmented noetherian algebra.
Then A is Artin-Schelter Gorenstein, we usually abbreviate to AS-Gorenstein, if

(AS1) injdimgA =d < oo, ‘
(AS2) dimy Ext%(4k, 4A) =1 and dimy Ext?(4k, 4A4) =0 for all i # d,
(AS3) the right A-module versions of (AS1, AS2) hold.

The following result is the combination of [37, Theorem 0.1] and [37, Theorem 0.2
(1)], which shows that a large number of Hopf algebras are AS-Gorenstein.

Lemma 2.1. Fach affine noetherian PI Hopf algebra is AS-Gorenstein.
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e Homological integral. The concept homological integral can be defined for an AS-
Gorenstein augmented algebra.

Definition 2.2. [9, Definition 1.3] Let (A, €) be a noetherian augmented algebra and
suppose that A is AS-Gorenstein of injective dimension d. Any non-zero element of
the 1-dimensional A-bimodule ExtdA( ak, 4A) is called a left homological integral of

A. We write [ 54 = Ext%(4k, aA4). Any non-zero element in Ext%., (I, A4) is called
a right homological integral of A. We write f; = Ext%,,(ka, A4). By abusing the

language we also call flA and [ 2 the left and the right homological integrals of A
respectively.

2.2. Relative version. Assuming that a Hopf algebra H has a 1-dimensional repre-
sentation m : H — k, we give some results according to this 7, most of them coming
from [9, Section 2|, by using slightly different notations with [9]. Throughout this
subsection, we fix this representation .

e Winding automorphisms. We write ZEL for the left winding automorphism of H
associated to m, namely

2l (a) == Zw(al)ag fora € H.

Similarly we use =7 for the right winding automorphism of H associated to m, that
is,

= (a):= ZCLNT(CLQ) fora € H.

Let GL and G” be the subgroups of Auty_aq(H) generated by =l and 27, respectively.
Define:

Gri=Go[)Gr
The following is some parts of [9, Propostion 2.1.].

Lemma 2.3. Let H(l)ﬂr, H§ . and Hox be the subalgebra of invariants HGir,I-[G:r and
HGCr respectively. Then we have

(1) HOJT = H(I)Jr anﬂT'
(2) =l =r _ =r=l

(3) Bl oS =50 (2L)"!. Therefore, S(H ) C Hfy . and S(H} ) C Hj .

e m-order and w-minor. With the same notions as above, the m- order (denoted as
ord(m)) of H is defined by the order of the group G :

(2.1) ord(m) := |GL].

Lemma 2.4. We always have |GL| = |G7|.

Proof. Assume that |GL| = n, and then by the definition we know that

a= Z " (ay)ag
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for all a € H. Therefore, 7" = ¢ (because above formula implies that 7" is the left
counit) and thus a = > a;7(az) for all a. So, |GL| > |G~|. Similarly, we have
|Gyl = |Gl 0

By this lemma, the above definition is independent of the choice of GL or GT.
The 7-minor (denoted by min(w)) of H is defined by
(2.2) min(r) = |GL /GL N G7|.

Remark 2.5. In particular, if the 1-dimensional representation is given by the (right
module structure) of left integrals, then the corresponding representation order and
representation minor are called integral order and integral minor, denoted as

io(H) and im(H),
respectively. Both the integral order and integral minor are used widely in [9, 36].
Therefore, we can consider a general 1-dimensional representation as a relative version

of homological integrals. Note that the notations io(H) and im(H) will be used freely
in this paper too.

e Invariant components and strongly graded property. Let H be a prime Hopf algebra
of GK-dimension one. By a fundamental results of Small, Stafford and Warfield [31],
a semiprime affine algebra of GK-dimension one is a finite module over its center.
Therefore, it is PI and has finite PI-order. Now we assume that H satisfies the
(Hyp1) (see Subsection 1.1) and thereby |G| = PI-deg(H) is finite, say n. Moreover,

since Gﬁr is a cyclic group, its character group Gl = Homk_alg(]kGir, k) is isomorphic
to itself. Similarly, the character group G7. of G. is isomorphic to G..
Fix a primitive nth root ¢ of 1 in k, and define y € ézr and n € é\; by setting
X(ER) =¢ and n(=;) =
ThusGl ={x'0<i<n—1} andGr ={lo<ji<n -1
For each 0 < 4,5 <n—1, let
Hf,w ={a € H\:W(a) = Xi(Egr)a} and H;Jr :={a € H|Z! (a) = nj(E;)a}.

The following lemma is [9, Theorem 2.5 (b)] (Note that for the part (b) of [9, Theorem
2.5.] we don’t need the condition about regularity).

Lemma 2.6. (1) H=6p Gl m

(2) H = @nﬂeé\r HY s strongly G;—gmded.

Definition 2.7. The subalgebra H(l]m (resp. Hj ) is called the left (resp. right)
inwvariant component of H with respect to .

is strongly Gl -graded.

Therefore, (Hyp2) just says that both Hé’ﬂ and Hj . are domains. In fact, these two
algebras are closely related.

Lemma 2.8. Let H be a prime Hopf algebra of GK-dimension one. Then
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(1) As algebras, we have H} = (Hf ).
2) If moreover either H. _ or H' _is a domain, then both HY and H! _ are
0,7 0,7 0,7 0,m
commutative domains and thus H(l),w = Hj .

Proof. By Lemma 2.3. (3), we have S(H{ ) C H . and S(H} ) € Hf .. Now (1) is
proved.

For (2), it is harmless to assume that H(l)ﬂr is a domain. By H is of GK-dimension one

and H = @ vieGl Hzl « is strongly graded (see Lemma 2.6), H{ . has GK-dimension

one too. Now it is well-known that a domain with GK-dimension one must be com-
mutative (see for example [14, Lemma 4.5]). Therefore H}  is commutative and

H(l]m = Hj . by (1). So H{j . is a commutative domain too. O

By Lemma 2.3. (2), ELZ" = 2=l and thus Hl is stable under the action of G7.

y —r=—n T —rem
—

Consequently, the G- and G;’T—gradlngs on H are compatible in the sense that
l l l
Hi,7r = @ (Hiﬂr N H;,ﬂ) and H;,ﬂ = @ (Hi,ﬂ N H;,T()

0<j<n—1 0<ig<n—1

for all 4, j. Then H is a bigraded algebra:
(2.3) H= @ Hijn

0<i,j<n—1
where H;j » = Hgﬂ N H]’fﬂ. And we write Ho » := Hop,r for convenience.

For later use, we collect some more properties about H which were proved in [9]
without the requirement about regularity. For details, see [9, Proposition 2.1 (c)(e)]
and [9, Lemma 6.3].

Lemma 2.9. Let H be a prime Hopf algebra of GK-dimensional one satisfying
(Hyp1). Then

(1) A(H! ) C Hl ~®H and A(H} ) C H® HJ; thus Hl is a right coideal of H
and ]—71]”7 s a left cotdeal ofH for all0<i,j <n-— 1

2) ZL oS = So (EL)7L, where (L)1 =Z! .

3) S(H|,)=H", . and S(Hijz) = H_j_inr.

) If i # j, then e(H;j ) = 0.

5) If i = j, then e(Hj; ) # 0.

Remark 2.10. (1) In the regular case, that is, H is a prime regular Hopf algebra
of GK-dimension one, the set of all right homological integrals forms a 1-dimensional
representation whose order is equal to the Pl.deg(H). In such case, the invariant
components are called classical components by [9, Section 2].

NN N N
=~

(2) In the following of this paper, we will omit the notation 7 when the representation
is clear from context. Therefore, say, sometimes we just write Ho » as Hp when there
is no confusion about which representation we are considering.
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The following result is the combination of some parts of [9, Proposition 5.1, Corollary
5.1], which is very useful for us.

Lemma 2.11. Let A be a k-algebra and let G be a finite abelian group of order n
acting faithfully on A. So A is G-graded, A = ®X€@ A,. Assume that 1) this grading
is strong and 2) the invariant component Ag is a commutative domain. Then we have

(a) Ewvery non-zero homogeneous element is a reqular element of A and PI.deg(A) <

n.
(b) There is an action > of G on Ay with the following property: For any x € G
and a € Ag,
(2.4) (x> a)uy = uya

where uy, is an arbitrary nonzero element belonging to A,.

(c) Pl.deg(A) = n if and only if the action > is faithful.

(d) If Pl.deg(A) = n, then A is prime.

(e) Let K < G be a subgroup G and let B be the subalgebra @, cx Ay. If
Pl.deg(A) = n, then B is prime with Pl-degree |K]|.

2.3. Known examples. The following examples appeared in [9, 36] already and we
recall them for completeness.

e Connected algebraic groups of dimension one. It is well-known that there are pre-
cisely two connected algebraic groups of dimension one (see, say [17, Theorem 20.5])
over an algebraically closed field k. Therefore, there are precisely two commutative k-
affine domains of GK-dimension one which admit a structure of Hopf algebra, namely
H; = k[z] and Hy = k[z*!]. For Hy, x is a primitive element, and for H, z is a group-
like element. Commutativity and cocommutativity imply that io(H;) = im(H;) = 1
fori=1,2.

o Infinite dihedral group algebra. Let D denote the infinite dihedral group (g, z|g? =
1,grg = z~'). Both g and z are group-like elements in the group algebra kD. By
cocommutativity, im(kD) = 1. Using [23, Lemma 2.6], one sees that as a right H-

module, fl]kD = kD/(zx — 1,9+ 1). This implies io(kD) = 2.

e Infinite dimensional Taft algebras. Let n and t be integers with n > 1 and 0 < ¢ <
n — 1. Fix a primitive nth root £ of 1. Let T'= T'(n,t,&) be the algebra generated by
x and g subject to the relations

g"=1 and zg=Egx.
Then T'(n,t,&) is a Hopf algebra with coalgebra structure given by
Alg)=g®g, ec(g)=1 and Alx)=z®g" +102, c(z) =0,

and with
S(g)=¢g ' and S(z)=—xg".
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As computed in [9, Subsection 3.3], we have [ ff =~ T/{(z,g—& 1), and the correspond-
ing homomorphism 7 yields left and right winding automorphisms

—  jJrr—w, and = - T
T le— Tl T le— e

So that G = (ZL) and G7 = (Z7') have order n. If ged(n,t) = 1, then GL NGT = {1}
and [9, Propositon 3.3] implies that there exists a primitive nth root n of 1 such that
T(n,t,§) = T(n,1,n) as Hopf algebras. If ged(n,t) # 1, let m := n/ged(n,t), then
GL N G" = ((EL)™). Thus we have io(T(n,t,£)) = n and im(T(n,t,£)) = m for any
t. In particular, im(7'(n,0,£)) = 1, im(7T'(n,1,£)) = n and im(T'(n,t,£)) = m = n/t
when t|n.

o Generalized Liu algebras. Let n and w be positive integers. The generalized Liu
algebra, denoted by B(n,w,), is generated by 21, g and y, subject to the relations

1’1’71 =z

Y9 =9y,
yr=1-a¥=1-g"

=1, zg=gx, zy=yz,

where v is a primitive nth root of 1. The comultiplication, counit and antipode of
B(n,w,~) are given by

Alz)=z®z, Alg)=9g®g9, Aly)=yg+1xy,
-0

6(.%') =1, 6(9) =1, E(y) s
and
S)=a2"" S(g=¢g" Sy =-yg "

Let B := B(n,w,~). Using [23, Lemma 2.6], we get ﬁg =B/{y,x —1,9—~'). The
corresponding homomorphism 7 yields left and right winding automorphisms

T — T, T —> T,
Eidgr—nlg, and Z:{ g1y,

Yy, yr— 7y
Clearly these automorphisms have order n and GL N G- = {1}, whence io(B) =
im(B) = n.

e The Hopf algebras D(m,d,~y). Let m,d be two natural numbers satisfying that
(1 +m)d is even and 7 a primitive mth root of 1. Define

wi=md, §:=./7.

As an algebra, D = D(m,d,~) is generated by ot gty ug,ur, -, Um—1, subject
to the following relations

s l=a"tz=1, ggl=glg=1 zg9=gz,
Ty = yz, yg = Y9y, y"=1-2"=1-g",

—1 d i —2d
TU; = Wix yu; = Giuiv1 = Ex%uy,  wig = vz Cguy,
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)

s dGtt 1+m .. . .
(=1)77¢ 7y o e L i1 dm—o-jy g, i+ji<m—2,
. +1) m . .
uing =4 (=1)7 15 2 1, Yyt itj=m-—1,

_14+m P .
(=1~ 2 d¢i"'¢m—1¢0"'¢m_2_jyz+]*mg, otherwise,

where ¢; =1 — x4 and()gi,jgm—l.

S

—i—1
The coproduct A, the counit € and the antipode S of D(m,d,~) are given by
Al@)=z®z, Alg)=9g®g, Aly)=y®g+1xy,

m—1
Au;) = Zyj(z Ny; @ &7 G ui—j;

=0
€(r) = €(g9) = e(uo) =1, €(y) = e(us) =0;
Sx)=z"1 S(g=g" Sy)=-yg

i(it+1)

(
S(ui) = (=1)'¢ Iy T Mgy,

for0 <i<m-—1and 1< s<m-—1. Direct computation shows that ﬂ) =D/(y,z—

1L,g—~v Y up—& Y ur,u, -+ ,upm_1), and the left and right winding automorphisms
are:
T —> T, T —> T,
— )y, 4 = Jv—
= T and = : 1
g—7 9 g—7 9,
up — g, g — £y,

From these, we know that io(D) = 2m and im(D) = m.

Remark 2.12. In [36], the authors used the notation D(m,d, &) rather than D(m,d,~y)
used here. We will see that the notation D(m,d,~) is more convenient for us.

Up to an isomorphism of Hopf algebras, all of above examples form a complete list of
prime regular Hopf algebras of GK-dimension one (see [36, Theorem 8.3.]).

Lemma 2.13. Let H be a prime reqular Hopf algebra of GK-dimension one, then it
is isomorphic to one of Hopf algebras listed above.

2.4. Yetter-Drinfeld modules. This subsection is just a preparation for the ques-
tion (1.1) and will not be used in the proof of our main result. Let H be an arbitrary
Hopf algebra. By definition, a left-left Yetter-Drinfeld module V over H is a left
H-module and a left H-comodule such that

5(h . U) = hlv(_l)S(hg) ® hg - V(0)

for h € H,v € V. The category of left-left Yetter-Drinfeld modules over H is denoted
by gyD. It is a braided tensor category. In particular, when H = kG a group
algebra, we denote this category by gyD.

We briefly summarize results from [28], see also [25]. Let A be a Hopf algebra provided
with Hopf algebra maps 7 : A — H.1: H — A, such that 7o = Idy . Let R = A®H =
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{a € Al(€ ®m)A(a) = a®1}. Then R is a braided Hopf algebra in Z£YD through
h-r:=hirS(ha),
(1) @ T(0) = 7(r1) @ 12,
@2 i=9(r) @ry
forr € R, h € H, A(r) = r' ®r? denote the coproduct of r € R in the category ZYD
and ¥(a) := ayum(S(az)) for a € A.

Conversely, let R be a Hopf algebra in g)}D. A construction discovered by Radford,
and interpreted in terms of braided tensor categories by Majid, produces a Hopf
algebra R# H through: As a vector space R#H = RQ H;if r#h:=r®h, r € R, h €

H, the multiplication and coproduct are given by

(r##h)(s#f) = r(h1 - 5)#thaf,

A(r#th) = ri#(r?) C1yh @ (%) () #ho-
The resulted Hopf algebra R# H is called a Radford’s biproduct or Majid’s bosoniza-
tion.

Now go back to the situation of w: A — H.:: H — A such that m¢ = Idy. In such
case we have A = R#H and

(2.5) ri@ry =r'(r*) 1 @ (%))
for r € R.

With these preparations, we can set the question of (1.1) for smooth curves at first.

Corollary 2.14. The affine line and k[z*'] are the only irreducible smooth curves
which can be realized as Hopf algebras in %ZJJD for some n.

Proof. Let C be an irreducible smooth curve which can be realized as a Hopf algebra
in %ZJJD for some n. There is no harm to assume that the action of Z,, on this curve
(more precisely, on the coordinate algebra k[C] of this curve) is faithful. Therefore,
the Radford’s biproduct

A = k[C|#KZ,
constructed above is a Hopf algebra of GK-dimension one. We claim that it is prime
and regular. Primeness is gotten from Lemma 2.11: Clearly

n—1
A=PK(Clg'.
=0

From this, A is a strongly Zn = {(x|x" = 1)-graded algebra through x(ag‘) = ¢ for
any a € k[C] and 0 < i < n — 1. Therefore, the conditions 1) and 2) of Lemma 2.11
are fulfilled. By part (b) of Lemma 2.11, the action of Z:L is just the adjoint action
of Z, = (g|l¢g"™ = 1) on k[C] which by definition is faithful. Therefore, PI.deg(A) =n
by part (¢) of Lemma 2.11. In addition, the part (d) of Lemma 2.11 implies that A
is prime now. Regularity is clear since the smoothness of C' implies the regularity
of k[C] and thus regularity of A. In one word, A is a prime regular Hopf algebra of
GK-dimension one.
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Therefore, the result is followed from above classification stated in Lemma 2.13 by
checking it one by one. O

2.5. Pivotal tensor categories. The only purpose of this subsection is just to tell
us that the representation categories of our new examples stated in Section 4 are quite
delightful: they are pivotal. The readers can refer [10, Section 4.7] for details of the
following content of this subsection.

Recall that a tensor category C = (C,®,®,1,l,r) is called rigid if every object in
C has a left and a right dual. By definition, a left dual object of V € C is a triple
(V*,evy,coevy) with an object V* € C and morphisms evy : V*®@V — 1 and
coevy : 1 — V ® V* such that the compositions

coevy ® Idy P Idy ®evy
|4 VeV ) eV— Ve ((V'eV) vV,
Idy+ ®coevy d1 evy ® Idy+«

are identities. The right dual can be defined similarly. Then we have the following
functor

(=)*:C—=C, V=V*
which is a tensor autoequivalence of C.
Definition 2.15. Let C be a rigid tensor category. A pivotal structure on C is an

isomorphism j of tensor functors jy : V +— V**. A rigid tensor category C is said
pivotal if it has a pivotal structure.

As nice properties of a pivotal tensor category, one can define categorical dimensions
[10, Section 4.7], the Frobenius-Schur indicators [27], semisimplifications [12] etc. The
following result is well-known.

Lemma 2.16. Let H be a Hopf algebra. If S*(h) = ghg™! for a group-like element

g € H and any h € H, then the representation category of H is pivotal.

Proof. Let Rep(H ) be the tensor category of representations of H. Clearly, the map
VoV*=V,v—g-v, VeRep(H),veV

gives us the desired pivotal structure on Rep(H). O

3. FRACTIONS OF A NUMBER

As a necessary ingredient to define new examples, we give the definition of a fraction of
a natural number firstly in this section. Then we use it to “fracture” the Taft algebra
and thus we get the fraction version of a Taft algebra. At last, some combinatorial
identities are collected for the future analysis.
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3.1. Fraction. Let m be a natural number and m1, mo, ..., my be 6 number of nat-
ural numbers. For each m; (1 < i < #), we have many natural numbers a such that
m|am;. Among of them, we take the smallest one and denote it by e;, that is, e; is
the smallest natural number such that m|e;m;. Define

A= {Q: (a17"'7a9)‘0 <a; < e 1 SZSH}
With these notations, we give the definition of a fraction as follows.

Definition 3.1. We call my,...,myg is a fraction of m of length 0 if the following
conditions are satisfied:

(1) For each 1 <i <6, e; is coprime to m;, i.e. (e;,m;) = 1;

(2) For each pair 1 < i # j <0, mimymy;

(3) The production of e; is equal to m, that is, m = ejey - - - eg;

(4) For any two elements a,b € A, we have 2?21 a;m; # 2?21 bim; (mod m) if

a#b.

The set of all fractions of m of length 6 is denoted by Fy(m) and let F(m) :=
Up Fo(m), F = Uppen F(m).

Remark 3.2. (1) Conditions (3) and (4) in this definition is equivalent to say that
up to modulo m, each number 0 < j < m — 1 can be represented uniquely as a linear
combination of myq,...,my with coefficients in A. That is, under basis mq,...,my, j
has a coordinate and we denote this coordinate by (j1,...,Jg), i.e.

J = jimi+ jama + ... + jeme (mod m).

Moreover, for any j € Z it has a unique remainder j in Zy, and thus we can define the
coordinate for any integer accordingly, that is, j; := j, for 1 < i < 6. In the following
of this paper, this expression will be used freely.

(2) For each 1 < i < 0, we call e; the exponent of m; with respect to m. Intuitively,
it seems more natural to call these exponents eq,...,eg a fraction of m due to the
condition (3). However, there are as least two reasons forbidding us to do it. The first
one is that we will meet m;’s rather than e;’s in the following analysis. The second
reason is that the exponents can not determine m;’s uniquely. As an example, let
m = 6, we see that both {2,3} and {4,3} have the same set of exponents.

(3) It is not hard to see that § = 1 if and only if (m,m;) = 1.

(4) Usually, we use the notation such as m,m’--- to denote a fraction of m, that is,
m,m’ € F(m).

3.2. Fraction version of a Taft algebra. Now let mq,...,mg be a fraction of m,
mg := (mq,...,my) biggest common divisor of mq,...,my and fix a primitive mth
root of unity £&. We want to define a Hopf algebra T'(my, ..., my, &) as follows. As an
algebra, it is generated by g, Ym,, ..., ¥Ym, and subject to the following relations:

(3.1) 9" =1, Yot =0, Ym,Ym; = Ym;Yms> Ym;9 = ™0 GYm,»
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for 1 <i,j < 6. The coproduct A, the counit € and the antipode S of T'(m,...,mp,§)
are given by

Alg)=9g®g, AWm;) =1®Ym; + Ym; ® g™,
E(g) = 17 E(ym,) - 07
S(g) = gila S(ymz) = —yngi

m;
for 1 <i<46.

Since (mg,m) = 1, if we take £ := £ in the above definition then it is not hard
to see that ¢ is still a primitive mth root of unity. So in (3.1) we can substitute the

relation y,,,g = £™0 gym, by a more convenient version
Ymig =& gym;s 1 <1 <0,

Lemma 3.3. The algebra T(my, ..., my, &) defined above is an m?-dimensional Hopf
algebra.

Proof. This is clear. We just point out that: The condition (1) of Definition 3.1
ensures that each y;i is a primitive element and the condition (2) of Definition 3.1
ensures that Ym,Ym; — Ym;Ym, is a skew-primitive element for all 1 <4,5 < 6. O

Proposition 3.4. Let m' be another natural number and m' = {m/,...,my,} be a
fraction of m'. Then as Hopf algebras, T(mq,...,mg,&) = T(mh,...,my, &) if and
only if m =m/, 0 = 6 and there exists xo € N which is relatively prime to m such
that up to an order of my,...,myp we have m; = m;zo (mod m) and & = £'*°.

