
ar
X

iv
:1

80
4.

08
97

3v
2 

 [
m

at
h.

Q
A

] 
 2

7 
A

pr
 2

01
8

A CLASSIFICATION RESULT ON PRIME HOPF ALGEBRAS OF

GK-DIMENSION ONE

GONGXIANG LIU

Dedicate to Professor Shao-Xue Liu for his 90th birthday with my deepest admiration

Abstract. In this paper, we classify all prime Hopf algebras H of GK-dimension
one satisfying the following two conditions: 1) H has a 1-dimensional representation
of order PI.deg(H) and 2) the invariant components of H with respect to this 1-
dimensional representation are domains (see Section 2 for related definitions). As
consequences, 1) a number of new Hopf algebras of GK-dimension one are found
and some of them are not pointed, 2) we give a partial answer to a question posed
in [9] and 3) two new series of finite-dimensional Hopf algebras are found which in
particular gives us a Hopf algebra of dimension 24 (see [6]).

1. Introduction

Throughout this paper, k denotes an algebraically closed field of characteristic 0,
all vector spaces are over k. All algebras considered in this paper are noetherian
and affine unless stated otherwise. The antipode of a Hopf algebra is assumed to be
bijective.

1.1. Motivation. We are motivated by the following three seemingly irrelevant but
indeed related phenomenons. The first one is based on the next simple observation.
It is well-known that the affine line A1 is a commutative algebraic group of dimension
one. If we consider the infinite dimensional Taft algebra T (n, t, ξ) (see Subsection 2.3
for its definition), then we find that the affine line (here and the following we identify
an affine variety with its coordinate algebra) is also a Hopf algebra in the braided

tensor category Zn

Zn
YD of Yetter-Drinfeld modules of kZn. Intuitively,

�
�

�
�

�

∈ Zn

Zn
YD.

From this, a natural question is:

(1.1) Can we realize other irreducible curves as Hopf algebras in Zn

Zn
YD?
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In order to answer this question, we need give two remarks at first. Firstly, observe
that above line is smooth and thus the infinite dimensional Taft algebra is regular,
i.e. has finite global dimension. Secondly, it is harmless to assume that the action of
Zn on the curve is faithful since otherwise one can take a smaller group Zm with m|n
to substitute Zn. This assumption implies the infinite dimensional Taft algebra is
prime. Put them together, the the infinite dimensional Taft algebra is prime regular
of Gelfand-Kirillov dimension (GK-dimension for short) one. Under this assumption,
one can show that the affine line k[x] and the multiplicative group k[x±1] are the only

smooth curves which can be realized as Hopf algebras in Zn

Zn
YD (see Corollary 2.14).

Therefore, the only left chance is to consider singular curves. We find that at least
for some special curves the answer is “Yes”! As an illustration, consider the example
T ({2, 3}, 1, ξ) (see Subsection 4.1) and from this example we find the the cusp y21 = y32
is a Hopf algebra in Z6

Z6
YD. That is,

∈
Z6
Z6YD

:

So above analysis tell us that we need consider the structures of prime Hopf algebras
of GK-dimension one which are not regular if we want to find the answer to question
(1.1).

The second one is a wide range of recent researches and interest on the classification
of Hopf algebras of finite GK-dimensions. See for instance [3, 2, 9, 14, 21, 23, 32, 33,
34, 36]. Up to the authors’s knowledge, there are two different lines to classify such
Hopf algebras. One line focuses on pointed versions, in particular about braidings
(i.e. Nichols algebras). The first celebrated work in this line is the Rosso’s basic ob-
servation about the structure of Nichols algebras of finite GK-dimension with positive
braiding (see [29, Theorem 21.]). Then the pointed Hopf algebra domains of finite GK-
dimension with generic infinitesimal braiding were classified by Andruskiewitsch and
Schneider [3, Theorem 5.2.] and Andruskiewitsch and Angiono [1, Theorem 1.1.]. Re-
cently, Andruskiwwitsch-Angiono-Heckenberger [2] conjectured that a Nichols algebra
of diagonal type has finite GK-dimension if and only if the corresponding generalized
root system is finite, and under assuming the validity of this conjecture they classified
a natural class of braided spaces whose Nichols algebra has finite GK-dimension [2,
Theorem 1.10.]. Another line focuses more on algebraic and homological properties of
these Hopf algebras, which is motivated by noncommutative algebras and noncommu-
tative algebraic geometry. Historically, Lu, Wu and Zhang initiated the the program
of classifying Hopf algebras of GK-dimension one [23]. Then the author found a new
class of examples about prime regular Hopf algebras of GK-dimension one [21]. Brown
and Zhang [9, Theorem 0.5] made further efforts in this direction and classified all
prime regular Hopf algebras H of GK-dimension one under an extra hypothesis. In
2016, Wu, Ding and the author [36, Theorem 8.3] removed this hypothesis and gave
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a complete classification prime regular Hopf algebras of GK-dimension one at last.
One interesting fact is that some non-pointed Hopf algebras of GK-dimension one
were found in [36] and as far as we know they are the only non-pointed Hopf algebras
with finite GK-dimension (except GK-dimension zero) until today. For Hopf algebras
H of GK-dimension two, all known classification results are given under the condi-
tion of H being domains. In [14, Theorem 0.1.], Goodearl and Zhang classified all
Hopf algebras H of GK-dimension two which are domains and satisfy the condition
Ext1H(k,k) 6= 0. For those with vanishing Ext-groups, some interesting examples
were constructed by Wang-Zhang-Zhuang [33, Section 2.] and they conjectured these
examples together with Hopf algebras given in [14] exhausted all Hopf algebra do-
mains with GK-dimension two. In order to study Hopf algebras H of GK-dimensions
three and four, a more restrictive condition was added: H is connected, that is, the
coradical of H is 1-dimensional. All connected Hopf algebras with GK-dimension
three and four were classified by Zhuang in [38, Theorem 7.6] and Wang, Zhang and
Zhuang [34, Theorem 0.3.] respectively. So, as a natural development of this line we
want to classify prime Hopf algebras of GK-dimension one without regularity.

The third one is the lack of knowledge about non-pointed Hopf algebras. In the last
two decades, the people achieved an essential progress in understanding the struc-
tures and even classifications of pointed Hopf algebras under many experts’s, like
Andruskiewitsch, Schneider, Heckenberger etc., efforts. See for example [4, 15, 16].
On the contrast, we know very little about non-pointed Hopf algebras. In fact, we
almost can’t or are very hard to provide any nontrivial examples of them. The short
of examples of non-pointed Hopf algebras obviously hampers our research and un-
derstanding of non-pointed Hopf algebras. Inspired by our previous work [36] on the
classification of prime regular Hopf algebras, which prompted us to find a series of
new examples of non-pointed Hopf algebras, we expect to get more examples through
classifying prime Hopf algebras of GK-dimension one without regularity.

1.2. Setting. As the research continues, we gradually realize that the condition “reg-
ular” is very delicate and strong. The situation becomes much worse if we just remove
the regularity condition directly. In another word, we still need some ingredients from
regularity at present. To get suitable ingredients, let’s go back to the question (1.1)
and in such case the Hopf algebra has a natural projection to the group algebra kZn.
The first question is: what is this natural number n? In the Taft algebra H case, it
is not hard to see that this n is just the PI degree of H, that is, n =PI.deg(H). So
crudely speaking n measures how far is a Hopf algebra from a commutative one. At
the same time, the Hopf algebra who has a projection to kZn will have a 1-dimensional
representation M with order n, that is M⊗n ∼= k. Putting them together, we form
our first hypothesis about prime Hopf algebras of GK-dimension one:

(Hyp1): The Hopf algebra H has a 1-dimensional representation π : H → k whose order
is equal to PI.deg(H).

The second question is: where is the curve? It is not hard to see that the curve is
exactly the coinvariant algebra under the projection to kZn. We will see that for
each 1-dimensional representation of H one has an analogue of coinvariant algebras
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which are called the invariant components with respect to this representation (see
Subsection 2.2 for details.) Due to the (Hyp1), our second hypothesis is:

(Hyp2): The invariant components with respect to πH are domains.

By definition, a Hopf algebra H we considered has two invariant components, that is
the left invariant component H l

0,π and right invariant component Hr
0,π (see Definition

2.7). By Lemma 2.8, we see that H l
0,π is a domain if and only if Hr

0,π is a domain. So

the (Hyp2) can be weakened to require that any one of two invariant components is
a domain. But, in practice (Hyp2) is more convenient for us.

Usually, one may wonder that (Hyp1) is strange and strong. Actually, any noetherian
affine Hopf algebra H has natural 1-dimensional representations: the space of right
(resp. left) homological integrals. The order of any one of these 1-dimensional modules
is called the integral order (see Subsection 2.2 for related definitions) of H and we
denote it by io(H), which is used widely in the regular case. So a plausible alternative
of (Hyp1) is

(Hyp1)′ io(H) = PI.deg(H).

Clearly, (Hyp1)′ is stronger than (Hyp1) and should be easier to use (Hyp1)′ instead
of (Hyp1). But we will see that the (Hyp1)′ is not so good because it excludes some
nice and natural examples (see Remark 4.2).

Note that all prime regular Hopf algebras of GK-dimension one satisfy both (Hyp1)′

and (Hyp2) automatically (see [23, Theorem 7.1.]). Since we have examples which
satisfy (Hyp1) and (Hyp2) while they are not regular (see, say, the example about
the cusp given above), regularity is a really more stronger than (Hyp1) + (Hyp2) for
prime Hopf algebras of GK-dimension one.

The main result of this paper is to give a classification of all prime Hopf algebras of
GK-dimension one satisfying (Hyp1) + (Hyp2) (see Theorem 7.1). As byproducts,
a number of new Hopf algebras, in particular some non-pointed Hopf algebras, were
found and the answer to question (1.1) was given easily. Moreover, many new, up
to the author’s knowledge, finite-dimensional Hopf algebras were gotten which in
particular helps us to find a Hopf algebra of dimension 24 (see [6]).

1.3. Strategy and organization. In a word, the idea of this paper just is to build
a “relative version” (i.e. with respect to any 1-dimensional representation rather
than just the 1-dimensional representation of homological integrals) and extend the
methods of [9, 36] to our general setting. So the strategy of the proof of the main result
is divided into two parts: the ideal case and the remaining case. However, we need
point out that the most significant difference between the regular Hopf algebras of
GK-dimension one and our setting is: In the regular case, the invariant components
are Dedekind domains (see [9, Theorem 2.5 (f)]) while in our case they are just
required to be general domains! At the first glance, there is a huge distance between
a general domain and a Dedekind domain. A contribution of this paper is to overcome
this difficulty and prove that we can classify these domains under the requirement
that they are the invariant components of prime Hopf algebra of GK-dimension one.
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To overcome this difficulty, a new concept called a fraction of natural number is
introduced (see Definition 3.1).

As the first step to realize our idea, we construct a number of new prime Hopf algebras
of GK-dimension one which are called the “fraction versions” of known examples of
prime regular Hopf algebras of GK-dimension one. Then we use the concepts so called
representation minor, denoted as im(π), and representation order, denoted as ord(π),
of a noetherian affine Hopf algebra H to deal with the ideal case, that is, the case
either im(π) = 1 or ord(π) = im(π). In the ideal case, we proved that every prime
Hopf algebras of GK-dimension one satisfying (Hyp1) + (Hyp2) must be isomorphic
to either a known regular Hopf algebra given in [9, Section 3] or a fraction version
of one of these regular Hopf algebras. Then, we consider the remaining case, that
is the case ord(π) > im(π) > 1 (note that by definition im(π)| ord(π)). We show
that for each prime Hopf algebra H of GK-dimension one in the remaining case one

always can construct a Hopf subalgebra H̃ which lies in the ideal case. As one of

difficult parts of this paper, we show that H̃ indeed determine the structure of H
essentially and from which we can not only get a complete classification of prime
Hopf algebras of GK-dimension one satisfying (Hyp1) + (Hyp2) but also find a series
of new examples of non-pointed Hopf algebras. At last, we give some applications of
our results, in particular the questions (1.1) is solved, a partial solution to [9, Question
7.3C.] is given and some new examples of finite dimensional Hopf algebras including
semisimple and nonsemisimple Hopf algebras are found. In particular, we provide an
example of 24-dimensional Hopf algebra, which seems not written out explicitly in [6].
Moreover, at the end of the paper we formulate a conjecture (see Conjecture 7.19)
about the structure of a general prime Hopf algebra of GK-dimension one for further
researches and considerations.

The paper is organized as follows. Necessary definitions, known examples and pre-
liminary results are collected in Section 2. In particular, in order to compare regular
Hopf algebras and non-regular ones, the widely used tool called homological integral
is recalled. The definition of a fraction of natural number, a fraction version of a Taft
algebra and some combinatorial relations, which are crucial to the following analysis,
will be given in Section 3. Section 4 is devoted to construct new examples of prime
Hopf algebras of GK-dimension one which satisfy (Hyp1) and (Hyp2). We should
point out that the proof of the example D(m,d, γ), which are not pointed in general,
being a Hopf algebra is quite nontrivial. The properties of these new examples are
also built in this section and in particular we show that they are pivotal Hopf alge-
bras. The question about the classification of prime Hopf algebras of GK-dimension
one satisfying (Hyp1) + (Hyp2) in ideal cases is solved in Section 5, and Section 6
is designed to solve the same question in the remaining case. The main result is for-
mulated in the last section and we end the paper with some consequences, questions
and a conjecture on the structure of a general prime Hopf algebra of GK-dimension
one. Among of them, a new kinds of semisimple Hopf algebras are found and stud-
ied. Their fusion rules are given. We also give another series of finite-dimensional
nonsemisimple Hopf algebras in this last section.
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2. Preliminaries

In this section we recall the urgent needs around affine noetherian Hopf algebras
for completeness and the convenience of the reader. About general background
knowledge, the reader is referred to [26] for Hopf algebras, [24] for noetherian rings,
[8, 23, 9, 13] for exposition about noetherian Hopf algebras and [10] for general knowl-
edge of tensor categories.

Usually we are working on left modules (resp. comodules). Let Aop denote the
opposite algebra of A. Throughout, we use the symbols ∆, ǫ and S respectively, for the
coproduct, counit and antipode of a Hopf algebra H, and the Sweedler’s notation for
coproduct ∆(h) =

∑
h1⊗h2 = h1⊗h2 = h′⊗h′′ (h ∈ H) will be used freely. Similarly,

the coaction of left comoduleM is denoted by δ(m) = m(−1)⊗m(0) ∈ H⊗M, m ∈M.

2.1. Stuffs from ring theory and Homological integrals. In this paper, a ring
R is called regular if it has finite global dimension, it is prime if 0 is a prime ideal
and it is affine if it is finitely generated.

• PI-degree. If Z is an Ore domain, then the rank of a Z-module M is defined to be
the Q(Z)-dimension of Q(Z) ⊗Z M , where Q(Z) is the quotient division ring of Z.
Let R be an algebra satisfying a polynomial identity (PI for short). The PI-degree of
R is defined to be

PI-deg(R) = min{n|R →֒Mn(C) for some commutative ring C}
(see [24, Chapter 13]). If R is a prime PI ring with center Z, then the PI-degree of R
equals the square root of the rank of R over Z.

• Artin-Schelter condition. Recall that an algebra A is said to be augmented if there
is an algebra morphism ǫ : A → k. Let (A, ǫ) be an augmented noetherian algebra.
Then A is Artin-Schelter Gorenstein, we usually abbreviate to AS-Gorenstein, if

(AS1) injdimAA = d <∞,
(AS2) dim

k

ExtdA(Ak, AA) = 1 and dim
k

ExtiA(Ak, AA) = 0 for all i 6= d,
(AS3) the right A-module versions of (AS1, AS2) hold.

The following result is the combination of [37, Theorem 0.1] and [37, Theorem 0.2
(1)], which shows that a large number of Hopf algebras are AS-Gorenstein.

Lemma 2.1. Each affine noetherian PI Hopf algebra is AS-Gorenstein.
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• Homological integral. The concept homological integral can be defined for an AS-
Gorenstein augmented algebra.

Definition 2.2. [9, Definition 1.3] Let (A, ǫ) be a noetherian augmented algebra and
suppose that A is AS-Gorenstein of injective dimension d. Any non-zero element of
the 1-dimensional A-bimodule ExtdA(Ak, AA) is called a left homological integral of

A. We write
∫l
A = ExtdA(Ak, AA). Any non-zero element in ExtdAop(kA, AA) is called

a right homological integral of A. We write
∫r
A = ExtdAop(kA, AA). By abusing the

language we also call
∫l
A and

∫r
A the left and the right homological integrals of A

respectively.

2.2. Relative version. Assuming that a Hopf algebra H has a 1-dimensional repre-
sentation π : H → k, we give some results according to this π, most of them coming
from [9, Section 2], by using slightly different notations with [9]. Throughout this
subsection, we fix this representation π.

• Winding automorphisms. We write Ξl
π for the left winding automorphism of H

associated to π, namely

Ξl
π(a) :=

∑
π(a1)a2 for a ∈ H.

Similarly we use Ξr
π for the right winding automorphism of H associated to π, that

is,

Ξr
π(a) :=

∑
a1π(a2) for a ∈ H.

Let Gl
π and Gr

π be the subgroups of Aut
k-alg(H) generated by Ξl

π and Ξr
π, respectively.

Define:

Gπ := Gl
π

⋂
Gr

π.

The following is some parts of [9, Propostion 2.1.].

Lemma 2.3. Let H l
0,π,H

r
0,π and H0,π be the subalgebra of invariants HGl

π ,HGr
π and

HGπ respectively. Then we have

(1) H0,π = H l
0,π

⋂
Hr

0,π.

(2) Ξl
πΞ

r
π = Ξr

πΞ
l
π.

(3) Ξr
π ◦ S = S ◦ (Ξl

π)
−1. Therefore, S(H l

0,π) ⊆ Hr
0,π and S(Hr

0,π) ⊆ H l
0,π.

• π-order and π-minor. With the same notions as above, the π- order (denoted as
ord(π)) of H is defined by the order of the group Gl

π :

(2.1) ord(π) := |Gl
π|.

Lemma 2.4. We always have |Gl
π| = |Gr

π|.

Proof. Assume that |Gl
π| = n, and then by the definition we know that

a =
∑

πn(a1)a2
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for all a ∈ H. Therefore, πn = ε (because above formula implies that πn is the left
counit) and thus a =

∑
a1π

n(a2) for all a. So, |Gl
π| ≥ |Gr

π|. Similarly, we have
|Gr

π| ≥ |Gl
π|. �

By this lemma, the above definition is independent of the choice of Gl
π or Gr

π.

The π-minor (denoted by min(π)) of H is defined by

(2.2) min(π) := |Gl
π/G

l
π ∩Gr

π|.
Remark 2.5. In particular, if the 1-dimensional representation is given by the (right
module structure) of left integrals, then the corresponding representation order and
representation minor are called integral order and integral minor, denoted as

io(H) and im(H),

respectively. Both the integral order and integral minor are used widely in [9, 36].
Therefore, we can consider a general 1-dimensional representation as a relative version
of homological integrals. Note that the notations io(H) and im(H) will be used freely
in this paper too.

• Invariant components and strongly graded property. Let H be a prime Hopf algebra
of GK-dimension one. By a fundamental results of Small, Stafford and Warfield [31],
a semiprime affine algebra of GK-dimension one is a finite module over its center.
Therefore, it is PI and has finite PI-order. Now we assume that H satisfies the
(Hyp1) (see Subsection 1.1) and thereby |Gl

π| = PI-deg(H) is finite, say n. Moreover,

since Gl
π is a cyclic group, its character group Ĝl

π := Hom
k-alg(kG

l
π,k) is isomorphic

to itself. Similarly, the character group Ĝr
π of Gr

π is isomorphic to Gr
π.

Fix a primitive nth root ζ of 1 in k, and define χ ∈ Ĝl
π and η ∈ Ĝr

π by setting

χ(Ξl
π) = ζ and η(Ξr

π) = ζ.

Thus Ĝl
π = {χi|0 6 i 6 n− 1} and Ĝr

π = {ηj |0 6 j 6 n− 1}.
For each 0 6 i, j 6 n− 1, let

H l
i,π := {a ∈ H|Ξl

π(a) = χi(Ξl
π)a} and Hr

j,π := {a ∈ H|Ξr
π(a) = ηj(Ξr

π)a}.

The following lemma is [9, Theorem 2.5 (b)] (Note that for the part (b) of [9, Theorem
2.5.] we don’t need the condition about regularity).

Lemma 2.6. (1) H =
⊕

χi∈Ĝl
π

H l
i,π is strongly Ĝl

π-graded.

(2) H =
⊕

ηj∈Ĝr
π
Hr

j,π is strongly Ĝr
π-graded.

Definition 2.7. The subalgebra H l
0,π (resp. Hr

0,π) is called the left (resp. right)
invariant component of H with respect to π.

Therefore, (Hyp2) just says that both H l
0,π and Hr

0,π are domains. In fact, these two
algebras are closely related.

Lemma 2.8. Let H be a prime Hopf algebra of GK-dimension one. Then
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(1) As algebras, we have H l
0,π

∼= (Hr
0,π)

op.

(2) If moreover either H l
0,π or Hr

0,π is a domain, then both H l
0,π and Hr

0,π are

commutative domains and thus H l
0,π

∼= Hr
0,π.

Proof. By Lemma 2.3. (3), we have S(H l
0,π) ⊆ Hr

0,π and S(Hr
0,π) ⊆ H l

0,π. Now (1) is
proved.

For (2), it is harmless to assume that H l
0,π is a domain. By H is of GK-dimension one

and H =
⊕

χi∈Ĝl
π

H l
i,π is strongly graded (see Lemma 2.6), H l

0,π has GK-dimension

one too. Now it is well-known that a domain with GK-dimension one must be com-
mutative (see for example [14, Lemma 4.5]). Therefore H l

0,π is commutative and

H l
0,π

∼= Hr
0,π by (1). So Hr

0,π is a commutative domain too. �

By Lemma 2.3. (2), Ξl
πΞ

r
π = Ξr

πΞ
l
π, and thus H l

i,π is stable under the action of Gr
π.

Consequently, the Ĝl
π- and Ĝ

r
π-gradings on H are compatible in the sense that

H l
i,π =

⊕

06j6n−1

(H l
i,π ∩Hr

j,π) and Hr
j,π =

⊕

06i6n−1

(H l
i,π ∩Hr

j,π)

for all i, j. Then H is a bigraded algebra:

(2.3) H =
⊕

06i,j6n−1

Hij,π,

where Hij,π = H l
i,π ∩Hr

j,π. And we write H0,π := H00,π for convenience.

For later use, we collect some more properties about H which were proved in [9]
without the requirement about regularity. For details, see [9, Proposition 2.1 (c)(e)]
and [9, Lemma 6.3].

Lemma 2.9. Let H be a prime Hopf algebra of GK-dimensional one satisfying
(Hyp1). Then

(1) ∆(H l
i,π) ⊆ H l

i,π ⊗H and ∆(Hr
j,π) ⊆ H ⊗Hr

j ; thus H
l
i,π is a right coideal of H

and Hr
j,π is a left coideal of H for all 0 ≤ i, j ≤ n− 1;

(2) Ξr
π ◦ S = S ◦ (Ξl

π)
−1, where (Ξl

π)
−1 = Ξl

π◦S .

(3) S(H l
i,π) = Hr

−i,π and S(Hij,π) = H−j,−i,π.

(4) If i 6= j, then ε(Hij,π) = 0.
(5) If i = j, then ε(Hii,π) 6= 0.

Remark 2.10. (1) In the regular case, that is, H is a prime regular Hopf algebra
of GK-dimension one, the set of all right homological integrals forms a 1-dimensional
representation whose order is equal to the PI.deg(H). In such case, the invariant
components are called classical components by [9, Section 2].

(2) In the following of this paper, we will omit the notation π when the representation
is clear from context. Therefore, say, sometimes we just write H0,π as H0 when there
is no confusion about which representation we are considering.
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The following result is the combination of some parts of [9, Proposition 5.1, Corollary
5.1], which is very useful for us.

Lemma 2.11. Let A be a k-algebra and let G be a finite abelian group of order n

acting faithfully on A. So A is Ĝ-graded, A =
⊕

χ∈Ĝ
Aχ. Assume that 1) this grading

is strong and 2) the invariant component A0 is a commutative domain. Then we have

(a) Every non-zero homogeneous element is a regular element of A and PI.deg(A) ≤
n.