Proof. We denote the generators and numbers of T'(m/),...,my, &) by adding the
symbol’ to that of T'(my, . .., mg, £) for convenience. The sufficiency of the proposition
is clear. We only prove the necessity. Assume that we have an isomorphism of Hopf
algebras

o: T(my,...,mg,&) — T(m},...,my,&).
By this isomorphism, they have the same dimension and thus m = m’ according to
Lemma 3.3. Comparing the number of nontrivial skew primitive elements, we know
that 6 = ’. Up to an order of my, ..., my, there is no harm to assume that p(y,,) =
Yy for 1 <@ < 0. (More precisely, we should take ¢(ym,) = Y +c(1— (g’ )™i) at first.
But through the relation y,,g = €™ gym,, we have ¢ = 0.) Since ¢(g) is a group-like
and generates all group-likes, p(g) = ¢"° for some xy € N and (29, m) = 1. Due to

Alp(Ym,)) = AYm) = 1@ Yyt + Yy @ ()™
which equals to

(¢ @) (AWYm:)) = 1@ Yt + Yy @ ().
Therefore, m; = m;zo (mod m). By this, we can assume that (mh,...,my) =

(mi,...,mg)xg, that is, m{ = moxo. So (ym,9) = go(&m_égymi) implies that
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which implies that 5"78 = {Ixo?é for all 1 <4 < 6. Since by definition (2*,..., 2¢) =

: . 0 my
1, there exist c1,...,co such that >/, Cipe = 1. Therefore,
2 P [ P
5 — gZizl Ci% _ 5’330 D et Ci% _ é-la:()‘

O

3.3. Some combinatorial identities. Firstly, we will rewrite some combinatorial
identities appeared in [36, Section 3] in a suitable form for our purpose. Secondly, we
prove some more identities which are not included in [36, Section 3|. Let m,d be two
natural numbers. As before, let m = {m1,...,mg} € F(m) be a fraction of m and e;
the exponent of m; with respect to m for 1 < i < 8. Let v be a primitive mth root of
unity. By definition, we know that

2
Yii=T

is a primitive e;th root of unity. For any j € Z, the polynomial ¢,,, ; is defined
through

(3.2) Pmyj i =1— ,y*mi(miJrj)xmid -1 ,}/*m?(l‘i’ji)xmid —1_ ’7.(1+ji)xmid

(3} 7
for any 1 < i < 6 and the second equality is due to the (2) of the definition of the
fraction. In the following of this subsection, we fix an 1 <4 < 6.

Take j to be an arbitrary integer, define j to be the unique element in {0,1,...,e;—1}
satisfying j = j (mod e;). Then we have

Pmij = Py j
since ;' =
With this observation, we can use
I, tlm,
to denote the resulted polynomial by omitting all items from ¢, sm, to ¢m¢,¥m¢ in
Py 0Prmimi P, (e5—1)my »

that is

P (T Dmi " Prn (ei—1)mi Pma0 " Py (5-1ymys T =5
(3.3) s, tlm, =11, ifs=t+1

P (F+ Dy * " Py, (5-1)mys ifs>t+2.

For examplea ]_17 _1[7711 - ]ei - 17 €; — 1[ml - ¢mi,0¢mi,mi e ¢m¢,(ei72)m¢'

In practice, in particular to formulate the multiplication of our new examples of Hopf
algebras, the next notation is also useful for us, which can be considered as the resulted
polynomial (except the case § = t+1) by preserving all items from ¢m,; sm, to ¢
in ¢mi,0¢mi,m¢ e ¢mi,(e¢71)mi'

m;,tm;
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¢mi,§mi ¢mi,(§+1)mi e ¢mi,fmi7 ift =5
(3.4) [$,t]m,; == 4 1, ifs=7%t+1
¢mi,§m¢ te ¢mi,(ei—1)mi¢mi,0 te ¢mi,fmia ifs = 7?"’ 2.

So, by definition, we have
(3.5) [i,m —2 = jlm, =]—1— 74,0 — 1m,-
Due to the equality (3.5), we just study equations with omitting items. The following

formulas already were proved or already implicated in [36, Section 3] in different

forms. So we just state them in our forms without proofs.
Lemma 3.5. With notions defined as above, we have
(1) 550 1 = 1.5 = U, =i
2) (bmz,O(bmz,mz t ¢mi,(ei—1)mi =1-ux
3) Y0y A 1 =1, = U, = egzleimDmid,
)
)

e;m;d

4) Yy 1 = 2,5 = 1w, =0,
Fiz k such that 1 <k<e;—1andlet1 < <k. Then

e;—1

ny k,j—1[m, =0.

(6) Let()gtgj—l—lgei—l,Ogagei—l—j—l. Then

(—1)0+ (ot Dttt D) Ly (jpi—t) (€ — 1 — ¢ eg—1+t—j—1
" @ Vi a+t i

_<j+l> <m—1—j—l>
¢ Vi @ Vi

We still need two more observations which were not included in [36, Section 3].

(
(
(
(5

Lemma 3.6. With notations as above. Then

(1) For any e;th root of unity &, we have

e;—1

S 1= 1,5 = 1m, #0.
=0

(2) Let & be an e;th root of unity. Then Z;i:_ol €915 = 2,5 — 1[m, = 0 if and only
if & =i

Proof. (1) Otherwise, we assume that ngol ¢ )5 —1,5 = 1m, = 0. From this, we
know that £ # 1 by (3) of Lemma 3.5. By the definition of |j — 1,5 — 1[,,,, we know
that

e;—1 e;—1

ijj—lj—l Z&”ml —1Lj = 1m,
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e;—1

—Zé‘f W™ ) |j = 1,5 = 1m,

el—l

- Z §j¢mi,0¢mi,mi e (bmi,(eifl)mi

=0

where the third equality is due to (2) of Lemma 3.5 and the last equality follows from
E#£1 being an e;th root of unity. Therefore, ngol §jwijxmid l7—1,j —1[m, =0 and

thus Z ( €)7 5 —1,5 — 1, = 0. Repeat above process, we know that for any k
e;—1
S (FEY 1 10— U, = 0.
j=0

Since £ is an e;th root of unity while ~; is a primitive e;th root of unity, there exists
a k such that v¥¢ = 1. But in this case ngol(%kg)] 17—1,j—1[m, = ¢; # 0. That
is a contradiction.

(2) “«<” This is just the (4) of Lemma 3.5.
“=" Before prove this part, we recall a formula (see [18, Proposition IV.2.7]) at first:
1(1—-1)

n
(@202 la—q 5 =30 () ¢ T a
=0 q
where ¢ is a nonzero element in k and any a € k. From this,

e;i—2 1(1—1)
e; — 2 .
= Z(_l)l< zl ) v, 2 (,qu—i— gmid)!
Vi

e;—2 (141
- (—1)l<ei_2> 7( i ghmad,
i
! Vi

So from this, we have

e;—1 e;—2 e — 9 [(l+1) e;—1
25]3_2]_1[ Z( 1)l<ll > Zgﬂ 1 plmid.
Vi

=0

Therefore assumption implies that

e;—1

Zgﬂ lj _

for all 0 <1 < e; —2. So we see that the only possibility is & = ;. O
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4. NEW EXAMPLES

In this section, we will introduce the fraction versions of infinite dimensional Taft
algebras, generalized Liu algebras and the Hopf algebras D(m, d, ) respectively. Some
properties of them are listed. Most of these Hopf algebras, as far as we know, are
knew.

4.1. Fraction of infinite dimensional Taft algebra T'(m,t,£). Let m,t be two
natural numbers and set n = mt. Let m = {mq,...,mp} be a fraction of m and mgy =
(mq,...,my) the greatest common divisor. So it is not hard to see that (m,mg) = 1.
Now fix a primitive nth root of unity £ satisfying

£° E :562% =... :5663—3_
Note that such £ does not always exist (for example, taking m = 6, ¢t = 2 and {4, 3}
be a fraction of 6, we find that we have no such &). If it exists, then we can define a

Hopf algebra T'(m,t,&) as follows. As an algebra, it is generated by g, ym,,- -, Ymy
and subject to the following relations:

(4'1) gn =1, y?féi = yfgj? Ym;Ym; = Ym;Ym;s Ym;9 = gﬁégymi’
for 1 <i4,j < 6. The coproduct A, the counit € and the antipode S of T'(m,t,§) are
given by
Alg)=9®9, AWYm) =1 Ym, +ym, ® g™,
E(g) =1, E(ymi) =0,
S(9) =97 S(ym.) = ~ymg ™

forl1 <¢<8.

Proposition 4.1. Let the k-algebra T = T({mq,...,mg},t,&) be the algebra defined
as above. Then

(1) The algebra T is a Hopf algebra of GK-dimension one, with center k[ycf].
(2) The algebra T is prime and PIl-deg (T') = n.
(3) The algebra T has a 1-dimensional representation whose order is n.

Proof. (1) Since the proof of T'(m,t,£) being a Hopf algebra is routine, we leave it to
the readers. (In fact, since for each 1 < i < @ the subalgebra generated by g, ypm, is
just a generalized infinite dimensional Taft algebra, one can reduce the proof to just
considering the mixed relation Ym,Ym; = Ym;ym, and ygi = y,e,{j for 1 <i4,j5 <49.)
Through direct computations, one can see that the subalgebra k[yl’] = k[z] is the
center of T'(m, t,§) and T is finite module over k[yl!]. This means the GK-dimension
of T(m,t,&) is one.

(2) We want to apply Lemma 2.11 to prove this result and we use similar argument
developed in the proof of Corollary 2.14. At first, let Ty be the subalgebra generated
bY Ymy»---sYmy- Then clearly

n—1 A
T = EBTOg’.
=0
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From this, T is a strongly Z, = {x|x™ = 1)-graded algebra through x(ag®) = &' for
any a € Tp and 0 < i < n — 1. Therefore, the conditions 1) and 2) of Lemma 2.11 are

satisfied. By part (b) of Lemma 2.11, the action of Z, is just the adjoint action of
Zyn = (glg™ = 1) on Ty which by definition is faithful. Therefore, PI.deg(T) = n by
part (c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11 implies that 7" is
prime now.

(3) By the definition of T'(m, t,£), it has a 1-dimensional representation
m: T(m,t,&) =k, ym, =0, g—¢& (1<i<9).
It’s order is clear n. O

Remark 4.2. We call the representation in Proposition 4.1 (c) the canonical repre-
sentation of T'(m,t,§). Since ord(m) = n which is same as the PI-degree of T'(m,t, &),
the Hopf algebra T'(m,t,§) satisfies the (Hypl). At the same time, let {2,5} be a
fraction of 10 and consider the example T'= T'({2,5}, 3, &) where ¢ is a primitive 30th
root of unity. Applying [23, Lemma 2.6], we find that the right module structure of
the left homological integrals is given by

Jl =T/(ym, (1 <i<0),9g—€077).
T

Therefore io(7T) = 10 which does not equal the Pl-degree of T', which is 30. So,
T(m,t,£) only satisfies (Hypl) rather than (Hypl)’, that is, io(T") # PLdeg(T) in
general.

The canonical representation of T' = T'(m, t,£) yields the corresponding left and right
winding automorphisms

and =
gr— &y,

=l . {ymz — ymia
for 1 <i<4.
Using above expression of Z. and Z7, it is not difficult to find that
(4'2) Tz‘l = ]k[ymn s 7yme]gi and T]T’ = ]k[g_mltymu? cee 7g_m0tyme]gj
for all 0 < 4,5 <n — 1. Thus we have
(4.3) Too = Klypt, ) and Ty = klyst, Jy;g’

forall 0 <i<n—1,0<j<m-—1 wherey; = yﬁﬁl . --yfﬁe (see (1) of Remark 3.2).
Moreover, we can see that

T;; =0 if i —j # 0 (mod ¢?)
forall 0 <¢,5 <n-—1.

As a concluding remark of this subsection, we want to discriminate these fractions of
infinite dimensional Taft algebras.
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Proposition 4.3. Keep above notations. Let m' = {m/,...,mp} be a fraction of
another integer m’. Then T(m,t,&) = T(m/,t',&') if and only if m=m/, 6 =0', t =
t' and there exists xg € N which is relatively prime to n = mt such that up to an
order of my, ..., mg we have m; = m;xo (mod n) and § = '*0.

Proof. We write the proof out for completeness. We denote the corresponding gener-
ators and numbers of T'(m/, ¢, ¢") by adding the symbol ’ to that of T'(m,t,£). The
sufficiency is clear (for example, just take ¢ : T(m,t,&) — T(m/,t',&') through
g 3g", Ym; =y, for 1 <i < 0. Then one can ¢ gives the desired isomorphism).
We next prove the nécessity. Assume that we have an isomorphism of Hopf algebras

¢ T(m,t,&) — T(m,t',¢).

By this isomorphism, they have the same number of group-likes which implies that
n=mt =m'tl = n' and p(g) = (¢')* for some zy € N satisfying zg and n are
coprime. Comparing the number of nontrivial skew primitive elements, we know that
0 = 0'. Up to an order of my,...,my, there is no harm to assume that ¢(ym,) = Y
for 1 < i < 6. (Just as the case of a fraction of a Taft algebra, one should take
P(Ym;) = Ym; + (1 — (¢')™) at the beginning for some ¢; € k. Then through
the relation yp,,9 = & mo 9Ym, we can find that ¢; = 0.) Since both yy: and yfrj( are
primitive, e; = €. Therefore m = e;---eg = €} ---ej = m’ and thus ¢t = t’. Then
one can repeat the proof of Proposition 3.4 and get that m; = m;z (mod n) and
£=gm. -

4.2. T'(m,t,§) vs the Brown-Goodearl-Zhang’s example. In the paper of Good-
eal and Zhang [14, Section 2], they found a new kind of Hopf domains of GK-dimension
two. From these Hopf domains, one can get some Hopf algebras of GK-dimension one
through quotient method. In fact, through this way Brown and Zhang [9, Example
7.3] got the first example of a prime Hopf algebra of GK-dimension one which is not
regular. Let’s recall their construction at first.

Example 4.4 (Brown-Goodearl-Zhang’s example). Let n,pg,p1,...,ps be positive
integers and a € k* with the following properties:

(a) s>2and 1 < p; <pg < -+ < ps;
(b) poln and pg,p1,...,ps are pairwise relatively prime;
(¢) ¢ is a primitive [th root of unity, where [ = (n/po)pip2 - - ps.

Set m; = p{l szl pj for i = 1,...,s. Let A be the subalgebra of k[y| generated
by y; := y"™ for i = 1,...,s. The k-algebra automorphism of k[y] sending y — qy
restricts to an algebra automorphism o of A. There is a unique Hopf algebra structure
on the Laurent polynomial ring B = A[z*!; o] such that x is group-like and the y;
are skew primitive, with
Aly)) =1®y; +y; @z™"

for i = 1,...,s. It is a PI Hopf domain of GK-dimension two, and is denoted by
B(n,po,p1,---,Ps,q). Now let

B(n,PO,Pl,- .. aps’q) = B(n’pOapla s ’psaQ)/(xl - 1)
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Then Brown-Zhang proved that the quotient Hopf algebra B(n,po,p1,---,Ds,q) is a
prime Hopf algebra of GK-dimension one.

There is a close relationship between the Brown-Goodearl-Zhang’s example and the
fractions of infinite dimensional Taft algebras.

Proposition 4.5. The Hopf algebrg?(n,po,pl, .., Ds,q) s a fraction of an infinite
dimensional Taft algebra, that is, B(n,po,pi,-..,ps,q) = T(m,t,&) for some m €
F,t € N and & a root of unity.

Proof. By definition of B = B(n, pg, p1, ... ,Ps,q), we know that y; = ™ (we also use

the same notation as B(n,pg,p1,--.,Ps,q)) and thus the following relation is satisfied
v =y

for all 1 < i,j < s. At the same time, in B the group like element 2 satisfying the
following relations

o =1, yizr=q"ay
for i =1,...,s. By these observations, define

m; =pom;, 1<1<s.

Then it is tedious to show that m/, m, ..., m} is a fraction of m := [[;_, p;. Moreover,
let t :== n/pg. Now we see that the Hopf algebra T'({m/,mb,...,m.},t,q) is generated
bY Yt Yms, g and satisfies the following relations

!
m

g =1, Yt = yﬁié, Yot Ym!, = Yot Ymls Y g = 470 GYmg = 4" GYrat -
From this, there is an algebra epimorphism

f: T({m'l,mé,,m;},n/po,q) %E(napo’pl’--wps,q)a ym; =Y, gr—=> T

which is clear a Hopf epimorphism. Since both of them are prime of GK-dimension
one, f must be an isomorphism. O

But not all fractions of infinite dimensional Taft algebras belong to the class of Brown-
Goodearl-Zhang’s examples.

Example 4.6. Let 5,12 be a fraction of 30 and £ a primitive 30th root of unity. Then
the corresponding T'({12,5},1,&) is generated by ys, y12, g satisfying

Yo = Y5, Y12ys = Ysy12, Y120 = E2gy12, ys9 = E2gys, g = 1.

If there is an isomorphism between this Hopf algebra and a Brown-Goodearl-Zhang’s
example

f: T({1255}51’£) i>F(n’p()apla--'’psaq),

then clearly s = 2 (by the number of non-trivial skew primitive elements) and [ =
(n/po)p1p2 = 30 (due to they have the same group of group-likes). Therefore, f(g) =
x! with (¢,30) = 1. By

Alys) =1Rys +9° ®@ys,  Alyr2) = 1®@y12 + g2 @ Y12,
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we know that np; = 5t,npy = 12t (mod 30). Since py,py are factors of 30 and ¢
is coprime to 30, py = 5 and thus n = t (mod 30), po = 12. This contradicts to

I = (n/po)p1p2 = 30.

This example also shows that not every fraction version of infinite dimensional Taft
algebra can be realized as a quotient of a Hopf domain of GK-dimension two.

4.3. Fraction of generalized Liu algebra B(m,w,y). Let m,w be positive integers
and mq,...,my a fraction of m. A fraction of a generalized Liu algebra, denoted by
B(m,w,v) = B({m1,...,mg},w,7), is generated by %1, g and yum,, - - -, Ym,, subject
to the relations

1.1.71 = 1.711. = 17 rg = gz, TYm; = Ym; T,
(4.4) Ymid =Y Wm;»  YmiYm; = Ym; Ym;

e;my;
e; o m

Yo =1l—a¥"m g

:l‘w’

where « is a primitive mth root of 1 and 1 < 4,j < 6. The comultiplication, counit
and antipode of B({my,...,mp},w,~y) are given by

Alz)=2zz, Al =909, AWm;)="Ym, @™ +1® Ym,,

e@)=1, e(g)=1, €(Yym) =0,
and
Say=2"" S@)=g" SWm)=—ymg "™,
for 1 <i<86.

Proposition 4.7. Let the k-algebra B = B({mq,...,mp},w,7) be defined as above.
Then

(1) The algebra B is a Hopf algebra of GK-dimension one, with center k[z*1].
(2) The algebra B is prime and PI-deg (B) = m.
(3) The algebra B has a 1-dimensional representation whose order is m.
(4) io(B) =m.

Proof. (1) It is not hard to see that the center of B is k[z™!] and B is a free module
over k[z*!] with finite rank. Actually, through a direct computation one can find
that {y;¢°|0 < 4,7 < m — 1} is a basis of B over k[z*!]. Here recall that if j =
Jimi + ... + jemg (mod m) then y; = H?:l yis.. Therefore, it has GK-dimension
one. Similar to the case of T'(m,t, &), we leave the task to the readers to check that
B is a Hopf algebra. Actually, the same as the case of Taft algebras, since for each
1 < i < 6 the subalgebra generated by z*!, g, Ym, 15 just a similar kind of generalized
Liu algebra which may be not prime now, one can reduce the proof to just considering
the mixed relation Ym,Ym; = Ym;Ym, and Y = ,?,{j for 1 <i,57 <46.

(2) As the case of T'(m,t,&), we want to apply Lemma 2.11 to prove that B is prime
with PI-degree m. At first, let By be the subalgebra generated by Yy, ..., ym, and
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xtl. Clearly, By is a domain and

=0

From this, B is a strongly i;n = (x|x™ = 1)-graded algebra through x(ag’) = ~* for
any a € By and 0 < ¢ < m — 1. Therefore, the conditions 1) and 2) of Lemma 2.11

are fulfilled. By part (b) of Lemma 2.11, the action of Z,, is just the adjoint action of
Zm = {g|g"™ = 1) on By which by definition of a fraction of m is faithful. Therefore,
PI.deg(B) = m by part (c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11
implies that B is prime now.

(3) By the definition of B, it has a 1-dimensional representation
m: B=k, 21, Yy, —0, g—7v (1<i<0).
It’s order is clear m.
(4) Using [23, Lemma 2.6], we have the right module structure of the left integrals is
l
J :B/(Cﬂ—l, ymiag_w_zlemi, 1§Z§9)
B

Next, we want to show that Zle m; is coprime to m. Recall that in the definition of a
fraction (see Definition 3.1), we ask that (m;, e;) = 1 and m|m;m; forall 1 <i,j <6.
Thus
(ei,ej) = 1, ei]mj

for all 1 <i# j < 6. By (3) of Definition 3.1, m = ey - - - e¢y. On the contrary, assume
that (Zle m;,m) # 1. Then there exists 1 < ¢ < 0 and a prime factor p;|e; such
that p;|m and p;| 2?21 m;. Since e;|m; for all j # 4, p;lm; for all j # i. Therefore,
pi|m; which is impossible since (m;,e;) = 1.

Therefore, we know that (Z?:l m;,m) = 1 and thus vy~ Siimi s still a primitive
mth root of unity which implies that io(B) = m. O

We also call the 1-dimensional representation stated in (3) of Proposition 4.7 the
canonical representation of B = B({m1,...,mg},w, ). This canonical representation
of B yields the corresponding left and right winding automorphisms

T, T —x,
= Ym; — Ymy,  and  EL Sy My,

g9, g9,
for 1 <i<46.
Using above expression of Z. and Z7, it is not difficult to find that
(4.5) Bl =k[a™ ym,, .., Umplg’ and B =k[aF g Yy g Yy g
for all 0 < ,j < m — 1. Thus we have
(46) BOO = ]k[xil] and Bi,i+j = ]k[xil]ngi
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for all 0 <,7 < m — 1 where y; = yﬁgl y],ﬁe (see (1) of Remark 3.2).

At the end of this subsection, we also want to consider when two fractions of general-
ized Liu algebras are the same. To do that, let m’ € N and {m],...,mj,} a fraction of
m’. As before, we denote the corresponding generators and numbers of B(m/,w’,~")
by adding the symbol ’ to that of B(m,w,~).

Proposition 4.8. As Hopf algebras, if B(m,w,vy) = B(m/,u',v), then m =m/, 0 =
0" and up to an order of m;’s, wm; = w'm} for all 1 <i <.

Proof. Since they have the same Pl-degrees, m = m’. We know the the center of
B(m,w,v) is k[z*!] and thus ¢(z) = 2’ or ¢(x) = (2/)~'. Also, as before, through
comparing the nontrivial skew primitive elements, § = 6’ and after a reordering the
generators we can assume that ¢(ym,,) = y:n ;- The relation yp: =1 — ¥ m " implies
that e; = €] and p(z) = 2’ since by assumption all e;, m; and m are positive. From

which one has
/ !
e;m; elm
3 T

-
m m
Since m = m/ and e; = €}, wm; = w'm] for all 1 <i < 4. O

It is a pity that the conditions in above proposition is only a necessary condition for
B(m,w,v) & B(m/,w’,~"). To get a sufficient one, or an equivalent condition, we
need the following observation.

Lemma 4.9. Any fraction of generalized Liu algebra B(m,w,~y) is isomorphic to a
unique B(m/,w',~') satisfying (m},...,my) = 1.

Proof. We prove the existence at first and then prove the uniqueness. Take an arbi-
trary B(m,w,y). Let mg = (mq,...,mp). Above proposition suggests us to construct
the following algebra

m m
B( L, J},wmo,ym%).
mo mo
Clearly, %, e z—g} is a fraction of m with length 6 and (%, e z—g) =1.

Claim 1: As Hopf algebras, B(m,w,vy) = B({™+,... m9},wm0,7m3).

mo’ " ) m_()
Proof of the claim 1. Since (mg, m) = 1, there exist a € N, b € Z such that amy+bm =
1. Define the following map
2 B(m,w,’y) — B( m" (R %},Wmoﬁmg),
m mo
we !, g (¢) @)Y, Yy = Yme, (1<0<0).
mQg

Since

rmy

Plg™) = plg)™ = ((g)"(a"))™ = (¢)"™ % (@) o



A CLASSIFICATION RESULT ON PRIME HOPF ALGEBRAS OF GK-DIMENSION ONE 27

and

mQ
= "0 (g ()Y = Y™ 0(9) o (Yim; )
mQ
= o(Y™ gYm,),

for all 1 <+¢ < 6, it is not hard to prove that ¢ gives the desired isomorphism.

Next, let’s show that uniqueness. To prove it, it is enough to built the following
statement.