(b) There is an action ⊲ of Ĝ on A0 with the following property: For any χ ∈ Ĝ
and a ∈ A0,

(2.4) (χ ⊲ a)uχ = uχa

where uχ is an arbitrary nonzero element belonging to Aχ.
(c) PI.deg(A) = n if and only if the action ⊲ is faithful.
(d) If PI.deg(A) = n, then A is prime.

(e) Let K < G be a subgroup Ĝ and let B be the subalgebra
⊕

χ∈K Aχ. If

PI.deg(A) = n, then B is prime with PI-degree |K|.

2.3. Known examples. The following examples appeared in [9, 36] already and we
recall them for completeness.

• Connected algebraic groups of dimension one. It is well-known that there are pre-
cisely two connected algebraic groups of dimension one (see, say [17, Theorem 20.5])
over an algebraically closed field k. Therefore, there are precisely two commutative k-
affine domains of GK-dimension one which admit a structure of Hopf algebra, namely
H1 = k[x] andH2 = k[x±1]. For H1, x is a primitive element, and forH2, x is a group-
like element. Commutativity and cocommutativity imply that io(Hi) = im(Hi) = 1
for i = 1, 2.

• Infinite dihedral group algebra. Let D denote the infinite dihedral group 〈g, x|g2 =
1, gxg = x−1〉. Both g and x are group-like elements in the group algebra kD. By
cocommutativity, im(kD) = 1. Using [23, Lemma 2.6], one sees that as a right H-

module,
∫l
kD

∼= kD/〈x− 1, g + 1〉. This implies io(kD) = 2.

• Infinite dimensional Taft algebras. Let n and t be integers with n > 1 and 0 6 t 6
n− 1. Fix a primitive nth root ξ of 1. Let T = T (n, t, ξ) be the algebra generated by
x and g subject to the relations

gn = 1 and xg = ξgx.

Then T (n, t, ξ) is a Hopf algebra with coalgebra structure given by

∆(g) = g ⊗ g, ǫ(g) = 1 and ∆(x) = x⊗ gt + 1⊗ x, ǫ(x) = 0,

and with

S(g) = g−1 and S(x) = −xg−t.
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As computed in [9, Subsection 3.3], we have
∫l
T
∼= T/〈x, g−ξ−1〉, and the correspond-

ing homomorphism π yields left and right winding automorphisms

Ξl
π :

{
x 7−→ x,

g 7−→ ξ−1g,
and Ξr

π :

{
x 7−→ ξ−tx,

g 7−→ ξ−1g.

So that Gl
π = 〈Ξl

π〉 and Gr
π = 〈Ξr

π〉 have order n. If gcd(n, t) = 1, then Gl
π ∩Gr

π = {1}
and [9, Propositon 3.3] implies that there exists a primitive nth root η of 1 such that
T (n, t, ξ) ∼= T (n, 1, η) as Hopf algebras. If gcd(n, t) 6= 1, let m := n/gcd(n, t), then
Gl

π ∩ Gr
π = 〈(Ξl

π)
m〉. Thus we have io(T (n, t, ξ)) = n and im(T (n, t, ξ)) = m for any

t. In particular, im(T (n, 0, ξ)) = 1, im(T (n, 1, ξ)) = n and im(T (n, t, ξ)) = m = n/t
when t|n.
• Generalized Liu algebras. Let n and ω be positive integers. The generalized Liu
algebra, denoted by B(n, ω, γ), is generated by x±1, g and y, subject to the relations





xx−1 = x−1x = 1, xg = gx, xy = yx,

yg = γgy,

yn = 1− xω = 1− gn,

where γ is a primitive nth root of 1. The comultiplication, counit and antipode of
B(n, ω, γ) are given by

∆(x) = x⊗ x, ∆(g) = g ⊗ g, ∆(y) = y ⊗ g + 1⊗ y,

ǫ(x) = 1, ǫ(g) = 1, ǫ(y) = 0,

and

S(x) = x−1, S(g) = g−1 S(y) = −yg−1.

Let B := B(n, ω, γ). Using [23, Lemma 2.6], we get
∫l
B = B/〈y, x− 1, g − γ−1〉. The

corresponding homomorphism π yields left and right winding automorphisms

Ξl
π :





x 7−→ x,

g 7−→ γ−1g,

y 7−→ y,

and Ξr
π :





x 7−→ x,

g 7−→ γ−1g,

y 7−→ γ−1y.

Clearly these automorphisms have order n and Gl
π ∩ Gr

π = {1}, whence io(B) =
im(B) = n.

• The Hopf algebras D(m,d, γ). Let m,d be two natural numbers satisfying that
(1 +m)d is even and γ a primitive mth root of 1. Define

ω := md, ξ :=
√
γ.

As an algebra, D = D(m,d, γ) is generated by x±1, g±1, y, u0, u1, · · · , um−1, subject
to the following relations

xx−1 = x−1x = 1, gg−1 = g−1g = 1, xg = gx,

xy = yx, yg = γgy, ym = 1− xω = 1− gm,

xui = uix
−1, yui = φiui+1 = ξxduiy, uig = γix−2dgui,



12 GONGXIANG LIU

uiuj =





(−1)−jξ−jγ
j(j+1)

2
1
mx

− 1+m
2

dφiφi+1 · · ·φm−2−jy
i+jg, i+ j 6 m− 2,

(−1)−jξ−jγ
j(j+1)

2
1
mx

− 1+m
2

dyi+jg, i+ j = m− 1,

(−1)−jξ−jγ
j(j+1)

2
1
mx

− 1+m
2

dφi · · · φm−1φ0 · · ·φm−2−jy
i+j−mg, otherwise,

where φi = 1− γ−i−1xd and 0 6 i, j 6 m− 1.

The coproduct ∆, the counit ǫ and the antipode S of D(m,d, γ) are given by

∆(x) = x⊗ x, ∆(g) = g ⊗ g, ∆(y) = y ⊗ g + 1⊗ y,

∆(ui) =

m−1∑

j=0

γj(i−j)uj ⊗ x−jdgjui−j ;

ǫ(x) = ǫ(g) = ǫ(u0) = 1, ǫ(y) = ǫ(us) = 0;

S(x) = x−1, S(g) = g−1, S(y) = −yg−1,

S(ui) = (−1)iξ−iγ−
i(i+1)

2 xid+
3
2
(1−m)dgm−i−1ui,

for 0 ≤ i ≤ m−1 and 1 6 s 6 m−1. Direct computation shows that
∫l
D = D/(y, x−

1, g− γ−1, u0 − ξ−1, u1, u2, · · · , um−1), and the left and right winding automorphisms
are:

Ξl
π :





x 7−→ x,

y 7−→ y,

g 7−→ γ−1g,

ui 7−→ ξ−1ui,

and Ξr
π :





x 7−→ x,

y 7−→ γ−1y.

g 7−→ γ−1g,

ui 7−→ ξ−(2i+1)ui.

From these, we know that io(D) = 2m and im(D) = m.

Remark 2.12. In [36], the authors used the notation D(m,d, ξ) rather than D(m,d, γ)
used here. We will see that the notation D(m,d, γ) is more convenient for us.

Up to an isomorphism of Hopf algebras, all of above examples form a complete list of
prime regular Hopf algebras of GK-dimension one (see [36, Theorem 8.3.]).

Lemma 2.13. Let H be a prime regular Hopf algebra of GK-dimension one, then it
is isomorphic to one of Hopf algebras listed above.

2.4. Yetter-Drinfeld modules. This subsection is just a preparation for the ques-
tion (1.1) and will not be used in the proof of our main result. Let H be an arbitrary
Hopf algebra. By definition, a left-left Yetter-Drinfeld module V over H is a left
H-module and a left H-comodule such that

δ(h · v) = h1v(−1)S(h3)⊗ h2 · v(0)
for h ∈ H, v ∈ V. The category of left-left Yetter-Drinfeld modules over H is denoted
by H

HYD. It is a braided tensor category. In particular, when H = kG a group

algebra, we denote this category by G
GYD.

We briefly summarize results from [28], see also [25]. Let A be a Hopf algebra provided
with Hopf algebra maps π : A→ H. ι : H → A, such that πι = IdH . Let R = AcoH =
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{a ∈ A|(∈ ⊗π)∆(a) = a⊗ 1}. Then R is a braided Hopf algebra in H
HYD through

h · r := h1rS(h2),

r(−1) ⊗ r(0) := π(r1)⊗ r2,

r1 ⊗ r2 := ϑ(r1)⊗ r2

for r ∈ R, h ∈ H, ∆(r) = r1⊗ r2 denote the coproduct of r ∈ R in the category H
HYD

and ϑ(a) := a1ιπ(S(a2)) for a ∈ A.

Conversely, let R be a Hopf algebra in H
HYD. A construction discovered by Radford,

and interpreted in terms of braided tensor categories by Majid, produces a Hopf
algebra R#H through: As a vector space R#H = R⊗H; if r#h := r⊗h, r ∈ R,h ∈
H, the multiplication and coproduct are given by

(r#h)(s#f) = r(h1 · s)#h2f,
∆(r#h) = r1#(r2)(−1)h1 ⊗ (r2)(0)#h2.

The resulted Hopf algebra R#H is called a Radford’s biproduct or Majid’s bosoniza-
tion.

Now go back to the situation of π : A → H. ι : H → A such that πι = IdH . In such
case we have A ∼= R#H and

(2.5) r1 ⊗ r2 = r1(r2)(−1) ⊗ (r2)(0)

for r ∈ R.

With these preparations, we can set the question of (1.1) for smooth curves at first.

Corollary 2.14. The affine line and k[x±1] are the only irreducible smooth curves

which can be realized as Hopf algebras in Zn

Zn
YD for some n.

Proof. Let C be an irreducible smooth curve which can be realized as a Hopf algebra
in Zn

Zn
YD for some n. There is no harm to assume that the action of Zn on this curve

(more precisely, on the coordinate algebra k[C] of this curve) is faithful. Therefore,
the Radford’s biproduct

A := k[C]#kZn

constructed above is a Hopf algebra of GK-dimension one. We claim that it is prime
and regular. Primeness is gotten from Lemma 2.11: Clearly

A =
n−1⊕

i=0

k[C]gi.

From this, A is a strongly Ẑn = 〈χ|χn = 1〉-graded algebra through χ(agi) = ξi for
any a ∈ k[C] and 0 ≤ i ≤ n − 1. Therefore, the conditions 1) and 2) of Lemma 2.11

are fulfilled. By part (b) of Lemma 2.11, the action of Ẑn is just the adjoint action
of Zn = 〈g|gn = 1〉 on k[C] which by definition is faithful. Therefore, PI.deg(A) = n
by part (c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11 implies that A
is prime now. Regularity is clear since the smoothness of C implies the regularity
of k[C] and thus regularity of A. In one word, A is a prime regular Hopf algebra of
GK-dimension one.
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Therefore, the result is followed from above classification stated in Lemma 2.13 by
checking it one by one. �

2.5. Pivotal tensor categories. The only purpose of this subsection is just to tell
us that the representation categories of our new examples stated in Section 4 are quite
delightful: they are pivotal. The readers can refer [10, Section 4.7] for details of the
following content of this subsection.

Recall that a tensor category C = (C,⊗,Φ,1, l, r) is called rigid if every object in
C has a left and a right dual. By definition, a left dual object of V ∈ C is a triple
(V ∗, evV , coevV ) with an object V ∗ ∈ C and morphisms evV : V ∗ ⊗ V → 1 and
coevV : 1→ V ⊗ V ∗ such that the compositions

V ✲
coevV ⊗ IdV

(V ⊗ V ∗)⊗ V ✲
Φ

V ⊗ (V ∗ ⊗ V ) ✲
IdV ⊗evV

V ,

V ∗ ✲
IdV ∗ ⊗coevV

V ∗ ⊗ (V ⊗ V ∗) ✲Φ−1

(V ∗ ⊗ V )⊗ V ∗ ✲
evV ⊗ IdV ∗

V ∗,

are identities. The right dual can be defined similarly. Then we have the following
functor

(−)∗∗ : C → C, V 7→ V ∗∗

which is a tensor autoequivalence of C.

Definition 2.15. Let C be a rigid tensor category. A pivotal structure on C is an
isomorphism j of tensor functors jV : V 7→ V ∗∗. A rigid tensor category C is said
pivotal if it has a pivotal structure.

As nice properties of a pivotal tensor category, one can define categorical dimensions
[10, Section 4.7], the Frobenius-Schur indicators [27], semisimplifications [12] etc. The
following result is well-known.

Lemma 2.16. Let H be a Hopf algebra. If S2(h) = ghg−1 for a group-like element
g ∈ H and any h ∈ H, then the representation category of H is pivotal.

Proof. Let Rep(H) be the tensor category of representations of H. Clearly, the map

V → V ∗∗ = V, v 7→ g · v, V ∈ Rep(H), v ∈ V

gives us the desired pivotal structure on Rep(H). �

3. Fractions of a number

As a necessary ingredient to define new examples, we give the definition of a fraction of
a natural number firstly in this section. Then we use it to “fracture” the Taft algebra
and thus we get the fraction version of a Taft algebra. At last, some combinatorial
identities are collected for the future analysis.
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3.1. Fraction. Let m be a natural number and m1,m2, . . . ,mθ be θ number of nat-
ural numbers. For each mi (1 ≤ i ≤ θ), we have many natural numbers a such that
m|ami. Among of them, we take the smallest one and denote it by ei, that is, ei is
the smallest natural number such that m|eimi. Define

A := {a = (a1, . . . , aθ)|0 ≤ ai < ei, 1 ≤ i ≤ θ}.

With these notations, we give the definition of a fraction as follows.

Definition 3.1. We call m1, . . . ,mθ is a fraction of m of length θ if the following
conditions are satisfied:

(1) For each 1 ≤ i ≤ θ, ei is coprime to mi, i.e. (ei,mi) = 1;
(2) For each pair 1 ≤ i 6= j ≤ θ, m|mimj ;
(3) The production of ei is equal to m, that is, m = e1e2 · · · eθ;
(4) For any two elements a, b ∈ A, we have

∑θ
i=1 aimi 6≡

∑θ
i=1 bimi (mod m) if

a 6= b.

The set of all fractions of m of length θ is denoted by Fθ(m) and let F(m) :=⋃
θ Fθ(m), F =

⋃
m∈N F(m).

Remark 3.2. (1) Conditions (3) and (4) in this definition is equivalent to say that
up to modulo m, each number 0 ≤ j ≤ m− 1 can be represented uniquely as a linear
combination of m1, . . . ,mθ with coefficients in A. That is, under basis m1, . . . ,mθ, j
has a coordinate and we denote this coordinate by (j1, . . . , jθ), i.e.

j ≡ j1m1 + j2m2 + . . .+ jθmθ (mod m).

Moreover, for any j ∈ Z it has a unique remainder j in Zm and thus we can define the
coordinate for any integer accordingly, that is, ji := ji for 1 ≤ i ≤ θ. In the following
of this paper, this expression will be used freely.

(2) For each 1 ≤ i ≤ θ, we call ei the exponent of mi with respect to m. Intuitively,
it seems more natural to call these exponents e1, . . . , eθ a fraction of m due to the
condition (3). However, there are as least two reasons forbidding us to do it. The first
one is that we will meet mi’s rather than ei’s in the following analysis. The second
reason is that the exponents can not determine mi’s uniquely. As an example, let
m = 6, we see that both {2, 3} and {4, 3} have the same set of exponents.

(3) It is not hard to see that θ = 1 if and only if (m,m1) = 1.

(4) Usually, we use the notation such as m,m′ · · · to denote a fraction of m, that is,
m,m′ ∈ F(m).

3.2. Fraction version of a Taft algebra. Now let m1, . . . ,mθ be a fraction of m,
m0 := (m1, . . . ,mθ) biggest common divisor of m1, . . . ,mθ and fix a primitive mth
root of unity ξ. We want to define a Hopf algebra T (m1, . . . ,mθ, ξ) as follows. As an
algebra, it is generated by g, ym1 , . . . , ymθ

and subject to the following relations:

(3.1) gm = 1, yeimi
= 0, ymi

ymj
= ymj

ymi
, ymi

g = ξ
mi
m0 gymi

,
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for 1 ≤ i, j ≤ θ. The coproduct ∆, the counit ǫ and the antipode S of T (m1, . . . ,mθ, ξ)
are given by

∆(g) = g ⊗ g, ∆(ymi
) = 1⊗ ymi

+ ymi
⊗ gmi ,

ε(g) = 1, ε(ymi
) = 0,

S(g) = g−1, S(ymi
) = −ymi

g−mi

for 1 ≤ i ≤ θ.

Since (m0,m) = 1, if we take ξ′ := ξm0 in the above definition then it is not hard
to see that ξ′ is still a primitive mth root of unity. So in (3.1) we can substitute the

relation ymi
g = ξ

mi
m0 gymi

by a more convenient version

ymi
g = ξmigymi

, 1 ≤ i ≤ θ.

Lemma 3.3. The algebra T (m1, . . . ,mθ, ξ) defined above is an m2-dimensional Hopf
algebra.

Proof. This is clear. We just point out that: The condition (1) of Definition 3.1
ensures that each yeimi

is a primitive element and the condition (2) of Definition 3.1
ensures that ymi

ymj
− ymj

ymi
is a skew-primitive element for all 1 ≤ i, j ≤ θ. �

Proposition 3.4. Let m′ be another natural number and m′ = {m′
1, . . . ,m

′
θ′} be a

fraction of m′. Then as Hopf algebras, T (m1, . . . ,mθ, ξ) ∼= T (m′
1, . . . ,m

′
θ, ξ

′) if and
only if m = m′, θ = θ′ and there exists x0 ∈ N which is relatively prime to m such
that up to an order of m1, . . . ,mθ we have m′

i ≡ mix0 (mod m) and ξ = ξ′x0 .

Proof. We denote the generators and numbers of T (m′
1, . . . ,m

′
θ, ξ

′) by adding the
symbol ′ to that of T (m1, . . . ,mθ, ξ) for convenience. The sufficiency of the proposition
is clear. We only prove the necessity. Assume that we have an isomorphism of Hopf
algebras

ϕ : T (m1, . . . ,mθ, ξ)
∼=−→ T (m′

1, . . . ,m
′
θ, ξ

′).

By this isomorphism, they have the same dimension and thus m = m′ according to
Lemma 3.3. Comparing the number of nontrivial skew primitive elements, we know
that θ = θ′. Up to an order of m1, . . . ,mθ, there is no harm to assume that ϕ(ymi

) =

ym′
i
for 1 ≤ i ≤ θ. (More precisely, we should take ϕ(ymi

) = ym′
i
+c(1−(g′)m

′
i) at first.

But through the relation ymi
g = ξmigymi

we have c = 0.) Since ϕ(g) is a group-like
and generates all group-likes, ϕ(g) = g′x0 for some x0 ∈ N and (x0,m) = 1. Due to

∆(ϕ(ymi
)) = ∆(ym′

i
) = 1⊗ ym′

i
+ ym′

i
⊗ (g′)m

′
i

which equals to

(ϕ⊗ ϕ)(∆(ymi
)) = 1⊗ ym′

i
+ ym′

i
⊗ (g′)mix0 .

Therefore, m′
i ≡ mix0 (mod m). By this, we can assume that (m′

1, . . . ,m
′
θ) =

(m1, . . . ,mθ)x0, that is, m
′
0 = m0x0. So ϕ(ymi

g) = ϕ(ξ
mi
m0 gymi

) implies that

ξ
′
m′

i
m′

0
x0
(g′)x0ym′

i
= ξ

mi
m0 (g′)x0ym′

i
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which implies that ξ
mi
m0 = ξ

′x0
mi
m0 for all 1 ≤ i ≤ θ. Since by definition (m1

m0
, . . . , mθ

m0
) =

1, there exist c1, . . . , cθ such that
∑θ

i=1 ci
mi

m0
= 1. Therefore,

ξ = ξ
∑θ

i=1 ci
mi
m0 = ξ

′x0
∑θ

i=1 ci
mi
m0 = ξ′x0 .

�

3.3. Some combinatorial identities. Firstly, we will rewrite some combinatorial
identities appeared in [36, Section 3] in a suitable form for our purpose. Secondly, we
prove some more identities which are not included in [36, Section 3]. Let m,d be two
natural numbers. As before, let m = {m1, . . . ,mθ} ∈ F(m) be a fraction of m and ei
the exponent of mi with respect to m for 1 ≤ i ≤ θ. Let γ be a primitive mth root of
unity. By definition, we know that

γi := γ−m2
i

is a primitive eith root of unity. For any j ∈ Z, the polynomial φmi,j is defined
through

(3.2) φmi,j := 1− γ−mi(mi+j)xmid = 1− γ−m2
i (1+ji)xmid = 1− γ

(1+ji)
i xmid

for any 1 ≤ i ≤ θ and the second equality is due to the (2) of the definition of the
fraction. In the following of this subsection, we fix an 1 ≤ i ≤ θ.

Take j to be an arbitrary integer, define j̄ to be the unique element in {0, 1, . . . , ei−1}
satisfying j̄ ≡ j (mod ei). Then we have

φmi,j = φmi,j̄

since γeii = 1.

With this observation, we can use

]s, t[mi

to denote the resulted polynomial by omitting all items from φmi,smi
to φmi,tmi

in

φmi,0φmi,mi
· · ·φmi,(ei−1)mi

,

that is

(3.3) ]s, t[mi
=





φmi,(t̄+1)mi
· · ·φmi,(ei−1)mi

φmi,0 · · ·φmi,(s̄−1)mi
, if t̄ > s̄

1, if s̄ = t+ 1

φmi,(t̄+1)mi
· · ·φmi,(s̄−1)mi

, if s > t̄+ 2.

For example, ]−1,−1[mi
= ]ei − 1, ei − 1[mi

= φmi,0φmi,mi
· · · φmi,(ei−2)mi

.

In practice, in particular to formulate the multiplication of our new examples of Hopf
algebras, the next notation is also useful for us, which can be considered as the resulted
polynomial (except the case s̄ = t̄+1) by preserving all items from φmi,smi

to φmi,tmi

in φmi,0φmi,mi
· · ·φmi,(ei−1)mi

.



18 GONGXIANG LIU

(3.4) [s, t]mi
:=





φmi,s̄mi
φmi,(s̄+1)mi

· · · φmi,t̄mi
, if t̄ > s̄

1, if s̄ = t+ 1

φmi,s̄mi
· · · φmi,(ei−1)mi

φmi,0 · · ·φmi,t̄mi
, if s > t̄+ 2.

So, by definition, we have

(3.5) [i,m− 2− j]mi
= ]−1− j, i− 1[mi

.

Due to the equality (3.5), we just study equations with omitting items. The following
formulas already were proved or already implicated in [36, Section 3] in different
forms. So we just state them in our forms without proofs.

Lemma 3.5. With notions defined as above, we have

(1)
∑ei−1

j=0 ]j − 1, j − 1[mi
= ei.

(2) φmi,0φmi,mi
· · ·φmi,(ei−1)mi

= 1− xeimid.

(3)
∑ei−1

j=0 γ
j
i ]j − 1, j − 1[mi

= eix
(ei−1)mid.

(4)
∑ei−1

j=0 γ
j
i ]j − 2, j − 1[mi

= 0.

(5) Fix k such that 1 6 k 6 ei − 1 and let 1 6 i′ 6 k. Then

ei−1∑

j=0

γi
′j
i ]j − 1− k, j − 1[mi

= 0.

(6) Let 0 ≤ t ≤ j + l ≤ ei − 1, 0 ≤ α ≤ ei − 1− j − l. Then

(−1)α+tγ
(α+t)(α+t+1)

2
+t(j+l−t)

i

(
ei − 1− t

α

)

γi

(
ei − 1 + t− j − l

α+ t

)

γi

=

(
j + l

t

)

γi

(
m− 1− j − l

α

)

γi

.

We still need two more observations which were not included in [36, Section 3].

Lemma 3.6. With notations as above. Then

(1) For any eith root of unity ξ, we have

ei−1∑

j=0

ξj ]j − 1, j − 1[mi
6= 0.

(2) Let ξ be an eith root of unity. Then
∑ei−1

j=0 ξ
j ]j − 2, j − 1[mi

= 0 if and only
if ξ = γi.

Proof. (1) Otherwise, we assume that
∑ei−1

j=0 ξ
j ]j − 1, j − 1[mi

= 0. From this, we

know that ξ 6= 1 by (3) of Lemma 3.5. By the definition of ]j − 1, j − 1[mi
, we know

that
ei−1∑

j=0

ξj]j − 1, j − 1[mi
−

ei−1∑

j=0

ξjγji x
mid ]j − 1, j − 1[mi
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=

ei−1∑

j=0

ξj(1− γji x
mid) ]j − 1, j − 1[mi

=

ei−1∑

j=0

ξjφmi,0φmi,mi
· · · φmi,(ei−1)mi

=

ei−1∑

j=0

ξj(1− xeimid)

= 0.

where the third equality is due to (2) of Lemma 3.5 and the last equality follows from

ξ 6= 1 being an eith root of unity. Therefore,
∑ei−1

j=0 ξ
jγji x

mid ]j − 1, j − 1[mi
= 0 and

thus
∑ei−1

j=0 (γiξ)
j ]j − 1, j − 1[mi

= 0. Repeat above process, we know that for any k

ei−1∑

j=0

(γki ξ)
j ]j − 1, j − 1[mi

= 0.