Claim 2: Let {m1,...,mg} and {m},...,mj} be two fractions of m with length 0 sat-
isfying (ma,...,mg) = (m},...,mp) = 1. If B(m,w,7) is isomorphic to B(m/,w’,~),
then up to an order of m;’s we have m; =m}, w=w' and vy =+ for 1 <i <4.
Proof of Claim 2. By Proposition 4.8, wm; = w’'m/. Since

(my,...,mg) = (m},...,mp) =1,

wlw’ and w'|w. Therefore w = w’ and thus m; = m}, for all 1 < i < . From this, we
know the isomorphism given in the proof of Proposition 4.8 must sent g™ to (¢')™,
i.e., keeping the notations used in the proof of Proposition 4.8, we have ¢(¢g™i) =
()™ for all 1 < i < 6. Since (my,...,my) = 1, there exist a; € Z such that
Zle a;My; = 1. Thus

plg) = plg=imimm) = (¢) =i = .
This implies that
g = (o
through using the relation y,,,g = 7" gym,. So,
= T G = ()T @i = o,
O

Definition 4.10. We call the Hopf algebra B({Z%, ..., 22} wmy, ’ymg) the basic form

1 m
mo mo

of B(m,w,").

By this lemma, we can tell when two fractions of generalized Liu algebras are isomor-
phic now. Keeping notations before, let m,m’ € N and {m1,...,mg}, {mi,...,mp}
be fractions of m and m’ respectively. Let mg := (m1,...,mg) and my, := (m,...,my,).
Proposition 4.11. Retain above notations. As Hopf algebras, B(m,w,v) = B(m/,w’,7’)

if and only if m =m/,0 =6, wmy = w'm{, and Al = Af(mp)?,

Proof. Note that B(m,w,vy) & B(m/,w’,~') if and only if they have the same ba-
sic forms by above lemma. Now the condition listed in the proposition is clearly
equivalent to say that the basic forms of them are same. O
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4.4. Fraction of the Hopf algebra D(m,d,~). Let m,d be two natural numbers,
mi,...,mg a fraction of m satisfying the following two conditions:

0
(4.7) 21> (mi—1)(e;—1) and 2| Z — 1)myd
=1

Let v a primitive mth root of unity and define

(4.8) Em, = VY™, 1 <0 <0.
That is, &, is a primitive square root of 4. Therefore in particular, one has
(4.9) = —1

forall 1 <i7<4.

In order to give the definition of the Hopf algebra D(m, d,~), we still need recall two
notations introduced in Section 3:

Qbm“ t+1)m gbml,(e,—l ymy Qbm“ ' gbmi,(g—l)mia if ¢ =5
(4.10) s, t[m, = 1, ifs=t+1
Orms (F+1)ms " * P (5—1)mi» ifs>1t+2.
and
¢mi,§mi ¢mi,(§+1)mi e ¢mi,fmi7 if t_ =5
(4.11) [$,t]m,; == 4 1, ifs=t+1
¢mi,§m¢ o ¢mi,(ei—1)mi¢mi,0 e quifmi’ fg 2 + 2
where ¢, ; = 1 — y=mi @it gmid for all 1 < i < 6. See (3.3) and (3.4) for details.
Now we are in the position to give the definition of D(m,d,~).
e As an algebra, D = D(m,d, ) is generated by gt Ymis -« Ymg> U0, U, "=+ Um—1,

subject to the following relations

(412) zal=a2"'z=1, g9 l=gg=1, z9=97, TYm, =Ym.T

(4 13) ym1ymk = ymkym” ymlg — ,.szgymﬂ yel -1 ezmid7 gm _ xmd’
(414) 2w = wir ™l Ymuj = iy jUiem; = Em ™ U Ym,  ujg = Y Mgy,
9 o 240+ 1 2450 (e;—1)my
415 wusur = (—1 i:lli izlmiT_x,fd

( ) Vel (-1 Y —
0
i=1

for 1 <4,k <6,and 0 < j,l <m — 1 and here for any integer n, m means remainder
of division of n by m and as before n = 3>_, nym; (mod m) by Remark 3.2.

e The coproduct A, the counit € and the antipode S of D(m,d,~) are given by
(4.16) A(z) =z @z, Alg) =9®9, AYm,) =Ym, ® 9™ + 1 & Ym,,

m—1
(417) Awy) = > APy, @ a7Fghu; g

k=0
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(418) €(x) = e(g) = elu) = 1, elym,) = e(us) = 0
(4'19) S(x) = x_l’ S(g) = g_la S(yml) = —Ym;9 o

6
(4.20) S(u;) = (—1)Zimrding= Sy mI P b5 Gimid gm—1— SXEEREN | (=2

0 (o —1ym.
for1<:<90, 1§s§m—1,0§jSm—landb:(l—m)d—wd.
Before we prove that D(m,d, ) is a Hopf algebra, which is highly nontrivial, we want
to express the formula (4.15) and (4.20) in a more convenient way.

On one hand, we find that

ke i ke o (keitji)(keitji+1) 2 dilitl)
(4.21) (—1)Therdigkeiiymi 2 = (~1)7IE I

for any k € Z. Therefore, 1f we define

Us ‘= Us,

where 5§ means the remainder of s modulo m, then the relation (4.15) can be replaced

by

0 ;. w0 LD 1 2458 (e=my
U]ul e (—1) =1 ll’)/ i=1 1" 2 2 R,ﬁl’,‘ 12 d
9
11 i ei — 2 = llmysg
2 e_ e;—1)m;
— (—1) f:1liry ? 1m 21 (l2+1) lx +Elil£ ™ g
m
0
1160 =1 =1i5i = my9
o
1 2"'21 1(61 l)mld (l +1) .
(4.22) ==z T H Vo™ ) = 1 — 1, i — Um,y5579
=1
1 2"‘21 1(61 1)mzd 2l (1 +1)
= H )™ i = 2 = Uil Y579
=1

for all j,l € Z, that is, we need not always ask that 0 < 5,1 <m — 1.

On other hand, since g™ = 2™ and (4.21) , the definition about S(u;) still holds for
any integer j, that is, (4.20) can be replaced in the following way:

Ji (G +1) 6
2 il +l) Zl 1]Zmldxbgm 1— (Zi:lﬁmi)uj

S(’LL]) i 1]2 Hé‘ Jz D= m

(4.23) 20 g 1H Jlgmzl ,2@ jz’midg*jimiuj

for all 5 € Z.
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We also need to give a bigrading on this algebra for the proof. Let § := /¥ and define
the following two algebra automorphisms of D(m,d,~):

Tr—>, r—x,

Eir L 7 Yme> and Z7 : Ymy > V" Y
9—"9, 9—"9
w; — Euy, Uj —> £2j+1uj,

for1 <i<fand 0<j<m-—1. Itis straightforward to show that Eﬁr and =7 are
indeed algebra automorphisms of D(m, d, ) and these automorphisms have order 2m

by noting that £ is a primitive 2mth root of 1. Define

. K[TE Yoy - s Y ]g%, 1 = even,
D; = -1
Z;r;]l ]k[xil]gTus, i = odd,
and .
D = ]k[m 17ymlig1 ,...,ymeg*m‘)]g%, ]::even,
Dm0 Klg=gtuja J = odd.
Therefore i
]k[xil]yj,ig%, i,j = even,
.2
(4.24) Dij = DjN Dj = ]k[xil]g%uﬂ, i, = odd,
0, ’ otherwise.
Since ), ; Dij = D(m,d, ), we have
2m—1
(4.25) D(m,d,7) = € Dy
1,j=0

which is a bigrading on D(m,d, ) automatically.

Let D := D(m,d,~), then D® D is graded naturally by inheriting the grading defined
above. In particular, for any h € D ® D, we use

Mo ,t1)@ (s2,t2)
to denote the homogeneous part of h in Dy, 4, ® Ds, 1,. This notion will be used freely
in the proof of the following desired proposition.

Proposition 4.12. The algebra D(m,d,~y) defined above is a Hopf algebra.

Proof: The proof is standard but not easy. We are aware that one can not apply the
fact that the non-fraction version D(m,d,7) (see Subsection 2.3) is already a Hopf
algebra to simply the proof although we can do this in the proofs of Proposition 4.7 and
4.1. The reason is that if we consider the subalgebra generated by 21, g, ug, . . . , Um—1
together with a single v, (this is the case of D(m,d,~)) then we can find that the
other y,,’s will be created naturally. So, one has to prove it step by step. Since the
subalgebra generated by %1, g, , ... »Ymy, g 1s just a fraction version of generalized
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Liu algebra B(m,w,~y), which is a Hopf algebra already (by Proposition 4.7), we only
need to verify the related relations in D(m,d,~y) where u; are involved.
e Step 1 (A and € are algebra homomorphisms).

First of all, it is clear that e is an algebra homomorphism. Since x and g are
group-like elements, the verifications of A(z)A(u;) = A(u;)A(z™") and A(u;)A(g) =
Y A(272)A(g)A(u;) are simple and so they are omitted.

(1) The proof of Am, ;) A(um,+5) = AYm,) Awg) = Em A ) A(wj) A(yim,)-
Define

forall 1 <i7<46.
By definition A(u;) = 22”:_01 AR E=D) @ x*kdgkuj,k for all 0 < 7 < m — 1, we have
) m—1
k:O

m—1

= O 0

=0
m—1
2 . .
_ ,y—mi (1+]i)+k(j+mi_k)$miduk ® xm,d kdgku]—i—ml 5
k=0
And
m—1
A(ymz)A(u]) = (1 Q Ym; + Ym,; @ gml)(z ’Yk(kij)uk‘ X xikdgkuj*k)
k=0
m—1
= Vk(j_k)uk KT kdgk km1¢ml,j kWji4+m;—k
k=0
m—1
+ ryk(Jik)Qsmi,kumi-f—k & xikdgmiijuj—k‘
=0
m—1
_ ,yk(j—k)—i—kmiuk ® x—kdgkujeri7]C
k=0
m—1
20 11 _o1. L
k=0
m—1
+ ’Yk(]ik)umﬂrk ® xfkdgmﬂrkujik
k=0
m—1

2(14-k; id —kd i+k
_ (] k)—mg (1+ z)xmz U +k R T gmz+ Uj_j
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3
L

k(j—k)+km; —kd_k
ARk FRmay @ ek gk

k=0
m—1
Y —m2 (5. ) .
_ ryk(] k) mz(]l+1 ka)uk®x(mz k)dgkuj-i-mi—k
k=0
m—1
+ Y AEmmGTREmy, @ g hmmddghy L,
k=0
m—1
—m. (4 2. . (ke
o ,Y(k m;)(j+mi—k) mi/ﬂxmlduk@x (k mZ)dgkujerifk
k=0
m—1
_ k(j+m;—k —kd k
=) AUy @ ek gk
k=0
m—1
_m?2 i ; . . cd—
. ~ mg (1+7;)+k(j+m; k‘)xmlduk@)xmld kdgkujeriik.
k=0

Here we use the following equalities

(jfk)+kmi7mi(jfk:)fm?

o (k=mi) (G —k4m) = kI —k)F2kim—m (145:)

and

(kfmi)(thmifk:)fm?k m?(1+j¢)+k(j+mi7k:).

Y t=T
Hence A(¢m; j)A(tm;+5) = A(Ym;)A(u;). Similarly,
Em A=) A7) A (Ym,)

= & (2™ @ 2™ (Y " ARy @ xR gR ;) (1@ Y, + Y, © g™)

i—k)d _k
mn ) g Uj—kYm;

+ 3 AUy, @ MR ghy g

k(j—k), mqd —kd_ k
U=R)gmidyy @ oGk g, itk

(G=k)mi p.(=mi—k)d k+miuj,k

K(G=h) gmidy, ) x—kdgkuj+mi_k
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m—1

i) —m2 L . _ .
,-Yk(] k) mi(1+]z kz)xmzduk:@x( k+ml)dgkuj+m¢fk

k=0
1

m—

Il Il
3‘ + | ~ 3‘ + = 3‘
MM~ I SRt

iNng

3
L

Il
a
l
o
)

3
L

T

0

|
P>

R(G—R) gmidy, g gk gl

-1
Y

k(j—

k) ¢ml ,kukeri ® Y

(j—k)mix(—mi—k)d

¢mi7j—kuj+mi—k

gk+miujfk

k(j—k) mid —kd_k
U=k gmidy, @ o kdghy; ok

i) —m2 L ) _ .
,-Yk(] k) mi(1+]z kz)xmzduk:@x( k+ml)dgkuj+m¢fk

gl

Vk(j*k)fm?(1+jﬁki)xmiduk @ pmid—kd

k(j—k-+m;)

—kd Kk
U @T G Ujpm;—k

—kd k
U QT "G Ujrm,;—k

(¢m¢,j)A(umi+j)'

(2) The proof of A(uju;) = A(uj)A(uy).

Direct computation shows that

A(uy)A(u)

3

w0

3

~

3

~+

|
—

o

L
3

o
]

L
3

o

k(—k) mid —kd K
ARk gmidyy @ R gk g

g uj—f—mi—k

m—1

,Ys(j—s)us ® x_SngUj—g Z ,Yt(l—t)ut ® x_tdgtul,t

]

o

|
—

|
~ o

v

v

=)y

(t=s)(—t+s)+(j—s)t

(t—s)(I—t+s)

t=0

Ups @ x—sdgsuj_sx—(t—s)dgt—s

—td t
UgUt—g QT g Uj_sUl—t4s-

Ul—t+s

33
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By the bigrading given in (4.25), we can find that for each 0 <t < m — 1,
m—1

t—s)(I—t j—s)t —td .t
Z ATy @ 27 Uj—sUi—t1s € Daoror @ Doyoyoia(jti)
s=0

where the suffixes in Dg 919t @ Doy 9 219(j4+1) are interpreted mod 2m.

Using equation (4.22) we get that

2 (t=9)i((t=s);+1)
UsUt—s = —l“ H (t °) g3 (t ? m' 2 [sis€i —2— (L — 8)ilm, Y9

and
L o : l t+s); (l t+5); . m? (=t+s) [(J*“S)ﬁl]
Uj—sUW—t+s = E%’ H iry
=1
[(G = 8)iver =2 — (L= t+ 8)ilm, Y5773

0 (o 1hms
here and the following of this proof a = —Léell)'d.

Using [18, Proposition 1V.2.7], for each 1 <7 <6

[si65 — 2 — (t — 8)ilm, = (1 — %erl mzd)(l ,yls+2 mzd) (1 ,y(eiflftiJrSi)xmid)

(2

e;—1—t; i(a;—1
_ Z (— 1) (ei -1- ti> y,a (a2 )(754‘1 iy
(2 (2
Yi

o
a; =0 v

ei—1—t; ai(aﬂrl)
Q; . ’

a; =0
and

(= 8)isei =2 — (I =t + 8)i]m,
= (1- %Jz si+1 mld)(l %Jz 5;+2 mld) c(1— %ji*SnLei*1*(j¢+l¢*ti)xmid)
ei—1-Girit)

) T Bi(Bi—1)

e —1—=(3:+1; —t; i—sitl m

=Y (VTR T g
Bi=0 v v

i

i—1=(itli—t:) —_ (B '
— ’ g g (€ —1— (Ji +1i —t;) BulBitl) (ﬁ2+1)+(]i*si)5i madB;
- Z (_1) B '7@' X s
Bi=0 ! Vi

where (j; + [; — t;) is the remainder of j; 4+ 1; — t; divided by e;.
Then for each 0 <t <m — 1,

(4.26)  A(uj)A(wr)(2,2+26)0(2+2t,2+2(+1))
m—1

= v

s=0

t—s)(l—t j—s)t —td t
(t—s)(I—t+s)+(j—s) Usli—s QT g Uj—sU—ts
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m—1 1 0 )
_ A=) (= t+s)+(j=9)t _ za H( 1)=9)ig— (t $)inm? 2(=9)i(l=0)it 1)
m
s=0 =1
[sisei —2 — (t — 8)ilm, g
9
td t 1 xa’ (l t+s é_mll t+s) ’ym 2 (I—t+s); [(]7t+s)i+l]

(G — 8)i e — 2 = (=t + 8)ilm, Y7729
m—1 0

1 m2 i+l
= 7(] s)—t(G+l—t) _~_ 5 H( ) gmz 7 ¢ 2 [Sia e —2— (t — S)z]ml

m
s:O =1

Rz H[(j —8)irei =2 — (I =t + 8)ilm, ) (Y9 @ 25749 )

m— 6

5) 1 2l 5 +1)
= Z (J=—s)t—t(j+l— t)m2 H( ) sz
i=1

—1-

S M s
Z i
Qi Yi

er—1—(r+l—tr)

0 VS TR
SIS CR A

Mﬂjk*%)ﬁk dov; dB—td t+1
Ve 2 (il @ g Br— Nz g © xaijrl—tg + )
1 o m2l 4 +1) 0
= el ]

i k=1
ei—1—t; eg—1—Jp+lp—tp e — 1 —t:
DI SR I
Oz,L':O 61@21 al v
ai(ai+l)  Pr(Brtl)
,yi 2 7]4; 2
m—1
_ —ts_—m?2s;a;+m?
(427) ’)/t(t 1) Z ~y ts,y mlszaz-l-mkskﬁk](xaytg®xayj+l7tgt+1)‘
s=0

<€k — 1=k + 1k — tk))
B -~

i

+ikBk (xmidozi ® xmkdﬁk—td)

. 0 m2 it . .
Meanwhile, uju; = %x“ [T (- 1)! £ml Ay L i ei =2 = li]m, Yim9- By defini-
tion,

1 1 1
=yl et
where j; + [; is the remainder of j; + [; divided by e; for 1 <14 < . Therefore,

0

Alyy) = 110 ® ymi + yon, @ g7
=1
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0 ji+l; m '
3 Vi

i=1 t;=0 bi
Jitli =
= H <‘% + li) ym ® y]nLl gmiti.
i=1t;=0 tl Yi
and
A(lgis ei = 2 = lilm;)
= (11— ,yijﬂrlxmid ® xmid) e (1®1— ,yfi*1+ji*ji+lixmid ® xmid)
e;i—1 m - az(ai_l)
T Ry "
= 2 ( s ) UG AT
a; =0 ¢ Vi
1 J1+l - i (o041 .
— Z (_1)ai <€i —1- Ji + l@) %04 (a2 )_—i-Jiai (xmidai ® xmidai)’
a; =0 Qi Vi
we get
b m2lili+1) .
Alujm) = 2 [T=0 ey Al e = 2 = Ll ) Aly) Alg)
i=1
0 e;i—1—7i+l; _— ailos+1)
1 Y HURRY ’ e'—l—]—{—l- QilQitl) o
- Tl TS (1 ) S
=1 a; =0 L Vi

Ji+tly ———
; + 1 o dews .
Z <]z N Z> (xa ® xa)(xm,clozZ ® xmldal)(yfnl ® y],—l—lz t,gmltz)](g ® g)
ti= v Vi

7] ]z+l ej—1— .]z+lz - -
1 2 i+ fei—1—jgi+1; Ji tli
= —_ 1 _1 Qg 3
I WD S (A N O )

az( a;+1 )

Wi D) +jic; (xmidai ® xmidai)(x ym g Qx y]rH gm¢t¢+1)].
Clearly, for each t satisfying 0 < t¢; < j; + {;,
(4.28) A(Ujul)(z 24+26)®(2+2t,2+2(5+1))
ei—1—ji+l; - -
21(1-0—1) ) 6‘—1—j'+l‘ ]+l
= — i P} -1 Q; ? 7 ? ) 7
H gy pORE ().

ai(ai+1)+jiai dous dous Gl — 4
v, 2 (x40 @ gMide) (goyli @ pylitliTh gt (g @ g).

By the graded structure of D ® D, A(u;)A(u;) = A(u;uj) if and only if
(4.29) Aui) A(ug) 2,2420) @ (242t,24+2(j+1)) = 0
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for all ¢ satisfying there is an 1 <4 < 0 such that j; +; + 1 <t; < e; — 1 and

(4.30) A(uiuj)(2,2+2t)®(2+2t,2+2(j+l)) = A(W)A(Uj)(2,2+2t)<§g)(2+21t,2+2(j+l))
for all ¢ satisfying 0 <t; < j; +{; forall 1 <i < 4.
Now let’s go back to equation (4.27) in which there is an item

m—1

(431) Z ,yfts,yfm?siaﬂrmiskﬁk
s=0
0 e,—1

_ | | § :,y—tzszmg,y—m%siai—f—miskﬁk

z=1s8,=0

Zi;é ’Y_Simz(ai—i-ti) Zi::(l) ’Y_Skmml(ﬁk tk) H2 ik Zz,(l) ,y—tzszmg ik
ZEZ_O ,.Yfm si(tita;—PB:) Hz;éz ZZ: ,.thzszm Pk

Therefore, in order to make this equality (4.31) not zero, we must have
o =—ti, =1t iFk
Bi = oy + t; i=k

But in the expression of equality (4.27) one always have 0 < a; < ¢; — 1 — ¢; which
implies that o; # —t;. Thus, as a conclusion, in the equality (4.27) we can assume
that

i=k, Pfi=oi+t;, (1<i<0).
So, the equality can be simplified as

ei—1—t; e;—1—j;+1l;—t;

0
WH( IR Ean i VD DD SR e (% ;_t)y,
ai(a

0 Bi=0

;=
T T + 5z Bitl) | .
5’i 'Yz

7 Zv oA Hym ® Hy“l 9" ) (g ®g).

s=0

From this, we find the following fact: if t; > j; +1; + 1 for some 4, then e; — 1 —
Jitli—ti=t;—1—j5;+1;. So,0< G; <t;—1—j;+l;andthus 1 —e; < B;—a; —t; <
—1—7; + [; which contradicts to §; = «; +t;. So the equation (4.29) is proved. Under
B; = a; + t;, we know that

m—1

0
H ,Y—ts —m; Szaz“l‘mkszﬁz =e1ez---g =M
1=1 s=0
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and (4.27) can be simplified further

gl(l+1) 0T 1)t e, —1—1t;
H | B C I S

i=1 a;=0

ei—1—(Ji+1l—t) fyéi(ag—i_l)+(ai+ti)(gi+ti+1)+ji(ai+t¢)+t¢(li7t¢)
o + tl Vi '

(amide @ g gyl @ gyl LTl gt (g @ g),

Comparing with equation (4.28), to prove the desired equation (4.30) it is enough to
show the following combinatorial identity

(_1)t¢+ai,yw+ﬂﬁl)+ti(ji+li—ti) <€i -1 ti) <€i —1-0i+lL— tz))
' Qi Yi o + 1 Yi

_ <€¢ -1 _ji+li> <ji+li>
Qi i t Yi

which is true by (6) of Lemma 3.5.

e Step 2 (Coassociative and couint).

Indeed, foreach 0 < j <m—1

m—
(A ®1d)A(uy) = (A @ Ld)( Z P @ 2 )
k=0
m—1 m—1
= = Dy, @ 2 gty ) @ 2 Mgk,
k= s:O
m—1
_ ARGRI+s(b=9)y @ 27 gy @ xRy,
k,s=0

and

m—1

(Id@A)A(y;) = IdRA)(D v U u, @ 29 u; )
s=0

-1

3

m—1
~y s(j— sus® Z,y j—s— t.%' gsut®xfsdgsx7tdgtuj_s_t)
t=0

I
iilM

_ ,Ys(jfs)th(jfsft)us ® xfsdgsut ® xf(ert)dg(ert)uj_s_t.

~+

=0

S,

It is not hard to see that (A ® Id)A(u;) = (Id ®A)A(u; ) for all 0 < j < m — 1. The
verification of (e ® Id)A(u;) = (Id ®e)A(u;) = u; is easy and it is omitted.
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e Step 3 (Antipode is an algebra anti-homomorphism).
Because x and g are group-like elements, we only check
S(jrm)S(Bmij) = S(1;)S (Ym,) = EmyS (Ym,)S (uj)S (2™
and
S(ujur) = S(ur)S(uy)
for1<i<fand1l<jl<m-—1here.

(1) The proof of S(ujﬂLmi)S(gbmuj): S(u ) (ymz) EmiS (ymi)S(uJ')S(ﬂ:mid).

Clearly u;jS(¢m,; j) = ¢m, ju; for all 4,j and thus

S(uj—i—mi) (Pmi.j)
_ b m— IH ]ngll fwxjimidg*jimiuj

- ¢m1 J (uj+mi )

0 (e 1),
here and the following of this proof b = (1 — m)d — Md.

Through direct calculation, we have

0
_ o 230D )
—xbgm 1 | |[(_1)]z mjizfy my ey szmzdg szz] (~Ym.g —mi)

0
_ s 20Ut g ) .
= —ag" ! | |[(—1)31 e e R [ (S B T )

274 (3;+1)

b m 1 —ms =2 gomyd  —Jimy —1_—m2(ji+1) .mid —m;
= H 1)Jig dig ™ gl g (¢ Ly T U pmidg Ty, )

39

J10U1+1) Gi+1)(G1+2)
2

.. Jeme g
g P, i Wj+m,

b 1 e Gt D) bt i i1 _
= zbg™ ( 1)J1+ +(a+1)+ +]9£mjll"'£m§]+)"' m_;g,yl

ghmid . Uit mid o ggemed g=jima . o= (it )ms
= Om;.jS (Ujgm;)
and

fm m 1 b 24Ut g —m.d
_gml( yml z H ]zgmlz 3 2 1-.71 1 g Ji z]ujx 7
i=1

Jg(dg+1)
2

..fyg

Jg(dg+1)

) 1 et it ) . (ji+1) G D) U +1)(1+2)
m— et (2 _ — (i _ 3 5
=g ( 1)]1 I jeémjll o 5 7 e ém?;e’h BY

m;
ghmd Gt mid g jemed g—jima . = (it ma L g=deme Doy iU
= Om;.jS (Ujgm,)-

(2) The proof of S(ujur) = S(u;)S(uj).

..fyg
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Define ¢y, s := 1 — %'sﬂrlx_mid for all s € Z. Using this notion,

xmldqu“s — xm, (1 ,yfz-f'l m,d)

si+1 i—8i—2)+1_my
e L e )

o si+1
= —" ¢mi,6i78i*2'

And so
1, i m2 lii+1)
S(uju) = S(—x TTED 6™ s es — 2 = Lilm,ym9)
i=1
1 o 21 (1i+1) —
= —g o T G ™ T (g™ VS (s e = 2 = Ul
=1
1 o 1;(1;+1) 7t Gitl—1)
-1..— L) Gitl; om2ditlilitli=1)
=—y xaH[( )5mﬂl 2 (=1)Jitligmi 3
=1
S([Gires — 2 = Lilm, )yl g ™m0
0 _
1 ., m2 i+ P m2 3Lt =1)
pE i | (G e
1=

S (s ei = 2 = Uil )y 7

i1l m2 lilith) + ) Gt 2Jz+l (G +1;—1)
¥ H ey S (g RO

2 (e =175 +1;) G+l —24; —e;)
2

(_1)€i_1_ji+li,yml
]HH Jlsglemt SOy G4l L)

xf(eiflfjﬁli)mi i ei = 2 = GilmiJyszg

—jHi—1

x_(ei—l—ji-i-li)mid[li, € —2— Jz]mz]yﬁg

Here the last equality follows from

ei—1 2Jz+l (Jﬁ'l =1 p2leizls Jitl )(J,H —2ji—e;)
(=17 ™ g
FUHgili=l)

= ’y i
Now let’s compute the other side.
Lii+1) 1

0
S(w)S(uj) = g™~ 'a® H[(—l)liégwiiW_m?Tx imadg=limay,

m—1_.b ji g i —m2 AT g amg
g T H[(_l)]z mizfy i B) 1']1 i g Ji z]uj
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0 o
=gm1 H[(_ l+jz£ lz Jin~ Z[—li(lé+l)+]—Z(Jé+1)]x(li_ji)midg—limi]

1SN0 s
ulgm 1 Zi:ljlmluj

— A=l litji g—li—ji o —m2[ AU L 300D (14 5ymid  —limi—jim,
~ JH[(_l) Jig livdiny i e (lit3i) gima]

g
g*2x2duluj
0
—1-1j Litji g—li—ji o —m2[ D) +1) “(“+1) li+ji)mid —lim;—jim;
=~ JH[(_l) +ngi Jig—m il + ](+J)mg mi—Jimi]
1 b Ji(4i+1)
_ 2 i\J3g .
g 2$2dE33a H( )ﬁémfw > [lie; —2 —Ji]mi?/ﬁg
i=1
Ly 2 —m2 (AL 1 (eim 1= mid T
=y ]_H[( ) é‘ Jz m; [llaez_Q_.]i]mix i iTJi i g iTJi z]
m -
i=1
1
—2 —a
g Ex Y59
= — H 23“}/ z(@)_hmz lz]zm +m (l +]z) +2(l1+31)m1
=1
[l e; —2 — ji]mix(ei_l_(li+ji))mid]x_‘1yﬁg_(j+l+1)
_ 2l(l+1) 20524 50,
_ a ]-HH Sm, ,.)/ml(]z +jili—1i)

x_(ei_l_]i+li)mi [liaei —-2- jz]mz]yj_i_[g T 1
where the fifth equality follows from

_ 2+Z?:1 (ei— i
2

m;
pot+2d d+2d _ x—a—zgzl(ei—l)mid

=X

and the last equality is followed by

572j¢’yim%(li(li2+l)) lmz*lﬂzm JFm (L +JZ) +2(li+ji)m
mg

- fym%(—li(léﬂ) )= gi—mZ i (Li+1)~limi—lijim3 +m3 (Li+7i)? +2(li+ji)m
N ")/ 2l (13 +1) _’_7712(]z +iili—l; )+szz+lzmz
The proof is done.

o Step 4 ((S *1d)(u;) = (Id*5)(u;) = €(uy)).
In fact,
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(S *1d)(u

And,

(Id xS)(

up) =

I
<.
1]

H =}

Il Il
(]} M

- X

GONGXIANG LIU

m—1
o —id i
0) =) SO uj)arTgu
Jj=0
! (i+D)
m 1 b i i 2J—‘—J‘— im;d jim; —jd j
— ny i* H 1)% gml glimad g=dimily p=3dgly,
Jj=0
m—1 (% Gt 1)
2744
= ng 1aij sz]ujuij
7=0 =1
el o i Gi+1)
m—1_b i i —m2dildi
= 2 o Tl
7=0 =1
(%
1 m2 =it D) )
E%“H(— AT e — 2= Gilmig
=1
0 e;—1
_ a+b m
- H ZVZ jlael _jz]mi]
i=1 ji=
) 0 e;—1
_ —x_Zz olei—1) mZdH Z 7@1 _ . 1[ml]
= 1]z
1 0 o ) o )
= — g~ 2i=oles l)mldHeix(el Dmid (Lemma 3.5 (3))
m i=1
=1
= €(up).
m—1

7_j2uj5(x_jdgju,j)

<
I
=)

3
L

-2

v uiS(u—y)S (g7 )l

3

) m2=didit)
~ —i%y g™ bH m R g iimid giimiy, g0 g

.
Il
Ho

3

B i
.%'(1 m)d+=a=1 dH %%V—ﬁmi]gm—luju_j

.
Il
,_.o

3

(1—m)d+ A 1(61 1)m’d]‘_l ?7_ji(_2ji+l),y*j¢mi]gmfl

<.
I
=)
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1 m2 =3i(dit1) .
EJTQH( 1) i #L,ry : 2 []2,62‘ _Q_Ji]mig
=1
m—1 1 0
=D — L& ™% = 1ji = 1,
j=0 =1
1 0 e;—1
= E H Z]]l - 1,75 — 1[m1
i=175;=0
1 6
= 1le (Lemma 3.5 (1))
=1
=1
= ¢(uo)

For1<j<m-—1,

m—1
(S *1d)(u;) = > AU S (up)a Mg us
k=0
m—! ki(ki+1)
m2 kileitD) ks _
_ Z,Yk gl bH §ml 5 phimad g—kimaly, o kdgkujik
§=0
m—1 Ky (ki+1)
2 2 2
= AMRgmt bH Yoo i AR g,
k=0
= K(j—k) gm—1,b m2 ki) 2,2
= y H gml m; 2 v z]
k=0
1 o . . 2 (G —ki) (G —ki+1)
s [Ti(=1)7eeg githigm: 2 [kiyei — 2 — ji + kilm,lyj9
i=1
a+bm - 1)f J QJ' g jim—kym? ;
= Z H 15 “y v [kl)el 2—7g + kz]ml]y]
k=0 i=1
a+b 9 2 32 i i
H 2 lyj
0 e;—1
ks ,
TID Ak = 1= i ki = 1im,]
i=1 k;=0

=0 (Lemma 3.5 (5))

= e(uy)
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m—1
k(j—k —k_kd
(1d*S8)(uy) = > AP S(u;_g)g *x
k=0
ml Gi—ki) Gi—ki+1)
k(i—k),, g1 20 k i —m2 ik Uik
— ~ (.7 H -7 f)/ 2
k=0
x(ji_ki)mzdg_(h_kl)ml]u.j,kg_k.%'kd
ml o Gi—k) ks +1)
_ 2 Ji—Ri) 4 — Ry
— ukgm lbu[(_ ]Z kgl ]Z m2 Ui ki3 ki
k=0 j

jimid m
x]z i g —Ji Z]U_]fk

o >? 1 (e;=1)m; 4 9 (Gi—k;) Gy —k;+1)
_ —k _m—1_(1-m)d+=="—""14d i—ki ki iy m2Uimki)UimRiTL)
=y kgmialom 2 JTi(=1)7ihighi=digmms 2

k=0 i=1

xjimzd,-y_kjimig ]'m']uku L
m—1 6
2i=1(ei=1)m; m2 Ui=k)Gi=k;+1)
_ —k m—1_(1-m)d+==1>+ """ i —ki ¢k iy i i
= vy g ( ) H[ ] é- —Ji
=1

=0

Tigmgmiasmstg=sim TS 2507k — 1~ jis

i=1

= &(uy)-

jitki . m? (ji_ki)(.;i_ki+1)

—md j : ,yfk: H[ ?rglklf_]l),y*kjlmﬂr]lmlx]zmzdg*.]zmz [kz; e; — 2

0 e;—1

i=1 k;=0
(Lemma 3.5 (5))

By steps 1, 2, 3, 4, D(m, d,~) is a Hopf algebra.

(kisei — 2 — ji + kilm, |yj9

— Ji + Kilm; 9™ y;

- 1]mz]y

0

Proposition 4.13. Under above notations, the Hopf algebra D(m,d,~) has the fol-
lowing properties.

(1) The Hopf algebra D(m,d,~) is prime with Pl-degree 2m.
(2) The Hopf algebra D(m,d,~) has a 1-dimensional representation whose order

18 2m.

(3) The Hopf algebra D(m,d,~) is not pointed and its coradical is not a Hopf
subalgebra if m > 1.
(4) The Hopf algebra D(m,d,~y) is pivotal, that is, its representation category is
a pivotal tensor category.



A CLASSIFICATION RESULT ON PRIME HOPF ALGEBRAS OF GK-DIMENSION ONE 45

Proof. (1) Recall that the Hopf algebra D = D(m,d,~y) = @?ZLO D! is strongly Zgp,-
graded with
]k[x:tl’ymp"',ymg]g%’ 1= even,

i—1
S kg ug, i = odd.
So the algebra D meets the the initial condition of Lemma 2.11. Using the notation
given in the Lemma 2.11, we find that

D! =

XPYm; = grzix_midymi
for all 1 < i < 6. This indeed implies the action of Za,, on Db = k[zFL, ymy, .- ., Ym,)
is faithful. Therefore, by (c) and (d) of Lemma 2.11, D is prime with PI-degree 2m.

(2) This 1-dimensional representation can be given through left homological inte-
grals. In fact, the direct computation shows that the right module structure of left
homological integrals is given by:

1 [% [%
JD = D/(CE - 1,ym1a"',ymgaula---,umflyuo - ng(reinl)’g - Hryiml)
i=1 i=1

Through the relation that &,,;, = /7™ it is not hard to see that the io(D) = 2m.

(3) Through direct computations, we find that the subspace Cp,(d) spanned by
{(z799)"u;]0 < 4,5 < m — 1} is a simple coalgebra (see Proposition 7.6 for a de-
tailed proof of this fact) and the coradical of D equals to

GB 'y @ ( GB 2 g Cp(d)).
i€Z, 0<j<m—1 i€Z, 0<j<m—1

Since m > 1, it has a simple subcoalgebra C,,(d) with dimension m? > 1. Therefore,
D is not pointed. Its coradical is not a Hopf subalgebra since it is clear it is not closed
under multiplication.

(4) See the proof of (3) of Proposition 7.14 where we built the result through proving
that D being pivotal. O

Remark 4.14. (1) As a special case, through takeing m = 1 one is not hard to
see that the Hopf algebra D constructed above is just the infinite dihedral
group algebra kID. This justifies the choice of the notation “D”.
(2) It is not hard to see the other new examples, i.e., T'(m,t,£), B(m,w,?), are
pivotal since they are pointed and thus the proof of this fact become easier.
In fact, keep the notations above, we have

0 7]
S2(h) = (g™ )n (g™~
=1 =1

for h € T'(m,t,&) and
0

0
s*(h) = ([Tg™n( g™
i=1

i=1
for h € B(m,w,~). Through applying Lemma 2.16, we get the result.
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Now let m’ € N and {m/,...,mj} a fraction of m'. As before, we need to compare
different fractions of Hopf algebras D(m,d,~y). Also, we denote the greatest common
divisors of {m,...,mg} and {m),...,my } by my and my respectively. Parallel to
case of generalized Liu algebras, we have the following observation.

Proposition 4.15. As Hopf algebras, D(m,d,~) = D(m/,d',~") if and only if m =
m/, 0 =0, dmy=dmj and AmE = (/) (m0)?,

Proof. By Proposition 4.11, it it enough to show that D(m,d,v) = D(m/,d’',v’) if
and only if their Hopf subalgebras B(m, md,~) and B(m/,m'd’,~) are isomorphic. It
is clear the isomorphism of D(m,d,~) and D(m’,d’,~") will imply the isomorphism
between B(m,md,v) and B(m/,m'd’,~"). Conversely, assume that B(m,md,~y) =
B(m/,m'd,~"). By Proposition 6.11, D(m,d,~) is determined by B(m,md,~) en-
tirely. Therefore, D(m,d,~v) = D(m/,d’,~") too. O

At last, we point out the examples we constructed until now are not the same.

Proposition 4.16. If m > 1, the Hopf algebras T'(m/, t,£), B(m”,w,~") and D(m,d, )
are not isomorphic to each other.

Proof. Since m > 1, D(m, d,~) is not pointed by Proposition 4.13 (3) while T'(m/, ¢, £)
and B(m”,w,~") are pointed. Therefore, D(m,d,~) % T(m/,t,&) and D(m,d,~) %
B(m”,w,~"). Comparing the number of group-likes, we know that T'(m/,¢,&) %
B(m",w,~") either. O

5. IDEAL CASES

In this section, we always assume that H is a prime Hopf algebra of GK-dimension one
satisfying (Hypl) and (Hyp2). So by (Hypl), H has a 1-dimensional representation

m: H—Lk

whose order equals to PI-deg(H ). Recall that in the Subsection 2.2, we already gave
the definition of m-order ord(m) and m-minor min(x). The aim of this section is to
classify H in the following two ideal cases:

min(m) = 1 or ord(m) = min(r).

If moreover assume that H is regular, then the main result of [9] is to classify H in
ideal cases. Here we apply similar program to classify prime Hopf algebras which may
be not regular.

5.1. Ideal case one: min(7) = 1. In this subsection, H is a prime Hopf algebra of
GK-dimension one satisfying (Hypl), (Hyp2) and min(7) = 1. Let PL.deg(H) =n > 1
(if =1, then it is clear that H is commutative and thus H is the coordinate algebra
of connected algebraic group of dimension one). Recall that by the equation (2.3), H

is an Z,-bigraded algebra
n—1
H=P Hijnx

1,7=0
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Here and the following we write H;; » just as H;; for simple.

Lemma 5.1. Under above notations, the subalgebra Hog is a Hopf subalgebra which
is isomorphic to either klz] or k[z*!].

Proof. Since min(n) = 1, H) = Hy = Hpo. By (1) and (3) of Lemma 2.9, Hog is stable
under the operations A and S. This implies that Hy is a Hopf subalgebra. By Lemma
2.8 and its proof, we know that Hyg is a commutative domain of GK-dimension one.
So Hyy is the coordinate algebra of connected algebraic group of dimension one. Thus
it is isomorphic to either k[z] or k[zT1]. O

Therefore, we have a dichotomy on the structure of H now.

Definition 5.2. Let H be a prime Hopf algebra of GK-dimension one satisfying
(Hypl), (Hyp2) and min(xr) = 1.

(a) We call H additive if Hyp is the coordinate algebra of the additive group, that
iS, HO(] = ]k[x]

(b) We call H multiplicative if Hyg is the coordinate algebra of the multiplicative
group, that is, Hog = k[z*!].

Remark 5.3. In both [9] and [36], the additive H was called primitive while the
multiplicative H was called group-like. Here we used a slightly different terminology
for intuition.

If we check the proof of the [9, Propositions 4.2, 4.3] carefully, then one can find that
these propositions are still valid even we remove the requirement about regularity. So
we state the following result, the same as [9, Propositions 4.2, 4.3], without proof.

Proposition 5.4. Let H be a prime Hopf algebra of GK-dimension one with PI-
deg(H) =n > 1 and satisfies (Hypl1), (Hyp2) and min(w) = 1. Then

(a) If H is additive, then H = T(n,0,§) of Subsection 2.5.
(b) If H is multiplicative, then H = kD of Subsection 2.3.

In particular, such H must be reqular.

5.2. Ideal case two: ord(m) = min(m). In this subsection, H is a prime Hopf
algebra of GK-dimension one satisfying (Hypl), (Hyp2) and n := ord(w) = min(m) >
1 (if = 1, then clearly H commutative by our (Hyp2)). Recall that we have the
following bigrading
n—1
H=p Hy.

3,j=0
The following is some parts of [9, Proposition 5.2, Theorem 5.2], which are proved
without the hypothesis on regularity and thus they are true in our case.

Lemma 5.5. Retain the notations above. Then

(a) The center of H equals to Hy := Hop.
(b) The center of H is a Hopf subalgebra.
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The statement (b) in this lemma also imply that we are in the same situation as ideal
case one now: H is either additive or multiplicative. No matter what kind of H is,
H;j is a free Hyp-module of rank one (see the analysis given in [9, Page 287]), that is

n—1 n—1 n—1
= 1y = & s = B vt
1,7=0 1,7=0 1,7=0
and the action of winding automorphism (relative to ) is given by
i . _ .
Er(ujja) = 'uja, and = (ugia) = uija

for a € Hp and £ a primitive nth root of unity. Due to [9, Proposition 6.2], all these
elements u;; (0 < i,j < n— 1) are normal. Moreover, by [9, Lemma 6.2], they satisfy
the following relation:

(5.1) wigttiry = €97 wy .

By Lemma 5.5, Hyg is a normal Hopf subalgebra of H which implies that there is an
exact sequence of Hopf algebras

(5.2) k — Hoo — H — H — k,

where H = H/H HJO and by definition HJO = Hyo [ Kere. As one of basic observa-
tions of this paper, we have the following result.

Lemma 5.6. As a Hopf algebra, H is isomorphic to a fraction version of a Taft
algebra T'(ny,...,ng,&) forny,...,ng a fraction of n.

Proof. Denote the image of u;; in H by v;; for 0 < 4,7 <n—1. Due to H is bigraded,

n—1 n—1
H= Hij = EB vy,
2,7=0 2,7=0

Let g = v11. Then by (a), (b) and (e) of [9, Proposition 6.6], which are still true even
H is not regular, these elements v;; can be chosen to satisfy

g"=1, wi=¢, 0<i<n—1), vy=gg, 0<izj<n-—1)

and
v;;:o, 0<i#j<n-1).

Moreover, one can use (1), (4) and (5) of Lemma 2.9 and the axioms for a coproduct
to show that ¢ is group-like and

Avig) = vis @ vij + 0 @vjj + > lvie @vg =g’ @i+, @ + Y i @ vy
570,j s#1,5

for some ¢ € k and 0 < i # j < n —1 (see also [9, Lemma 6.5] for a explicit

proof). Using this formula for coproduct, it is not hard to see that H is a pointed
Hopf algebra with G(H) = {¢|0 <i <n — 1}.
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Let Fi = @?;01 ﬁij and then through inheriting the strongly graded property of H,
we know that H = @?;01 Fi is strongly graded. We want to consider the subalgebra
Ff) =P =0 kvg;. For this, we take the following linear map
7 H— E{G(F), Vij 5ijv,~j.
At first, we prove that 7’ is an algebraic map. For this, it is enough to show that
vl-jvkl =0

for all i # j with i + k = j 4+ [ (mod n). Assume that this is not true, then v;;vy =
aviyk, j4+1 for some 0 # a € k, which is invertible by v; = ¢* for all 0 < ¢ < n — 1.
But this is impossible since v;; is nilpotent. So, n’ is an algebraic map. In addition,
the formula for the coproduct implies that 7’ is also a coalgebra map. Therefore, 7’

is a Hopf projection. Using the classical Radford’s biproduct (see Subsection 2.4), we
have the following decomposition

T = H #kG(H).

By [5, Theorem 2], Fé is generated by skew primitive elements, say z1,...,zy (we
ask that 6 is as small as possible). Moreover, by the proof of [5, Theorem 2] we know
that gz;g~! € ka; for (1 < i < ). So, equation (5.1) implies that up to a nonzero
scalar z; equals to a vg; for some j. In one word, we prove that the subalgebra ﬁf) is
generated by von,, ..., Von, Which are skew primitive elements.

Claim: nq,...,ng is a fraction of n.

Proof of the claim: Let e; be the exponent of n; for 1 < i < 6. We find that e; is
the smallest number such 1)8;'” = 0. Indeed, on one hand it is not hard to see that
Von, = 0 since by definition vg;, € Hgo = k and vy, is nilpotent. On the other hand,
assume that there is [ < e; which is smallest such that vf)ni = 0. Then

I
. l -k I—
0= A(’UOni)l = (1 ® von; + von; ® g”l)l = Z ( ke ) ) vgm & g”l(l k)vlonf
k=0 g

which implies that ( ]i ) , =0 forall 1 <k <[—1 and thus 5”? must be a primitive
€

Ith root of unity. Now we consider the element vy ;,, which is not 1 by the definition

of [ (explicitly, n 1 In; since [ < e;). Thus the elements ¢’ := g x = Vo In; generate

a Hopf subalgebra satisfying

Jr=z¢, Alx)=1@z+z®d.

(We need prove these two relations. The relation ¢’x = zg’ is clear. The proof of
A(z) = 1®@z+2x®g’ is given as follows: Lifting these vg; to H, we get the corresponding
elements ug; for 0 < j < n — 1. Due to [9, Propostion 6.2], they are normal and thus
uéni = f(x)ugn, for some 0 # f(x) € Hyy. By the claim in the proof of the next
proposition, that is, Proposition 5.7, wug,, is a skew primitive element. Using the

fact that 5"3 is a primitive [th root of unity, uloni is still a skew primitive element.
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This implies that A(f(.%’)uO,an) and thus A(uo,lm) € Hyy ® HO,lm + HO,lni & Hlni,lm-
Therefore, vg ,, has to be skew-primitive.)

It is well known that a Hopf algebra satisfying above relations must be infinite dimen-
sional (in fact, a infinite dimensional Taft algebra) which is a contradiction. Thus, e;
is the smallest number such vgj'% = 0.

Now, we want to show that (e;,n;) = 1. Otherwise, let d; = (e;,n;) > 1. Therefore,
we consider . .