Since ξ is an eith root of unity while γi is a primitive eith root of unity, there exists
a k such that γki ξ = 1. But in this case

∑ei−1
j=0 (γki ξ)

j ]j − 1, j − 1[mi
= ei 6= 0. That

is a contradiction.

(2) “⇐” This is just the (4) of Lemma 3.5.

“⇒” Before prove this part, we recall a formula (see [18, Proposition IV.2.7]) at first:

(a− z)(a− qz) · · · (a− qn−1z) =
n∑

l=0

(−1)l
(
n

l

)

q

q
l(l−1)

2 an−lzl,

where q is a nonzero element in k and any a ∈ k. From this,

]j − 2, j − 1[mi
= (1− γj+1

i xmid)(1 − γj+2
i xmid) · · · (1− γei+j−2

i xmid)

=

ei−2∑

l=0

(−1)l
(
ei − 2

l

)

γi

γ
l(l−1)

2
i (γj+1

i xmid)l

=

ei−2∑

l=0

(−1)l
(
ei − 2

l

)

γi

γ
l(l+1)

2 +lj

i xlmid.

So from this, we have

ei−1∑

j=0

ξj ]j − 2, j − 1[mi
=

ei−2∑

l=0

(−1)l
(
ei − 2

l

)

γi

γ
l(l+1)

2
i

ei−1∑

j=0

ξjγlji x
lmid.

Therefore assumption implies that

ei−1∑

j=0

ξjγlji = 0

for all 0 6 l 6 ei − 2. So we see that the only possibility is ξ = γi. �
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4. New examples

In this section, we will introduce the fraction versions of infinite dimensional Taft
algebras, generalized Liu algebras and the Hopf algebrasD(m,d, γ) respectively. Some
properties of them are listed. Most of these Hopf algebras, as far as we know, are
knew.

4.1. Fraction of infinite dimensional Taft algebra T (m, t, ξ). Let m, t be two
natural numbers and set n = mt. Let m = {m1, . . . ,mθ} be a fraction of m and m0 =
(m1, . . . ,mθ) the greatest common divisor. So it is not hard to see that (m,m0) = 1.
Now fix a primitive nth root of unity ξ satisfying

ξ
e1

m1
m0 = ξ

e2
m2
m0 = · · · = ξ

eθ
mθ
m0 .

Note that such ξ does not always exist (for example, taking m = 6, t = 2 and {4, 3}
be a fraction of 6, we find that we have no such ξ). If it exists, then we can define a
Hopf algebra T (m, t, ξ) as follows. As an algebra, it is generated by g, ym1 , . . . , ymθ

and subject to the following relations:

(4.1) gn = 1, yeimi
= y

ej
mj , ymi

ymj
= ymj

ymi
, ymi

g = ξ
mi
m0 gymi

,

for 1 ≤ i, j ≤ θ. The coproduct ∆, the counit ǫ and the antipode S of T (m, t, ξ) are
given by

∆(g) = g ⊗ g, ∆(ymi
) = 1⊗ ymi

+ ymi
⊗ gtmi ,

ε(g) = 1, ε(ymi
) = 0,

S(g) = g−1, S(ymi
) = −ymi

g−tmi

for 1 ≤ i ≤ θ.

Proposition 4.1. Let the k-algebra T = T ({m1, . . . ,mθ}, t, ξ) be the algebra defined
as above. Then

(1) The algebra T is a Hopf algebra of GK-dimension one, with center k[ye1tm1
].

(2) The algebra T is prime and PI-deg (T ) = n.
(3) The algebra T has a 1-dimensional representation whose order is n.

Proof. (1) Since the proof of T (m, t, ξ) being a Hopf algebra is routine, we leave it to
the readers. (In fact, since for each 1 ≤ i ≤ θ the subalgebra generated by g, ymi

is
just a generalized infinite dimensional Taft algebra, one can reduce the proof to just
considering the mixed relation ymi

ymj
= ymj

ymi
and yeimi

= y
ej
mj for 1 ≤ i, j ≤ θ.)

Through direct computations, one can see that the subalgebra k[ye1tm1
] ∼= k[x] is the

center of T (m, t, ξ) and T is finite module over k[ye1tm1
]. This means the GK-dimension

of T (m, t, ξ) is one.

(2) We want to apply Lemma 2.11 to prove this result and we use similar argument
developed in the proof of Corollary 2.14. At first, let T0 be the subalgebra generated
by ym1 , . . . , ymθ

. Then clearly

T =

n−1⊕

i=0

T0g
i.
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From this, T is a strongly Ẑn = 〈χ|χn = 1〉-graded algebra through χ(agi) = ξi for
any a ∈ T0 and 0 ≤ i ≤ n− 1. Therefore, the conditions 1) and 2) of Lemma 2.11 are

satisfied. By part (b) of Lemma 2.11, the action of Ẑn is just the adjoint action of
Zn = 〈g|gn = 1〉 on T0 which by definition is faithful. Therefore, PI.deg(T ) = n by
part (c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11 implies that T is
prime now.

(3) By the definition of T (m, t, ξ), it has a 1-dimensional representation

π : T (m, t, ξ) → k, ymi
7→ 0, g 7→ ξ (1 ≤ i ≤ θ).

It’s order is clear n. �

Remark 4.2. We call the representation in Proposition 4.1 (c) the canonical repre-
sentation of T (m, t, ξ). Since ord(π) = n which is same as the PI-degree of T (m, t, ξ),
the Hopf algebra T (m, t, ξ) satisfies the (Hyp1). At the same time, let {2, 5} be a
fraction of 10 and consider the example T = T ({2, 5}, 3, ξ) where ξ is a primitive 30th
root of unity. Applying [23, Lemma 2.6], we find that the right module structure of
the left homological integrals is given by

∫ l
T
= T/(ymi

(1 ≤ i ≤ θ), g − ξ10−7).

Therefore io(T ) = 10 which does not equal the PI-degree of T , which is 30. So,
T (m, t, ξ) only satisfies (Hyp1) rather than (Hyp1)′, that is, io(T ) 6= PI.deg(T ) in
general.

The canonical representation of T = T (m, t, ξ) yields the corresponding left and right
winding automorphisms

Ξl
π :

{
ymi

7−→ ymi
,

g 7−→ ξg,
and Ξr

π :

{
ymi

7−→ ξmitymi
,

g 7−→ ξg,

for 1 ≤ i ≤ θ.

Using above expression of Ξl
π and Ξr

π, it is not difficult to find that

(4.2) T l
i = k[ym1 , . . . , ymθ

]gi and T r
j = k[g−m1tym1 , . . . , g

−mθtymθ
]gj

for all 0 ≤ i, j ≤ n− 1. Thus we have

(4.3) T00 = k[ye1m1
] and Ti,i+jt = k[ye1m1

]yjg
i

for all 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m− 1 where yj = yj1m1 · · · yjθmθ
(see (1) of Remark 3.2).

Moreover, we can see that

Tij = 0 if i− j 6≡ 0 (mod t)

for all 0 ≤ i, j ≤ n− 1.

As a concluding remark of this subsection, we want to discriminate these fractions of
infinite dimensional Taft algebras.



22 GONGXIANG LIU

Proposition 4.3. Keep above notations. Let m′ = {m′
1, . . . ,m

′
θ′} be a fraction of

another integer m′. Then T (m, t, ξ) ∼= T (m′, t′, ξ′) if and only if m = m′, θ = θ′, t =
t′ and there exists x0 ∈ N which is relatively prime to n = mt such that up to an
order of m1, . . . ,mθ we have m′

i ≡ mix0 (mod n) and ξ = ξ′x0 .

Proof. We write the proof out for completeness. We denote the corresponding gener-
ators and numbers of T (m′, t′, ξ′) by adding the symbol ′ to that of T (m, t, ξ). The
sufficiency is clear (for example, just take ϕ : T (m, t, ξ) → T (m′, t′, ξ′) through
g 7→ g′x0 , ymi

7→ y′m′
i
for 1 ≤ i ≤ θ. Then one can ϕ gives the desired isomorphism).

We next prove the necessity. Assume that we have an isomorphism of Hopf algebras

ϕ : T (m, t, ξ)
∼=−→ T (m′, t′, ξ′).

By this isomorphism, they have the same number of group-likes which implies that
n = mt = m′t′ = n′ and ϕ(g) = (g′)x0 for some x0 ∈ N satisfying x0 and n are
coprime. Comparing the number of nontrivial skew primitive elements, we know that
θ = θ′. Up to an order of m1, . . . ,mθ, there is no harm to assume that ϕ(ymi

) = ym′
i

for 1 ≤ i ≤ θ. (Just as the case of a fraction of a Taft algebra, one should take

ϕ(ymi
) = ym′

i
+ ci(1 − (g′)m

′
i) at the beginning for some ci ∈ k. Then through

the relation ymi
g = ξ

mi
m0 gymi

we can find that ci = 0.) Since both yeimi
and y

e′i
m′

i
are

primitive, ei = e′i. Therefore m = e1 · · · eθ = e′1 · · · e′θ = m′ and thus t = t′. Then
one can repeat the proof of Proposition 3.4 and get that m′

i ≡ mix0 (mod n) and
ξ = ξ′x0 . �

4.2. T (m, t, ξ) vs the Brown-Goodearl-Zhang’s example. In the paper of Good-
eal and Zhang [14, Section 2], they found a new kind of Hopf domains of GK-dimension
two. From these Hopf domains, one can get some Hopf algebras of GK-dimension one
through quotient method. In fact, through this way Brown and Zhang [9, Example
7.3] got the first example of a prime Hopf algebra of GK-dimension one which is not
regular. Let’s recall their construction at first.

Example 4.4 (Brown-Goodearl-Zhang’s example). Let n, p0, p1, . . . , ps be positive
integers and a ∈ k× with the following properties:

(a) s ≥ 2 and 1 < p1 < p2 < · · · < ps;
(b) p0|n and p0, p1, . . . , ps are pairwise relatively prime;
(c) q is a primitive lth root of unity, where l = (n/p0)p1p2 · · · ps.

Set mi = p−1
i

∏s
j=1 pj for i = 1, . . . , s. Let A be the subalgebra of k[y] generated

by yi := ymi for i = 1, . . . , s. The k-algebra automorphism of k[y] sending y 7→ qy
restricts to an algebra automorphism σ of A. There is a unique Hopf algebra structure
on the Laurent polynomial ring B = A[x±1;σ] such that x is group-like and the yi
are skew primitive, with

∆(yi) = 1⊗ yi + yi ⊗ xmin

for i = 1, . . . , s. It is a PI Hopf domain of GK-dimension two, and is denoted by
B(n, p0, p1, . . . , ps, q). Now let

B(n, p0, p1, . . . , ps, q) := B(n, p0, p1, . . . , ps, q)/(x
l − 1).
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Then Brown-Zhang proved that the quotient Hopf algebra B(n, p0, p1, . . . , ps, q) is a
prime Hopf algebra of GK-dimension one.

There is a close relationship between the Brown-Goodearl-Zhang’s example and the
fractions of infinite dimensional Taft algebras.

Proposition 4.5. The Hopf algebra B(n, p0, p1, . . . , ps, q) is a fraction of an infinite
dimensional Taft algebra, that is, B(n, p0, p1, . . . , ps, q) = T (m, t, ξ) for some m ∈
F , t ∈ N and ξ a root of unity.

Proof. By definition of B = B(n, p0, p1, . . . , ps, q), we know that yi = ymi (we also use
the same notation as B(n, p0, p1, . . . , ps, q)) and thus the following relation is satisfied

ypii = y
pj
j

for all 1 ≤ i, j ≤ s. At the same time, in B the group like element x satisfying the
following relations

xl = 1, yix = qmixyi

for i = 1, . . . , s. By these observations, define

m′
i := p0mi, 1 ≤ i ≤ s.

Then it is tedious to show thatm′
1,m

′
2, . . . ,m

′
s is a fraction ofm :=

∏s
i=1 pi. Moreover,

let t := n/p0. Now we see that the Hopf algebra T ({m′
1,m

′
2, . . . ,m

′
s}, t, q) is generated

by ym′
1
, . . . , ym′

s
, g and satisfies the following relations

gl = 1, ypi
m′

i
= y

pj
m′

j
, ym′

i
ym′

j
= ym′

j
ym′

i
, ym′

i
g = q

m′
i

p0 gym′
i
= qmigym′

i
.

From this, there is an algebra epimorphism

f : T ({m′
1,m

′
2, . . . ,m

′
s}, n/p0, q) → B(n, p0, p1, . . . , ps, q), ym′

i
7→ yi, g 7→ x

which is clear a Hopf epimorphism. Since both of them are prime of GK-dimension
one, f must be an isomorphism. �

But not all fractions of infinite dimensional Taft algebras belong to the class of Brown-
Goodearl-Zhang’s examples.

Example 4.6. Let 5, 12 be a fraction of 30 and ξ a primitive 30th root of unity. Then
the corresponding T ({12, 5}, 1, ξ) is generated by y5, y12, g satisfying

y512 = y65 , y12y5 = y5y12, y12g = ξ12gy12, y5g = ξ5gy5, g30 = 1.

If there is an isomorphism between this Hopf algebra and a Brown-Goodearl-Zhang’s
example

f : T ({12, 5}, 1, ξ)
∼=−→ B(n, p0, p1, . . . , ps, q),

then clearly s = 2 (by the number of non-trivial skew primitive elements) and l =
(n/p0)p1p2 = 30 (due to they have the same group of group-likes). Therefore, f(g) =
xt with (t, 30) = 1. By

∆(y5) = 1⊗ y5 + g5 ⊗ y5, ∆(y12) = 1⊗ y12 + g12 ⊗ y12,
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we know that np1 ≡ 5t, np2 ≡ 12t (mod 30). Since p1, p2 are factors of 30 and t
is coprime to 30, p1 = 5 and thus n ≡ t (mod 30), p2 = 12. This contradicts to
l = (n/p0)p1p2 = 30.

This example also shows that not every fraction version of infinite dimensional Taft
algebra can be realized as a quotient of a Hopf domain of GK-dimension two.

4.3. Fraction of generalized Liu algebra B(m,ω, γ). Letm,ω be positive integers
and m1, . . . ,mθ a fraction of m. A fraction of a generalized Liu algebra, denoted by
B(m,ω, γ) = B({m1, . . . ,mθ}, ω, γ), is generated by x±1, g and ym1 , . . . , ymθ

, subject
to the relations

(4.4)





xx−1 = x−1x = 1, xg = gx, xymi
= ymi

x,

ymi
g = γmigymi

, ymi
ymj

= ymj
ymi

yeimi
= 1− xω

eimi
m , gm = xω,

where γ is a primitive mth root of 1 and 1 ≤ i, j ≤ θ. The comultiplication, counit
and antipode of B({m1, . . . ,mθ}, ω, γ) are given by

∆(x) = x⊗ x, ∆(g) = g ⊗ g, ∆(ymi
) = ymi

⊗ gmi + 1⊗ ymi
,

ǫ(x) = 1, ǫ(g) = 1, ǫ(ymi
) = 0,

and

S(x) = x−1, S(g) = g−1 S(ymi
) = −ymi

g−mi ,

for 1 ≤ i ≤ θ.

Proposition 4.7. Let the k-algebra B = B({m1, . . . ,mθ}, ω, γ) be defined as above.
Then

(1) The algebra B is a Hopf algebra of GK-dimension one, with center k[x±1].
(2) The algebra B is prime and PI-deg (B) = m.
(3) The algebra B has a 1-dimensional representation whose order is m.
(4) io(B) = m.

Proof. (1) It is not hard to see that the center of B is k[x±1] and B is a free module
over k[x±1] with finite rank. Actually, through a direct computation one can find
that {yjgi|0 ≤ i, j ≤ m − 1} is a basis of B over k[x±1]. Here recall that if j ≡
j1m1 + . . . + jθmθ (mod m) then yj =

∏θ
i=1 y

ji
mi . Therefore, it has GK-dimension

one. Similar to the case of T (m, t, ξ), we leave the task to the readers to check that
B is a Hopf algebra. Actually, the same as the case of Taft algebras, since for each
1 ≤ i ≤ θ the subalgebra generated by x±1, g, ymi

is just a similar kind of generalized
Liu algebra which may be not prime now, one can reduce the proof to just considering
the mixed relation ymi

ymj
= ymj

ymi
and yeimi

= y
ej
mj for 1 ≤ i, j ≤ θ.

(2) As the case of T (m, t, ξ), we want to apply Lemma 2.11 to prove that B is prime
with PI-degree m. At first, let B0 be the subalgebra generated by ym1 , . . . , ymθ

and
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x±1. Clearly, B0 is a domain and

B =

m−1⊕

i=0

B0g
i.

From this, B is a strongly Ẑm = 〈χ|χm = 1〉-graded algebra through χ(agi) = γi for
any a ∈ B0 and 0 ≤ i ≤ m − 1. Therefore, the conditions 1) and 2) of Lemma 2.11

are fulfilled. By part (b) of Lemma 2.11, the action of Ẑm is just the adjoint action of
Zm = 〈g|gm = 1〉 on B0 which by definition of a fraction of m is faithful. Therefore,
PI.deg(B) = m by part (c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11
implies that B is prime now.

(3) By the definition of B, it has a 1-dimensional representation

π : B → k, x 7→ 1, ymi
7→ 0, g 7→ γ (1 ≤ i ≤ θ).

It’s order is clear m.

(4) Using [23, Lemma 2.6], we have the right module structure of the left integrals is∫ l
B
= B/(x− 1, ymi

, g − γ−
∑θ

i=1 mi , 1 ≤ i ≤ θ).

Next, we want to show that
∑θ

i=1mi is coprime tom. Recall that in the definition of a
fraction (see Definition 3.1), we ask that (mi, ei) = 1 and m|mimj for all 1 ≤ i, j ≤ θ.
Thus

(ei, ej) = 1, ei|mj

for all 1 ≤ i 6= j ≤ θ. By (3) of Definition 3.1, m = e1 · · · eθ. On the contrary, assume

that (
∑θ

i=1mi,m) 6= 1. Then there exists 1 ≤ i ≤ θ and a prime factor pi|ei such
that pi|m and pi|

∑θ
i=1mi. Since ei|mj for all j 6= i, pi|mj for all j 6= i. Therefore,

pi|mi which is impossible since (mi, ei) = 1.

Therefore, we know that (
∑θ

i=1mi,m) = 1 and thus γ−
∑θ

i=1 mi is still a primitive
mth root of unity which implies that io(B) = m. �

We also call the 1-dimensional representation stated in (3) of Proposition 4.7 the
canonical representation of B = B({m1, . . . ,mθ}, ω, γ). This canonical representation
of B yields the corresponding left and right winding automorphisms

Ξl
π :





x 7−→ x,

ymi
7−→ ymi

,

g 7−→ γg,

and Ξr
π :





x 7−→ x,

ymi
7−→ γmiymi

,

g 7−→ γg,

for 1 ≤ i ≤ θ.

Using above expression of Ξl
π and Ξr

π, it is not difficult to find that

(4.5) Bl
i = k[x±1, ym1 , . . . , ymθ

]gi and Br
j = k[x±1, g−m1ym1 , . . . , g

−mθymθ
]gj

for all 0 ≤ i, j ≤ m− 1. Thus we have

(4.6) B00 = k[x±1] and Bi,i+j = k[x±1]yjg
i
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for all 0 ≤ i, j ≤ m− 1 where yj = yj1m1 · · · yjθmθ
(see (1) of Remark 3.2).

At the end of this subsection, we also want to consider when two fractions of general-
ized Liu algebras are the same. To do that, let m′ ∈ N and {m′

1, . . . ,m
′
θ′} a fraction of

m′. As before, we denote the corresponding generators and numbers of B(m′, ω′, γ′)
by adding the symbol ′ to that of B(m,ω, γ).

Proposition 4.8. As Hopf algebras, if B(m,ω, γ) ∼= B(m′, ω′, γ′), then m = m′, θ =
θ′ and up to an order of mi’s, ωmi = ω′m′

i for all 1 ≤ i ≤ θ.

Proof. Since they have the same PI-degrees, m = m′. We know the the center of
B(m,ω, γ) is k[x±1] and thus ϕ(x) = x′ or ϕ(x) = (x′)−1. Also, as before, through
comparing the nontrivial skew primitive elements, θ = θ′ and after a reordering the

generators we can assume that ϕ(ymi
) = y′m′

i
. The relation yeimi

= 1− xω
eimi
m implies

that ei = e′i and ϕ(x) = x′ since by assumption all ei,mi and m are positive. From
which one has

ω
eimi

m
= ω′ e

′
im

′
i

m′
.

Since m = m′ and ei = e′i, ωmi = ω′m′
i for all 1 ≤ i ≤ θ. �

It is a pity that the conditions in above proposition is only a necessary condition for
B(m,ω, γ) ∼= B(m′, ω′, γ′). To get a sufficient one, or an equivalent condition, we
need the following observation.

Lemma 4.9. Any fraction of generalized Liu algebra B(m,ω, γ) is isomorphic to a
unique B(m′, ω′, γ′) satisfying (m′

1, . . . ,m
′
θ′) = 1.

Proof. We prove the existence at first and then prove the uniqueness. Take an arbi-
trary B(m,ω, γ). Let m0 = (m1, . . . ,mθ). Above proposition suggests us to construct
the following algebra

B({m1

m0
, . . . ,

mθ

m0
}, ωm0, γ

m2
0).

Clearly, {m1
m0
, . . . , mθ

m0
} is a fraction of m with length θ and (m1

m0
, . . . , mθ

m0
) = 1.

Claim 1: As Hopf algebras, B(m,ω, γ) ∼= B({m1
m0
, . . . , mθ

m0
}, ωm0, γ

m2
0).

Proof of the claim 1. Since (m0,m) = 1, there exist a ∈ N, b ∈ Z such that am0+bm =
1. Define the following map

ϕ : B(m,ω, γ) −→ B({m1

m0
, . . . ,

mθ

m0
}, ωm0, γ

m2
0),

x 7→ x′, g 7→ (g′)a(x′)bω, ymi
7→ y′mi

m0

, (1 ≤ i ≤ θ).

Since

ϕ(gmi) = ϕ(g)mi = ((g′)a(x′)bω)mi = (g′)
am0

mi
m0 (x′)

bω′ mi
m0

= (g′)
am0

mi
m0 (g′)

bm
mi
m0 = (g′)

(am0+bm)
mi
m0

= (g′)
mi
m0
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and

ϕ(ymi
g) = ϕ(ymi

)ϕ(g) = y′mi
m0

(g′)a(x′)bω

= γ
am2

0
mi
m0 (g′)a(x′)bωy′mi

m0

= γmiϕ(g)ϕ(ymi
)

= ϕ(γmigymi
),

for all 1 ≤ i ≤ θ, it is not hard to prove that ϕ gives the desired isomorphism.

Next, let’s show that uniqueness. To prove it, it is enough to built the following
statement.

Claim 2: Let {m1, . . . ,mθ} and {m′
1, . . . ,m

′
θ} be two fractions of m with length θ sat-

isfying (m1, . . . ,mθ) = (m′
1, . . . ,m

′
θ) = 1. If B(m,ω, γ) is isomorphic to B(m′, ω′, γ′),

then up to an order of mi’s we have mi = m′
i, ω = ω′ and γ = γ′ for 1 ≤ i ≤ θ.

Proof of Claim 2. By Proposition 4.8, ωmi = ω′m′
i. Since

(m1, . . . ,mθ) = (m′
1, . . . ,m

′
θ) = 1,

ω|ω′ and ω′|ω. Therefore ω = ω′ and thus mi = m′
i for all 1 ≤ i ≤ θ. From this, we

know the isomorphism given in the proof of Proposition 4.8 must sent gmi to (g′)mi ,
i.e., keeping the notations used in the proof of Proposition 4.8, we have ϕ(gmi) =
(g′)mi for all 1 ≤ i ≤ θ. Since (m1, . . . ,mθ) = 1, there exist ai ∈ Z such that∑θ

i=1 aimi = 1. Thus

ϕ(g) = ϕ(g
∑θ

i=1 aimi) = (g′)
∑θ

i=1 aimi = g′.

This implies that

γmi = (γ′)mi

through using the relation ymi
g = γmigymi

. So,

γ = γ
∑θ

i=1 aimi = (γ′)
∑θ

i=1 aimi = γ′.

�

Definition 4.10. We call the Hopf algebra B({m1
m0
, . . . , mθ

m0
}, ωm0, γ

m2
0) the basic form

of B(m,ω, γ).

By this lemma, we can tell when two fractions of generalized Liu algebras are isomor-
phic now. Keeping notations before, let m,m′ ∈ N and {m1, . . . ,mθ}, {m′

1, . . . ,m
′
θ′}

be fractions ofm andm′ respectively. Letm0 := (m1, . . . ,mθ) andm
′
0 := (m′

1, . . . ,m
′
θ′).

Proposition 4.11. Retain above notations. As Hopf algebras, B(m,ω, γ) ∼= B(m′, ω′, γ′)

if and only if m = m′, θ = θ′, ωm0 = ω′m′
0 and γm

2
0 = γ′(m

′
0)

2
.

Proof. Note that B(m,ω, γ) ∼= B(m′, ω′, γ′) if and only if they have the same ba-
sic forms by above lemma. Now the condition listed in the proposition is clearly
equivalent to say that the basic forms of them are same. �
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4.4. Fraction of the Hopf algebra D(m,d, γ). Let m,d be two natural numbers,
m1, . . . ,mθ a fraction of m satisfying the following two conditions:

(4.7) 2|
θ∑

i=1

(mi − 1)(ei − 1) and 2|
θ∑

i=1

(ei − 1)mid.

Let γ a primitive mth root of unity and define

(4.8) ξmi
:=

√
γmi , 1 ≤ i ≤ θ.

That is, ξmi
is a primitive square root of γmi . Therefore in particular, one has

(4.9) ξeimi
= −1

for all 1 ≤ i ≤ θ.

In order to give the definition of the Hopf algebra D(m,d, γ), we still need recall two
notations introduced in Section 3:

(4.10) ]s, t[mi
=





φmi,(t̄+1)mi
· · ·φmi,(ei−1)mi

φmi,0 · · ·φmi,(s̄−1)mi
, if t̄ > s̄

1, if s̄ = t+ 1

φmi,(t̄+1)mi
· · ·φmi,(s̄−1)mi

, if s > t̄+ 2.

and

(4.11) [s, t]mi
:=





φmi,s̄mi
φmi,(s̄+1)mi

· · ·φmi,t̄mi
, if t̄ > s̄

1, if s̄ = t+ 1

φmi,s̄mi
· · · φmi,(ei−1)mi

φmi,0 · · · φmi,t̄mi
, if s > t̄+ 2.

where φmi,j = 1 − γ−m2
i (ji+1)xmid for all 1 ≤ i ≤ θ. See (3.3) and (3.4) for details.

Now we are in the position to give the definition of D(m,d, γ).

• As an algebra, D = D(m,d, γ) is generated by x±1, g±1, ym1 , . . . , ymθ
, u0, u1, · · · , um−1,

subject to the following relations

xx−1 = x−1x = 1, gg−1 = g−1g = 1, xg = gx, xymi
= ymi

x(4.12)

ymi
ymk

= ymk
ymi

, ymi
g = γmigymi

, yeimi
= 1− xeimid, gm = xmd,(4.13)

xuj = ujx
−1, ymi

uj = φmi,juj+mi
= ξmi

xmidujymi
ujg = γjx−2dguj ,(4.14)

ujul = (−1)
∑θ

i=1 liγ
∑θ

i=1 m
2
i

li(li+1)

2
1

m
x−

2+
∑θ

i=1(ei−1)mi
2

d(4.15)

θ∏

i=1

ξ−li
mi

[ji, ei − 2− li]mi
yj+lg

for 1 ≤ i, k ≤ θ, and 0 ≤ j, l ≤ m− 1 and here for any integer n, n means remainder

of division of n by m and as before n ≡ ∑θ
i=1 nimi (mod m) by Remark 3.2.

• The coproduct ∆, the counit ǫ and the antipode S of D(m,d, γ) are given by

∆(x) = x⊗ x, ∆(g) = g ⊗ g, ∆(ymi
) = ymi

⊗ gmi + 1⊗ ymi
,(4.16)

∆(uj) =
m−1∑

k=0

γk(j−k)uk ⊗ x−kdgkuj−k;(4.17)



A CLASSIFICATION RESULT ON PRIME HOPF ALGEBRAS OF GK-DIMENSION ONE 29

ǫ(x) = ǫ(g) = ǫ(u0) = 1, ǫ(ymi
) = ǫ(us) = 0;(4.18)

S(x) = x−1, S(g) = g−1, S(ymi
) = −ymi

g−mi ,(4.19)

S(uj) = (−1)
∑θ

i=1 jiγ−
∑θ

i=1 m
2
i

ji(ji+1)

2 xb+
∑θ

i=1 jimidgm−1−(
∑θ

i=1 jimi)
θ∏

i=1

ξ−ji
mi
uj ,(4.20)

for 1 ≤ i ≤ θ, 1 ≤ s ≤ m− 1 , 0 ≤ j ≤ m− 1 and b = (1−m)d−
∑θ

i=1(ei−1)mi

2 d.

Before we prove that D(m,d, γ) is a Hopf algebra, which is highly nontrivial, we want
to express the formula (4.15) and (4.20) in a more convenient way.

On one hand, we find that

(4.21) (−1)−kei−jiξ−kei−ji
mi

γm
2
i

(kei+ji)(kei+ji+1)
2 = (−1)−jiξ−ji

mi
γm

2
i

ji(ji+1)
2

for any k ∈ Z. Therefore, if we define

us := us,

where s means the remainder of s modulo m, then the relation (4.15) can be replaced
by

ujul = (−1)
∑θ

i=1 liγ
∑θ

i=1 m
2
i

li(li+1)

2
1

m
x−

2+
∑θ

i=1(ei−1)mi
2

d

θ∏

i=1

ξ−li
mi

[ji, ei − 2− li]mi
yj+lg

= (−1)
∑θ

i=1 liγ
∑θ

i=1 m
2
i

li(li+1)

2
1

m
x−

2+
∑θ

i=1(ei−1)mi
2

d

θ∏

i=1

ξ−li
mi

]− 1− li, ji − 1[mi
yj+lg

=
1

m
x−

2+
∑θ

i=1(ei−1)mi
2

d
θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 ]− 1− li, ji − 1[mi
yj+lg(4.22)

=
1

m
x−

2+
∑θ

i=1(ei−1)mi
2

d
θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 [ji, ei − 2− li]mi
yj+lg

for all j, l ∈ Z, that is, we need not always ask that 0 ≤ j, l ≤ m− 1.

On other hand, since gm = xmd and (4.21) , the definition about S(uj) still holds for
any integer j, that is, (4.20) can be replaced in the following way:

S(uj) = (−1)
∑θ

i=1 ji

θ∏

i=1

ξ−ji
mi
γ−

∑θ
i=1 m

2
i

ji(ji+1)

2 x
∑θ

i=1 jimidxbgm−1−(
∑θ

i=1 jimi)uj

= xbgm−1
θ∏

i=1

(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimiuj(4.23)

for all j ∈ Z.
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We also need to give a bigrading on this algebra for the proof. Let ξ :=
√
γ and define

the following two algebra automorphisms of D(m,d, γ):

Ξl
π :





x 7−→ x,

ymi
7−→ ymi

,

g 7−→ γg,

ui 7−→ ξui,

and Ξr
π :





x 7−→ x,

ymi
7−→ γmiymi

,

g 7−→ γg,

uj 7−→ ξ2j+1uj ,

for 1 ≤ i ≤ θ and 0 ≤ j ≤ m − 1. It is straightforward to show that Ξl
π and Ξr

π are
indeed algebra automorphisms of D(m,d, γ) and these automorphisms have order 2m
by noting that ξ is a primitive 2mth root of 1. Define

Dl
i =




k[x±1, ym1 , . . . , ymθ

]g
i
2 , i = even,

∑m−1
s=0 k[x

±1]g
i−1
2 us, i = odd,

and

Dr
j =




k[x±1, ym1g

−m1 , . . . , ymθ
g−mθ ]g

j
2 , j = even,∑m−1

s=0 k[x
±1]gsu j−1

2 −s
, j = odd.

Therefore

(4.24) Dij := Dl
i ∩Dr

j =





k[x±1]y j−i
2

g
i
2 , i, j = even,

k[x±1]g
i−1
2 u j−i

2

, i, j = odd,

0, otherwise.

Since
∑

i,j Dij = D(m,d, γ), we have

(4.25) D(m,d, γ) =

2m−1⊕

i,j=0

Dij

which is a bigrading on D(m,d, γ) automatically.

Let D := D(m,d, γ), then D⊗D is graded naturally by inheriting the grading defined
above. In particular, for any h ∈ D ⊗D, we use

h(s1,t1)⊗(s2,t2)

to denote the homogeneous part of h in Ds1,t1 ⊗Ds2,t2 . This notion will be used freely
in the proof of the following desired proposition.

Proposition 4.12. The algebra D(m,d, γ) defined above is a Hopf algebra.

Proof: The proof is standard but not easy. We are aware that one can not apply the
fact that the non-fraction version D(m,d, γ) (see Subsection 2.3) is already a Hopf
algebra to simply the proof although we can do this in the proofs of Proposition 4.7 and
4.1. The reason is that if we consider the subalgebra generated by x±1, g, u0, . . . , um−1

together with a single ymi
(this is the case of D(m,d, γ)) then we can find that the

other ymj
’s will be created naturally. So, one has to prove it step by step. Since the

subalgebra generated by x±1, ym1 , . . . , ymθ
, g is just a fraction version of generalized
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Liu algebra B(m,ω, γ), which is a Hopf algebra already (by Proposition 4.7), we only
need to verify the related relations in D(m,d, γ) where uj are involved.

• Step 1 (∆ and ǫ are algebra homomorphisms).

First of all, it is clear that ǫ is an algebra homomorphism. Since x and g are
group-like elements, the verifications of ∆(x)∆(ui) = ∆(ui)∆(x−1) and ∆(ui)∆(g) =
γi∆(x−2d)∆(g)∆(ui) are simple and so they are omitted.

(1) The proof of ∆(φmi,j)∆(umi+j) = ∆(ymi
)∆(uj) = ξmi

∆(xmid)∆(uj)∆(ymi
).

Define

γi := γ−m2
i

for all 1 ≤ i ≤ θ.

By definition ∆(uj) =
∑m−1

k=0 γ
k(k−j)uk ⊗ x−kdgkuj−k for all 0 6 j 6 m− 1, we have

∆(φmi,j)∆(umi+j) = (1⊗ 1− γ1+ji
i xmid ⊗ xmid)

m−1∑

k=0

γk(j+mi−k)uk ⊗ x−kdgkuj+mi−k

=
m−1∑

k=0

γk(j+mi−k)uk ⊗ x−kdgkuj+mi−k

−
m−1∑

k=0

γ−m2
i (1+ji)+k(j+mi−k)xmiduk ⊗ xmid−kdgkuj+mi−k.

And

∆(ymi
)∆(uj) = (1⊗ ymi

+ ymi
⊗ gmi)(

m−1∑

k=0

γk(k−j)uk ⊗ x−kdgkuj−k)

=

m−1∑

k=0

γk(j−k)uk ⊗ x−kdgkγkmiφmi,j−kuj+mi−k

+

m−1∑

k=0

γk(j−k)φmi,kumi+k ⊗ x−kdgmi+kuj−k

=

m−1∑

k=0

γk(j−k)+kmiuk ⊗ x−kdgkuj+mi−k

−
m−1∑

k=0

γk(j−k)uk ⊗ γ−m2
i (ji+1−2ki)x(mi−k)dgkuj+mi−k

+
m−1∑

k=0

γk(j−k)umi+k ⊗ x−kdgmi+kuj−k

−
m−1∑

k=0

γk(j−k)−m2
i (1+ki)xmidumi+k ⊗ x−kdgmi+kuj−k
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=
m−1∑

k=0

γk(j−k)+kmiuk ⊗ x−kdgkuj+mi−k

−
m−1∑

k=0

γk(j−k)−m2
i (ji+1−2ki)uk ⊗ x(mi−k)dgkuj+mi−k

+

m−1∑

k=0

γ(k−mi)(j−k+mi)uk ⊗ x−(k−mi)dgkuj+mi−k

−
m−1∑

k=0

γ(k−mi)(j+mi−k)−m2
i kixmiduk ⊗ x−(k−mi)dgkuj+mi−k

=

m−1∑

k=0

γk(j+mi−k)uk ⊗ x−kdgkuj+mi−k

−
m−1∑

k=0

γ−m2
i (1+ji)+k(j+mi−k)xmiduk ⊗ xmid−kdgkuj+mi−k.

Here we use the following equalities

γ(k−mi)(j−k+mi) = γk(j−k)+kmi−mi(j−k)−m2
i = γk(j−k)+2kim2

i−m2
i (1+ji),

and

γ(k−mi)(j+mi−k)−m2
i ki = γ−m2

i (1+ji)+k(j+mi−k).

Hence ∆(φmi,j)∆(umi+j) = ∆(ymi
)∆(uj). Similarly,

ξmi
∆(xmid)∆(uj)∆(ymi

)

= ξmi
(xmid ⊗ xmid)(

m−1∑

k=0

γk(j−k)uk ⊗ x−kdgkuj−k)(1 ⊗ ymi
+ ymi

⊗ gmi)

=

m−1∑

k=0

ξmi
γk(j−k)xmiduk ⊗ x(mi−k)dgkuj−kymi

+

m−1∑

k=0

ξmi
γk(j−k)xmidukymi

⊗ x(mi−k)dgkuj−kg
mi

=

m−1∑

k=0

γk(j−k)xmiduk ⊗ x−kdgkφmi,j−kuj+mi−k

+
m−1∑

k=0

γk(j−k)φmi,kuk+mi
⊗ γ(j−k)mix(−mi−k)dgk+miuj−k

=
m−1∑

k=0

γk(j−k)xmiduk ⊗ x−kdgkuj+mi−k
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−
m−1∑

k=0

γk(j−k)−m2
i (1+ji−ki)xmiduk ⊗ x(−k+mi)dgkuj+mi−k

+
m−1∑

k=0

γ(k−mi)(j−k+mi)(1− γ−m2
i kixmid)uk ⊗ γ(j−k+mi)mix−kdgkuj+mi−k

=

m−1∑

k=0

γk(j−k)xmiduk ⊗ x−kdgkφmi,j−kuj+mi−k

+

m−1∑

k=0

γk(j−k)φmi,kuk+mi
⊗ γ(j−k)mix(−mi−k)dgk+miuj−k

=

m−1∑

k=0

γk(j−k)xmiduk ⊗ x−kdgkuj+mi−k

−
m−1∑

k=0

γk(j−k)−m2
i (1+ji−ki)xmiduk ⊗ x(−k+mi)dgkuj+mi−k

+
m−1∑

k=0

γk(j−k+mi)uk ⊗ x−kdgkuj+mi−k

−
m−1∑

k=0

γk(j−k)xmiduk ⊗ x−kdgkuj+mi−k

=

m−1∑

k=0

γk(j−k+mi)uk ⊗ x−kdgkuj+mi−k

−
m−1∑

k=0

γk(j−k)−m2
i (1+ji−ki)xmiduk ⊗ xmid−kdgkuj+mi−k

= ∆(φmi,j)∆(umi+j).

(2) The proof of ∆(ujul) = ∆(uj)∆(ul).

Direct computation shows that

∆(uj)∆(ul) =

m−1∑

s=0

γs(j−s)us ⊗ x−sdgsuj−s

m−1∑

t=0

γt(l−t)ut ⊗ x−tdgtul−t

=

m−1∑

t=0

m−1∑

s=0

γs(j−s)usγ
(t−s)(l−t+s)ut−s ⊗ x−sdgsuj−sx

−(t−s)dgt−sul−t+s

=

m−1∑

t=0

m−1∑

s=0

γ(t−s)(l−t+s)+(j−s)tusut−s ⊗ x−tdgtuj−sul−t+s.
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By the bigrading given in (4.25), we can find that for each 0 6 t 6 m− 1,

m−1∑

s=0

γ(t−s)(l−t+s)+(j−s)tusut−s ⊗ x−tdgtuj−sul−t+s ∈ D2,2+2t ⊗D2+2t,2+2(j+l),

where the suffixes in D2,2+2t ⊗D2+2t,2+2(j+l) are interpreted mod 2m.

Using equation (4.22), we get that

usut−s =
1

m
xa

θ∏

i=1

(−1)(t−s)iξ−(t−s)i
mi

γm
2
i

(t−s)i((t−s)i+1)

2 [si, ei − 2− (t− s)i]mi
ytg

and

uj−sul−t+s =
1

m
xa

θ∏

i=1

(−1)(l−t+s)iξ−(l−t+s)i
mi

γm
2
i

(l−t+s)i[(j−t+s)i+1]

2

[(j − s)i, ei − 2− (l − t+ s)i]mi
yj+l−tg

here and the following of this proof a = −2+
∑θ

i=1(ei−1)mi

2 d.

Using [18, Proposition IV.2.7], for each 1 ≤ i ≤ θ

[si, ei − 2− (t− s)i]mi
= (1− γs+1

i xmid)(1− γs+2
i xmid) · · · (1− γ

(ei−1−ti+si)
i xmid)

=

ei−1−ti∑

αi=0

(−1)αi

(
ei − 1− ti

αi

)

γi

γ
αi(αi−1)

2
i (γs+1

i xmid)αi

=

ei−1−ti∑

αi=0

(−1)αi

(
ei − 1− ti

αi

)

γi

γ
αi(αi+1)

2 +siαi

i xmidαi ,

and

[(j − s)i, ei − 2− (l − t+ s)i]mi

= (1− γji−si+1
i xmid)(1− γji−si+2

i xmid) · · · (1− γ
ji−si+ei−1−(ji+li−ti)
i xmid)

=

ei−1−(ji+li−ti)∑

βi=0

(−1)βi

(
ei − 1− (ji + li − ti)

βi

)

γi

γ
βi(βi−1)

2
i (γji−si+1

i xmid)βi

=

ei−1−(ji+li−ti)∑

βi=0

(−1)βi

(
ei − 1− (ji + li − ti)

βi

)

γi

γ
βi(βi+1)

2 +(ji−si)βi

i xmidβi ,

where (ji + li − ti) is the remainder of ji + li − ti divided by ei.

Then for each 0 6 t 6 m− 1,

∆(uj)∆(ul)(2,2+2t)⊗(2+2t,2+2(j+l))(4.26)

=

m−1∑

s=0

γ(t−s)(l−t+s)+(j−s)tusut−s ⊗ x−tdgtuj−sul−t+s
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=
m−1∑

s=0

γ(t−s)(l−t+s)+(j−s)t 1

m
xa

θ∏

i=1

(−1)(t−s)iξ−(t−s)i
mi

γm
2
i

(t−s)i((t−s)i+1)

2

[si, ei − 2− (t− s)i]mi
ytg

⊗x−tdgt
1

m
xa

θ∏

i=1

(−1)(l−t+s)iξ−(l−t+s)i
mi

γm
2
i

(l−t+s)i[(j−t+s)i+1]

2

[(j − s)i, ei − 2− (l − t+ s)i]mi
yj+l−tg

= [
m−1∑

s=0

γ(j−s)t−t(j+l−t) 1

m2

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 [si, ei − 2− (t− s)i]mi

⊗x−td
θ∏

i=1

[(j − s)i, ei − 2− (l − t+ s)i]mi
](xaytg ⊗ xayj+l−tg

t+1)

= [

m−1∑

s=0

γ(j−s)t−t(j+l−t) 1

m2

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2

ei−1−ti∑

αi=0

(−1)αi

(
ei − 1− ti

αi

)

γi

γ
αi(αi+1)

2 +siαi

i

⊗
θ∏

k=1

ek−1−(jk+lk−tk)∑

βk=0

(−1)βk

(
ek − 1− (jk + lk − tk)

βk

)

γk

γ
βk(βk+1)

2 +(jk−sk)βk

k (xmidαi ⊗ xmkdβk−td)](xaytg ⊗ xayj+l−tg
t+1)

=
1

m2

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2

θ∏

i,k=1

[

ei−1−ti∑

αi=0

ek−1−jk+lk−tk∑

βk=1

(−1)αi+βk

(
ei − 1− ti

αi

)

γi

(
ek − 1− (jk + lk − tk)

βk

)

γk

γ
αi(αi+1)

2
i γ

βk(βk+1)
2 +jkβk

k (xmidαi ⊗ xmkdβk−td)

γt(t−l)
m−1∑

s=0

γ−tsγ−m2
i siαi+m2

k
skβk ](xaytg ⊗ xayj+l−tg

t+1).(4.27)

Meanwhile, ujul =
1
mx

a
∏θ

i=1(−1)liξ−li
mi
γm

2
i

li(li+1)

2
1
m [ji, ei − 2− li]mi

yj+lg. By defini-
tion,

yj+l = yj1+l1
m1

yj2+l2
m2

· · · yjθ+lθ
mθ

where ji + li is the remainder of ji + li divided by ei for 1 ≤ i ≤ θ. Therefore,

∆(yj+l) =

θ∏

i=1

(1⊗ ymi
+ ymi

⊗ gmi)ji+li
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=
θ∏

i=1

ji+li∑

ti=0

(
ji + li
ti

)

γi

(1⊗ ymi
)ji+li−ti(ymi

⊗ gmi)ti

=
θ∏

i=1

ji+li∑

ti=0

(
ji + li
ti

)

γi

ytimi
⊗ yji+li−ti

mi
gmiti .

and

∆([ji, ei − 2− li]mi
)

= (1⊗ 1− γji+1
i xmid ⊗ xmid) · · · (1⊗ 1− γei−1+ji−ji+li

i xmid ⊗ xmid)

=

ei−1−ji+li∑

αi=0

(−1)αi

(
ei − 1− ji + li

αi

)

γi

γ
αi(αi−1)

2
i (γji+1

i xmid ⊗ xmid)αi

=

ei−1−ji+li∑

αi=0

(−1)αi

(
ei − 1− ji + li

αi

)

γi

γ
αi(αi+1)

2 +jiαi

i (xmidαi ⊗ xmidαi),

we get

∆(ujul) =
1

m
∆(xa)

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 ∆([ji, ei − 2− li]mi
)∆(yj+l)∆(g)

=
1

m

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)

2

ei−1−ji+li∑

αi=0

(−1)αi

(
ei − 1− ji + li

αi

)

γi

γ
αi(αi+1)

2 +jiαi

i

ji+li∑

ti=0

(
ji + li
ti

)

γi

(xa ⊗ xa)(xmidαi ⊗ xmidαi)(ytimi
⊗ yji+li−ti

mi
gmiti)](g ⊗ g)

=
1

m

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)
2

ji+li∑

ti=0

ei−1−ji+li∑

αi=0

(−1)αi

(
ei − 1− ji + li

αi

)

γi

(
ji + li
ti

)

γi

γ
αi(αi+1)

2 +jiαi

i (xmidαi ⊗ xmidαi)(xaytimi
g ⊗ xayji+li−ti

mi
gmiti+1)].

Clearly, for each t satisfying 0 ≤ ti ≤ ji + li,

∆(ujul)(2,2+2t)⊗(2+2t,2+2(j+l))(4.28)

=
1

m

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)

2

ei−1−ji+li∑

αi=0

(−1)αi

(
ei − 1− ji + li

αi

)

γi

(
ji + li
ti

)

γi

γ
αi(αi+1)

2 +jiαi

i (xmidαi ⊗ xmidαi)(xaytimi
⊗ xayji+li−ti

mi
gmiti)](g ⊗ g).

By the graded structure of D ⊗D, ∆(ui)∆(uj) = ∆(uiuj) if and only if

(4.29) ∆(ui)∆(uj)(2,2+2t)⊗(2+2t,2+2(j+l)) = 0
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for all t satisfying there is an 1 ≤ i ≤ θ such that ji + li + 1 6 ti 6 ei − 1 and

(4.30) ∆(uiuj)(2,2+2t)⊗(2+2t,2+2(j+l)) = ∆(ui)∆(uj)(2,2+2t)⊗(2+2t,2+2(j+l))

for all t satisfying 0 6 ti 6 ji + li for all 1 ≤ i ≤ θ.