A(Uom)d7 = (1 ® Von; + Von; @ gni)dj'
By definition, e;/d; is coprime to n; thus coprime to nl2 This implies that 5"12 is a
primitive e;/d;th root of unity. Therefore,

€i €i

d; ce;/d; d;
=1®ug, + g g,

e

ke

I8

A(UOM)
Since e; is the smallest number such vgili =0, ’Uod?li # 0. This means that we go into
the following situation again: Let ¢/ = g"i¢i/% g = vgil/i di, then the Hopf subalgebra
generated by ¢, is infinite dimensional. This is impossible.

Next, we want to show that n|n;n; for all 1 <i# j < 6. Through computation,
A(UOniUOnJ’) = 1 ® von,Von; + Von; ® g"ivonj + Von, ® Von, 9" + Vom, Vo, © gt
and
A(Von;Von,;) = 1 ® Von,; Von; + Von; © g™ Von; + Von, @ Von, g™ + Von, Von; @ g

By equation (5.1), one has vo,,von; = Von;Von,- This implies that g"ivo,, = von, g™ =
£"" g% vgy,. Therefore, £"" =1 and thus n|nn;.

At last, we need to prove the conditions (3) and (4) of a fraction (see Definition 3.1).
Clearly, conditions (3) and (4) is equivalent to say that every vg; can be expressed
as a product of vop,,...,v0n, uniquely (up to the order of these vgy,’s due to the
community of them) for all 0 <t < n — 1. Since we already know that vgy,, ..., von,

generate the whole algebra Fé, it is enough to prove the following two conclusion:
1) vélm---vé";le #O0forall 0 <l <e;—1,...,0 <lgp <eg—1; 2) the elements in
the set {vll ---véene|0 <l <e—1,...,0<lyp <ey— 1} are linear independent. Of

Ony
course, 1) is just a necessary part of 2). However, we find that they help each other.
To show them, we introduce the lexicographical order on A = {(I1,...,lp)|0 <} <

e1 —1,...,0 <1y <ey— 1} through
(I, 0lg) < (I, ..., lp) & exsits 1 <i < @s.t. I =1 forj <iandl; <.

Now let S = {(s1,...,59) € Alvg, ---véfm # 0}. Clearly, S is nonempty due to

n1
von; 7 0 for all 1 < i < 6. We prove that all elements {vg), --- v [(s1,..,59) € S}
are linear independent firstly and then show that S = A. From this, 1) and 2)
are proved clearly. In fact, assume we have a linear dependent relation among the

elements in {vg,,, -+ vgh [(s1,...,5¢) € S}. Then there exists a linear combination

I, l2 lo _
Qly,...lgVon, Yony UOng +--=0
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with a;, ., # 0 and (l1,...,lp) is as small as possible. Takeing the coproduct to
the above equality and one can get a smaller item involving in a linear dependent
equation. That is a contradiction. Next, let’s show that S = A. Otherwise, there
exists vél véene = 0 for some (l1,...,lg) € A. Then take (I1,...,lp) as small as
possible under above lexicographical order. Without loss generality, we can assume
that I > 0. Then take a ki such 0 < k; < [1. In the expression of A(Uonl . véene) on

l1 k‘l

can find the coefficient of the item vy ® gklmvomvl&m . véene is

which is not zero since We already know that f"% is a primitive e;th root of unity.
This implies that either v kl =0or vgjllvfﬁm vlo‘)ne = 0 by the linear independent
relation we proved. But both of them are not possible. Therefore, S = A. So 1) and

2) are proved. The proof of the claim is done.
Let’s go back to prove this lemma. Until now, we have proved that the Hopf algebra
H is generated by vop,,-..,von, and g such that nq,...,ng is a fraction of n and

g" =1, von;9 =&""gV0n;, Von;Von; = Von,;Von;> Vo, =0
and g is group-like, vy, is a (1,¢"")-skew primitive element for all 1 < 4,5 < 6.
Therefore, we have a Hopf surjection

T(nla--- 7n97§) —>F7 yn, — UOnia g — g, 1 S 1 S 0

Comparing the dimension of them, we know that this surjection is a bijection. O

With help of this lemma, we are in the position to give the main result of this sub-
section now.

Proposition 5.7. Let H be a prime Hopf algebra of GK-dimension one satisfying
(Hyp1), (Hyp2) and n := ord(m) = min(7) > 1. Retain all above notations, then

(1) If H is additive, then it is isomorphic to a fraction version of a infinite di-
mensional Taft algebra T'(n,1,&) of Subsection 4.1.

(2) If H is multiplicative, then it is isomorphic to a fraction version of a gener-
alized Liu algebra B(n,w,~) of Subsection 4.4.

Proof. Before we prove (1) and (2), we want to recall some basic facts, which are
still valid in our case, on the coproduct from [9, Proposition 6.7]. The first fact is
that g := uy; is a group-like element and wu;; can defined as u; := ui; (see (a) of [9,
Proposition 6.7]). By (1) of Lemma 2.9, in general one has

A( ul] Z Cst Ujs @ ut])

s,t

for C’;{ € Hyo ® Hyp and 0 < 4,7,s,t <n — 1. The second fact is C’i =0 when s # ¢
(see (6.7.5) in the proof of [9, Proposition 6.7]). Therefore, the coproduct for u;; can
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be written as
(5.3) A(uj) = C;ngl & U5 + CJZ;UU ® gj + Z Céguis ® Us;
s#i,j
for all 0 < i,j < n— 1. Now by Lemma 5.6 we can assume that H = T'(n1, ..., ng,§).
Then we get the following observation.
Claim. For all 1 <1i <6, the element uo,, is a (1,g"")-skew primitive element.
Proof of the claim. By direct computation,
(Id @A) A(uop, )
(Id ®A)(ngi1 @ Uon, + Cg%luom ®g" + Z ngiUOS ® Usn, )
s#£0,n;
= (Id ®A)(ngi)1 X (ngil & Upn,; + Cg?ﬁZUOnz ®g" + Z ngiUOS & usni)
s#£0,n;
+(Id @A) (Co Juon, @ g™ x g™ + > (Id@A)(CH ugs @
s#£0,n;
[Cilig® ® Usn,; + Crsz?ﬁlusm ®g" + Z Cftniust ® utm]
t#£s,n;

and
(A @ Id)A(uon,)
= (A® Id)(ngil @ Uon; + Cg?ﬁluom ®g" + Z ngiUOS ® usni)
s#£0,n;
(A ®1d)(CoH)1 ® 1 & ugn, + (A @ 1d)(Cprs ) [Cop1 @ uon,
O Uon, ® M+ Y s @ Usn,] @ g™
s#0,n;

+ Y (AR (CH)[CHL @ uos + Cosuos @ g° + Y Ciffuor @ ugs] @ tgn,

s#0,n; t#0,s
By associativity, we get the following identities:

(Id@A)(Che*) (1@ Cp*) = (A @1d)(Chg)

Td @A) (Cor)(1 @ OO ) = (A @ Td)(Co% )

(Id@A)(Chr) = (A @ Id)(Ci )(Cp @ 1)
(5.4) (Id @A) (CH) (1 @ CoM) = (A @ 1d)(Co)(Coy @ 1)
(5.5) (Id@A)(CE)(1® C) = (AR 1d)(Cor)(Cos © 1)

for s # 0,n;. From the first three identities, we find that C'(%L i = (C9 =1 by using

nin;

the same method given in [9, Page 297]. This indeed implies that
o =t =1

for all 0 <t < n—1 since we have the same first three identities just through replacing
n; by t.
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Recall again the dichotomy of Hog: either Hoy = k[z] or Hoy = k[z*!]. From this
we know that C0% = D ki aZ’lO’mxk ® x! for s # 0,n; and aZ’lO’"i € k. We just prove
our claim in the case Hop = k[z] since the other case can be proved similarly. By the
image of ugy,; in H is a skew primitive element,

s,0,m;
agy = 0.

Since CJf = O =1 for all 0 < ¢ < n — 1, the equation (5.4) is simplified into
(1®Cx") = (A @ 1d)(Ce")

which implies that aZ’lO’"i = 0 if k # 0. Similarly, the equation (5.5) implies that
ali®™ = 0if 1 # 0. Thus, C9% = 0 for s # 0,n; and ugy, is a (1, g™ )-skew primitive
element for 1 < ¢ < §. Moreover, we point out that through the same way given in
[9, Theorem 6.7] one can show that as an algebra the Hopf algebra H is generated by
Hyo, g = u11 and ugy, for 1 <i <46.

(1) Now H is additive with Hpp = k[z]. We already know that g = wuj; is group-like
and thus g" is a group-like in Hgg by the bigrading property. But the only group-like
in Hyy is 1 and thus

g =1.

Consider the element ug,, for 1 < ¢ < . Through the quantum binomial theorem,
u(e];% is a primitive element now. This means there exists ¢; € k such that uglm = .
Since H is prime, ¢; # 0. Therefore, through multiplying wug,, by a suitable scalar
one can assume that

i, =
for all 1 <7 < 6. By equation (5.1), uon, ton; = Uon,Uon, for all 1 <4, j < 0. Therefore,
we have a Hopf surjection

Qb: T(ﬂal’g)—>H’ =z, yniHuOnia g—g,

where n = {ny,...,ng}. Since both of them are prime of GK-dimension one, ¢ is an
isomorphism.

(2) Now H is multiplicative with Hoy = k[z*!]. We already know that g = uy; is
group-like and thus g" is a group-like element in Hog by the bigrading property. Since
{z'|i € Z} are all the group-likes in Hyy,

gn — x(JJ
for some w > 0 (noting that we can replace x by x~! if w is negative). We claim that
w # 0. If not, then as the proof of (1) we know that ug'm is primitive in Hyg. Hence
ugy,, = 0 which is impossible since H is prime.

Consider the element ug,, for 1 <14 < . Through the quantum binomial theorem, US;M

is a (1,g%") = (1,2% = )-skew primitive element in Hy. Therefore, after dividing if
necessary by non-zero scalar,

e;n;
L

e 1 _
uom—l x¥
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for all 1 <4 < 6. Also by equation (5.1), uon,ton; = Uon,Uon; for all 1 < 4,5 < 0.
Therefore, we have a Hopf surjection

¢:-B(ﬂ’w’£)__%fﬂ T =T, Yp, = Uon;y» 9+ 3,

where n = {nq,...,ng}. Since both of them are prime of GK-dimension one, ¢ is an
isomorphism.

0

6. REMAINING CASE

In the previous section, we already dealt with the ideal cases: the case min(r) = 1
and the case ord(7) = min(7) > 1. In this section, we want to deal with the remaining
case: ord (m) > min(r) > 1. The main aim of this section is to classify prime Hopf
algebras of GK-dimension one H in this remaining case. To realize this aim, we apply
the similar idea used in [36], that is, we first construct a special Hopf subalgebra H ,

which can be classified by previous results, and then we show that H determines the
structure of H entirely.

In this section, H is a prime Hopf algebra of GK-dimension one satisfying (Hypl),
(Hyp2) and n := ord (7) > m := min(mw) > 1 unless stated otherwise. And as before,
the 1-dimensional representation in (Hypl) is denoted by 7. Recall that

H= P H;
1, €Ln
is Zy,-bigraded by (2.3).

6.1. The Hopf subalgebra H. By definition, we know that m|n and thus let ¢ := .
We define the following subalgebra

H .= 6{9 fﬁnjb
0<4,57<m—1

The following result is a collection of [36, Proposition 5.4, Lemma 5.5, which were
proved in [36] without using the condition of regularity.

Lemma 6.1. Retain above notations.

(1) For every i,j with 1 <i,j <n—1, Hyj # 0 if and only if i — j = 0 (mod t)
forall()éi,jvgn—l .
(2) The algebra H is a Hopf subalgebra of H.

The key observation of [36] and here is that Hopf subalgebra H lives in an ideal case.

Proposition 6.2. For the Hopf algebra I:T, we have the following results.

(1) It is prime of GK-dimension one.
(2) It satisfies (Hyp1) and (Hyp2) through the restriction |5 of ™ to H.
(3) ord(n|z) = min(n|z) = m.
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Proof. (1) For each 0 < i < m — 1, let ﬁlllt = @o<j<m—1 Hit jt- By Lemma 6.1, we
know that I;'th = H!,. Therefore H = ®O<i<m 1 H ! is strongly graded and I;T(l) isa

commutative domain. Thus the Lemma 2.11 is applied. As consequences, H is prime
with Pl-degree m. Since Ho = H} is of GK-dimension one and His Z m-Strongly
graded, H is of GK-dimension one.

(2) Denote the restriction of the actions of = and = to H by I'* and I'", respectively.
Since H = ®0<i<m—1 Hit’ we can see that for each0<i<m—landany 0 # x € Hllt,
(T)"(@) = €0 = o
for £ a primitive nth root of unity. This implies that the group (T'") has order m
and thus 7|z is of order m. We already know that Pl-deg(H) = m and the invariant

component H) = H} is a domain. So H satisfies (Hypl) and (Hyp2).
(3) Similarly, [(I'"")| = m. We claim that
(r'yn{rr) =1
In fact, if (T")" = (I'")7 for some 0 < 4,7 < m — 1. Choose 0 # x € Hy, we find
o= (M)(2) = (") (2) = "
which implies ¢ = j. Let 0 # y € Hoy, then
y= Ty =Ty =%y
forces 5 = 0. Thus we get i = j = 0, i.e., (') N (") = 1. This implies that

min(7|z) = m. O

Corollary 6.3. As a Hopf algebra H is isomorphic to either a faction version of
infinite dimensional Taft algebra T'(m,1,£) or a fraction version of generalized Liu
algebra B(m,w,").

Proof. This is a direct consequence of Propositions 5.7 and 6.2. U

This corollary implies that either Hog = k[z] (i.e. H = T(m,1,£)) or Hoy = k[zF!]
(i.e. H = B(m,w,7)) again. That is, we go back to a familiar situation that we have
a dichotomy on H now.

Definition 6.4. We call H is additive (resp. multiplicative) if Hyy = k[z] (resp.
Hyo = k[z™1]).

We realize that the [36, Proposition 6.6] is also true in our case and we recall it as
follows.

Lemma 6.5. Every homogeneous component H;; j of H is a free Hoo-module of
rank one on both sides for all 0 <i<n—-1and0<j<m-—1.

From this lemma, there is a generating set {u; ;140 <i<n-—-1, 0 <j < m—1}
satisfying
uoo =1 and  Hj;yjt = uiiyjeHoo = Hoolsiyjt-
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So, H can be written as

(6.1) H = @ Hoowiiqjt = @ Wi iyjtHoo-
0<i<n—1 0<i<n—1
0<j<m—1 0<j<m—1

6.2. Additive case. If H is additive, H = T(m,1,€). Recall that n is the m-order
and n = mt. We will prove H is isomorphic as a Hopf algebra to T'(m,t,(), for ¢
some primitive nth root of 1. Recall that

H=Tm,1,) = Xg,Ymi>-->Umeld™ = L,Ym:9 = ™ 9Yms> Ym;Ym; = Ym; Y,
Y = iy, 1 <4, < 0),
here by Proposition 4.3 we assume that (mq,...,my) = 1 without loss of general-

ity. Note that H = @O<i<n—170<j<m—1 Hiivje, H = @O<i,j<m_1 Hitje and Hije =
k[ye! Jyj—ig® (the index j — i is interpreted mod m). In particular, Hoo = k[ygl ],
Ho o = k[ym, ly; and Hy = klygh ]g.

By Lemma 2.9 (5), €(u11) # 0. Multiplied with a suitable scalar, we can assume
that €(u11) = 1 throughout this subsection. The following results are parallel to [36,
Lemma 7.1, Propositions 7.2, 7.3]. Since the situation is changed, we write the details
out.

Lemma 6.6. Let u:= ui1. Then H{ = H(l)u, H = @nggtfl HuF and u is invertible.

Proof. By the bigraded structure of H, we have

HomteH1i1 © Hiipmt,  Ho (e;—1ymyeH1,14m,t C© Haa,
which imply

HomtHo,(e;~1ymitH1,14+mit © Hom;eH11 © Hi14mgts
forall 1 <4 <46.

Since Hom;tHo,(e;—1)ym;t = Yrs, Hoo is a maximal ideal of Hoo = k[y;}, | = K[y ] and
Hj 14m,t is a free Hypp-module of rank one (by Lemma 6.5), HomtHo,(e;—1)ymit H1,14mit
is a maximal Hog-submodule of Hj j4,,:. Thus

Hom;tH11 = Hom;tHo (e;—1ym;e H114mit = Yph H114me ot Ho e Hiw = Hi1pmge-
If HomeH11 = ypi, Hi14mgt, then ymuir = ygi a(ysi, )u1,14m,¢ for some polynomial
a(y.) € klyyi ]. So

e;—1 €;
ymi (ull - y77%1 a(yn%i)ulyl‘f'mit) = 0
. _1 . o
Therefore, yy: (u11 — ypi. " a(yyi, )u1,14+m;¢) = 0. Note that each homogenous H; ;4 is
a torsion-free Hyp-module, so
i—1 i
ull - y1e”rbl a(y?ﬂi)ulﬂ‘f‘mit'

By assumption, €(u1;) = 1. But, by definition, €(y,,) = 0. This is impossible. So
HO,mitHll = H1,1+m¢t which implies that H07mitull = H1,1+m¢t-
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Since above ¢ is arbitrary, that is 1 < ¢ < 0, we can show that H ju11 = Hy 14 for
0<j<m-—1 Thus H = H(l)uu. Since H = Gaogjgnfl H]l is strongly graded, uq;
is invertible and H]l = H(l)uju forall 0 < j <n—1. Let u := uy1, then we have

H = EB HuF.

0<k<t—1

We are in a position to determine the structure of H now.

Lemma 6.7. With above notations, we have

ut = 9, Ym;u = Cm%uymZ (1 <1< 9),

where ¢ is a primitive nth root of 1.

Proof. For all 1 <4 < 0, by Hom,eu = uHom,t, there exists a polynomial 3;(yy: ) €
k[yyi ] such that
ymiu - uymz/ﬁl(yi;il)

Then

Ymu' = ulym, Bi(ys.)

for some polynomial j3;(yy: ) € klys: ] induced by B(y;:. ). Since u
u' € Hyy = k[yg |g, u' = ag for 0 # a € k. By assumption, e(u) = 1 and thus a = 1.
Therefore,

t is invertible and

ut = g.
Since Ym, 9 = €™ gYm,;, we have Bi(ys:.) = £™. Then it is easy to see that f;(y5:,) =
¢ € k with ¢! = €™i. By assumption, (mq,...,mg) = 1 and thus there exists ¢ € k
such that ¢! = ¢ and (" = (; for all 1 < i < 6. Of course, (" = 1.

The last job is to show that { is a primitive nth root of 1. Indeed, assume ( is a
primitive n’th root of 1. By definition, m|n’|n and n’ # n. Therefore, it is not hard
to see that

v =" € C(H)

the center of H. Since g™ = u"™ = (v )% = 1, we have orthogonal central idempotents

=1 s ; .. . .
1; .= o S l](u’)J for0 << % — 1 and ¢ a primitive ﬁth root of unity. This

contradicts to the fact that H is prime. O

Lemma 6.8. The element u is a group-like element of H.
Proof. First of all H} = k[x] & H}. Then H} ® H} = k[z,y] and the only invertible
elements in H} ® H} are nonzero scalars in k. Since A(u) and u ® u are invertible,

A(u)(u®u)~! is invertible (and hence a scalar). Thus v must be group-like by noting
that e(u) = 1. O

The next proposition follows from above lemmas directly.
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Proposition 6.9. Let H be a prime reqular Hopf algebra of GK-dimension one sat-
isfying (Hypl1), (Hyp2) and ord(m) = n > min(w) = m > 1. If H is additive, then
H is isomorphic as a Hopf algebra to a fraction version of infinite dimensional Taft
algebra.

6.3. Multiplicative case. If H is multiplicative, then H = B(m,w,~) for m =
{m1,...,my} a fraction of m, v a primitive mth root of 1 and w a positive integer.
As usual, the generators of B(m,w,v) are denoted by %!, v, . .. ,Ymy and g. By

equation (4.6) and [36, Remark 6.3], we can assume that H = Do<ijcm—1 Hitjt with
Hi je = ]k[xil]yj—z‘gi

(the index j — i is interpreted mod m). In particular, Hoo = k[z*1], Hy j = k[zF]y;

and Ht,t = ]k[l'il]g

Set u; := u1,14j+(0 < j < m — 1) for convenience. By the structure of the bigrading
of H, we have

(6'2) Ym;Uj = (bmi,jumrl—j
and
(6'3) UjYm; = Pmy,jUmi+j

for some polynomials ¢, j, Pm;.; € klzF] and 1 <i <0, 0 < j < m — 1. With these

notions and the equality y;i =1 — 2% m, we find that

(6'4) (1 — ¥ )uj = yfriiuj = ¢m¢7j¢mi,mz’+j T ¢m¢,(ei—1)m¢+juj
and
(6‘5) uj(l - xw%) = ujyfrii = Pm;,jPmimi+j " Pmy,(e;—1)my+5Uj>

forl<i<fand 0<j<m-—1.

Lemma 6.10. There is no such H satisfying ord(w) = n > min(7) = m > 1 and
n/m > 2.

Proof. Since u;Hoy = Hopouj, we have

+1

wjr = aj(zu;  and  wzT! = Bj(aF )u;

for some o j(zF1), B;(z*) € k[z*!] for 0 < j < m — 1. From
uj = ujrat = oy (2 et = 0@ (2,

we get aj(zt1)B;(z*) = 1 and thus a;(z*!) = \;2% for some 0 # \; € k,0 #
a; € Z. Note that uz € Hy (14jiy = ]k[xil]y]ftg, where jt = jt (mod m). So we have
uz = (ﬂ:il)yﬁg for some v;(z*!) € k[z*!]. Hence uz commutes with x. Applying

thl s

) @, o — ot s=0% _ al _ : _
u;r = Ajrhu; to ujr = zuj, we get )\j =1land 2" =z. If tis odd, a; = 1 and

if ¢ is even, then a; is either 1 or —1.

Now we consider the special case j = 0. By e(zug) = e¢(upx) # 0, we find that Ao = 1.
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If ag = 1, that is upx = xup, then we will see ujz = zu; for all 0 < j <m —1. In
fact, for this, it is enough to show that wu,,,x = zu,,, for all 1 < ¢ < 6. Since

gbmi,Oxumi = xgbmi,Oumi = TYm,; U0 = YTUQ) = Ym, UL = ¢mi,oumiﬂf,

we have U, = XUy, since Hy14m; is a torsion-free Hpp-module. Then by the
strongly graded structure u;;y;; € H! = (H})" and z is commutative with H!, it
is not hard to see that w;;1;;x = 2u; 45 for all 0 <7 < n—-1,0 < j < m—1.
Therefore the center C(H) 2 Hgo = k[z*']. By [9, Lemma 5.2], C(H) C Hy and
thus C(H) = Ho = k[z*!]. This implies that

rankc () H = rankpy,, H = nm < n?,

which contradicts the fact: the PI-degree of H is n and equals the square root of the
rank of H over C(H).

If ag = —1, that is upx = x 'ug, we can deduce that Ui iyt T = xilui,iﬂt for all
0<i<n—1, 0<j<m—1 by using the parallel proof of the case agp = 1. For
s € N, let zg := 2° +27°. Define k[zs|s > 0] to be the subalgebra of k[z*!] generated
by all zs. Note that k[z*!] has rank 2 over k[zs|s > 1]. Thus C(H) D k[zs|s > 0].
Using [9, Lemma 5.2] again, we have C(H) = k[zs|s > 0]. Hence

rankogyH = 2nm # n?

since n/m > 2 by assumption. This contradicts the fact that the PI-degH = n again.

Combining these two cases, we get the desired result. O

We turn now to consider the case: ord(m) = 2min(w) = 2m. In this case, t = 2. As
discussed in the proof of Lemma 6.10, if such H exists then the following relations

(6.6) uwiz =2 tu; (0<i<m—1)
hold in H. Using these relations and (6.5), we have

w

(6-7) Pmy,jPmimi+j " Pmg,(e;—1)mi+j = L=z,

forall 1 <i<6and 0 <j <m—1. To determine the structure of H, we need to
give some harmless assumptions on the choice of u; (0 < j <m — 1) and ¢y, ;:

2smi

(1) We assume €(up) = 1;

(2) Foreach 1 <i <0, let & :=e“ m and thus 1 —2*"m = Ilseq, (1 — & s2),
where S; := {0, 1,--- ,w®™ —1}. Since

e °J5i7”i
¢m¢,j e ¢m,,(el—1)m,+j = yn}l,l = 1 - m Y

there is no harm to assume that

¢m¢,tm¢+j = HSESiyjyt(l - éi,sx),

where S; ;+ is a subset of S;.
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(3) By the strongly graded structure of H, the equality H) = Hég and the fact
that g is invertible in H, we can take wy jy2; such that

g T, if k is odd,
Uk k425 = .
. ng§ if k is even,

forall 2 <k <2m — 1.

In the rest of this section, we always make these assumptions.
We still need two notations, which appeared in the proof of Proposition 4.12. For a
polynomial f = 5" a;a? < k[zT], we denote by f the polynomial } a;z"%. Then by
(6.6), we have fu; = u;f and w;f = fu; for all 0 <i<m — 1. For any h € H® H,
we use

hisy )@ (s2,t2)
to denote the homogeneous part of h in Hy, ;; ® Hs, 1,. Both these notations will be
used frequently in the proof of the next proposition.

Proposition 6.11. Keep the notations above. Let H be a prime Hopf algebra of
GK-dimension one satisfying (Hyp1) and (Hyp2). Assume that H = B(m,w,~) and
ord(m) = 2min(m) > 2, then we have

(1) mlw, 25203 (ms = (e = 1), 21550 (e = ik
(2) As a Hopf algebra,
H = D(m,d,~)

constructed as in Subsection 4.4 where d = .

Proof. We divide the proof into several steps.
Claim 1. We have m|w and for 1 < i < 6,0 < j < m —1, Ym,uj = Om, jlimitj =

£miﬂ:dmiujymi for d = and some &, € k satisfying i = —1.

Proof of Claim 1: By associativity of the multiplication, we have many equalities:
i—1
ymiujyfm - ¢mz JPmimi+3Pmi 2mi+5 " Pmy,(ei—1)my+5 10

= ¥m; ,j¢m¢,mi+j30mi72m¢+j T P, (ei—1)m+5 10

= Pmy,jPmi,mi+jiPm,2mi+5 ¢mi,(ez‘—1)mi+ju0’
which imply that

(6.8) Py smi+jPmitmitj = Prm,smi+iPmy tmi+j
for all 0 < s,t < e; — 1. Using associativity again, we have
y%iujyg}'bgei—l) _ (1 s L )u](l v L )ei—l

e;m; e;my;

=—a“"m (1—x %" m )%y

e;m;

e w . . . e' .
= =27 (Pmy i Pmimiti P, 2mits T Somh(@i_l)mi'i‘j) ‘U

.
= (Prma,jPmimitiPms,2mits - @Dmi,(ei—l)mi—kj) U

— . . . e .
= (@mi,j¢m¢,mi+j80mi,2m¢+] e Spmi,(ei—l)mi—l—j) ‘U
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= (gpmlngomlvmz'iﬂgomzvzmz‘i‘] e ¢mi,(ei—1)mi+j)6iuj7
where the fourth “=", for example, is gotten in the following way: We multiply u;
by one y,,, from left side at first, then multiply it with y,?;;l from right side, then
continue the procedures above. From these equalities, we have
(ﬁ;ibiysmiﬂLj = ¥ (‘Offili,smﬁj

for all 0 < s < e; — 1. This implies that

€;m;
eilw

m

So, m|wm,; for all 1 < ¢ < #. Since m is coprime to (mq,...,mgy), we have
) p ) ) 0 )
mlw.

SO bimysmiti = Emasmiti T Omy smit; where d = £ and &n, sm,+; € k satisfying
ézi,smﬁj = —1. We next want to prove that &, sm,+; does not depend on the

number sm; + j. In fact, by equation (6.8), we can see {m, smitj = Emitmi+j for all
0 <s,t < e;—1, and so we can write it through &,,, ;. Now consider for any 1 <4’ <6,
by definition we have ¢, , 0Um, = Ym,uo. Therefore

ymi ymi/ UO = Qbmi/ ,Oymi umi/
— m;d
- ¢mi/ ,Ofmi ;M0 T umi/ yml 9

and

Ym, ymi/ Ug = ymi/ Ym,; U0
mid
= gmi,Ox ‘ Ym, W0Ym,;
mid
= gbmil,ogmi,Ox ¢ Umz/yml

50, &m0 = &mym, which indeed tells us that &, ; does depend on j (due to j is
generated by these m;’s) and so we write it as &,,. U

In the following of the proof, d is fixed to be the number w/m.

Claim 2. We have ujg = )\jx*nguj for \j =499 and 0 < j <m —1.

Proof of Claim 2: Since g is invertible in H, ujg = 1;gu; for some invertible v; €
k[z*1]. Then ujg™ = P'g"u; yields It = x‘*2‘“. So 9 = )\jx*Qd for \; € k with
)\;-” = 1. Our last task is to show that A; = £+7. To show this, we need a preparation,
that is, we need to show that u;ju; # 0 for all j,l. Otherwise, assume that there exist
Jo,lo € {0,...,m—1} such that uj u;, = 0. Using Claim 1, we can find that u;,u; = 0
and ujuy, = 0 for all j,1. Let (uj,) and (u) be the ideals generated by uj, and wy,

respectively. Then it is not hard to find that (u;,)(u;,) = 0 which contradicts H being
prime. So we always have

(6.9) ujuy 7 0

forall 0 < j,l<m—1.
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Applying this observation, we have 0 # u? € Haoi4; = klzF)yajg, u?g = ij_jgu? =
72jgu?. Thus 9; = +17 2724 which implies that Aj = ++7. The proof is ended. U
We can say more about \; at this stage. By 0 # ujug = 7j+lgujul, we know that
Yj = i z=2e for all j or Y= —~dz=%4 for all j. So

(6.10) Aj=97 or \j=—

for all 0 < 7 <m — 1. In fact, we will show that 1; = vz~24 for all j later.

Claim 3. For each 0 < j < m—1, there are fj, hj € k[zt1] with hji monic such that

m—1

(6.11) Alug) = finu ® hjgg™uj g,
k=0

where the following j — k is interpreted mod m.
Proof of Claim 3: Since u; € Hy 142, Alu;) € HL ® H{,,; by Lemma 2.9. Noting
that H! = @ZL;OI Hoouy, and HY,o; = @T;Ol Hypg®u;—s, we can write

A(u]) = Z ng(uk (4 gsuj,s),
0<k,s<m—1

where F; lg s € Hop ® Hyg. Then we divide the proof into two steps.

o Step 1 (Auy) = Yocpem—1 Fiplwr ® g*uj1)).
Recall that ujg = )\jx*nguj, where )\; is either 47 for all j or —y/ for all j. The
equations

Alujg) = A(u)A(g) = > Fl(u®g'uj_s)(g®g)
0<k,s<m—1

] —2d —2d 1
= Z Fl Az gu, @ A j_sz™*g" ;)
0<k,s<m—1

= Z AkAjfs(x_ng & l“_QdQ)F;gs(Uk & gsuk—s)
0<k,s<m—1
and

Az guy) = N(@XMg@ag) Y Fl(u® g°ujs)
0<k,s<m—1

= Z )\j(x72dg ® ﬂf2dg)F,g8(uk ® g uj—s)
0<k,s<m—1

imply that A\; = A for all k,s. If \; = —~7 for all j, then we have —J = Aj =
AAjs = Ak+3=s This implies k = s =m/2. Applying (e ® Id) to A(uy),

which is absurd. If \; = ~7 for all j, then 7/ = Aj = ApAj_s = AF+i=s This implies
k = s (which is compatible with the equality (e ® Id)A(u;) = u;). So we get Fjl . # 0
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only if k = s and \; = 4/ for all j. Thus we have A(u;) = 3 pem_1 Fip(ue®g u )
for all j.

o Step 2 (There exist fj, hji € Hoo with hj, monic such that ng = fjk ® hy, for
0<jk<m-—1).

We replace F’ ng by F; Ig for convenience. Since

(A®ID)A(w) = (A@Id)( Y Fllur® g"uj))

0<k<m—1
= Z (A® Id)(Fg)( Z Fsk(us ® g up—s) @ gkuj*k‘)
0<k<m—1 0<s<m—1
= Y (AQI)FDFF@1)(us ® g*ur—s ® gFu;_y)
0<k,s<m—1
and
(Id@A)A(w) = ([A@A) (Y Fl(uk @ g u;y)
0<k<m-—1
= > WeA)FDwe( > FIMgue® gt u)
0<k<m-—1 0<s<m—1
= Y (deA)(F)1® F73)(us @ g*up—s @ gFuj_p),
0<k,s<m—1
we have
(6.12) (A@Id)(F))(FF 1) = (IdoA)(F)(1 ® FI=%)

forall 0 < j,k,s <m—1.
Begin with the case j =k = s =0. Let F)) = Zp’q kpgr? @ x9. Comparing equation

(A @ I)(FE)ES @ 1) = (3 kpga? @ 22 0 29) (Y hyga? @2 ©1)

Psq r'q
/ !
= ( E k:qu‘p/qlprrp ® prrq ® xq)
P,0,p",q’

and equation

@A) (F) (1 ® F) = (3 kpga? © 29 @ 29)(3 kgl @27 ©27)

P,q 'q
/ !
— ( § kqup,q,xp ® xq+p R m(H'q )’
p,9,0',q’

one can see that p = ¢ = 0 by comparing the degrees of = in these two expressions.
Then F(?' = 1® 1 by applying (e ® Id)A to ug. Next, consider the case k = s = 0.
Write Fj = Zpﬂ kp,xP @ %, Similarly, we have Fj] = 2% @ 1 for some a; € Z by the
equation

(A@IA)(F)(F) ®1) = Id@A)(F))(1® FJ).
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Finally, write F,g = qu kpqr? @ x? and consider the case s = 0. Let Fg =9 ®1
and Fé“ = x% ® 1. The equation
(O kpga™* ™ @27 @ 2%) = (A @ 1)(F]) (Ff © 1)
Pq
— (@A) F) (@ ) = (3 kg™ © 27 @ a)
Pq
shows that p = a; — ay, that is, Flg = 2%F ® B}, some c;ji, € Z, B, € Hop.

By steps 1 and 2, F,g can be written as fji ® hj; with hjp monic after multiplying
suitable scalar, where fji, hj, € ]k[xil]. That is,

3

A(uy) = Firur @ hjrg™u;r,
0

where fir, hji € k[z*!] with hj;; monic. O

i

Since \; = 47 for all j has been shown above, we can improve Claim 2 as
Claim 2°. We have u;g = ij_nguj for0<j<m-—1.
By Claim 2’, we have a unified formula in H: For all s € 7Z,

(6.13) ujg® = stx_%dgsuj.

Claim 4. We have ¢p, j = 1 —y~milmiti)gmid — 1 ymmi i) gmid for 1 < § < 0
and 0 <j<m-—1.

Proof of Claim 4: By Claim 3, there are polynomials fq;, hoj, such that
A(ug) = ug @ ug + forur ® ho1gtm—1+ -+ + fom—1tm—1 @ hom-19" us.

mg

Firstly, we will show ¢, 0 =1 — 'y*mzzx ¢ by considering the equations

A(ymiu0)11®(1,1+2mi) = A(fmixmiduoymi)11@(1,1+2mi) = A(¢mi,0umi)11®(1,1+2mi)-

Direct computations show that
A(ymiu0)11®(1,1+2mi)
=uy® Ym,; U0 + ymifO,(ei—l)miu(ei—l)mi ® gmi hO,(ei—l)mig(ei_l)miu—(ei—l)mi

N e.m.d
= U0 ® Pm; 0lm; + fov(ei_l)mi¢mi7(ei_1)miu0 @ h07(ei—1)miu—(ei—1)mi’
d

m;d m; m;d
A(Em; 2™ U0Ym, ) 110(1,142m;) = Sm " U0 @ T UgYim,

m;

+ gmiwmidfo,(ei—l)miu(ei—l)miymi & xmidho,(ei—l)mig(ei_1)miu—(ei—1)mig

(ei—1)m;d

id ?
= xm 'LL(] ® ¢m¢,0um¢ + fO,(eifl)miqui,(eifl)miuO ® ’yml x hO,(eifl)miuf(eifl)mi'

Owing to A(ymiu0)11®(1,1+2mi) = A(fmixmiduoymi)11@(1,1+2mi),
(1= 2™ @ P, 0tm,

m?2 )x(ei—l)mid

+ fO,(ei—l)mi gbmi,(ei—l)miuo & ('Imid -7 hO,(ei—l)miu—(ei—l)mi
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=0.
. 2\ (e 1)ms
Thus we can assume ¢y, o = co(z™4 — 4™ Ya(e 1)m1dh07(ei,1)mi for some 0 # ¢y € k.
id __ —1
Then 1 —2™% = —cq fo,(e;—1)m; Pmi,(e;—1)m; - Lherefore,

A(?/rm7~40)11®(1,1+2W)
1 wmid¢mi,0

Up ® ¢m,,0um, CO( x )uo ® o xmid _ ’}/m? u_(ez_l)mz
d m;d
bl "G,
id m;,0
xmid _ ,},mf (e ym xmid _ ,},mf (e ym
2 id
’yml m;d xmz ¢mi70
= U @ = s Qi OU— (e, —1ym,; T LU0 © T U (1),
LMt — M LM — AT
where LOQ is understood as coz (¢~ Dmi b, (ei—1)ym, - Note that A(Ym,uo)110(1,142m:) =
xml _ mz ’ T T T ) 7

A(Dm; 0Um; ) 1101,142m:) = A(Pm;0)(fm;,0t0 @ Um,). From which, we get ¢, 0 =
1 4 cz™ for some ¢ € k. Then it is not hard to see that Imio = L hoe—1)m; =

—(ei—1)mqd 2 omid

T and ¢ = —v_mzz. S0 ¢, 0=1-— 7_m$x .

Secondly, we want to determine ¢,,, ; for 0 < j < m — 1. We note that we always
have hjo = fj; = 1 due to (e ® Id)A(u;) = u;. To determine ¢y, j, we will prove the
fact

(6.14) fio=1

for all 0 < j < m — 1 at the same time. We proceed by induction. We already know
that foo = hoo = fm;0 = 1. Assume that f;o = 1 now. We consider the case j + m;.
Similarly, direct computations show that

A(ymiuj)11®(1,1+2j+2mi)
= up @ Ym,;uj + ymifj7(€i—1)miu(ei_1)mi ®g™ hj,(ei—l)mig(Ei_l)

. med
=up @ ¢mi,jum¢+j + fj,(ei—l)mi ¢mi,(ei—1)miu0 ® &M hj

miumrf-j
(ei—1)ym; Umi+js
A(é-mixmidujymi)11®(1,1+2j+2m¢)
= gmixmiduo ® wmidujymz' + Smixmidfjv(ei_l)miu(ei_l)miymi ® xmidhjy(ei—l)mig(ei_l)miuj-i-migmi
= xmiduo ® Py, jUm;+j + fjv(ei_l)mi gbmm(ei—l)miuo ® ’Vmi(j+mi)x(Ei_l)midhjy(ei—l)miujeri'
By A(ymiuj)11®(1,1+2j+2mi) = A(é-mixmidujymi)11®(1,1+2j+2mi)7

(1- xmid)uo © Py jlm+j

+ fj,(ei—l)mi ¢mi’(6i_1)min ® (xmid . 7mi(mi+j))w(ei_1)midhj,(ei—1)miuj+mi
=0.

o (mad m;(mi+7J e;—1)m;d
Thus we can assume ¢, j = cj(z"™% —~ i(mi J))w( i—Lmi R (ei—1)m

¢j € k. Then 1 — z™id = _Cj_lfj,(eifl)m¢¢mi,(e¢fl)mi‘ Therefore

. for some 0 #

AYm,u5) 1160 (1,142+2m;)
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1 xmid

— . . . msd Bl . .
= U0 ® P, jUm;+j — CJ(l — 2" o ® c; xmid — ymi(mi+j) O Umit
J

mgd _ Ay (ms+j

-
gmid — ymi(mi+j

id
U ® )¢miJU’mi+j +a™ U €T )¢mi7jumi+j-

Note that A(ymiuj)11®(171+2j+2mi) = A(fﬁmi,jumﬁj)11@(1,1+2j+2mi) = A(¢mi7j)(fmi+j70u0®
Pn;+4,0um;+;5). Comparing the first components of
A(ymiuj)11®(1,1+2j+2m¢) and A(¢m¢,jum¢+j)11®(1,1+2j+2m¢)a

we get ¢, ;=1 — y—mi(miti)gmid gimilarly. And it is not hard to see that fmitj0 =

1. Since here ¢ is arbitrary and myq,..., my generate 0,1,...,m — 1, we prove that
fij0 = hjo =1 at the same time for all 0 < j <m — 1. O
Claim 5. The coproduct of H is given by
m—1
Auj) = ARy, @ xikdgkuj_k
k=0

for0<j<<m-—1.

Proof of Claim 5: By Claim 3, A(u;) = ZZL;OI firur ® hjkgkuj_k. So, to show this
claim, it is enough to determine the explicit form of every f;, and hj;,. By (6.14)
and the sentence before it, fjo = hjo=1for all 0 < j < m — 1. We will prove that
fik = ~#=k) and hjr = 7% for all 0 < j, k < m—1 by induction. So it is enough to
show that f; r1m, = 7(k+mi)(j_k_mi) and hj jpm, = g (ktmi)d for all 1 < i < 0 under
the hypothesis of f;, = ~kU=F) and hjr = x7k In fact, for 1 <i <6,

A(ymiuj)(171+2k+2mi)®(1+2k‘+2mi71+2j+2mi)
= Yo, fikttk ® ¢ Njng ik + ke, Uktme @ Yy om0 UG o,
= Firtmtun @ hieg™ w5 A f e gy @ YT e g Y 0,
A(gmixmidujymi)(1,1+2k+2mi)®(1+2k+2mi,1+2j+2mi)
= &, @™ firuym, ® 2™ hjg ;g™
+ Smixmidfj,keriuqumi ® xmidhj,keringrmiujfkfmiymi
= fikymyup @ YT gty

id k+m;
Since they are equal,

Fikymug @ (1 — AU RImig=midyp ) gmithy,,

_ (xmid _ ,y(kerZ)mZ) k

+m;
f],k—l—mluk—i-mz & h]7k‘+ng " ymiuj—k—mi-

Using induction and the expression of ¢,,, 1, we have

,yk(j*k)(l _ ,y*mi(WLri’k)xWLid) ®(1— ,y(jfk)mixfmid)xfkdgmﬂrk

Uk4+-m; uj—k‘

— ,Yk(_]fk)(l _ ,.)/77112(Tnl<|>]€)(L_W’I,Zd)uk+7nZ ® (xmid _ ,Y(]fk)ml)xf(k+ml)dgml+ku]7k

= (@i — ) g ® (1= U Rmigmidyp o gF i
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This implies that hj,keri = g~ (ktmi)d gnq

k(j—k)— m —mik+m;j—m;k (k+mi)(j7k:7m¢).

fj,keri =7 =7
O
Claim 6. For 0 < j,1 < m — 1, the multiplication between u; and w; satisfies that
1, ‘ m2 L+
uju = —a® | | (= Db iy™ T [y e — 2 — Ui, Y19
i=1
for some a € Z and where [—, —|nm, is defined as (3.4) and j + 1 is interpreted mod

m.

Proof of Claim 6: We need to consider the relation between u% and uju,,_; for
all 1 < j < m — 1 at first. We remark that as before for any k € Z we write
uy 1= ug where k is the remainder of k dividing by m. Thus u; = wj,m;1...4jsm, and

Um—j = U(ey—j1)mi+...4(ea—jo)mg -

By definition, ™%}y, sm, = —’y’m?(erl)(ﬁmi’(ei,s,Q)mi for all s. Then
Vi Yray ™ Uiy U

e e eg—J e1—j1)mid+...+(eg—jg)med
_gwil J1£2 ]2“'5759 Jo p(e1—g1)ma (eo—jg)me YjU0Ym—jUo

0

_ H gez sz e;— ji)mid¢mi,0 .. ¢mi,(ji_1)mi]uj H[¢m¢,0 e ¢mi,(ei—ji—1)mi]umfj

i=1

d
_ H ger —Ji gp(ei=ji)mi Dm0 P (o 1y Dm0 " * Prm (s 1yms | U Urn—j

ei_ji ei_ji _mg (ei*]’i)(ei*]’iﬁ’l)
= H[(_l) m; V! 2 ¢mi,0 T ¢mi,(ei—2)mi¢mi,(ji—1)mi]ujum—j-

BY &m0 P (ei—2)mi Prms,(es—1ym; = 1 — 24 (see Lemma 3.5 (2)), we have

el eg, 2
¢m17(e1—1)m1 e ¢mg,(ee—1)mgym1 ' y@ uO

e o2 (ei=di)(e—di+1) )
:H[(_l)ez Ji ﬁrZL' ]z,y m2 IS (1_xelmEd)Qsmi,(jifl)mi]ujumfj-

(3

Due to yp: =1 — €™l we get a desired formula

(6.15)
0 6

H(bmz, (ei— ] g H[( 1)6Z ]zgez _]Z,yfm
=1

2 (e;— JZ)(e, Ji+1)
i (i —1)m; | W thm—j
=1

Since ug,ujum _j € Hyy = k[z*]g, we may assume u3 = agg, ujty,—; = a;jg for some
ag,aj € kjzF) forall 1 <j <m— 1.
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Then Equation (6.15) implies ap = « Hle[qﬁmi,o " Py (es—2)m, | for some a € k[z*t!].
We claim « is invertible. Indeed, by

0 0
e 2 (ei—di)(ei—Ji+1)
H[(ﬁmiv(ei—l)mi]ao = 1—1[(_1)6Z g f”lbz’ Ty ? ¢mi7(ji_1)mi]aj7
i=1 i=1
we have
0
i 2 (e;—di)(ej—di+1) .
a; = [JI(=1)7 gl eiqm 2 J3i = 1, Ji = Lm,Je
i=1
Then
m—1
Hiy - Hyp + Z Hijto5 - Hijrom—yg) © aHo.
j=1
By the strong grading of H,
m—1
Hyy = Hy - Hin + Z Hi 195 - Hyj1q9(m—j)»
j=1
which shows that o must be invertible. Since e(ag) = 1, €(dm; .0 * P, (e;—2)m:) = €i
and m = ej---eg, we may assume ag = %xa H?:1[¢mi,0'"¢mi,(ei—2)mi] for some
integer a. Thus
0
2(61_11)(61 Ji+1) R
gy = -t T[I(-1) e o Vs = 1, — 1] 0
=1
Now
2
yjyluo

= H§m Ly sugyrug

I
. .
S|
z —

N
Il
—

0
l; limgd
[gnzzlx i ¢mi,0¢mi,mi : ¢ml, (Ji— u] H ¢mi,0¢mi,m1 ¢ml, l;— ml]ul
=1

L limad
[T Dimi 0+ g (Gim 1yms Pmi 0 * Prng, (1 —1)yms | g U

Il
A::%

N
Il
—

Ql (1;+1)
[( ) gmz 2 ¢mi,0 e ¢mi,(j¢fl)mi¢mi,(e¢f2)mi e Qsmi,(ei,l,li)mi]u.le

I
.::Q:

@
Il
-

For each 1 < i < #, we find that
¢mi,0 e (ﬁmi,(jifl)mi(bmi,(eifﬁmi Tt (bmi,(eiflfli)mi
¢m¢,0 e qui,(jifl)mi gbml’,(eiflfli)mi e ¢m¢,(ei72)m¢a lf jl + lZ S €; — 2
= ¢mi,0 T ¢m¢,(ei72)m¢7 if ]z + lz =e —1
Prmi0 " Prng, (i —1ymi P (ei—1—1)ymi " Py (ei—1ymys i Ji +1i > €.