Now let’s go back to equation (4.27) in which there is an item

m−1∑

s=0

γ−tsγ−m2
i siαi+m2

k
skβk(4.31)

=

θ∏

z=1

ez−1∑

sz=0

γ−tzszm2
zγ−m2

i siαi+m2
k
skβk

=

{ ∑ei−1
si=0 γ

−sim2
i (αi+ti)

∑ek−1
sk=0 γ

−skm
2
m(βk−tk)

∏
z 6=i,k

∑ez−1
sz=0 γ

−tzszm2
z i 6= k∑ei−1

si=0 γ
−m2

i si(ti+αi−βi)
∏

z 6=i

∑ez−1
sz=0 γ

−tzszm2
z i = k

Therefore, in order to make this equality (4.31) not zero, we must have
{
αi = −ti, βk = tk i 6= k
βi = αi + ti i = k

But in the expression of equality (4.27) one always have 0 ≤ αi ≤ ei − 1 − ti which
implies that αi 6= −ti. Thus, as a conclusion, in the equality (4.27) we can assume
that

i = k, βi = αi + ti, (1 ≤ i ≤ θ).

So, the equality can be simplified as

1

m2

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2

θ∏

i=1

ei−1−ti∑

αi=0

ei−1−ji+li−ti∑

βi=0

(−1)αi+βi

(
ei − 1− ti

αi

)

γi

(
ei − 1− (ji + li − ti)

βi

)

γi

γ
αi(αi+1)

2 +
βi(βi+1)

2 +jiβi

i (xmidαi ⊗ xmidβi−timid)

γt(t−l)
m−1∑

s=0

γ−tsγ−m2
i si(αi−βi)(xa

θ∏

i=1

ytimi
⊗ xa

θ∏

i=1

yji+li−ti
mi

gmiti)(g ⊗ g).

From this, we find the following fact: if ti ≥ ji + li + 1 for some i, then ei − 1 −
ji + li − ti = ti−1−ji + li. So, 0 ≤ βi ≤ ti−1−ji + li and thus 1−ei ≤ βi−αi− ti ≤
−1− ji + li which contradicts to βi = αi+ ti. So the equation (4.29) is proved. Under
βi = αi + ti, we know that

θ∏

i=1

m−1∑

s=0

γ−tsγ−m2
i siαi+m2

k
siβi = e1e2 · · · eθ = m
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and (4.27) can be simplified further

1

m

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2

θ∏

i=1

ei−1−ji+li∑

αi=0

(−1)ti
(
ei − 1− ti

αi

)

γi

(
ei − 1− (ji + li − ti)

αi + ti

)

γi

γ
αi(αi+1)

2 +
(αi+ti)(αi+ti+1)

2 +ji(αi+ti)+ti(li−ti)

i

(xmidαi ⊗ xmidαi)(xaytimi
⊗ xayji+li−ti

mi
gmiti)(g ⊗ g).

Comparing with equation (4.28), to prove the desired equation (4.30) it is enough to
show the following combinatorial identity

(−1)ti+αiγ
(αi+ti)(αi+ti+1)

2 +ti(ji+li−ti)

i

(
ei − 1− ti

αi

)

γi

(
ei − 1− (ji + li − ti)

αi + ti

)

γi

=

(
ei − 1− ji + li

αi

)

γi

(
ji + li
ti

)

γi

which is true by (6) of Lemma 3.5.

• Step 2 (Coassociative and couint).

Indeed, for each 0 6 j 6 m− 1

(∆⊗ Id)∆(uj) = (∆⊗ Id)(

m−1∑

k=0

γk(j−k)uk ⊗ x−kdgkuj−k)

=

m−1∑

k=0

γk(j−k)(

m−1∑

s=0

γs(k−s)us ⊗ x−sdgsuk−s)⊗ x−kdgkuj−k

=
m−1∑

k,s=0

γk(j−k)+s(k−s)us ⊗ x−sdgsuk−s ⊗ x−kdgkuj−k,

and

(Id⊗∆)∆(uj) = (Id⊗∆)(
m−1∑

s=0

γs(j−s)us ⊗ x−sdgsuj−s)

=
m−1∑

s=0

γs(j−s)us ⊗ (
m−1∑

t=0

γt(j−s−t)x−sdgsut ⊗ x−sdgsx−tdgtuj−s−t)

=

m−1∑

s,t=0

γs(j−s)+t(j−s−t)us ⊗ x−sdgsut ⊗ x−(s+t)dg(s+t)uj−s−t.

It is not hard to see that (∆ ⊗ Id)∆(uj) = (Id⊗∆)∆(uj) for all 0 6 j 6 m− 1. The
verification of (ǫ⊗ Id)∆(uj) = (Id⊗ǫ)∆(uj) = uj is easy and it is omitted.
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• Step 3 (Antipode is an algebra anti-homomorphism).

Because x and g are group-like elements, we only check

S(uj+mi
)S(φmi,j) = S(uj)S(ymi

) = ξmi
S(ymi

)S(uj)S(x
mid)

and
S(ujul) = S(ul)S(uj)

for 1 ≤ i ≤ θ and 1 ≤ j, l ≤ m− 1 here.

(1) The proof of S(uj+mi
)S(φmi,j) = S(uj)S(ymi

) = ξmi
S(ymi

)S(uj)S(x
mid).

Clearly ujS(φmi,j) = φmi,juj for all i, j and thus

S(uj+mi
)S(φmi,j)

= xbgm−1
θ∏

i=1

(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimiuj

= φmi,jS(uj+mi
)

here and the following of this proof b = (1−m)d−
∑θ

i=1(ei−1)mi

2 d.

Through direct calculation, we have

S(uj)S(ymi
)

= xbgm−1
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ]uj · (−ymi
g−mi)

= −xbgm−1
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ](ξ−1
mi
γ−jmixmidymi

g−miuj)

= −xbgm−1
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ](ξ−1
mi
γ−m2

i (ji+1)xmidg−miymi
uj)

= xbgm−1(−1)j1+···+(ji+1)+···+jθξ−j1
m1

· · · ξ−(ji+1)
mi

· · · ξ−jθ
mθ

γ
j1(j1+1)

2
1 · · · γ

(ji+1)(j1+2)

2
i · · · γ

jθ(jθ+1)

2
θ

xj1m1d · · · x(ji+1)mid · · · xjθmθdg−j1m1 · · · g−(ji+1)mi · · · g−jθmθφmi,juj+mi

= φmi,jS(uj+mi
)

and

ξmi
S(ymi

)S(uj)S(x
mid)

= ξmi
(−ymi

g−mi)gm−1xb
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ]ujx
−mid

= xbgm−1(−1)j1+···+(ji+1)+···+jθξ−j1
m1

· · · ξ−(ji+1)
mi

· · · ξ−jθ
mθ

γ
j1(j1+1)

2
1 · · · γ

(ji+1)(j1+2)

2
i · · · γ

jθ(jθ+1)

2
θ

xj1m1d · · · x(ji+1)mid · · · xjθmθdg−j1m1 · · · g−(ji+1)mi · · · g−jθmθφmi,juj+mi

= φmi,jS(uj+mi
).

(2) The proof of S(ujul) = S(ul)S(uj).
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Define φmi,s := 1− γsi+1
i x−mid for all s ∈ Z. Using this notion,

xmidφmi,s = xmid(1− γsi+1
i x−mid)

= −γsi+1
i (1− γ

(ei−si−2)+1
i xmid)

= −γsi+1
i φmi,ei−si−2.

And so

S(ujul) = S(
1

m
xa

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 [ji, ei − 2− li]mi
yj+lg)

=
1

m
g−1x−a

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)

2 (−ymi
g−mi)ji+liS([ji, ei − 2− li]mi

)]

=
1

m
g−1x−a

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)

2 (−1)ji+liγm
2
i

ji+li(ji+li−1)

2

S([ji, ei − 2− li]mi
)yji+li

mi
g−miji+li ]

=
1

m
x−aγj+l

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)

2 (−1)ji+liγm
2
i

ji+li(ji+li−1)

2

S([ji, ei − 2− li]mi
)]yj+lg

−j+l−1

=
1

m
x−aγj+l

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)

2 (−1)ji+liγm
2
i

ji+li(ji+li−1)

2

(−1)ei−1−ji+liγm
2
i

(ei−1−ji+li)(ji+li−2ji−ei)

2 x−(ei−1−ji+li)mid[li, ei − 2− ji]mi
]yj+lg

−j+l−1

=
1

m
x−aγj+l

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)

2 γm
2
i (j

2
i +jili−li)

x−(ei−1−ji+li)mid[li, ei − 2− ji]mi
]yj+lg

−j+l−1.

Here the last equality follows from

(−1)ei−1γm
2
i

ji+li(ji+li−1)

2 γm
2
i

(ei−1−ji+li)(ji+li−2ji−ei)

2

= γm
2
i (j

2
i +jili−li).

Now let’s compute the other side.

S(ul)S(uj) = gm−1xb
θ∏

i=1

[(−1)liξ−li
mi
γ−m2

i

li(li+1)

2 xlimidg−limi ]ul

gm−1xb
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ]uj
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= gm−1
θ∏

i=1

[(−1)li+jiξ−li−ji
mi

γ−m2
i [

li(li+1)

2
+

ji(ji+1)

2
]x(li−ji)midg−limi ]

ulg
m−1−

∑θ
i=1 jimiuj

= γ−l−lj
θ∏

i=1

[(−1)li+jiξ−li−ji
mi

γ−m2
i [

li(li+1)

2
+

ji(ji+1)

2
]x(li+ji)midg−limi−jimi ]

g−2x2duluj

= γ−l−lj
θ∏

i=1

[(−1)li+jiξ−li−ji
mi

γ−m2
i [

li(li+1)

2
+

ji(ji+1)

2
]x(li+ji)midg−limi−jimi ]

g−2x2d
1

m
xa

θ∏

i=1

(−1)jiξ−ji
mi
γm

2
i

ji(ji+1)

2 [li, ei − 2− ji]mi
yj+lg

= γ−l−lj 1

m

θ∏

i=1

[(−1)liξ−li−2ji
mi

γ−m2
i [

li(li+1)

2
][li, ei − 2− ji]mi

x(ei−1−(li+ji))midg−li+jimi ]

g−2 1

m
x−ayj+lg

=
1

m

θ∏

i=1

[(−1)liξ−li−2ji
mi

γ−m2
i (

li(li+1)

2
)−limi−lijim

2
i+m2

i (li+ji)
2+2(li+ji)mi

[li, ei − 2− ji]mi
x(ei−1−(li+ji))mid]x−ayj+lg

−(j+l+1)

=
1

m
x−aγj+l

θ∏

i=1

[(−1)liξ−li
mi
γm

2
i

li(li+1)

2 γm
2
i (j

2
i +jili−li)

x−(ei−1−ji+li)mid[li, ei − 2− ji]mi
]yj+lg

−j+l−1.

where the fifth equality follows from

xa+2d = x−
2+

∑θ
i=1(ei−1)mi

2
d+2d = x−a−

∑θ
i=1(ei−1)mid

and the last equality is followed by

ξ−2ji
mi

γ−m2
i (

li(li+1)

2
)−limi−lijim

2
i+m2

i (li+ji)
2+2(li+ji)mi

= γm
2
i (

li(li+1)

2
)−miji−m2

i li(li+1)−limi−lijim2
i+m2

i (li+ji)2+2(li+ji)mi

= γm
2
i

li(li+1)

2
+m2

i (j
2
i +jili−li)+jimi+limi .

The proof is done.

• Step 4 ((S ∗ Id)(uj) = (Id ∗S)(uj) = ǫ(uj)).

In fact,
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(S ∗ Id)(u0) =
m−1∑

j=0

S(γ−j2uj)x
−jdgju−j

=
m−1∑

j=0

γ−j2gm−1xb
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ]ujx
−jdgju−j

=
m−1∑

j=0

gm−1xb
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 ]uju−j

=

m−1∑

j=0

gm−1xb
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 ]

1

m
xa

θ∏

i=1

(−1)−jiξjimi
γm

2
i

−ji(−ji+1)

2 [ji, ei − 2− ji]mi
g

=
1

m
xa+bgm

θ∏

i=1

[

ei−1∑

ji=0

γjii [ji, ei − 2− ji]mi
]

=
1

m
x−

∑θ
i=0(ei−1)mid

θ∏

i=1

[

ei−1∑

ji=0

γjii ]ji − 1, ji − 1[mi
]

=
1

m
x−

∑θ
i=0(ei−1)mid

θ∏

i=1

eix
(ei−1)mid (Lemma 3.5 (3))

= 1

= ǫ(u0).

And,

(Id ∗S)(u0) =
m−1∑

j=0

γ−j2ujS(x
−jdgju−j)

=
m−1∑

j=0

γ−j2ujS(u−j)S(g
j)xjd

=
m−1∑

j=0

γ−j2ujg
m−1xb

θ∏

i=1

[(−1)−jiξjimi
γ−m2

i

−ji(−ji+1)

2 x−jimidgjimi ]u−jg
−jxjd

=

m−1∑

j=0

x(1−m)d+
∑θ

i=1(ei−1)mi
2

d
θ∏

i=1

[(−1)−jiξjimi
γ−m2

i

−ji(−ji+1)

2 γ−jimi ]gm−1uju−j

=

m−1∑

j=0

x(1−m)d+
∑θ

i=1(ei−1)mi
2

d
θ∏

i=1

[(−1)−jiξjimi
γ−m2

i

−ji(−ji+1)

2 γ−jimi ]gm−1
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1

m
xa

θ∏

i=1

(−1)−jiξjimi
γm

2
i

−ji(−ji+1)

2 [ji, ei − 2− ji]mi
g

=

m−1∑

j=0

1

m

θ∏

i=1

ξ2jimi
γ−jimi ]ji − 1, ji − 1[mi

=
1

m

θ∏

i=1

ei−1∑

ji=0

]ji − 1, ji − 1[mi

=
1

m

θ∏

i=1

ei (Lemma 3.5 (1))

= 1

= ǫ(u0).

For 1 6 j 6 m− 1,

(S ∗ Id)(uj) =
m−1∑

k=0

γk(j−k)S(uk)x
−kdgkuj−k

=

m−1∑

j=0

γk(j−k)gm−1xb
θ∏

i=1

[(−1)kiξ−ki
mi

γ−m2
i

ki(ki+1)

2 xkimidg−kimi ]ukx
−kdgkuj−k

=
m−1∑

k=0

γk(j−k)gm−1xb
θ∏

i=1

[(−1)kiξ−ki
mi

γ−m2
i

ki(ki+1)

2 γk
2
im

2
i ]ukuj−k

=

m−1∑

k=0

γk(j−k)gm−1xb
θ∏

i=1

[(−1)kiξ−ki
mi

γ−m2
i

ki(ki+1)

2 γk
2
im

2
i ]

1

m
xa

θ∏

i=1

[(−1)ji−kiξ−ji+ki
mi

γm
2
i

(ji−ki)(ji−ki+1)

2 [ki, ei − 2− ji + ki]mi
]yjg

=
1

m
xa+b

m−1∑

k=0

θ∏

i=1

[(−1)jiξ−ji
mi
γm

2
i

j2i +ji
2

+jimi−kim2
i [ki, ei − 2− ji + ki]mi

]yj

=
1

m
xa+b

θ∏

i=1

[(−1)jiξ−ji
mi
γm

2
i

j2i +ji
2

+jimi ]yj

θ∏

i=1

[

ei−1∑

ki=0

γkii ]ki − 1− ji, ki − 1[mi
]

= 0 (Lemma 3.5 (5))

= ε(uj)
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(Id ∗S)(uj) =
m−1∑

k=0

γk(j−k)ukS(uj−k)g
−kxkd

=

m−1∑

k=0

γk(j−k)ukg
m−1xb

θ∏

i=1

[(−1)ji−kiξki−ji
mi

γ−m2
i

(ji−ki)(ji−ki+1)

2

x(ji−ki)midg−(ji−ki)mi ]uj−kg
−kxkd

=
m−1∑

k=0

ukg
m−1xb

θ∏

i=1

[(−1)ji−kiξki−ji
mi

γ−m2
i

(ji−ki)(ji−ki+1)

2

xjimidg−jimi ]uj−k

=
m−1∑

k=0

γ−kgm−1x(1−m)d+
∑θ

i=1(ei−1)mi
2

d
θ∏

i=1

[(−1)ji−kiξki−ji
mi

γ−m2
i

(ji−ki)(ji−ki+1)

2

xjimidγ−kjimig−jimi ]ukuj−k

=
m−1∑

k=0

γ−kgm−1x(1−m)d+
∑θ

i=1(ei−1)mi
2

d
θ∏

i=1

[(−1)ji−kiξki−ji
mi

γ−m2
i

(ji−ki)(ji−ki+1)

2

xjimidγ−kjimig−jimi ]

1

m
xa

θ∏

i=1

[(−1)ji−kiξ−ji+ki
mi

γm
2
i

(ji−ki)(ji−ki+1)

2 [ki, ei − 2− ji + ki]mi
]yjg

=
1

m
x−md

m−1∑

k=0

γ−k
θ∏

i=1

[ξ2(ki−ji)
mi

γ−kjimi+jimixjimidg−jimi [ki, ei − 2− ji + ki]mi
]gmyj

=
1

m

θ∏

i=1

[ξ−2ji
mi

γjimixjimidg−jimi ]

θ∏

i=1

[

ei−1∑

ki=0

γkijii ]ki − 1− ji, ki − 1]mi
]yj

= 0 (Lemma 3.5 (5))

= ε(uj).

By steps 1, 2, 3, 4, D(m,d, γ) is a Hopf algebra. �

Proposition 4.13. Under above notations, the Hopf algebra D(m,d, γ) has the fol-
lowing properties.

(1) The Hopf algebra D(m,d, γ) is prime with PI-degree 2m.
(2) The Hopf algebra D(m,d, γ) has a 1-dimensional representation whose order

is 2m.
(3) The Hopf algebra D(m,d, γ) is not pointed and its coradical is not a Hopf

subalgebra if m > 1.
(4) The Hopf algebra D(m,d, γ) is pivotal, that is, its representation category is

a pivotal tensor category.
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Proof. (1) Recall that the Hopf algebra D = D(m,d, γ) =
⊕2m

i=0D
l
i is strongly Z2m-

graded with

Dl
i =




k[x±1, ym1 , . . . , ymθ

]g
i
2 , i = even,

∑m−1
s=0 k[x

±1]g
i−1
2 us, i = odd.

So the algebra D meets the the initial condition of Lemma 2.11. Using the notation
given in the Lemma 2.11, we find that

χ ⊲ ymi
= ξ−1

mi
x−midymi

for all 1 ≤ i ≤ θ. This indeed implies the action of Z2m on Dl
0 = k[x±1, ym1 , . . . , ymθ

]
is faithful. Therefore, by (c) and (d) of Lemma 2.11, D is prime with PI-degree 2m.

(2) This 1-dimensional representation can be given through left homological inte-
grals. In fact, the direct computation shows that the right module structure of left
homological integrals is given by:

∫ l
D
= D/(x− 1, ym1 , . . . , ymθ

, u1, . . . , um−1, u0 −
θ∏

i=1

ξ(ei−1)
mi

, g −
θ∏

i=1

γ−mi).

Through the relation that ξmi
=

√
γmi it is not hard to see that the io(D) = 2m.

(3) Through direct computations, we find that the subspace Cm(d) spanned by
{(x−dg)iuj |0 ≤ i, j ≤ m − 1} is a simple coalgebra (see Proposition 7.6 for a de-
tailed proof of this fact) and the coradical of D equals to

⊕

i∈Z, 0≤j≤m−1

xigj ⊕ (
⊕

i∈Z, 0≤j≤m−1

xigjCm(d)).

Since m > 1, it has a simple subcoalgebra Cm(d) with dimension m2 > 1. Therefore,
D is not pointed. Its coradical is not a Hopf subalgebra since it is clear it is not closed
under multiplication.

(4) See the proof of (3) of Proposition 7.14 where we built the result through proving
that D being pivotal. �

Remark 4.14. (1) As a special case, through takeing m = 1 one is not hard to
see that the Hopf algebra D constructed above is just the infinite dihedral
group algebra kD. This justifies the choice of the notation “D”.

(2) It is not hard to see the other new examples, i.e., T (m, t, ξ), B(m,ω, γ), are
pivotal since they are pointed and thus the proof of this fact become easier.
In fact, keep the notations above, we have

S2(h) = (
θ∏

i=1

gtmi)h(
θ∏

i=1

gtmi)−1

for h ∈ T (m, t, ξ) and

S2(h) = (

θ∏

i=1

gmi)h(

θ∏

i=1

gmi)−1

for h ∈ B(m,ω, γ). Through applying Lemma 2.16, we get the result.
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Now let m′ ∈ N and {m′
1, . . . ,m

′
θ′} a fraction of m′. As before, we need to compare

different fractions of Hopf algebras D(m,d, γ). Also, we denote the greatest common
divisors of {m1, . . . ,mθ} and {m′

1, . . . ,m
′
θ′} by m0 and m′

0 respectively. Parallel to
case of generalized Liu algebras, we have the following observation.

Proposition 4.15. As Hopf algebras, D(m,d, γ) ∼= D(m′, d′, γ′) if and only if m =

m′, θ = θ′, dm0 = d′m′
0 and γm

2
0 = (γ′)(m

′
0)

2
.

Proof. By Proposition 4.11, it it enough to show that D(m,d, γ) ∼= D(m′, d′, γ′) if
and only if their Hopf subalgebras B(m,md, γ) and B(m′,m′d′, γ′) are isomorphic. It
is clear the isomorphism of D(m,d, γ) and D(m′, d′, γ′) will imply the isomorphism
between B(m,md, γ) and B(m′,m′d′, γ′). Conversely, assume that B(m,md, γ) ∼=
B(m′,m′d′, γ′). By Proposition 6.11, D(m,d, γ) is determined by B(m,md, γ) en-
tirely. Therefore, D(m,d, γ) ∼= D(m′, d′, γ′) too. �

At last, we point out the examples we constructed until now are not the same.

Proposition 4.16. Ifm > 1, the Hopf algebras T (m′, t, ξ), B(m′′, ω, γ′′) and D(m,d, γ)
are not isomorphic to each other.

Proof. Sincem > 1, D(m,d, γ) is not pointed by Proposition 4.13 (3) while T (m′, t, ξ)
and B(m′′, ω, γ′′) are pointed. Therefore, D(m,d, γ) 6∼= T (m′, t, ξ) and D(m,d, γ) 6∼=
B(m′′, ω, γ′′). Comparing the number of group-likes, we know that T (m′, t, ξ) 6∼=
B(m′′, ω, γ′′) either. �

5. Ideal cases

In this section, we always assume that H is a prime Hopf algebra of GK-dimension one
satisfying (Hyp1) and (Hyp2). So by (Hyp1), H has a 1-dimensional representation

π : H −→ k

whose order equals to PI-deg(H). Recall that in the Subsection 2.2, we already gave
the definition of π-order ord(π) and π-minor min(π). The aim of this section is to
classify H in the following two ideal cases:

min(π) = 1 or ord(π) = min(π).

If moreover assume that H is regular, then the main result of [9] is to classify H in
ideal cases. Here we apply similar program to classify prime Hopf algebras which may
be not regular.

5.1. Ideal case one: min(π) = 1. In this subsection, H is a prime Hopf algebra of
GK-dimension one satisfying (Hyp1), (Hyp2) and min(π) = 1. Let PI.deg(H) = n > 1
(if = 1, then it is clear that H is commutative and thus H is the coordinate algebra
of connected algebraic group of dimension one). Recall that by the equation (2.3), H
is an Zn-bigraded algebra

H =

n−1⊕

i,j=0

Hij,π.
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Here and the following we write Hij,π just as Hij for simple.

Lemma 5.1. Under above notations, the subalgebra H00 is a Hopf subalgebra which
is isomorphic to either k[x] or k[x±1].

Proof. Since min(π) = 1, H l
0 = Hr

0 = H00. By (1) and (3) of Lemma 2.9, H00 is stable
under the operations ∆ and S. This implies thatH00 is a Hopf subalgebra. By Lemma
2.8 and its proof, we know that H00 is a commutative domain of GK-dimension one.
So H00 is the coordinate algebra of connected algebraic group of dimension one. Thus
it is isomorphic to either k[x] or k[x±1]. �

Therefore, we have a dichotomy on the structure of H now.

Definition 5.2. Let H be a prime Hopf algebra of GK-dimension one satisfying
(Hyp1), (Hyp2) and min(π) = 1.

(a) We call H additive if H00 is the coordinate algebra of the additive group, that
is, H00 = k[x].

(b) We call H multiplicative if H00 is the coordinate algebra of the multiplicative
group, that is, H00 = k[x±1].

Remark 5.3. In both [9] and [36], the additive H was called primitive while the
multiplicative H was called group-like. Here we used a slightly different terminology
for intuition.

If we check the proof of the [9, Propositions 4.2, 4.3] carefully, then one can find that
these propositions are still valid even we remove the requirement about regularity. So
we state the following result, the same as [9, Propositions 4.2, 4.3], without proof.

Proposition 5.4. Let H be a prime Hopf algebra of GK-dimension one with PI-
deg(H) = n > 1 and satisfies (Hyp1), (Hyp2) and min(π) = 1. Then

(a) If H is additive, then H ∼= T (n, 0, ξ) of Subsection 2.3.
(b) If H is multiplicative, then H ∼= kD of Subsection 2.3.

In particular, such H must be regular.

5.2. Ideal case two: ord(π) = min(π). In this subsection, H is a prime Hopf
algebra of GK-dimension one satisfying (Hyp1), (Hyp2) and n := ord(π) = min(π) >
1 (if = 1, then clearly H commutative by our (Hyp2)). Recall that we have the
following bigrading

H =
n−1⊕

i,j=0

Hij.

The following is some parts of [9, Proposition 5.2, Theorem 5.2], which are proved
without the hypothesis on regularity and thus they are true in our case.

Lemma 5.5. Retain the notations above. Then

(a) The center of H equals to H0 := H00.
(b) The center of H is a Hopf subalgebra.
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The statement (b) in this lemma also imply that we are in the same situation as ideal
case one now: H is either additive or multiplicative. No matter what kind of H is,
Hij is a free H0-module of rank one (see the analysis given in [9, Page 287]), that is

H =

n−1⊕

i,j=0

Hij =

n−1⊕

i,j=0

H0uij =

n−1⊕

i,j=0

uijH0,

and the action of winding automorphism (relative to π) is given by

Ξl
π(uija) = ξiuija, and Ξr

π(uija) = ξjuija

for a ∈ H0 and ξ a primitive nth root of unity. Due to [9, Proposition 6.2], all these
elements uij (0 ≤ i, j ≤ n− 1) are normal. Moreover, by [9, Lemma 6.2], they satisfy
the following relation:

(5.1) uijui′j′ = ξi
′j−ij′ui′j′uij .

By Lemma 5.5, H00 is a normal Hopf subalgebra of H which implies that there is an
exact sequence of Hopf algebras

(5.2) k −→ H00 −→ H −→ H −→ k,

where H = H/HH+
00 and by definition H+

00 = H00
⋂

Ker ε. As one of basic observa-
tions of this paper, we have the following result.

Lemma 5.6. As a Hopf algebra, H is isomorphic to a fraction version of a Taft
algebra T (n1, . . . , nθ, ξ) for n1, . . . , nθ a fraction of n.

Proof. Denote the image of uij in H by vij for 0 ≤ i, j ≤ n−1. Due to H is bigraded,

H =

n−1⊕

i,j=0

H ij =

n−1⊕

i,j=0

kvij .

Let g = v11. Then by (a), (b) and (e) of [9, Proposition 6.6], which are still true even
H is not regular, these elements vij can be chosen to satisfy

gn = 1, vii = gi, (0 ≤ i ≤ n− 1), vij = giv0(j−i), (0 ≤ i 6= j ≤ n− 1)

and

vnij = 0, (0 ≤ i 6= j ≤ n− 1).

Moreover, one can use (1), (4) and (5) of Lemma 2.9 and the axioms for a coproduct
to show that g is group-like and

∆(vij) = vii ⊗ vij + vij ⊗ vjj +
∑

s 6=i,j

cijssvis ⊗ vsj = gi ⊗ vij + vij ⊗ gj +
∑

s 6=i,j

cijssvis ⊗ vsj

for some cijss ∈ k and 0 ≤ i 6= j ≤ n − 1 (see also [9, Lemma 6.5] for a explicit
proof). Using this formula for coproduct, it is not hard to see that H is a pointed
Hopf algebra with G(H) = {gi|0 ≤ i ≤ n− 1}.
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Let H
l
i :=

⊕n−1
j=0 H ij and then through inheriting the strongly graded property of H,

we know that H =
⊕n−1

i=0 H
l
i is strongly graded. We want to consider the subalgebra

H
l
0 =

⊕
j=0 kv0j . For this, we take the following linear map

π′ : H −→ kG(H), vij 7−→ δijvij .

At first, we prove that π′ is an algebraic map. For this, it is enough to show that

vijvkl = 0

for all i 6= j with i + k ≡ j + l (mod n). Assume that this is not true, then vijvkl =
avi+k,j+l for some 0 6= a ∈ k, which is invertible by vii = gi for all 0 ≤ i ≤ n − 1.
But this is impossible since vij is nilpotent. So, π′ is an algebraic map. In addition,
the formula for the coproduct implies that π′ is also a coalgebra map. Therefore, π′

is a Hopf projection. Using the classical Radford’s biproduct (see Subsection 2.4), we
have the following decomposition

H = H
l
0#kG(H).

By [5, Theorem 2], H
l
0 is generated by skew primitive elements, say x1, . . . , xθ (we

ask that θ is as small as possible). Moreover, by the proof of [5, Theorem 2] we know
that gxig

−1 ∈ kxi for (1 ≤ i ≤ θ). So, equation (5.1) implies that up to a nonzero

scalar xi equals to a v0j for some j. In one word, we prove that the subalgebra H
l
0 is

generated by v0n1 , . . . , v0nθ
which are skew primitive elements.

Claim: n1, . . . , nθ is a fraction of n.

Proof of the claim: Let ei be the exponent of ni for 1 ≤ i ≤ θ. We find that ei is
the smallest number such vei0ni

= 0. Indeed, on one hand it is not hard to see that

vei0ni
= 0 since by definition vei0ni

∈ H00 = k and v0ni
is nilpotent. On the other hand,

assume that there is l < ei which is smallest such that vl0ni
= 0. Then

0 = ∆(v0ni
)l = (1⊗ v0ni

+ v0ni
⊗ gni)l =

l∑

k=0

(
l
k

)

ξn
2
i

vk0ni
⊗ gni(l−k)vl−k

0ni

which implies that

(
l
k

)

ξn
2
i

= 0 for all 1 ≤ k ≤ l−1 and thus ξn
2
i must be a primitive

lth root of unity. Now we consider the element v0,lni
which is not 1 by the definition

of l (explicitly, n ∤ lni since l < ei). Thus the elements g′ := glni , x := v0,lni
generate

a Hopf subalgebra satisfying

g′x = xg′, ∆(x) = 1⊗ x+ x⊗ g′.

(We need prove these two relations. The relation g′x = xg′ is clear. The proof of
∆(x) = 1⊗x+x⊗g′ is given as follows: Lifting these v0j toH, we get the corresponding
elements u0j for 0 ≤ j ≤ n− 1. Due to [9, Propostion 6.2], they are normal and thus

ul0ni
= f(x)u0,lni

for some 0 6= f(x) ∈ H00. By the claim in the proof of the next
proposition, that is, Proposition 5.7, u0ni

is a skew primitive element. Using the

fact that ξn
2
i is a primitive lth root of unity, ul0ni

is still a skew primitive element.
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This implies that ∆(f(x)u0,lni
) and thus ∆(u0,lni

) ∈ H00 ⊗H0,lni
+H0,lni

⊗Hlni,lni
.

Therefore, v0,lni
has to be skew-primitive.)

It is well known that a Hopf algebra satisfying above relations must be infinite dimen-
sional (in fact, a infinite dimensional Taft algebra) which is a contradiction. Thus, ei
is the smallest number such vei0ni

= 0.

Now, we want to show that (ei, ni) = 1. Otherwise, let di = (ei, ni) > 1. Therefore,
we consider

∆(v0ni
)
ei
di = (1⊗ v0ni

+ v0ni
⊗ gni)

ei
di .

By definition, ei/di is coprime to ni thus coprime to n2i . This implies that ξn
2
i is a

primitive ei/dith root of unity. Therefore,

∆(v0ni
)
ei
di = 1⊗ v

ei
di

0ni
+ gniei/di ⊗ v

ei
di

0ni
.

Since ei is the smallest number such vei0ni
= 0, v

ei
di

0ni
6= 0. This means that we go into

the following situation again: Let g′ = gniei/di , x = v
ei/di
0ni

, then the Hopf subalgebra

generated by g′, x is infinite dimensional. This is impossible.

Next, we want to show that n|ninj for all 1 ≤ i 6= j ≤ θ. Through computation,

∆(v0ni
v0nj

) = 1⊗ v0ni
v0nj

+ v0ni
⊗ gniv0nj

+ v0nj
⊗ v0ni

gnj + v0ni
v0nj

⊗ gni+nj

and

∆(v0nj
v0ni

) = 1⊗ v0nj
v0ni

+ v0nj
⊗ gnjv0ni

+ v0ni
⊗ v0nj

gni + v0nj
v0ni

⊗ gni+nj .

By equation (5.1), one has v0ni
v0nj

= v0nj
v0ni

. This implies that gnjv0ni
= v0ni

gnj =
ξninjgnjv0ni

. Therefore, ξninj = 1 and thus n|ninj.
At last, we need to prove the conditions (3) and (4) of a fraction (see Definition 3.1).
Clearly, conditions (3) and (4) is equivalent to say that every v0t can be expressed
as a product of v0n1 , . . . , v0,nθ

uniquely (up to the order of these v0,ni
’s due to the

community of them) for all 0 ≤ t ≤ n− 1. Since we already know that v0n1 , . . . , v0nθ

generate the whole algebra H
l
0, it is enough to prove the following two conclusion:

1) vl10n1
· · · vlθ0nθ

6= 0 for all 0 ≤ l1 ≤ e1 − 1, . . . , 0 ≤ lθ ≤ eθ − 1; 2) the elements in

the set {vl10n1
· · · vlθ0nθ

|0 ≤ l1 ≤ e1 − 1, . . . , 0 ≤ lθ ≤ eθ − 1} are linear independent. Of

course, 1) is just a necessary part of 2). However, we find that they help each other.
To show them, we introduce the lexicographical order on A = {(l1, . . . , lθ)|0 ≤ l1 ≤
e1 − 1, . . . , 0 ≤ lθ ≤ eθ − 1} through

(l1, . . . , lθ) < (l′1, . . . , l
′
θ) ⇔ exsits 1 ≤ i ≤ θ s.t. lj = l′j forj < i and li < l′i.

Now let S = {(s1, . . . , sθ) ∈ A|vs10n1
· · · vsθ0nθ

6= 0}. Clearly, S is nonempty due to

v0ni
6= 0 for all 1 ≤ i ≤ θ. We prove that all elements {vs10n1

· · · vsθ0nθ
|(s1, . . . , sθ) ∈ S}

are linear independent firstly and then show that S = A. From this, 1) and 2)
are proved clearly. In fact, assume we have a linear dependent relation among the
elements in {vs10n1

· · · vsθ0nθ
|(s1, . . . , sθ) ∈ S}. Then there exists a linear combination

al1,...,lθv
l1
0n1
vl20n2

· · · vlθ0nθ
+ · · · = 0
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with al1,...,lθ 6= 0 and (l1, . . . , lθ) is as small as possible. Takeing the coproduct to
the above equality and one can get a smaller item involving in a linear dependent
equation. That is a contradiction. Next, let’s show that S = A. Otherwise, there

exists vl10n1
· · · vlθ0nθ

= 0 for some (l1, . . . , lθ) ∈ A. Then take (l1, . . . , lθ) as small as
possible under above lexicographical order. Without loss generality, we can assume

that l1 > 0. Then take a k1 such 0 ≤ k1 < l1. In the expression of ∆(vl10n1
· · · vlθ0nθ

) on

can find the coefficient of the item vl1−k1
0n1

⊗ gk1n1vk10n1
vl20n2

· · · vlθ0nθ
is

(
l1
k1

)

ξn
2
1

which is not zero since we already know that ξn
2
1 is a primitive e1th root of unity.

This implies that either vl1−k1
0n1

= 0 or vk10n1
vl20n2

· · · vlθ0nθ
= 0 by the linear independent

relation we proved. But both of them are not possible. Therefore, S = A. So 1) and
2) are proved. The proof of the claim is done.

Let’s go back to prove this lemma. Until now, we have proved that the Hopf algebra
H is generated by v0n1 , . . . , v0nθ

and g such that n1, . . . , nθ is a fraction of n and

gn = 1, v0ni
g = ξnigv0ni

, v0ni
v0nj

= v0nj
v0ni

, vei0ni
= 0

and g is group-like, v0ni
is a (1, gni)-skew primitive element for all 1 ≤ i, j ≤ θ.

Therefore, we have a Hopf surjection

T (n1, . . . , nθ, ξ) −→ H, yni
7→ v0ni

, g 7→ g, 1 ≤ i ≤ θ.

Comparing the dimension of them, we know that this surjection is a bijection. �

With help of this lemma, we are in the position to give the main result of this sub-
section now.

Proposition 5.7. Let H be a prime Hopf algebra of GK-dimension one satisfying
(Hyp1), (Hyp2) and n := ord(π) = min(π) > 1. Retain all above notations, then

(1) If H is additive, then it is isomorphic to a fraction version of a infinite di-
mensional Taft algebra T (n, 1, ξ) of Subsection 4.1.

(2) If H is multiplicative, then it is isomorphic to a fraction version of a gener-
alized Liu algebra B(n, ω, γ) of Subsection 4.4.

Proof. Before we prove (1) and (2), we want to recall some basic facts, which are
still valid in our case, on the coproduct from [9, Proposition 6.7]. The first fact is
that g := u11 is a group-like element and uii can defined as uii := ui11 (see (a) of [9,
Proposition 6.7]). By (1) of Lemma 2.9, in general one has

∆(uij) =
∑

s,t

Cij
st(uis ⊗ utj)

for Cij
st ∈ H00 ⊗H00 and 0 ≤ i, j, s, t ≤ n− 1. The second fact is Cij

st = 0 when s 6= t
(see (6.7.5) in the proof of [9, Proposition 6.7]). Therefore, the coproduct for uij can
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be written as

(5.3) ∆(uij) = Cij
ii g

i ⊗ uij + Cij
jjuij ⊗ gj +

∑

s 6=i,j

Cij
ssuis ⊗ usj

for all 0 ≤ i, j ≤ n− 1. Now by Lemma 5.6 we can assume that H = T (n1, . . . , nθ, ξ).
Then we get the following observation.

Claim. For all 1 ≤ i ≤ θ, the element u0ni
is a (1, gni)-skew primitive element.

Proof of the claim. By direct computation,

(Id⊗∆)∆(u0ni
)

= (Id⊗∆)(C0ni

00 1⊗ u0ni
+ C0ni

nini
u0ni

⊗ gni +
∑

s 6=0,ni

C0ni
ss u0s ⊗ usni

)

= (Id⊗∆)(C0ni

00 )1⊗ (C0ni

00 1⊗ u0ni
+ C0ni

nini
u0ni

⊗ gni +
∑

s 6=0,ni

C0ni
ss u0s ⊗ usni

)

+(Id⊗∆)(C0ni
nini

)u0ni
⊗ gni × gni +

∑

s 6=0,ni

(Id⊗∆)(C0ni
ss )u0s ⊗

[Csni
ss g

s ⊗ usni
+ Csni

nini
usni

⊗ gni +
∑

t6=s,ni

Csni
tt ust ⊗ utni

]

and

(∆⊗ Id)∆(u0ni
)

= (∆⊗ Id)(C0ni

00 1⊗ u0ni
+ C0ni

nini
u0ni

⊗ gni +
∑

s 6=0,ni

C0ni
ss u0s ⊗ usni

)

= (∆⊗ Id)(C0ni

00 )1⊗ 1⊗ u0ni
+ (∆⊗ Id)(C0ni

nini
)[C0ni

00 1⊗ u0ni

+C0ni
nini

u0ni
⊗ gni +

∑

s 6=0,ni

u0s ⊗ usni
]⊗ gni

+
∑

s 6=0,ni

(∆⊗ Id)(C0ni
ss )[C0s

001⊗ u0s + C0s
ssu0s ⊗ gs +

∑

t6=0,s

C0s
tt u0t ⊗ uts]⊗ usni

.

By associativity, we get the following identities:

(Id⊗∆)(C0ni

00 )(1 ⊗ C0ni

00 ) = (∆ ⊗ Id)(C0ni

00 )

(Id⊗∆)(C0ni

00 )(1 ⊗ C0ni
nini

) = (∆⊗ Id)(C0ni
nini

)

(Id⊗∆)(C0ni
nini

) = (∆ ⊗ Id)(C0ni
nini

)(C0ni
nini

⊗ 1)

(Id⊗∆)(C0ni

00 )(1 ⊗ C0ni
ss ) = (∆ ⊗ Id)(C0ni

ss )(C0s
00 ⊗ 1)(5.4)

(Id⊗∆)(C0ni
ss )(1 ⊗ Csni

ss ) = (∆⊗ Id)(C0ni
ss )(C0s

ss ⊗ 1)(5.5)

for s 6= 0, ni. From the first three identities, we find that C0ni

00 = C0ni
nini

= 1 by using
the same method given in [9, Page 297]. This indeed implies that

C0t
00 = C0t

tt = 1

for all 0 ≤ t ≤ n−1 since we have the same first three identities just through replacing
ni by t.
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Recall again the dichotomy of H00: either H00 = k[x] or H00 = k[x±1]. From this

we know that C0ni
ss =

∑
k,l a

s,0,ni

kl xk ⊗ xl for s 6= 0, ni and a
s,0,ni

kl ∈ k. We just prove

our claim in the case H00 = k[x] since the other case can be proved similarly. By the
image of u0ni

in H is a skew primitive element,

as,0,ni

00 = 0.

Since C0t
00 = C0t

tt = 1 for all 0 ≤ t ≤ n− 1, the equation (5.4) is simplified into

(1⊗ C0ni
ss ) = (∆ ⊗ Id)(C0ni

ss )

which implies that as,0,ni

kl = 0 if k 6= 0. Similarly, the equation (5.5) implies that

as,0,ni

0l = 0 if l 6= 0. Thus, C0ni
ss = 0 for s 6= 0, ni and u0ni

is a (1, gni)-skew primitive
element for 1 ≤ i ≤ θ. Moreover, we point out that through the same way given in
[9, Theorem 6.7] one can show that as an algebra the Hopf algebra H is generated by
H00, g = u11 and u0ni

for 1 ≤ i ≤ θ.

(1) Now H is additive with H00 = k[x]. We already know that g = u11 is group-like
and thus gn is a group-like in H00 by the bigrading property. But the only group-like
in H00 is 1 and thus

gn = 1.

Consider the element u0ni
for 1 ≤ i ≤ θ. Through the quantum binomial theorem,

uei0ni
is a primitive element now. This means there exists ci ∈ k such that uei0ni

= cix.
Since H is prime, ci 6= 0. Therefore, through multiplying u0ni

by a suitable scalar
one can assume that

uei0ni
= x

for all 1 ≤ i ≤ θ. By equation (5.1), u0ni
u0nj

= u0nj
u0ni

for all 1 ≤ i, j ≤ θ. Therefore,
we have a Hopf surjection

φ : T (n, 1, ξ) −→ H, x 7→ x, yni
7→ u0ni

, g 7→ g,

where n = {n1, . . . , nθ}. Since both of them are prime of GK-dimension one, φ is an
isomorphism.

(2) Now H is multiplicative with H00 = k[x±1]. We already know that g = u11 is
group-like and thus gn is a group-like element in H00 by the bigrading property. Since
{xi|i ∈ Z} are all the group-likes in H00,

gn = xω

for some ω ≥ 0 (noting that we can replace x by x−1 if ω is negative). We claim that
ω 6= 0. If not, then as the proof of (1) we know that uei0ni

is primitive in H00. Hence

uei0ni
= 0 which is impossible since H is prime.

Consider the element u0ni
for 1 ≤ i ≤ θ. Through the quantum binomial theorem, uei0ni

is a (1, geini) = (1, xω
eini
n )-skew primitive element in H00. Therefore, after dividing if

necessary by non-zero scalar,

uei0ni
= 1− xω

eini
n
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for all 1 ≤ i ≤ θ. Also by equation (5.1), u0ni
u0nj

= u0nj
u0ni

for all 1 ≤ i, j ≤ θ.
Therefore, we have a Hopf surjection

φ : B(n, ω, ξ) −→ H, x 7→ x, yni
7→ u0ni

, g 7→ g,

where n = {n1, . . . , nθ}. Since both of them are prime of GK-dimension one, φ is an
isomorphism.

�

6. Remaining case

In the previous section, we already dealt with the ideal cases: the case min(π) = 1
and the case ord(π) = min(π) > 1. In this section, we want to deal with the remaining
case: ord (π) > min(π) > 1. The main aim of this section is to classify prime Hopf
algebras of GK-dimension one H in this remaining case. To realize this aim, we apply

the similar idea used in [36], that is, we first construct a special Hopf subalgebra H̃,

which can be classified by previous results, and then we show that H̃ determines the
structure of H entirely.

In this section, H is a prime Hopf algebra of GK-dimension one satisfying (Hyp1),
(Hyp2) and n := ord (π) > m := min(π) > 1 unless stated otherwise. And as before,
the 1-dimensional representation in (Hyp1) is denoted by π. Recall that

H =
⊕

i,j∈Zn

Hij

is Zn-bigraded by (2.3).

6.1. The Hopf subalgebra H̃. By definition, we know thatm|n and thus let t := n
m .

We define the following subalgebra

H̃ :=
⊕

0≤i,j≤m−1

Hit,jt.

The following result is a collection of [36, Proposition 5.4, Lemma 5.5], which were
proved in [36] without using the condition of regularity.

Lemma 6.1. Retain above notations.

(1) For every i, j with 1 6 i, j 6 n − 1, Hij 6= 0 if and only if i− j ≡ 0 (mod t)
for all 0 6 i, j 6 n− 1 .

(2) The algebra H̃ is a Hopf subalgebra of H.

The key observation of [36] and here is that Hopf subalgebra H̃ lives in an ideal case.

Proposition 6.2. For the Hopf algebra H̃, we have the following results.

(1) It is prime of GK-dimension one.

(2) It satisfies (Hyp1) and (Hyp2) through the restriction π|
H̃

of π to H̃.
(3) ord(π|

H̃
) = min(π|

H̃
) = m.
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Proof. (1) For each 0 ≤ i ≤ m − 1, let H̃ l
it :=

⊕
0≤j≤m−1Hit,jt. By Lemma 6.1, we

know that H̃ l
it = H l

it. Therefore H̃ =
⊕

0≤i≤m−1 H̃
l
it is strongly graded and H̃ l

0 is a

commutative domain. Thus the Lemma 2.11 is applied. As consequences, H̃ is prime

with PI-degree m. Since H̃ l
0 = H l

0 is of GK-dimension one and H̃ is Zm-strongly

graded, H̃ is of GK-dimension one.

(2) Denote the restriction of the actions of Ξl
π and Ξr

π to H̃ by Γl and Γr, respectively.

Since H̃ =
⊕

06i6m−1H
l
it, we can see that for each 0 6 i 6 m−1 and any 0 6= x ∈ H l

it,

(Γl)m(x) = ξitmx = x

for ξ a primitive nth root of unity. This implies that the group 〈Γl〉 has order m

and thus π|
H̃

is of order m. We already know that PI-deg(H̃) = m and the invariant

component H̃ l
0 = H l

0 is a domain. So H̃ satisfies (Hyp1) and (Hyp2).

(3) Similarly, |〈Γr〉| = m. We claim that

〈Γl〉 ∩ 〈Γr〉 = 1.

In fact, if (Γl)i = (Γr)j for some 0 6 i, j 6 m− 1. Choose 0 6= x ∈ Htt, we find

ξtix = (Γl)i(x) = (Γr)j(x) = ξtjx

which implies i = j. Let 0 6= y ∈ H0,t, then

y = (Γl)i(y) = (Γr)j(y) = ξtjy

forces j = 0. Thus we get i = j = 0, i.e., 〈Γl〉 ∩ 〈Γr〉 = 1. This implies that
min(π|

H̃
) = m. �

Corollary 6.3. As a Hopf algebra H̃ is isomorphic to either a faction version of
infinite dimensional Taft algebra T (m, 1, ξ) or a fraction version of generalized Liu
algebra B(m,ω, γ).

Proof. This is a direct consequence of Propositions 5.7 and 6.2. �

This corollary implies that either H00 = k[x] (i.e. H ∼= T (m, 1, ξ)) or H00 = k[x±1]
(i.e. H ∼= B(m,ω, γ)) again. That is, we go back to a familiar situation that we have
a dichotomy on H now.

Definition 6.4. We call H is additive (resp. multiplicative) if H00 = k[x] (resp.
H00 = k[x±1]).

We realize that the [36, Proposition 6.6] is also true in our case and we recall it as
follows.

Lemma 6.5. Every homogeneous component Hi,i+jt of H is a free H00-module of
rank one on both sides for all 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1.