A CLASSIFICATION RESULT ON PRIME HOPF ALGEBRAS OF GK-DIMENSION ONE 69

Using the same method to compute u;u,,—; given above and the notations introduced
in equations (3.3) and (3.4), we have a unified expression:

0
1 21 (li+1)
ujug = —a® | | (= Dlg g™ [ e — 2 — L, Y19
i=1
1, 2 il _
= —a® [ [ (=D &u™ ] = 1 =i = Um.yjg
=1
forall 0 <j,l <m-—1. O

0 o )
Claim 7. We have 5?,1 =", a= —wd and
S(uj) =z gm IH fwx]ﬁ'midg*jimi]uj

for0<ji<m-—1 andb:(l—m)d—wd.
Proof of Claim 7: By Lemma 2.9 (3), S(H;;) = H_j_; and thus S(ug) = hg™ g
for some h € k[z*!]. Combining
S(Ymi0) = S(10)S(ym;) = hg™ uo(—Ymig™"™) = —Entw ™G Y uog ™
= — Gl pg T Ty g =~ by T ™ g T T S G,
with
S(Ym,uo) = S(Pmy,0tm;) = S(Um;)S(m;,0) = Gmy,09 (U, ),

we get S(um,;) = =&ty

mi Y —m} gmidpgm=1=miy, . The computation above tells us that
we can prove that

0
. . i (gt .
S(uj) = g™ [l €8s adm

i=1

g*jimi]uj

by induction. In fact, in order to prove above formula for the antipode it is enough
to show that it is still valid for j + m; for all 1 <4 < 6 under assumption that it is
true for j. By combining

S(ymiuj)
= S(u;)S(ym,)

B i _n2dsUstD) —j —-m;
hg™ [ I(=1)7 &y e ademedg o me (g™

0
IR _ L ojsUstl) » B
— _é-mzlx mldhgm 1 H[(_l)]s mis,.y mg ) x]smsdg Jsms]ymiujg m;

m2IsUs+l) s 2. A —ams
— é-ml mldhgm 1H ']Sé-mss s 2 x.]smsdg ]sms]ymi,y mijlx2mldg mZUJ
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o (Js+1)

. 1 d -1 2Js Js ; d —i —m?2 ii+1) —m;

— _ mixmz hgm H[(_l mis,y Jsms g ]sms],y mZ(Jz )g mlymlu_]
s=1

2dslstD) s 205 1)
= 5 ! mldhgm ! H ]ngss Ms ™2 xjsmsdg e (]Hrl)g mlgbmmjuﬁrmi
with
S(ymiuj) - S((ﬁmi,juj-l-mi) - S(uj+mi)5(¢miyj) = ¢mi7jS(uj+mi)7
we find that

0
. . G+my)s((+my)s+1) . ) . )
S(ujm,) = hg™t [[1(=1)0 e tmidenmmd R b med = tmaams)

s=1

u]'.
In order to determine the relationship between £ and ~, we consider the equality
(Id %S)(tm,;) = 0. By computation,

(Id *S)(u .)

Z (mljuS(a:Jgum )

7=0
m—1 » .
— ,}/](ml )u hgm 1 H (ml 5,;&’”“]‘)57*’”2 (mz_J)S((gnz—J)s‘F)
Jj=0 s=1
g(mi=)smsd g=(mi=j)smsly, g izl
o 6 (mi—1)s ((mi=1)s+1)
— L H Mi= s g (mi= i) —mi s (mi=3)s
Jj=0 s=
g (M i)smsd g=(mi=j)sms] (mi=3)j gid g =3qy ]
g ’ : : 2 (mi—)s ((mi—i)s+1)
— hujgm_l H[(_1)(7”1'—])55;1&”%—])57—”15 2
7=0 s=1
xmidg miumlf]
m—1

2 (mi—3)s((m;—5)s+1)

0
D | (G e e ey

Ex—m, j(—1—my) —2(m 1-m;)d m—1— mlu]

g Um;—j

m—1 6 . | 1

= H (mifj)s,.y*mg (mi_J)s((;ni_J)5+ )]
ms
j=0 s=1
1-m; 2m+4-24-m;)dT 1—m;
'YJ( m; ) (—2m m;) hgm ms Uy

m—1 6 . |

- H )Sé_rzgmlfj)sry*mz (mi_J)S((;nl J)s+l)]f}/j(flfmi)x(*2m+2+mi)dﬁgmflfmi

<.

I
=)
—_

s=
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0
1 ). 2 GmimDa(mi=)e ) ,
Exa 1_[(_1)(mZ j)zgmgm, j)s,yms 2 []sa es —2— (ml - ])s]msymig
s=1
1 m—1 6
_ Evmix(*2m+2+mi)d+ah9mfmz . ZO 1—[1 é‘ms mi— s —1- ml)[js, ey — 2 — (mz _ ])s]ms]
j=0 s=

ivmlé 2 ( 2m+2+m,)d+aﬁgm—miymi

0 es—1 e;i—1

I1 §j@s*%J—L%—7m§jﬁlﬁmmmmram—nm

s=1,8#1 js=0

where Equation (6.13) is used. By Lemma 3.6 (1), each ij;é 2o nmdsma] i — 1, g —

1[m,# 0. Thus

e;—1

(1d%8)(ug) = 0 3 &y CHmI)fi 2, i — 1], = 0.
Ji=0

This forces £2,, =~™i by Lemma 3.6 (2).
Next, we will determine the expression of h and a through considering the equations
(S *Id)(up) = (Id *S)(up) = 1.
Indeed,
(S * Id)(u )

ZS jux]dgu_]

Q

m—1 Lo
— —J hg™™ 1 H m?Mxjimidg_jimi]ujx_jdgju_j
J=0
ml Ji(i+1)
1 i 7, 2 1 \Jq
m H .] é’ .7 2 ]u] —j
7=0 i=1
el m2 i G+ 1
g 1 .]z .71 g
e 1
7=0 i=1
0 (=9); (=941
Yo (—q): m2 i .
] G S L e VY N MRS [ O
=1
1 m—1 6 ei(e;41)
= athg™ 3 TTID G s = i = ]
7=0 =1
6 e;—1

1
_ apa™(—1 >0y (mi—1)(ei+1) m]z i — 1,5 — 1
—ahg™ (1) ||§ gl Ji = U

=1 j;=
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0

1 0

= —Ohg™m(—1)2i=1(mi—1)(ei+1) | | splei—Dmid (o T 3.5 (3
mﬂ:g( ) e;x (by Lemma (3))

i=1
— (_1)2?:1(mz’*l)(eﬂrl)aner:l(eifl)miderdh’

(Id *S) (uo)
m_l -2 . .

= 27 ;S gTu_j)
=0
m—1

-2

v w8 (ug)g

I
<.
1]

H =}

3

. 2 (D (=) ) N g N g
.7 Us hgm 1H .7) fy m; t P} L x( J)zmzdg ( ])Zml]u_jg ]x-]

I
EM

3
L

0
2 (=9)i((=5);+1) _
UJH 1)) )1,-)/ T g™

(2—2m)dy, m—1 2 (=0)i((=5)i+1)
g S T
=

<.
Il

o
-.

—

—_

3

0
_ 2 (=3)i(=5)i+1) _
UJH ( J)z ( )1,-)/ mET g™ 1U—j

mys

7=0 i=1
— m-l 0 . , 2 (=) (=) +1)
_ x(2_2m)dhgm_1 Z NI H[(_l)(—J)i@;E—J)W—mi %]
=0 i—1

[
L s () 2 DDA _
E.%' H[(_l)( ])Z§m§ J)zfy i 2 ]jl _ l;jz _ 1[m1]g

i=1

:; 2md+ahz,yfjH£ 2(] _l]z [ml]

= g(2mm)d+ap, (by Lemma 3.5 (1)).

[4

So, (S*Id)(up) = (Id %S)(ug) = 1 implies h = m*“*2?=1(e¢*1)mid*md(—1) =1 (mi—1)(ei—1) —
xp(Z=m)dta Thyg

0 0 0
; i — 1 Zd
a=—d-— 2iz1(€ Jm and 2| g (m; —1)(e; — 1), 2] g (e; — 1)myd.
i=1

2

0 (e;—1)m;d
d— =1 ; 2

And h = z(-™) . Therefore, for 0 < j <m — 1,

2]1(Jz+1) s — s
S = gm 11_[ my P} x]zmzdg jlml]u‘j
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for b= (1 —m)d — Zim(&=Dmi .

>0 (ei—1)mid
—d— S e

From Claim 7, we know that a = and we can improve Claim 6 as

the following form:

Claim 6°. For 0 < j,1 < m — 1, the multiplication between u; and w; satisfies that

1 T (e;—D)myd 91 (1;+1)
_d— =11 )™ L o—1; m2lltl)
U = > TIDRE ™ iy e = 2 = Ll yj 119
=1

where j + 1 is interpreted mod m.

We can prove Proposition 6.11 now. The statement (1) is gotten from Claim 1 and the
proof of Claim 7. For (2), by Claims 1,2’,3,4,5,6’ and 7, we have a natural surjective
Hopf homomorphism

f: D(mad,V)%H, T= Xy Ym; = Ymyy 9 0, ujHuj

for 1 <i<@and 0 <j<m—1. It is not hard to see that f|p,, : Ds — Hg is an
isomorphism of k[z*!]-modules for 0 < 5,¢ < 2m — 1. So f is an isomorphism. U

7. MAIN RESULT AND CONSEQUENCES

We conclude this paper by giving the classification of prime Hopf algebras of GK-
dimension one satisfying (Hypl), (Hyp2) and some consequences.

7.1. Main result. The main result of this paper can be stated as follows.

Theorem 7.1. Let H be a prime Hopf algebra of GK-dimension one which satisfies
(Hyp1) and (Hyp2). Then H is isomorphic to one of Hopf algebras constructed in
Section 4.

Proof. Let m: H — k be the canonical 1-dimensional representation of H which exits
by (Hypl). If PI-deg(H) = 1, then it is easy to see that H is commutative and thus
H = Kk[z] or k[z*!]. So, we assume that n := PI-deg(H) > 1 in the following analysis.
If min(7) = 1, then H is isomorphic to either a T'(n,0,&) or kD by Proposition 5.4.
If ord(w) = min(n), then H is isomorphic to either a T'(n,1,&) or a B(n,w,7y) by
Proposition 5.7. The last case is n = ord(m) > m := min(7) > 1. In such case, using
Corollary 6.3, H is either additive or multiplicative. If, moreover, H is additive then
H is isomorphic to a T'(m, t,£) by Proposition 6.9 for ¢ = - and if H is multiplicative
then it is isomorphic to a D(m,d, ) by Proposition 6.11. O

Remark 7.2. (1) All prime Hopf algebras of GK-dimension one which are regular
are special cases of their fraction versions. For example, the infinite dimensional Taft
algebra T'(n,t,&) is isomorphic to T'(n,t,&) where n = {1} is a fraction of n of length
1 (that is, § = 1 by previous notation).

(2) By Proposition 4.13, we know that D(m,d,~) is not a pointed Hopf algebra if

m # 1. Thus we get more examples of non-pointed Hopf algebras of GK-dimension
one.
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(3) In [9, Question 7.3C.], the authors asked that what other Hopf algebras can be
included if the regularity hypothesis is dropped. So our result gives many this kind
of Hopf algebras.

7.2. Question (1.1). As an application, we can give the answer to question (1.1)
now. We give the following definition at first.

Definition 7.3. We call an irreducible algebraic curve C' a fraction line if there is a
natural number m and a fraction myq,...,my of m such that it’s coordinate algebra
k[C] is isomorphic to k[Ym, - - -, Yme)/ (Ysi, — y,?,{j, 1<i#j<90).

The answer to question (1.1) is given as follows.

Proposition 7.4. Assume C is an irreducible algebraic curve over k which can be
realized as a Hopf algebra in %ZJJD where n is as small as possible. Then C is either
an algebraic group or a fraction line.

Proof. If n = 1, then k[C] is a Hopf algebra and thus C' is an algebraic group of
dimension one. Now assume n > 1. By assumption, Z, acts on k[C] faithfully. Using
Lemma 2.11 and the argument developed in the proof of Corollary 2.14, the Hopf
algebra k[C|#kZ,, (the Radford’s biproduct) is a prime Hopf algebra of GK-dimension
one with Pl-degree n. It is known that kZ, has a 1-dimensional representation of
order n:

kZ, =k({glg" =1) — k, g—¢

for a primitive nth root of unity {. Through the canonical projection k[C|#kZ, —
kZ, we get a 1-dimensional representation 7 of H := k[C|#kZ,, of order n =PI-
deg(H). Therefore, H satisfies (Hypl). Also, by the definition of the Radford’s
biproduct we know that the right invariant component H|j of 7 is exactly the domain
k[C]. Therefore, H satisfies (Hyp2) too. The classification result, that is Theorem
7.1, can be applied now. One can check the proposition case by case. O

7.3. Finite-dimensional quotients. We realize that from the Hopf algebra D(m,d, )
we can get many new finite-dimensional Hopf algebras through quotient method.
Among of them, two kinds of Hopf algebras are particularly interesting for us: one
series are semisimple and another series are nonsemisimple. As a byproduct of these
new examples, we can give an answer to a professor Siu-Hung Ng’s question at least.
We will give and analysis the structures and representation theory of these two kinds
of finite-dimensional Hopf algebras.

o The series of semisimple Hopf algebras. Keep the notations used in Section 4 and
let D = D(m,d,~y) where m = {my,...,my} a fraction of m. For simple, we assume
that (mq, ma,...,my) = 1. Consider the quotient Hopf algebra

D := D/(ymu---ayme)'

We want to give the generators, relations and operations for D at first. For notational
convenience, the images of x,g,u; in D are still written as x, g and u; respectively.
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By the definition of D, we see that: As an algebra, D = D(m,d,~) is generated by
gt ug,ut, -+, um—1, subject to the following relations

1

rr =21 1

z=1 ggl=glg=1 xg=gz,
(7.1)0 =1 — gemid - gm — gmd

auj =wr”t, 0= bm, jUjrm,,  ujg =Y *guy,
1, .a779 1 L +1) . . .
UjuUp = mT Hi:l(_l) Yy 2 gm; [jia € —2— l’i]mig7 J +1 : 0 (mOd m)v
, otherwise,
0 (o _1ym.
for 1 <i<4, O§j,l§m—1anda:—wd.
The coproduct A, the counit € and the antipode S of D(m,d,~) are given by

Alz)=r@z, Alg)=9g®y,
m—1

A(u;) = Z fyk(j_k)uk ® x_kdgkuj,k;
k=0

e(x) =€e(g) = e(ug) =1, €e(us) =0;

27430Ui+1)

T R (o e e

. >0 (ei—1)m; .
for1<s<m-1,0<j<m-1landb= (1-m)d—=="5——d. As an observation,
we find that

Lemma 7.5. The Hopf algebra D is a semisimple Hopf algebra of dimension 2m?d.

Proof. Before the proof, we want to simplify a relation given in the definition of D.
That is, a relation formulated in (7.1): 2¢™i% =1 for all 1 <i < . We claim that it
it equivalent to the following relation

(7.2) ™l =1,

Clearly, it is enough to show that (7.1) implies (7.2) since by definition m|e;m; for all
1 < ¢ < 0. Indeed, by (3) of the definition of a fraction 3.1, e;|m and thus we know
that (27, 2wz f000) — 1 since we already assume that (mq,mo,...,mg) = 1.

Therefore, there exist s; € Z such that 2?21 5;%7 =1 and thus

iEmd = xmd Z?:l S 67;7:% = ,Izlezl sieimid _ 1.
By (7.2), we further get g™ = 1 since g™ = 2™,

We use the classical Maschke Theorem to show that D is semisimple. To do that, we
construct the left integral of D as follows:

Jl md—1m—1 md—1m—1

S 9 SEVES 9B e

D i=0 j=0 i=0 j=0
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Let’s show that it is really a left integral. Indeed, it is not hard to see that xf% =
l l
9J5=Jpand

1 md—1m—1 md—1m—1
up - J = Z Z xigjuo + Z Z xigjug
D =0 j=0 i=0 j=0
md—1m—1 md—1m—1
= Z ingjuo—i— Z ingj
i=0 j=0 i=0 j=0
l
= ¢e(up) - J
D

Now by the relation 0 = ¢, jUjim,,
1+4i my
(7.3) Wjym, =Y, ™

for 0 <j <m-—1and~ = 7_7”12. So for any 1 < s < m — 1, there must exit an
1 <4 < 6 such that s; # 0. From (7.3), we have ug = Wfixmidus and thus

1 md—1m—1
w [ =5 S e,

D

i=0 =0
md—1m—1
S e,
=0 j—=0
md—1m—1
=7 ), Do,
i=0 =0
md—1m—1 L . !
which implies that Y > ¥72'¢’us = 0, and so us - [ = 0 = €(u,) [5 for all
i=0 =0

1 < s < m—1. Combining above equations together, f% is a left integral of D.
Clearly, e(f%) =2m?2d # 0. So D is semisimple.

At last, we want to determine the dimension of this semisimple Hopf algebra. The
main idea is to apply the bigrading (4.24) and (4.25) of D to D. To apply them, we
need determine the dimension of space spanned by {z'u;|0 < ¢ < md — 1} for any
0 <j <m—1. To do that, we want give an equivalent form of the (7.3). By (7.3),
xMi%yy, = yMiky, for any 0 < k < m — 1. Note that (mq,...,my) = 1 and thus we
have s; € Z such that 2?21 s;m; = 1. Therefore

0o . 0 o
(7.4) zhuy, = p2i=0 simady, = 72i=0 simaky — ARy

By this formula, the space spanned by {z'u;|0 <t < md—1} is the same as the space
spanned by {z'u;|0 <t < d — 1} and its dimension is d. Now applying the bigrading
(4.24) and (4.25), we see that the set

{2/ 2l u]0<i<md—1,0<j<m-10<t<d—1,0<s<m—1}
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is a basis of D and thus
dimg D = 2m?2d.
O

Next we want to analysis the coalgebra and algebra structure of this semisimple Hopf
algebra. Its coalgebra structure can be determined easily.

Proposition 7.6. Keep above notations.

(1) Let C be the subspace spanned by {g'u;|0 <i,j < m —1}. Then C is simple
coalgebra. .
(2) The following is the decomposition of D into simple coalgbras

md—1 m—1

@ @]kxgj@@ml(}'

=0 7=0

(3) Up to isomorphisms of comodules, D has m?d-number of 1-dimensional co-
modules and d-number of m-dimensional simple comodules.

Proof. (1) One can apply similar method used in [35] to prove this statement. For
completeness, we write the details out. Clearly, to show the result, it is sufficient
to show that the k-linear dual C* := Homy(C, k) is a simple algebra. In fact, we
will see that C* is the matrix algebra of order m. We change the basis of C for the
convenience. Using relation (7.4), C is also spanned by {(z~%g)%u;|0 < i,7 < m — 1}.
Denote by fij := ((z~%)"u;)*, that is, {f;;|0 < 4,5 < m — 1} is the dual basis of the
basis {(x_dg)iuj|0 <i,7 < m— 1} of C. We prove this fact by two steps: firstly,
we study the multiplication of the dual basis; secondly, we construct an algebraic
isomorphism from C* to the matrix algebra of order m.

Step 1. Since
(fil,jl * fi2,j2)((xidg)iuj)
m(f’ihjl ® fi2,j2)(A((xidg)iuj))

m—1

m(f’ihjl ® fi2,j2)(z 'YS(j_S)(x_dg)ius ® (x_dg)i+8uj—8)
s=0

m—1

vy s= Sfll,Jl (w g) US)fl2,J2((x g)H_SuJ'*S)
s=0

one can see that (fi, j, * firj»)((x7%9)'u;) # 0 if and only if i1 = 4,51 = 8,40 =i + s
and jo = j — s for some 0 < s < m — 1. This forces i1 + j1 = i3,i = i1 and j = j1 + Jo.
So we have

(7.5) Fivis * Finia = {7j1j2fi1,j1+j2, if iy + j1 = 9,
' 1,J1 2,72
i ) O’

otherwise.
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Step 2. Set M = My, (k) and let E;; be the matrix units (that is, the matrix with 1
is in the (i, j) entry and 0 elsewhere) for 0 < i,7 < m — 1. Now we claim that

p:C* = M, fij =77 Eiiy;
is an algebraic isomorphism (the index i + j in Ej;; is interpreted mod m). It is
sufficient to verify that ¢ is an algebraic map. In fact,
P (fir )¢ (fiza) = V7 Bigis 1172 Big a2
_ IR E gy, i i+ 1 =
0, otherwise,
_ Jyiapianmn G R o fiy Ggy), a1 =
0, otherwise,
_ )P giin), i+ =i,
0, otherwise,
= @(fir g1 * fizjo)-
So ¢ is an algebraic map and the proof is completed.
(2) Comparing the dimensions of left side and right side, we have the statement.

(3) This is a direct consequence of (2). O

Next, we want to determine the algebraic structure of D. As in the proof of Lemma
7.5, {2t vl¢ugl0 < i <md—-1,0<ji<m-1,0<t<d-10<s<m-1}
is a basis of D. Denote by G the group of all group-likes of D. Then clearly every
element in D can be written uniquely in the following way:

m—1
F4Y fiu
1=0

for f,fi e kG and 0 < ¢ <m—1.

We use C(D) to denote the center of D. Next result helps us to determine the center
of D.

Lemma 7.7. The element e = f + z;”:_ol wu; € C(D) if and only if f, foup € C(D)
and fi=...= fpn_1=0.

Proof. The sufficiency is obvious. We just prove the necessity. At first, we show that

Ji=...= fm-1=0. Otherwise, assume that, say, f; # 0. By assumption, ge = eg
which implies that gfiu; = fiuig. By the definition of D, fiu1g = v 'gfiui. So we
have v~lgfiu; = gfiuy which is absurd. Similarly, we have fo = ... = f,_1 = 0.

Secondly, let’s show that f € C(D). Also, by eu; = u;e we know that fu; = u;f
for 0 < i < m — 1. By definition, f commutes with all elements in G. Therefore,

f €C(D). Since e = f + foug and e € C(D), foup € C(D) too. O
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Let ¢ be an mdth root of unity satisfying (¢ = v. Define

1 md—1 1 m—1
o L o ki i
1:: _@ Z C zjxj’ 1% _RZV ]g]
=0 =0

for0<i<md—1and 0 < k < m—1. It is well-known that {1;”1%]0 <i<md—-1,0 <
k < m — 1} is also a basis of kG. Therefore, one can assume that

md—1m—1
xX x
f=2 2 aling =) ayli1f.
i=0 ;=0 ,J

For any natural number 4, we use i’ to denote the remainder of 7 divided by m in the
following of this subsection.

Lemma 7.8. Let f =3, . aijlflg be an element in kG. Then f € C(D) if and only
if aij = ama—i j—i for all0 <i<md—-1,0<j7<m~—1.

Proof. Define

1 , . A
1f o= S(1+ ¢4 ¢ 4 T

for 0 <i<md-—1. For any 0 < k < m — 1, it is not hard to see that the elements
in {17}i = k (mod m)} are linear independent. Using equation (7.4) and a direct
computation, one can show that

17uy, if ¢ =k (mod m)
".L. = ? ’ ’
(7.6) 1wk { 0, otherwise,
¢ ) wli, if i+k=0 (mod m),
(7.7) ukli = { 0, otherwise.
and
-1
md—i = 1§
Therefore, we have
fuk = Zaijlflguk = Zazjlfuklik = Z aij]lflguk,
2,] 2,] 1=k (mod m),j
-1
ukf = Zaijuklflg = Z aijuklflg = Z aijlf uklg
,J i+k=0 (mod m),j i+k=0 (mod m),j
= > aijLgjurl] = > @ij La—i 19 k-
i+k=0 (mod m),j i+k=0 (mod m),j

This means that fur = ugf if and only if agyimj = apyg—1)—k,j— for some 0 < k <
m — 1. From this, the proof is done.