From this lemma, there is a generating set {ui,i+jt|0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1}
satisfying

u00 = 1 and Hi,i+jt = ui,i+jtH00 = H00ui,i+jt.
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So, H can be written as

(6.1) H =
⊕

06i6n−1
06j6m−1

H00ui,i+jt =
⊕

06i6n−1
06j6m−1

ui,i+jtH00.

6.2. Additive case. If H is additive, H̃ = T (m, 1, ξ). Recall that n is the π-order
and n = mt. We will prove H is isomorphic as a Hopf algebra to T (m, t, ζ), for ζ
some primitive nth root of 1. Recall that

H̃ = T (m, 1, ξ) = k〈g, ym1 , . . . , ymθ
|gm = 1, ymi

g = ξmigymi
, ymi

ymj
= ymj

ymi
,

yeimi
= y

ej
mj , 1 ≤ i, j ≤ θ〉,

here by Proposition 4.3 we assume that (m1, . . . ,mθ) = 1 without loss of general-

ity. Note that H =
⊕

06i6n−1,06j6m−1Hi,i+jt, H̃ =
⊕

06i,j6m−1Hit,jt and Hit,jt =

k[ye1m1
]yj−ig

i (the index j − i is interpreted mod m). In particular, H00 = k[ye1m1
],

H0,jt = k[ye1m1
]yj and Htt = k[ye1m1

]g.

By Lemma 2.9 (5), ǫ(u11) 6= 0. Multiplied with a suitable scalar, we can assume
that ǫ(u11) = 1 throughout this subsection. The following results are parallel to [36,
Lemma 7.1, Propositions 7.2, 7.3]. Since the situation is changed, we write the details
out.

Lemma 6.6. Let u := u11. Then H
l
1 = H l

0u, H =
⊕

06k6t−1 H̃u
k and u is invertible.

Proof. By the bigraded structure of H, we have

H0,mitH11 ⊆ H1,1+mit, H0,(ei−1)mitH1,1+mit ⊆ H11,

which imply

H0,mitH0,(ei−1)mitH1,1+mit ⊆ H0,mitH11 ⊆ H1,1+mit,

for all 1 ≤ i ≤ θ.

Since H0,mitH0,(ei−1)mit = yeimi
H00 is a maximal ideal of H00 = k[ye1m1

] = k[yeimi
] and

H1,1+mit is a free H00-module of rank one (by Lemma 6.5), H0,mitH0,(ei−1)mitH1,1+mit

is a maximal H00-submodule of H1,1+mit. Thus

H0,mitH11 = H0,mitH0,(ei−1)mitH1,1+mit = yeimi
H1,1+mit or H0,mitH11 = H1,1+mit.

If H0,mitH11 = yeimi
H1,1+mit, then ymi

u11 = yeimi
α(yeimi

)u1,1+mit for some polynomial
α(yeimi

) ∈ k[yeimi
]. So

ymi
(u11 − yei−1

mi
α(yeimi

)u1,1+mit) = 0.

Therefore, yeimi
(u11− yei−1

mi
α(yeimi

)u1,1+mit) = 0. Note that each homogenous Hi,i+jt is
a torsion-free H00-module, so

u11 = yei−1
mi

α(yeimi
)u1,1+mit.

By assumption, ǫ(u11) = 1. But, by definition, ǫ(ymi
) = 0. This is impossible. So

H0,mitH11 = H1,1+mit which implies that H0,mitu11 = H1,1+mit.
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Since above i is arbitrary, that is 1 ≤ i ≤ θ, we can show that H0,jtu11 = H1,1+jt for

0 6 j 6 m − 1. Thus H l
1 = H l

0u11. Since H =
⊕

06j6n−1H
l
j is strongly graded, u11

is invertible and H l
j = H l

0u
j
11 for all 0 6 j 6 n− 1. Let u := u11, then we have

H =
⊕

06k6t−1

H̃uk.

�

We are in a position to determine the structure of H now.

Lemma 6.7. With above notations, we have

ut = g, ymi
u = ζmiuymi

(1 ≤ i ≤ θ),

where ζ is a primitive nth root of 1.

Proof. For all 1 ≤ i ≤ θ, by H0,mitu = uH0,mit, there exists a polynomial βi(y
ei
mi

) ∈
k[yeimi

] such that

ymi
u = uymi

βi(y
ei
mi

).

Then

ymi
ut = utymi

β′i(y
ei
mi

)

for some polynomial β′i(y
ei
mi

) ∈ k[yeimi
] induced by β(yeimi

). Since ut is invertible and

ut ∈ Ht,t = k[yeimi
]g, ut = ag for 0 6= a ∈ k. By assumption, ǫ(u) = 1 and thus a = 1.

Therefore,

ut = g.

Since ymi
g = ξmigymi

, we have β′i(y
ei
mi

) = ξmi . Then it is easy to see that βi(y
ei
mi

) =

ζi ∈ k with ζti = ξmi . By assumption, (m1, . . . ,mθ) = 1 and thus there exists ζ ∈ k
such that ζt = ξ and ζmi = ζi for all 1 ≤ i ≤ θ. Of course, ζn = 1.

The last job is to show that ζ is a primitive nth root of 1. Indeed, assume ζ is a
primitive n′th root of 1. By definition, m|n′|n and n′ 6= n. Therefore, it is not hard
to see that

u′ := un
′ ∈ C(H)

the center of H. Since gm = un = (u′)
n

n′ = 1, we have orthogonal central idempotents

1l :=
∑ n

n′ −1

j=0 ς−lj(u′)j for 0 ≤ l ≤ n
n′ − 1 and ς a primitive n

n′ th root of unity. This
contradicts to the fact that H is prime. �

Lemma 6.8. The element u is a group-like element of H.

Proof. First of all Hr
0
∼= k[x] ∼= H l

0. Then Hr
0 ⊗H l

0
∼= k[x, y] and the only invertible

elements in Hr
0 ⊗H l

0 are nonzero scalars in k. Since ∆(u) and u ⊗ u are invertible,
∆(u)(u⊗u)−1 is invertible (and hence a scalar). Thus u must be group-like by noting
that ǫ(u) = 1. �

The next proposition follows from above lemmas directly.
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Proposition 6.9. Let H be a prime regular Hopf algebra of GK-dimension one sat-
isfying (Hyp1), (Hyp2) and ord(π) = n > min(π) = m > 1. If H is additive, then
H is isomorphic as a Hopf algebra to a fraction version of infinite dimensional Taft
algebra.

6.3. Multiplicative case. If H is multiplicative, then H̃ = B(m,ω, γ) for m =
{m1, . . . ,mθ} a fraction of m, γ a primitive mth root of 1 and ω a positive integer.
As usual, the generators of B(m,ω, γ) are denoted by x±1, ym1 , . . . , ymθ

and g. By

equation (4.6) and [36, Remark 6.3], we can assume that H̃ =
⊕

06i,j6m−1Hit,jt with

Hit,jt = k[x±1]yj−ig
i

(the index j − i is interpreted mod m). In particular, H00 = k[x±1], H0,jt = k[x±1]yj
and Ht,t = k[x±1]g.

Set uj := u1,1+jt(0 6 j 6 m − 1) for convenience. By the structure of the bigrading
of H, we have

(6.2) ymi
uj = φmi,jumi+j

and

(6.3) ujymi
= ϕmi,jumi+j

for some polynomials φmi,j, ϕmi,j ∈ k[x±1] and 1 6 i 6 θ, 0 ≤ j ≤ m− 1. With these

notions and the equality yeimi
= 1− xω

eimi
m , we find that

(6.4) (1− xω
eimi
m )uj = yeimi

uj = φmi,jφmi,mi+j · · ·φmi,(ei−1)mi+juj

and

(6.5) uj(1− xω
eimi
m ) = ujy

ei
mi

= ϕmi,jϕmi,mi+j · · ·ϕmi,(ei−1)mi+juj ,

for 1 6 i 6 θ and 0 ≤ j ≤ m− 1.

Lemma 6.10. There is no such H satisfying ord(π) = n > min(π) = m > 1 and
n/m > 2.

Proof. Since ujH00 = H00uj, we have

ujx = αj(x
±1)uj and ujx

−1 = βj(x
±1)uj

for some αj(x
±1), βj(x

±1) ∈ k[x±1] for 0 ≤ j ≤ m− 1. From

uj = ujxx
−1 = αj(x

±1)ujx
−1 = αj(x

±1)βj(x
±1)uj ,

we get αj(x
±1)βj(x

±1) = 1 and thus αj(x
±1) = λjx

aj for some 0 6= λj ∈ k, 0 6=
aj ∈ Z. Note that utj ∈ Ht,(1+jt)t = k[x±1]yj̄tg, where j̄t ≡ jt (mod m). So we have

utj = γj(x
±1)yj̄tg for some γj(x

±1) ∈ k[x±1]. Hence utj commutes with x. Applying

ujx = λjx
ajuj to u

t
jx = xutj, we get λ

∑t−1
s=0 a

s
j

j = 1 and xa
t
j = x. If t is odd, aj = 1 and

if t is even, then aj is either 1 or −1.

Now we consider the special case j = 0. By ǫ(xu0) = ǫ(u0x) 6= 0, we find that λ0 = 1.
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If a0 = 1, that is u0x = xu0, then we will see ujx = xuj for all 0 6 j 6 m − 1. In
fact, for this, it is enough to show that umi

x = xumi
for all 1 ≤ i ≤ θ. Since

φmi,0xumi
= xφmi,0umi

= xymi
u0 = yxu0 = ymi

u0x = φmi,0umi
x,

we have umi
x = xumi

since H1,1+mit is a torsion-free H00-module. Then by the

strongly graded structure ui,i+jt ∈ H l
i = (H l

1)
i and x is commutative with H l

1, it
is not hard to see that ui,i+jtx = xui,i+jt for all 0 6 i 6 n − 1, 0 6 j 6 m − 1.
Therefore the center C(H) ⊇ H00 = k[x±1]. By [9, Lemma 5.2], C(H) ⊆ H0 and
thus C(H) = H0 = k[x±1]. This implies that

rankC(H)H = rankH00H = nm < n2,

which contradicts the fact: the PI-degree of H is n and equals the square root of the
rank of H over C(H).

If a0 = −1, that is u0x = x−1u0, we can deduce that ui,i+jtx = x−1ui,i+jt for all
0 6 i 6 n − 1, 0 6 j 6 m − 1 by using the parallel proof of the case a0 = 1. For
s ∈ N, let zs := xs+x−s. Define k[zs|s ≥ 0] to be the subalgebra of k[x±1] generated
by all zs. Note that k[x±1] has rank 2 over k[zs|s > 1]. Thus C(H) ⊇ k[zs|s ≥ 0].
Using [9, Lemma 5.2] again, we have C(H) = k[zs|s ≥ 0]. Hence

rankC(H)H = 2nm 6= n2

since n/m > 2 by assumption. This contradicts the fact that the PI-degH = n again.

Combining these two cases, we get the desired result. �

We turn now to consider the case: ord(π) = 2min(π) = 2m. In this case, t = 2. As
discussed in the proof of Lemma 6.10, if such H exists then the following relations

(6.6) ujx = x−1uj (0 6 i 6 m− 1)

hold in H. Using these relations and (6.5), we have

(6.7) ϕmi,jϕmi,mi+j · · ·ϕmi,(ei−1)mi+j = 1− x−ω
eimi
m .

for all 1 ≤ i ≤ θ and 0 ≤ j ≤ m − 1. To determine the structure of H, we need to
give some harmless assumptions on the choice of uj (0 6 j 6 m− 1) and φmi,j:

(1) We assume ǫ(u0) = 1;

(2) For each 1 ≤ i ≤ θ, let ξi,s := e
2sπi

ω
eimi
m and thus 1− xω

eimi
m = Πs∈Si

(1 − ξi,sx),
where Si := {0, 1, · · · , ω eimi

m − 1}. Since

φmi,j · · ·φmi,(ei−1)mi+j = yeimi
= 1− xω

eimi
m ,

there is no harm to assume that

φmi,tmi+j = Πs∈Si,j,t
(1− ξi,sx),

where Si,j,t is a subset of Si.
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(3) By the strongly graded structure of H, the equality H l
2 = H l

0g and the fact
that g is invertible in H, we can take uk,k+2j such that

uk,k+2j =

{
g

k−1
2 uj if k is odd,

yjg
k
2 if k is even,

for all 2 6 k 6 2m− 1.

In the rest of this section, we always make these assumptions.

We still need two notations, which appeared in the proof of Proposition 4.12. For a
polynomial f =

∑
aix

bi ∈ k[x±1], we denote by f̄ the polynomial
∑
aix

−bi . Then by
(6.6), we have fui = uif̄ and uif = f̄ui for all 0 6 i 6 m− 1. For any h ∈ H ⊗H,
we use

h(s1,t1)⊗(s2,t2)

to denote the homogeneous part of h in Hs1,t1 ⊗Hs2,t2 . Both these notations will be
used frequently in the proof of the next proposition.

Proposition 6.11. Keep the notations above. Let H be a prime Hopf algebra of

GK-dimension one satisfying (Hyp1) and (Hyp2). Assume that H̃ = B(m,ω, γ) and
ord(π) = 2min(π) > 2, then we have

(1) m|ω, 2|∑θ
i=1(mi − 1)(ei − 1), 2|∑θ

i=1(ei − 1)mi
ω
m .

(2) As a Hopf algebra,
H ∼= D(m,d, γ)

constructed as in Subsection 4.4 where d = ω
m .

Proof. We divide the proof into several steps.

Claim 1. We have m|ω and for 1 ≤ i ≤ θ, 0 ≤ j ≤ m − 1, ymi
uj = φmi,jumi+j =

ξmi
xdmiujymi

for d = ω
m and some ξmi

∈ k satisfying ξeimi
= −1.

Proof of Claim 1: By associativity of the multiplication, we have many equalities:

ymi
ujy

ei−1
mi

= φmi,jϕmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+ju0

= ϕmi,jφmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+ju0

· · ·
= ϕmi,jϕmi,mi+jϕmi,2mi+j · · ·φmi,(ei−1)mi+ju0,

which imply that

(6.8) φmi,smi+jϕmi,tmi+j = ϕmi,smi+jφmi,tmi+j

for all 0 ≤ s, t ≤ ei − 1. Using associativity again, we have

yeimi
ujy

ei(ei−1)
mi

= (1− xω
eimi
m )uj(1− xω

eimi
m )ei−1

= −xω
eimi
m (1− x−ω

eimi
m )eiuj

= −xω
eimi
m (ϕmi,jϕmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+j)

eiuj

= (φmi,jϕmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+j)
eiuj

= (ϕmi,jφmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+j)
eiuj
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· · ·
= (ϕmi,jϕmi,mi+jϕmi,2mi+j · · ·φmi,(ei−1)mi+j)

eiuj,

where the fourth “=”, for example, is gotten in the following way: We multiply uj
by one ymi

from left side at first, then multiply it with yei−1
mi

from right side, then
continue the procedures above. From these equalities, we have

φeimi,smi+j = −xω
eimi
m ϕei

mi,smi+j

for all 0 ≤ s ≤ ei − 1. This implies that

ei|ω
eimi

m
.

So, m|ωmi for all 1 ≤ i ≤ θ. Since m is coprime to (m1, . . . ,mθ), we have

m|ω.
So φmi,smi+j = ξmi,smi+jx

dmiϕmi,smi+j where d = ω
m and ξmi,smi+j ∈ k satisfying

ξeimi,smi+j = −1. We next want to prove that ξmi,smi+j does not depend on the

number smi + j. In fact, by equation (6.8), we can see ξmi,smi+j = ξmi,tmi+j for all
0 ≤ s, t ≤ ei−1, and so we can write it through ξmi,j. Now consider for any 1 ≤ i′ ≤ θ,
by definition we have φmi′ ,0umi′

= ymi′
u0. Therefore

ymi
ymi′

u0 = φmi′ ,0ymi
umi′

= φmi′ ,0ξmi,mi′
xmidumi′

ymi
,

and

ymi
ymi′

u0 = ymi′
ymi

u0

= ξmi,0x
midymi′

u0ymi

= φmi′ ,0ξmi,0x
midumi′

ymi
.

So, ξmi,0 = ξmi,mi′
which indeed tells us that ξmi,j does depend on j (due to j is

generated by these mi′ ’s) and so we write it as ξmi
. �

In the following of the proof, d is fixed to be the number ω/m.

Claim 2. We have ujg = λjx
−2dguj for λj = ±γj and 0 ≤ j ≤ m− 1.

Proof of Claim 2: Since g is invertible in H, ujg = ψjguj for some invertible ψj ∈
k[x±1]. Then ujg

m = ψm
j g

muj yields ψm
j = x−2ω. So ψj = λjx

−2d for λj ∈ k with

λmj = 1. Our last task is to show that λj = ±γj. To show this, we need a preparation,
that is, we need to show that ujul 6= 0 for all j, l. Otherwise, assume that there exist
j0, l0 ∈ {0, . . . ,m−1} such that uj0ul0 = 0. Using Claim 1, we can find that uj0ul ≡ 0
and ujul0 ≡ 0 for all j, l. Let (uj0) and (ul0) be the ideals generated by uj0 and ul0
respectively. Then it is not hard to find that (uj0)(ul0) = 0 which contradicts H being
prime. So we always have

(6.9) ujul 6= 0

for all 0 ≤ j, l 6 m− 1.
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Applying this observation, we have 0 6= u2j ∈ H2,2+4j = k[x±1]y2jg, u
2
jg = ψjψjgu

2
j =

γ2jgu2j . Thus ψj = ±γjx−2d which implies that λj = ±γj . The proof is ended. �

We can say more about λj at this stage. By 0 6= ujulg = γj+lgujul, we know that

ψj = γjx−2d for all j or ψj = −γjx−2d for all j. So

(6.10) λj = γj or λj = −γj

for all 0 ≤ j ≤ m− 1. In fact, we will show that ψj = γjx−2d for all j later.

Claim 3. For each 0 6 j 6 m− 1, there are fjl, hjl ∈ k[x±1] with hjl monic such that

(6.11) ∆(uj) =

m−1∑

k=0

fjkuk ⊗ hjkg
kuj−k,

where the following j − k is interpreted mod m.

Proof of Claim 3: Since uj ∈ H1,1+2j , ∆(uj) ∈ H l
1 ⊗ Hr

1+2j by Lemma 2.9. Noting

that H l
1 =

⊕m−1
k=0 H00uk and Hr

1+2j =
⊕m−1

s=0 H00g
suj−s, we can write

∆(uj) =
∑

0≤k,s≤m−1

F j
ks(uk ⊗ gsuj−s),

where F j
ks ∈ H00 ⊗H00. Then we divide the proof into two steps.

• Step 1 (∆(uj) =
∑

0≤k6m−1 F
j
kk(uk ⊗ gkuj−k)).

Recall that ujg = λjx
−2dguj , where λj is either γj for all j or −γj for all j. The

equations

∆(ujg) = ∆(uj)∆(g) =
∑

0≤k,s≤m−1

F j
ks(uk ⊗ gsuj−s)(g ⊗ g)

=
∑

0≤k,s≤m−1

F j
ks(λkx

−2dguk ⊗ λj−sx
−2dgs+1uj−s)

=
∑

0≤k,s≤m−1

λkλj−s(x
−2dg ⊗ x−2dg)F j

ks(uk ⊗ gsuk−s)

and

∆(λjx
−2dguj) = λj(x

−2dg ⊗ x−2dg)
∑

0≤k,s≤m−1

F j
ks(uk ⊗ gsuj−s)

=
∑

0≤k,s≤m−1

λj(x
−2dg ⊗ x−2dg)F j

ks(uk ⊗ gsuj−s)

imply that λj = λkλj−s for all k, s. If λj = −γj for all j, then we have −γj = λj =

λkλj−s = γk+j−s. This implies k = s±m/2. Applying (ǫ⊗ Id) to ∆(uj),

(ǫ⊗ Id)∆(uj) = (ǫ⊗ Id)(F j
0, m/2)g

m/2uj−m/2 6= uj ,

which is absurd. If λj = γj for all j, then γj = λj = λkλj−s = γk+j−s. This implies

k = s (which is compatible with the equality (ǫ⊗ Id)∆(uj) = uj). So we get F j
ks 6= 0
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only if k = s and λj = γj for all j. Thus we have ∆(uj) =
∑

0≤k≤m−1 F
j
kk(uk⊗gkuj−k)

for all j.

• Step 2 (There exist fjk, hjk ∈ H00 with hjk monic such that F j
kk = fjk ⊗ hjk for

0 ≤ j, k ≤ m− 1).

We replace F j
kk by F j

k for convenience. Since

(∆ ⊗ Id)∆(uj) = (∆⊗ Id)(
∑

0≤k≤m−1

F j
k (uk ⊗ gkuj−k))

=
∑

0≤k≤m−1

(∆⊗ Id)(F j
k )(

∑

0≤s≤m−1

F k
s (us ⊗ gsuk−s)⊗ gkuj−k)

=
∑

0≤k,s6m−1

(∆⊗ Id)(F j
k )(F

k
s ⊗ 1)(us ⊗ gsuk−s ⊗ gkuj−k)

and

(Id⊗∆)∆(uj) = (Id⊗∆)(
∑

0≤k≤m−1

F j
k (uk ⊗ gkuj−k))

=
∑

0≤k≤m−1

(Id⊗∆)(F j
k )(uk ⊗ (

∑

0≤s≤m−1

F j−k
s (gkus ⊗ gk+suj−k−s))

=
∑

0≤k,s6m−1

(Id⊗∆)(F j
s )(1 ⊗ F j−s

k−s)(us ⊗ gsuk−s ⊗ gkuj−k),

we have

(6.12) (∆⊗ Id)(F j
k )(F

k
s ⊗ 1) = (Id⊗∆)(F j

s )(1⊗ F j−s
k−s)

for all 0 ≤ j, k, s ≤ m− 1.

Begin with the case j = k = s = 0. Let F 0
0 =

∑
p,q kpqx

p ⊗ xq. Comparing equation

(∆⊗ Id)(F 0
0 )(F

0
0 ⊗ 1) = (

∑

p,q

kpqx
p ⊗ xp ⊗ xq)(

∑

p′,q′

kp′q′x
p′ ⊗ xq

′ ⊗ 1)

= (
∑

p,q,p′,q′

kpqkp′q′x
p+p′ ⊗ xp+q′ ⊗ xq)

and equation

(Id⊗∆)(F 0
0 )(1⊗ F 0

0 ) = (
∑

p,q

kpqx
p ⊗ xq ⊗ xq)(

∑

p′,q′

kp′q′1⊗ xp
′ ⊗ xq

′

)

= (
∑

p,q,p′,q′

kpqkp′q′x
p ⊗ xq+p′ ⊗ xq+q′),

one can see that p = q = 0 by comparing the degrees of x in these two expressions.
Then F 0

0 = 1 ⊗ 1 by applying (ǫ ⊗ Id)∆ to u0. Next, consider the case k = s = 0.

Write F j
0 =

∑
p,q kpqx

p ⊗ xq. Similarly, we have F j
0 = xaj ⊗ 1 for some aj ∈ Z by the

equation

(∆⊗ Id)(F j
0 )(F

0
0 ⊗ 1) = (Id⊗∆)(F j

0 )(1⊗ F j
0 ).
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Finally, write F j
k =

∑
p,q kpqx

p ⊗ xq and consider the case s = 0. Let F j
0 = xaj ⊗ 1

and F k
0 = xak ⊗ 1. The equation

(
∑

p,q

kpqx
p+ak ⊗ xp ⊗ xq) = (∆⊗ Id)(F j

k )(F
k
0 ⊗ 1)

= (Id⊗∆)(F j
0 )(1⊗ F j

k ) = (
∑

p,q

kpqx
aj ⊗ xp ⊗ xq)

shows that p = aj − ak, that is, F
j
k = xcjk ⊗ βjk some cjk ∈ Z, βjk ∈ H00.

By steps 1 and 2, F j
k can be written as fjk ⊗ hjk with hjk monic after multiplying

suitable scalar, where fjk, hjk ∈ k[x±1]. That is,

∆(uj) =

m−1∑

k=0

fjkuk ⊗ hjkg
kuj−k,

where fjk, hjk ∈ k[x±1] with hjk monic. �

Since λj = γj for all j has been shown above, we can improve Claim 2 as

Claim 2’. We have ujg = γjx−2dguj for 0 ≤ j ≤ m− 1.

By Claim 2’, we have a unified formula in H: For all s ∈ Z,
(6.13) ujg

s = γjsx−2sdgsuj.