O

Assume that fo =3, ; b 17“1?. Using (7.6), we know that

7

f(]uO = Z bw]lflguo
1=0 (mod m),j
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So we can assume that fo = >
we have the following result.

;i bij1f 1? directly. With this assumption,

i=0 (mod m),

Lemma 7.9. The element foug belongs to the center of D if and only if

Zj b0j1§1?7 if dis odd,
(7.8) fo= { > b0j1§1? +>; bgmjlfl 1?7 if d is even.
, Em

Proof. From z foug = foupz, we have x fy = ! fo, which implies exactly the equation
(7.8). The converse is straightforward. O

Next, we want determine when a central element is idempotent.

Lemma 7.10. Let e = f+ foug be an element living in the center C(D). Then e? = e
if and only if f = f? + fud and fo = 2f fo.

Proof. By Lemma 7.7, f commutes with foup and (foug)? = f3u3. From this, the
lemma becomes clear. O

Lemma 7.11. Let f = Zz}j aijlflg and fo = Zi’j bijlflg satisfying e = f + foug is

a central element. Then e is an idempotent if and only if

(7.9) Gsmy = o+ 05, (%Y (0<s<d-1,0<j<m-—1)
(7.10) aj; = aj (i#£0 (modm), 0<j<m—1)
(711) bij = 20,@']'1)@']' (0 S ) S md — 1, 0 S j S m — 1)

2430 (e;—1)my
wheTea:_Md‘

Proof. We just translate the equivalent conditions in Lemma 7.10 into the equalities
about coefficients. O

By equation (7.11), we know that a;; = % if b;; # 0. By equation (7.9), we have that
bsm,j = i% Y3 if by, ; # 0. We use [] to denote the floor function, i.e. for
any rational number ¢, [t] is the biggest integer which is not bigger than t. Now we
can give the algebraic structure of D.

Proposition 7.12. Keep above notations.

(1) If d is even, then the following is a complete set of primitive central idempo-

tents of D:
1 19 1\/? 19 1 19 1\/Tj 19
1. ¢ 1V /< "+ ¢ L. 4 1 /7" " . .4
d
1§m1§+1fd_5)m1§, (0<s§d—1,57§§,0§j§m—1)

. m .
i L]+ Y mimen1ll—r  (0<1<d-1,0<i< 5 0<j<m—1)
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If d is odd, then the following is a complete set of primitive central idempotents
of D:

1 1 -
—1:’3153 + —\/ ’y‘ﬂ%l?uo, 1119 \/'y Jlmlguo,

1m 19+1(d aml] (0<s§d—1, 0<j<m-1)

sm=—j m=3’

. m .
lm+zlg+1(d I—1)m~+(m— 2)1? 3 (0§l§d_170<1§[5]7 OSJ Sm_l)'

(2) If d is even, then as an algebra D has the following decomposition:

m2d—2m)

D =k @ My(k)53

If d is odd, then as an algebra D has the following decomposition:

m2d—m)

D =Kk @ My(k) ("

Proof. (1) According to Lemmas 7.8-7.11, we know all above elements are central
idempotents. It is easy to find that the sum of these elements is just 1. So to show
the result, it is enough to show that they are all primitive central idempotents. We
just prove this fact for the case d even since the other case can be proved in the same
way. In fact, by definition we can find the elements in the last two lines presented
in this proposition can be decomposed into a sum of two idempotents which are not
central, and so the simple modules corresponding to these central idempotents have
dimension > 2. There are (d_22 m oy (m_21 Jdm ental idempotents in the last two lines
and 4m ones in the first two lines. Therefore, all of these idempotents create an ideal
with dimension > 4m + 4((d_22 m (m_21 )dm) = 2m?d = dimy D. This implies they
are all primitive.

(2) This is just a direct consequence of the statement (1). O

Due to our recent great interest on finite tensor categories [10], in particular fusion
categories [11], it seems better to present all simple modules of D and their tensor
product decomposition law here.

As the proof of above proposition, we only deal with the case d being even (actually,
the case of d being odd is quite similar and in fact easier). According to the central
idempotents stated in Proposition 7.12 (1), we construct the following six kinds of
simple modules of D:

(1) VO‘Z (0 < j <m—1): The dimension of Vb*'] is 1 and the action of D is given
by
z =1, gy

up — VY, u—0(1<i<m-—1).

A basis of this module can be chosen as %131? + %\/W_j 1%12@0.
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(2) Vo, (0<j <m—1): The dimension of V{ ; is 1 and the action of D is given
by
T 1, g — 7j

ug = —\/, u—0(1<i<m-—1).

A basis of this module can be chosen as %1%1? — % ~v—I 1%1§u0.

(3) V;mj (0 <j < m—1): The dimension of V; is 1 and the action of D is
g12ven by ’

T — —1, gy
uo — /Y (1), u—~0(1<i<m-—1).
A basis of this module can be chosen as %Pémlg + %w/yﬂ'(—l)*algmlguo.

0 —1)m,
Recall that by definition a = —Md.

)

(4) V;mj (0 < j <m—1): The dimension of Vg . is 1 and the action of D is
27 2
given by
T — —1, g
ug — —/77(=1)~, u—0(1<i<m-—1).
A basis of this module can be chosen as %1%7”1? - %\/vfj(—l)*“lgmlguo.

(5) Vamj (0<s<d-1,s# % 0<j<m-—1): The dimension of Vy,,; is 2
with basis {1219 1¢ 1§u0} and the action of D is given by

sm=j7 ~(d—s)m

Csm 0 ,.Yj 0
x»—>< 0 C(d,s)m ) g 0 ,yj
asmn,j
u0;—><(1) ¢ 07 ) ui—0(1<i<m-—1).

Note that we have
Vemj = Vid—sym.j-

(6) Vimgs;j (0<1<d—1,0<i<m,0<j<m—1): The dimension of Vi, ; is

2 with basis {17, 1?, et (mi) 1?7ium_i} and the action of D is given
by

Clm—l—i 0 ,}/j 0
= 0 (l@-l=Dmi(m=i) | 9=\ o i

(00 (0
umfz 1 O 9 uZ O 0 )
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ug — 0 0<t<m-—1,t#m—i,i),

2 —is(—is+1) .
ms 2 [is,€s —2— (M — 1) g)m,-

where ¢; = L¢(UmDayd 10 (—1) 7t 5
Note that we have

12

Vim+ij = Vid—1-1)ym+(m—i),j—i-

The following table give us the tensor product decomposition law for these simple
modules. We omit the proof since it is routine.

The fusion rule I

Vo, @ Voro = Vorinsr Vo, © Voh = Vo itk
VoJ,rj ® V07k = VOTjJrk VOTj ® V(fk = VOJ,errk
VOJ,FJ’ ® ng,k - ng,j+k Vo ® ng,k - Vg_m,]urk
Vo @ §m7k - ém,j—f—k Vo @ ém,k - V%tmj-i-k
VOij ®  Vemk = Vem,jvk Vo, ®  Vemk = Vsm,j+k
Voij ® Vimyik = Vim+ij+k Vo,  © Vimtipk = Vim+i,j+k
ng,j ® Vi = ng,ﬁk Vi, @ Vo = Vi
Vi o o® Vo, o o= Vi o Vi o Vo o= Vi
5M,j ) sm,j+k 5, ] ’ sm,j+k
ng,j ® ng . = Vo ik Vi, © Vgtn, . = Vo
Vgrm’j ® %:mk = %Tj-i-k‘ gm,j ® gimJﬁ - VOJ,FJ—HC
ng,j ® Vem,k = V(s+g)m,j+k g_mj ® Vem,k - V(s+g)m,j+k
Vgrm,j ®  Vimyir = V(z+g)m,j+k %ﬁmvj ®  Vimtik = V(l+%)m,j+k
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The fusion rule II

Vsm,; VoJ,rk = Vism.j-+k

Vem,; Vor, = Vim,j+k

Vem,j ;mk = Vst Dymajth

Vism.j A Vis+2ym,j+

Vam,j Vime = Vistymj+k © Vie—ymj+k (%)
Vsm,j Vimtik = Vis+ym+ij+k D Vi—s)ymtij+k
Vim+i,j V0+k = Vim+i,j+k

Vim-ti,j Vor = Vimtij+k

Vim-ij V%er’k = Vite gymerigtk

Vim-+i,j Vg_mk = Vi Dymeri gk

Vim+i,j Vemk = Vis+ym+ij+k D Vi—s)ymtij+k
Vim+i,j Vimttk = Vistlma(itt),j+k D Viesymaimt)jrh—t (%)
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where the mark (x), say for the case Vi, j ® Vi, i, has the following meaning:
(1) If (s +1)m # 0, 4m (mod dm) and (s — )m # 0, $m (mod dm), then

(7.12) Vim,j ® Vimgk = Vistiymj+k © Vis—tym,j+k-

(2) If (s+1)m = 0 (mod dm), then in the formula (7.12) Vi), j+x is decomposed
further and represents

+ —
VOJ+ V0J+k

(3) If (s+1)m = %lm (mod dm), then in the formula (7.12) V(i) j4 is decom-
posed further and represents
+ —
me j+k @ ng,jJrk'
(4) If (s—1)m = 0 (mod dm), then in the formula (7.12) Vis_)m j+« is decomposed
further and represents
+ —
Vouitk © Vo sk
(5) If (s=1)m = im (mod dm), then in the formula (7.12) V(;_;) j4 is decom-
posed further and represents
v, eV,
2

7m7.7+k 7.7+k

Similarly, one can work out the meaning of mark (*) for the formula V5 ; ® Vem+t k-
That is, whenever (s +1)m + (i +t) = 0 (mod dm) or (s +)m + (i +t) = 4m (mod
dm) the item Visyp)mi(ite),j++ Will split further and whenever (I —s)m + (i —t) =0
(mod dm) or (I —s)m+(i—t) = %m (mod dm) the item V{;_g)m(i—t),j+k—¢ Will split
further.

e The series of nonsemisimple finite-dimensional Hopf algebras. Using the Hopf al-
gebra D = D(m,d,~), we also can get many nonsemisimple finite-dimensional Hopf
algebras, which are knew up the author’s knowledge. The main idea to construct
these finite-dimensional Hopf algebras is to generalize the exact sequence (5.2)

k — Hypy — H—H — k.

That is, we want to substitute H by our Hopf algebra D(m,d,~) and thus get finite-
dimensional quotients. One can realize this idea through showing that every Hopf
subalgebra k[z*!] for ¢ € N is a normal Hopf subalgebra of D. Since by definition we
know that the element 2 commutes with g, y,, (1 < i < 6), we only need to show that
ad(u;)(z') = uiz'S(uf) € klz *] for all 0 < j < m — 1. Through direct computation,
we have

ad(u;)(z') = 2" ujS(uf) = 27" (u;) € k[zE].
So we have the following exact sequence of Hopf algebras
(7.13) k — k[z*] — D — D/(z! - 1) — k.
We denote the resulted Hopf algebra D/(z* — 1) by Dy, i.e., Dy := D/(z — 1).

Lemma 7.13. The Hopf algebra Dy is finite-dimensional and has dimension 2m?t
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Proof. We also want to use the bigrading of D to compute the dimension of D;. By
equation (6.1), we know that D is a free k[z*!]-module of rank 2m?. Now through
this bigrading (6.1) and the relation modular z* — 1, D; is also bigraded and is a free
k[z]/(z' —1)-module of rank 2m?. Therefore, dimy, D; = 2m?t. Actually, the following
elements {z'¢g/y;, 2'g/w|0 < i <t —1,0<j <m—1,0 <t <m— 1} (we use the
same notations as D for simple) is a basis of D;. O

It is not hard to give the generators and relations of this Hopf algebra: one just need
add one more relation in the definition of the Hopf algebra D, that is the relation
2! = 1. The coproduct, counit and the antipode are the same as D. It seems that
there is no need to repeat them again.

About this Hopf algebra, it has the following properties.
Proposition 7.14. Retain above notations.

(1) The Hopf algebra Dy is not pointed unless m = 1. And in case m > 1, its
coradical is not a Hopf subalgebra.

(2) The Hopf algebra Dy is not semisimple unless m = 1.

(3) The Hopf algebra Dy is pivotal, that is, its representation category is a pivotal
tensor category.

Proof. (1) Using totally the same method given the proof of Proposition 7.6, the
subspace spanned by {(z7%g)"u;|0 < 4,7 < m — 1} is a simple coalgebra, where 24
means its image in k[z*!]/(2! — 1). So D; has a simple coalgebra of dimension m?.
Therefore it is not pointed. If m = 1, then it is easy to see that D; is just a group
algebra. Using the same arguments stated in the proof of Proposition 4.13 (3), its

coradical is not a Hopf subalgebra.

(2) Assume m > 1 and we want to show that Dy is not semisimple. On the contrary,
if Dy is semisimple then it is cosemisimple [20]. This implies every y; should lie in
the coradical. This is absurd since clearly y,,, does not due to it is a nontrivial skew
primitive element.

(3) Actually we can prove a stronger result, that is, the Hopf algebra D is pivotal. To
prove this stronger result, by Lemma 2.16 we only need to set the following formula

for S2:
(7.14) (k) = (%=1 ™a) (g™ "), he D,

0 (e .
where ¢ = —w. Note that by second equation of (4.7), 2?21(61' + 1)ym;d
is always even. Our task is to prove above formula. Indeed, on one hand,

0
j i j; (Ji+1)
S () = S(atg™ [ (-1yg
=1

jimid g —jimiy,
2T g i Z'LL])

0
o Gt .
= S(uy) [[(=1)g 00y mi 8 g dimidgiims glomy =t
=1
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6
_ b m—1 Il —2§i o —m25;(§i+1) . Gimad  —jim; —jimid jim; 1—m_.—b
=ax’g é‘mijzzy 1]1(]1 )x]z i g Ji zujx Jimyg g]z 19 T
=1

0
i=1
0 .
_ p2b—2(1-m)d H i
i=1
0 (o 1)

where recall that b = (1 — m)d — Md.
On the other hand,

0 . 0 X _ 0 R 0 .
(gZizl mlxc)uj (gzizl mlxc) 1 _ x2cx2d Do m“}/ I i mluj

6
6 .
=1

Since
0

6
2c+2dY mi=— (e — mid = 2b—2(1 — m)d,
=1 i=1

we have SQ(uj) = (ngzl mixc)uj(gZ?zlmixc)—l‘

So to show the formula (7.14), we only need to check it for y,,, for 1 < i < 6 now.
This is not hard. In fact,

S*(Ym,) = S(—ym;g™™)
= 0" Y = T Y,
e milmatetmg),
— (g% )y (g0 i)

i

due to 4" =1 for i # j and x commutes with y,,.

Therefore, the representation category of D is pivotal. As a tensor subcategory, the
category of representations of D; is pivotal automatically. O

In [6], the authors posed the following sentence “it remains unknown whether there
exists any Hopf algebra H of dimension 24 such that neither H nor H* has the
Chevalley property” (see [6, Introduction, third paragraph]). With the helping of
the Hopf algebra D;, we can give one now. We will show that D3 has dimension
24 and has no Chevalley property. However, its dual (D3)* indeed has Chevalley
property. That is, we still can’t fix the question posed in [6]. Anyway, it seems that
the following example didn’t written out explicitly in [6] and should be implicated in
their classification in a dual version.

Example 7.15. Let m = 2 (this implies that m has no nontrivial fraction now, that
is, # = 1) and take d = 6. The condition d = 6 guarantees the condition (4.7) is
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fulfilled and thus Hopf algebra D(m,d, ) exists. So we take t = 3 and then we find
dimg Dy = 2m?t = 24.
In order to understand this Hopf algebra well, we give the presentation of this Dj: as
an algebra, it is generated by g, x,y, ug, u1 and satisfies
=1, =1, zg=gz, =0, zy=yr, yg=—gy,
zug = upz” ', wup =wr T, yug =2uy = iugy, yur =0=uyy,
Uog = guo, U1g = —U19g
—i 1
Ulio = ¢,  UoU1 = oYY, Uito = SYg,  uiur =0,
where i is the imaginary square root of —1, that is i = v/—1. The coproduct A, the
counit € and the antipode S of D3 are given by
Al@)=z®z, Alg)=9g®g, Aly)=10y+y®g,
Alug) = uo ®up —u1 ® gur, A(ur) =up @ w1 + w1 @ guo,
e(x) = e(g) = €(ug) =1, e(u1) = e(y) = 0;
S(x)=a"", Slg)=g"" Sly)=—-yg™
S(up) = gug, S(ui) = —iuy.
Next we claim that D3 has no Chevalley property while its (D3)* does. Recall that a
Hopf algebra is said to have Chevalley property if it’s coradical is a Hopf subalgebra.
So to show the claim, it is enough to prove that the coradical of D3 is not a Hopf
subalgebra and its (Jacobson) radical is a Hopf ideal. In fact, by Proposition 7.14
(1), its coradical is not a Hopf subalgebra. Now let’s prove that its radical is a Hopf
ideal. As usual, denote its radical by J and then it is not hard to see that y € J since
y generates a nilpotent ideal. Using the relation yug = 2u;, u; € J. Now consider the

quotient Ds/(y,u1). It is not hard to see that Ds/(y,u1) = k(Z4 x Zs). Therefore,
J = (y,u1) and it is a Hopf ideal clearly.

7.4. The Hypothesis. We point out that our final aim is to classify all prime Hopf
algebras of GK-dimension one. So, as a natural step, we want to consider the question
about the Hypothesis (Hypl) and (Hyp2) listed in the introduction.

e The Hypothesis (Hypl1). Let H be a prime Hopf algebra of GK-dimension one, does
H satisfy (Hypl) automatically? It is a pity that this is not true as we have the
following counterexample.

Example 7.16. Let n be a natural number. As an algebra, A(n) is generated by
X1,..., X, and g subject to the following relations:

X} =X, XX;=-X;X;, 9°=1, —gXi = Xig
for all 1 < ¢ # j < n. The coproduct, counit and the antipode are given by
AX) =10X;+X;®g, Alg) =9y,
£(Xi) =0, e(g) =1
S(Xi)=—-Xig, S(g)=g""
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for all 1 < ¢ < n. By the following lemma, we know that A(n) is a prime Hopf algebra
of GK-dimension one when n is odd. Moreover, if n = 2m + 1, then the PI-degree of
A(n) is 2m+L,

Now let
m:An) =k

be a 1-dimensional representation of A(n). Since ¢ = 1, 7(g) = 1 or 7(g) = —1.
From the relation —gX; = X;g, we get m(X;) =0 for all 1 <4 < n. This implies that
ord(m) = 1 or ord(m) = 2. In general, we find that PI-deg(A(n)) > ord(w) and the
difference PI-deg(H) — ord(m) can be very large.

Lemma 7.17. Keep the notations and operations used in above example. Then

(1) The algebra A(n) is a Hopf algebra of GK-dimension one.
(2) The algebra A(n) is prime if and only if n is odd.
(3) If n =2m+ 1 is an odd, then Pl-deg (A(n)) = 2™*1.

Proof. (1) is clear.

(2) If n is even, then we consider the element g []"" ; X;. Direct computation shows
that this element belongs to the center C'(A(n)). Also we know that X7 lives in the
center too. Thus

n
X7 —ag [ Xi € C(A(n))
i=1
for any a € k. Now, (X7 —ag [T, X;) (X7 +ag [T, Xi) = X2"—a?(—1)"% " [, X2 =

n(n+1) n(n+1)
2

X2 —a?(—1) 2 ~X?". Taking a such that a?(—1) = 1, we see that the central
element X7' — ag [[_; X; has nontrivial zero divisor and thus A(n) is not prime.

So the left task is to show that A(n) is prime when n is odd. To prove this, we give the
following two facts about the algebra A(n): 1) The center of A(n) is k[X?] (= k[X?]
for 1 <i < n); 2) A(n) is a free module over its center with basis {g' []}, X7|0 <1<
1,0 < j; < 1}. Both of these two facts can be gotten through the following observation
easily: As an algebra, one has A(n) = U(n)#kZy where U(n) = U(n)/(X? — XJZ|1 <
i # 7 <n)and U(n) is the enveloping algebra of the commutative Lie superalgebra
of dimension n with degree one basis {X;|1 <i < n}.

From above two facts about A(n), every monomial generated by g and X; (1 <1i < n)
is not a zero divisor and in fact regular. Now to show the result, assume that I,.J
be two nontrivial ideals of A(n) satisfying I.J = 0. We will show that I contains a
monomial and thus get a contradiction. For this, through setting deg(g) = 0 and
deg(X;) = 1 we find that A(n) is a graded algebra. Let a and b be two nonzero
element of I and J respectively. Since A(n) is Z-graded which is an order group, we
can assume that both a and b are homogenous elements through ab = 0. In particular,
we can take a to be a nonzero homogenous element. For simple, we assume that a has
degree one (for other degrees one can prove the result using the same way as degree
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one). So,

n n
=3xS dax,
=1 =1

for a;,a; € k. Now a' := Xja + aX; = 2a; X% — 22#1 algX1X;. For any i # 1,
we have o := X;a' + d/X; = 4a1 X} X; — 4a,gX1X? and continue this process a” :=
X;a"+d"X; = —8a,gX1X?X; € I for any j # 1,i (such j exists unless n = 1. But in
case n =1, A(n) is clear prime). This implies that we have a monomial in I if a} # 0
for i # 1. We next consider the case a; = 0 for all i # 1. Looking back the element
a”, we can assume that a; = 0 too. Repeat above precess through substituting X;
by other X; and we can assume all a; = 0 and aj = 0 with ¢ # j. That’s impossible

since 0 # a and in one word we must have a monomial in [I.

(3) By the proof of the part (2), we know that A(n) is a free module over its center
with basis {g' [T}, X77|0 <1< 1,0 < j; <1} and so the rank of A(n) over its center
is 27+ = 22(m+1) - Therefore, PI-deg(A(n)) = v/ 22(m+1) = gm+1, O

e The Hypothesis (Hyp2). We next want to consider the question about the second
hypothesis (Hyp2): Let H be a prime Hopf algebra of GK-dimension one, does H
has a one-dimensional representation 7 : H — k such its invariant components are
domains? This is also not true in general. In fact, by Example 7.16, we find that the
left invariant component must contains the subalgebra generated by X; (1 <1i < n)
for any one-dimensional representation and thus it is not a domain (if it is, it must
be commutative by the proof of Lemma 2.8).

e Relation between (Hypl1) and (Hyp2). In the introduction, (Hyp2) is built on (Hypl),
i.e., they used the same one-dimensional representation. However, it is clear we can
consider (Hypl) and (Hyp2) individually, that is, for each hypothesis we consider
a one-dimensional representation which may be different. Until now, we still don’t
know the exactly relationship between (Hypl) and (Hyp2) for a prime Hopf algebra of
GK-dimension one. So, we formulate the following question for further considerations.

Question 7.18. (1) Let H be a prime Hopf algebra of GK-dimension one satis-
fying (Hypl), does H satisfy (Hyp2) automatically?
(2) Let H be a prime Hopf algebra of GK-dimension one satisfying (Hyp2), does
H satisfy (Hypl) automatically?

7.5. A conjecture. From all examples stated in this paper, it seems that prime Hopf
algebras of GK-dimension one exist widely. However, we still can find some common
points about them. Among of these points, we formulate a conjecture on the structure
of prime Hopf algebras of GK-dimension in the following way.

Conjecture 7.19. Let H be a prime Hopf of GK-dimension one. Then we have an
exact sequence of Hopf algebras:

(7.15) k — alg.gp — H — f.d. Hopf — k,

where “alg.gp” denotes the coordinate algebra of a connected algebraic group of di-
mension one and “f.d. Hopf” means a finite-dimensional Hopf algebra.
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It is not hard to see that all examples given in this paper always satisfy above con-
jecture.

Remark 7.20. Recently, professor Ken Brown showed the author one of his slides
in which he introduced the definition so called commutative-by-finite as follows: A
Hopf algebra is commutative-by-finite if it is a finite (left or right) module over a
commutative normal Hopf subalgebra. So our Conjecture 7.19 just says that every
prime Hopf algebra of GK-dimension one should be a commutative-by-finite Hopf
algebra.
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