Claim 4. We have φmi,j = 1 − γ−mi(mi+j)xmid = 1 − γ−m2
i (1+ji)xmid for 1 ≤ i ≤ θ

and 0 ≤ j ≤ m− 1.

Proof of Claim 4: By Claim 3, there are polynomials f0j, h0j , such that

∆(u0) = u0 ⊗ u0 + f01u1 ⊗ h01gum−1 + · · ·+ f0,m−1um−1 ⊗ h0,m−1g
m−1u1.

Firstly, we will show φmi,0 = 1− γ−m2
i xmid by considering the equations

∆(ymi
u0)11⊗(1,1+2mi) = ∆(ξmi

xmidu0ymi
)11⊗(1,1+2mi) = ∆(φmi,0umi

)11⊗(1,1+2mi).

Direct computations show that

∆(ymi
u0)11⊗(1,1+2mi)

= u0 ⊗ ymi
u0 + ymi

f0,(ei−1)mi
u(ei−1)mi

⊗ gmih0,(ei−1)mi
g(ei−1)miu−(ei−1)mi

= u0 ⊗ φmi,0umi
+ f0,(ei−1)mi

φmi,(ei−1)mi
u0 ⊗ xeimidh0,(ei−1)mi

u−(ei−1)mi
,

∆(ξmi
xmidu0ymi

)11⊗(1,1+2mi) = ξmi
xmidu0 ⊗ xmidu0ymi

+ ξmi
xmidf0,(ei−1)mi

u(ei−1)mi
ymi

⊗ xmidh0,(ei−1)mi
g(ei−1)miu−(ei−1)mi

gmi

= xmidu0 ⊗ φmi,0umi
+ f0,(ei−1)mi

φmi,(ei−1)mi
u0 ⊗ γm

2
i x(ei−1)midh0,(ei−1)mi

u−(ei−1)mi
.

Owing to ∆(ymi
u0)11⊗(1,1+2mi) = ∆(ξmi

xmidu0ymi
)11⊗(1,1+2mi),

(1− xmid)u0 ⊗ φmi,0umi

+ f0,(ei−1)mi
φmi,(ei−1)mi

u0 ⊗ (xmid − γm
2
i )x(ei−1)midh0,(ei−1)mi

u−(ei−1)mi
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= 0.

Thus we can assume φmi,0 = c0(x
mid − γm

2
i )x(ei−1)midh0,(ei−1)mi

for some 0 6= c0 ∈ k.
Then 1− xmid = −c−1

0 f0,(ei−1)mi
φmi,(ei−1)mi

. Therefore,

∆(ymi
u0)11⊗(1,1+2mi)

= u0 ⊗ φmi,0umi
− c0(1− xmid)u0 ⊗

1

c0

xmidφmi,0

xmid − γm
2
i

u−(ei−1)mi

= u0 ⊗ (1− xmid

xmid − γm
2
i

)φmi,0u−(ei−1)mi
+ xmidu0 ⊗

xmidφmi,0

xmid − γm
2
i

u−(ei−1)mi

= u0 ⊗− γm
2
i

xmid − γm
2
i

φmi,0u−(ei−1)mi
+ xmidu0 ⊗

xmidφmi,0

xmid − γm
2
i

u−(ei−1)mi
,

where
φmi,0

xmid−γm2
i

is understood as c0x
(ei−1)mih0,(ei−1)mi

. Note that ∆(ymi
u0)11⊗(1,1+2mi) =

∆(φmi,0umi
)11⊗(1,1+2mi) = ∆(φmi,0)(fmi,0u0 ⊗ umi

). From which, we get φmi,0 =

1 + cxmid for some c ∈ k. Then it is not hard to see that fmi,0 = 1, h0,(ei−1)mi
=

x−(ei−1)mid and c = −γ−m2
i . So φmi,0 = 1− γ−m2

i xmid.

Secondly, we want to determine φmi,j for 0 ≤ j ≤ m − 1. We note that we always
have hj0 = fjj = 1 due to (ε⊗ Id)∆(uj) = uj . To determine φmi,j, we will prove the
fact

(6.14) fj0 = 1

for all 0 6 j 6 m− 1 at the same time. We proceed by induction. We already know
that f00 = h00 = fmi0 = 1. Assume that fj,0 = 1 now. We consider the case j +mi.
Similarly, direct computations show that

∆(ymi
uj)11⊗(1,1+2j+2mi)

= u0 ⊗ ymi
uj + ymi

fj,(ei−1)mi
u(ei−1)mi

⊗ gmihj,(ei−1)mi
g(ei−1)miumi+j

= u0 ⊗ φmi,jumi+j + fj,(ei−1)mi
φmi,(ei−1)mi

u0 ⊗ xeimidhj,(ei−1)mi
umi+j ,

∆(ξmi
xmidujymi

)11⊗(1,1+2j+2mi)

= ξmi
xmidu0 ⊗ xmidujymi

+ ξmi
xmidfj,(ei−1)mi

u(ei−1)mi
ymi

⊗ xmidhj,(ei−1)mi
g(ei−1)miuj+mi

gmi

= xmidu0 ⊗ φmi,jumi+j + fj,(ei−1)mi
φmi,(ei−1)mi

u0 ⊗ γmi(j+mi)x(ei−1)midhj,(ei−1)mi
uj+mi

.

By ∆(ymi
uj)11⊗(1,1+2j+2mi) = ∆(ξmi

xmidujymi
)11⊗(1,1+2j+2mi),

(1− xmid)u0 ⊗ φmi,jumi+j

+ fj,(ei−1)mi
φmi,(ei−1)mi

u0 ⊗ (xmid − γmi(mi+j))x(ei−1)midhj,(ei−1)mi
uj+mi

= 0.

Thus we can assume φmi,j = cj(x
mid − γmi(mi+j))x(ei−1)midhj,(ei−1)mi

for some 0 6=
cj ∈ k. Then 1− xmid = −c−1

j fj,(ei−1)mi
φmi,(ei−1)mi

. Therefore

∆(ymi
uj)11⊗(1,1+2j+2mi)
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= u0 ⊗ φmi,jumi+j − cj(1− xmid)u0 ⊗
1

cj

xmid

xmid − γmi(mi+j)
φmi,jumi+j

= u0 ⊗
−γmi(mi+j)

xmid − γmi(mi+j)
φmi,jumi+j + xmidu0 ⊗

xmid

xmid − γmi(mi+j)
φmi,jumi+j.

Note that ∆(ymi
uj)11⊗(1,1+2j+2mi) = ∆(φmi,jumi+j)11⊗(1,1+2j+2mi) = ∆(φmi,j)(fmi+j,0u0⊗

hmi+j,0umi+j). Comparing the first components of

∆(ymi
uj)11⊗(1,1+2j+2mi) and ∆(φmi,jumi+j)11⊗(1,1+2j+2mi),

we get φmi,j = 1− γ−mi(mi+j)xmid similarly. And it is not hard to see that fmi+j,0 =
1. Since here i is arbitrary and m1, . . . ,mθ generate 0, 1, . . . ,m − 1, we prove that
fj,0 = hj,0 = 1 at the same time for all 0 ≤ j ≤ m− 1. �

Claim 5. The coproduct of H is given by

∆(uj) =

m−1∑

k=0

γk(j−k)uk ⊗ x−kdgkuj−k

for 0 ≤ j 6 m− 1.

Proof of Claim 5: By Claim 3, ∆(uj) =
∑m−1

k=0 fjkuk ⊗ hjkg
kuj−k. So, to show this

claim, it is enough to determine the explicit form of every fjk and hjk. By (6.14)
and the sentence before it, fj,0 = hj,0 = 1 for all 0 ≤ j ≤ m− 1. We will prove that

fjk = γk(j−k) and hjk = x−kd for all 0 6 j, k 6 m− 1 by induction. So it is enough to

show that fj,k+mi
= γ(k+mi)(j−k−mi) and hj,k+mi

= x−(k+mi)d for all 1 ≤ i ≤ θ under

the hypothesis of fjk = γk(j−k) and hjk = x−kd. In fact, for 1 ≤ i ≤ θ,

∆(ymi
uj)(1,1+2k+2mi)⊗(1+2k+2mi,1+2j+2mi)

= ymi
fjkuk ⊗ gmihjkg

kuj−k + fj,k+mi
uk+mi

⊗ ymi
hj,k+mi

gk+miuj−k−mi

= fjkymi
uk ⊗ hjkg

k+miuj−k + fj,k+mi
uk+mi

⊗ γ(k+mi)mihj,k+mi
gk+miymi

uj−k−mi
,

∆(ξmi
xmidujymi

)(1,1+2k+2mi)⊗(1+2k+2mi,1+2j+2mi)

= ξmi
xmidfjkukymi

⊗ xmidhjkg
kuj−kg

mi

+ ξmi
xmidfj,k+mi

uk+mi
⊗ xmidhj,k+mi

gk+miuj−k−mi
ymi

= fjkymi
uk ⊗ γ(j−k)mix−midhjkg

mi+kuj−k

+ xmidfj,k+mi
uk+mi

⊗ hj,k+mi
gk+miymi

uj−k−mi
.

Since they are equal,

fjkymi
uk ⊗ (1− γ(j−k)mix−mid)hjkg

mi+kuj−k

= (xmid − γ(k+mi)mi)fj,k+mi
uk+mi

⊗ hj,k+mi
gk+miymi

uj−k−mi
.

Using induction and the expression of φmi,k, we have

γk(j−k)(1− γ−mi(mi+k)xmid)uk+mi
⊗ (1− γ(j−k)mix−mid)x−kdgmi+kuj−k

= γk(j−k)(1− γ−mi(mi+k)xmid)uk+mi
⊗ (xmid − γ(j−k)mi)x−(k+mi)dgmi+kuj−k

= (xmid − γ(k+mi)mi)fj,k+mi
uk+mi

⊗ (1− γ−(j−k)mixmid)hj,k+mi
gk+miuj−k.
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This implies that hj,k+mi
= x−(k+mi)d and

fj,k+mi
= γk(j−k)−m2

i−mik+mij−mik = γ(k+mi)(j−k−mi).

�

Claim 6. For 0 6 j, l 6 m− 1, the multiplication between uj and ul satisfies that

ujul =
1

m
xa

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 [ji, ei − 2− li]mi
yj+lg

for some a ∈ Z and where [−,−]mi
is defined as (3.4) and j + l is interpreted mod

m.

Proof of Claim 6: We need to consider the relation between u20 and ujum−j for
all 1 6 j 6 m − 1 at first. We remark that as before for any k ∈ Z we write
uk := uk where k is the remainder of k dividing by m. Thus uj = uj1m1+...+jθmθ

and
um−j = u(e1−j1)m1+...+(eθ−jθ)mθ

.

By definition, xmidφmi,smi
= −γ−m2

i (s+1)φmi,(ei−s−2)mi
for all s. Then

ye1m1
ye2m2

· · · yeθmθ
u20

= ξe1−j1
m1

ξe2−j2
m2

· · · ξeθ−jθ
mθ

x(e1−j1)m1d+...+(eθ−jθ)mθdyju0ym−ju0

=
θ∏

i=1

[ξei−ji
mi

x(ei−ji)midφmi,0 · · ·φmi,(ji−1)mi
]uj

θ∏

i=1

[φmi,0 · · ·φmi,(ei−ji−1)mi
]um−j

=

θ∏

i=1

[ξei−ji
mi

x(ei−ji)midφmi,0 · · ·φmi,(ji−1)mi
φmi,0 · · · φmi,(ei−ji−1)mi

]ujum−j

=

θ∏

i=1

[(−1)ei−jiξei−ji
mi

γ−m2
i

(ei−ji)(ei−ji+1)

2 φmi,0 · · ·φmi,(ei−2)mi
φmi,(ji−1)mi

]ujum−j .

By φmi,0 · · ·φmi,(ei−2)mi
φmi,(ei−1)mi

= 1− xeimid (see Lemma 3.5 (2)), we have

φm1,(e1−1)m1
· · ·φmθ ,(eθ−1)mθ

ye1m1
· · · yeθθ u20

=

θ∏

i=1

[(−1)ei−jiξei−ji
mi

γ−m2
i

(ei−ji)(ei−ji+1)

2 (1− xeimed)φmi,(ji−1)mi
]ujum−j .

Due to yeimi
= 1− xeimid, we get a desired formula

(6.15)
θ∏

i=1

[φmi,(ei−1)mi
]u20 =

θ∏

i=1

[(−1)ei−jiξei−ji
mi

γ−m2
i

(ei−ji)(ei−ji+1)

2 φmi,(ji−1)mi
]ujum−j .

Since u20, ujum−j ∈ H22 = k[x±1]g, we may assume u20 = α0g, ujum−j = αjg for some
α0, αj ∈ k[x±1] for all 1 6 j 6 m− 1.
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Then Equation (6.15) implies α0 = α
∏θ

i=1[φmi,0 · · ·φmi,(ei−2)mi
] for some α ∈ k[x±1].

We claim α is invertible. Indeed, by

θ∏

i=1

[φmi,(ei−1)mi
]α0 =

θ∏

i=1

[(−1)ei−jiξei−ji
mi

γ−m2
i

(ei−ji)(ei−ji+1)

2 φmi,(ji−1)mi
]αj ,

we have

αj =

θ∏

i=1

[(−1)ji−eiξji−ei
mi

γm
2
i

(ei−ji)(ei−ji+1)

2 ]ji − 1, ji − 1[mi
]α.

Then

H11 ·H11 +

m−1∑

j=1

H1,1+2j ·H1,1+2(m−j) ⊆ αH22.

By the strong grading of H,

H22 = H11 ·H11 +

m−1∑

j=1

H1,1+2j ·H1,1+2(m−j),

which shows that α must be invertible. Since ǫ(α0) = 1, ǫ(φmi,0 · · ·φmi,(ei−2)mi
) = ei

and m = e1 · · · eθ, we may assume α0 = 1
mx

a
∏θ

i=1[φmi,0 · · ·φmi,(ei−2)mi
] for some

integer a. Thus

ujum−j =
1

m
xa

θ∏

i=1

[(−1)ji−eiξji−ei
mi

γm
2
i

(ei−ji)(ei−ji+1)

2 ]ji − 1, ji − 1[mi
] g.

Now

yjylu
2
0

=

θ∏

i=1

ξlimi
xlimidyju0ylu0

=

θ∏

i=1

[ξlimi
xlimidφmi,0φmi,mi

· · ·φmi,(ji−1)mi
]uj

θ∏

i=1

[φmi,0φmi,mi
· · · φmi,(li−1)mi

]ul

=
θ∏

i=1

[ξlimi
xlimidφmi,0 · · · φmi,(ji−1)mi

φmi,0 · · ·φmi,(li−1)mi
]ujul

=

θ∏

i=1

[(−1)liξlimi
γ−m2

i

li(li+1)

2 φmi,0 · · ·φmi,(ji−1)mi
φmi,(ei−2)mi

· · · φmi,(ei−1−li)mi
]ujul

For each 1 ≤ i ≤ θ, we find that

φmi,0 · · ·φmi,(ji−1)mi
φmi,(ei−2)mi

· · ·φmi,(ei−1−li)mi

=





φmi,0 · · ·φmi,(ji−1)mi
φmi,(ei−1−li)mi

· · ·φmi,(ei−2)mi
, if ji + li ≤ ei − 2

φmi,0 · · ·φmi,(ei−2)mi
, if ji + li = ei − 1

φmi,0 · · ·φmi,(ji−1)mi
φmi,(ei−1−li)mi

· · ·φmi,(ei−1)mi
, if ji + li ≥ ei.
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Using the same method to compute ujum−j given above and the notations introduced
in equations (3.3) and (3.4), we have a unified expression:

ujul =
1

m
xa

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 [ji, ei − 2− li]mi
yj+lg

=
1

m
xa

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 ]− 1− li, ji − 1[mi
yj+lg

for all 0 ≤ j, l ≤ m− 1. �

Claim 7. We have ξ2mi
= γmi , a = −2+

∑θ
i=1(ei−1)mi

2 d and

S(uj) = xbgm−1
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ]uj

for 0 6 j 6 m− 1 and b = (1−m)d−
∑θ

i=1(ei−1)mi

2 d.

Proof of Claim 7: By Lemma 2.9 (3), S(Hij) = H−j,−i and thus S(u0) = hgm−1u0
for some h ∈ k[x±1]. Combining

S(ymi
u0) = S(u0)S(ymi

) = hgm−1u0(−ymi
g−mi) = −ξ−1

mi
x−midhgm−1ymi

u0g
−mi

= −ξ−1
mi
γ−m2

i xmidhgm−1−miymi
u0 = −ξ−1

mi
γ−m2

i xmidhgm−1−miφmi,0umi

with

S(ymi
u0) = S(φmi,0umi

) = S(umi
)S(φmi,0) = φmi,0S(umi

),

we get S(umi
) = −ξ−1

mi
γ−m2

i xmidhgm−1−miumi
. The computation above tells us that

we can prove that

S(uj) = hgm−1
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ]uj

by induction. In fact, in order to prove above formula for the antipode it is enough
to show that it is still valid for j +mi for all 1 ≤ i ≤ θ under assumption that it is
true for j. By combining

S(ymi
uj)

= S(uj)S(ymi
)

= hgm−1
θ∏

s=1

[(−1)jsξ−js
ms

γ−m2
s
js(js+1)

2 xjsmsdg−jsms ]uj(−ymi
g−mi)

= −ξ−1
mi
x−midhgm−1

θ∏

s=1

[(−1)jsξ−js
ms

γ−m2
s
js(js+1)

2 xjsmsdg−jsms ]ymi
ujg

−mi

= −ξ−1
mi
x−midhgm−1

θ∏

s=1

[(−1)jsξ−js
ms

γ−m2
s
js(js+1)

2 xjsmsdg−jsms ]ymi
γ−m2

i jix2midg−miuj
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= −ξ−1
mi
xmidhgm−1

θ∏

s=1

[(−1)jsξ−js
ms

γ−m2
s
js(js+1)

2 xjsmsdg−jsms ]γ−m2
i (ji+1)g−miymi

uj

= −ξ−1
mi
xmidhgm−1

θ∏

s=1

[(−1)jsξ−js
ms

γ−m2
s
js(js+1)

2 xjsmsdg−jsms ]γ−m2
i (ji+1)g−miφmi,juj+mi

with

S(ymi
uj) = S(φmi,juj+mi

) = S(uj+mi
)S(φmi,j) = φmi,jS(uj+mi

),

we find that

S(uj+mi
) = hgm−1

θ∏

s=1

[(−1)(j+mi)sξ−(j+mi)s
ms

γ−m2
s
(j+mi)s((j+mi)s+1)

2 x(j+mi)smsdg−(j+mi)sms ]uj .

In order to determine the relationship between ξ and γ, we consider the equality
(Id ∗S)(umi

) = 0. By computation,

(Id ∗S)(umi
)

=
m−1∑

j=0

γj(mi−j)ujS(x
−jdgjumi−j)

=

m−1∑

j=0

γj(mi−j)ujhg
m−1

θ∏

s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s
(mi−j)s((mi−j)s+1)

2

x(mi−j)smsdg−(mi−j)sms ]umi−jg
−jxjd

=

m−1∑

j=0

γ−j(mi−j)hujg
m−1

θ∏

s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s
(mi−j)s((mi−j)s+1)

2

x(mi−j)smsdg−(mi−j)sms ]γ(mi−j)jxjdg−jumi−j

=
m−1∑

j=0

hujg
m−1

θ∏

s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s
(mi−j)s((mi−j)s+1)

2 ]

xmidg−miumi−j

=

m−1∑

j=0

θ∏

s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s
(mi−j)s((mi−j)s+1)

2 ]

hx−midγj(−1−mi)x−2(m−1−mi)dgm−1−miujumi−j

=
m−1∑

j=0

θ∏

s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s
(mi−j)s((mi−j)s+1)

2 ]

γj(−1−mi)x(−2m+2+mi)dhgm−1−miujumi−j

=

m−1∑

j=0

θ∏

s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s
(mi−j)s((mi−j)s+1)

2 ]γj(−1−mi)x(−2m+2+mi)dhgm−1−mi
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1

m
xa

θ∏

s=1

(−1)(mi−j)iξ−(mi−j)s
ms

γm
2
s
(mi−j)s((mi−j)s+1)

2 [js, es − 2− (mi − j)s]msymi
g

=
1

m
γmix(−2m+2+mi)d+ahgm−miymi

m−1∑

j=0

θ∏

s=1

[ξ−2(mi−j)s
ms

γj(−1−mi)[js, es − 2− (mi − j)s]ms ]

=
1

m
γmiξ−2

mi
x(−2m+2+mi)d+ahgm−miymi

θ∏

s=1,s 6=i

[

es−1∑

js=0

ξ2jsms
γ−jsms ]js − 1, js − 1[ms ]

ei−1∑

ji=0

ξ2jimi
γ−jimi(1+mi)]ji − 2, ji − 1[mi

where Equation (6.13) is used. By Lemma 3.6 (1), each
∑es−1

js=0 ξ
2js
msγ

−jsms ]js − 1, js −
1[ms 6= 0. Thus

(Id ∗S)(ui) = 0 ⇔
ei−1∑

ji=0

ξ2jimi
γ−jimi(1+mi)]ji − 2, ji − 1[mi

= 0.

This forces ξ2mi
= γmi by Lemma 3.6 (2).

Next, we will determine the expression of h and a through considering the equations

(S ∗ Id)(u0) = (Id ∗S)(u0) = 1.

Indeed,

(S ∗ Id)(u0)

=
m−1∑

j=0

S(γ−j2uj)x
−jdgju−j

=

m−1∑

j=0

γ−j2hgm−1
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ]ujx
−jdgju−j

= hgm−1
m−1∑

j=0

θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 ]uju−j

= hgm−1
m−1∑

j=0

θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 ]
1

m
xa

θ∏

i=1

[(−1)(−j)iξ−(−j)i
mi

γm
2
i

(−j)i((−j)i+1)

2 ]ji − l, ji − 1[mi
]g

=
1

m
xahgm

m−1∑

j=0

θ∏

i=1

[(−1)eiξ−ei
mi

γ−m2
i (

ei(ei+1)

2
−ji)]ji − l, ji − 1[mi

]

=
1

m
xahgm(−1)

∑θ
i=1(mi−1)(ei+1)

θ∏

i=1

ei−1∑

ji=0

γ−m2
i ji ]ji − l, ji − 1[mi
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=
1

m
xahgm(−1)

∑θ
i=1(mi−1)(ei+1)

θ∏

i=1

eix
(ei−1)mid ( by Lemma 3.5 (3))

= (−1)
∑θ

i=1(mi−1)(ei+1)xa+
∑θ

i=1(ei−1)mid+mdh,

(Id ∗S)(u0)

=
m−1∑

j=0

γ−j2ujS(x
−jdgju−j)

=
m−1∑

j=0

γ−j2ujS(u−j)g
−jxjd

=
m−1∑

j=0

γ−j2ujhg
m−1

θ∏

i=1

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)

2 x(−j)imidg−(−j)imi ]u−jg
−jxjd

=

m−1∑

j=0

uj

θ∏

i=1

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)

2 ]hgm−1u−j

= x(2−2m)dhgm−1
m−1∑

j=0

γ−j
θ∏

i=1

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)

2 ]uju−j

=

m−1∑

j=0

uj

θ∏

i=1

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)
2 ]hgm−1u−j

= x(2−2m)dhgm−1
m−1∑

j=0

γ−j
θ∏

i=1

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)

2 ]

1

m
xa

θ∏

i=1

[(−1)(−j)iξ−(−j)i
mi

γm
2
i

(−j)i((−j)i+1)

2 ]ji − l, ji − 1[mi
]g

=
1

m
x(2−m)d+ah

m−1∑

j=0

γ−j
θ∏

i=1

ξ−2(−j)i
mi

]ji − l, ji − 1[mi
]

= x(2−m)d+ah ( by Lemma 3.5 (1)).

So, (S∗Id)(u0) = (Id ∗S)(u0) = 1 implies h = x−a−
∑θ

i=1(ei−1)mid−md(−1)
∑θ

i=1(mi−1)(ei−1) =

x(2−m)d+a. Thus

a = −d−
∑θ

i=1(ei − 1)mid

2
and 2|

θ∑

i=1

(mi − 1)(ei − 1), 2|
θ∑

i=1

(ei − 1)mid.

And h = x(1−m)d−
∑θ

i=1(ei−1)mid

2 . Therefore, for 0 6 j 6 m− 1,

S(uj) = xbgm−1
θ∏

i=1

[(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimi ]uj
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for b = (1−m)d−
∑θ

i=1(ei−1)mi

2 d. �

From Claim 7, we know that a = −d−
∑θ

i=1(ei−1)mid
2 and we can improve Claim 6 as

the following form:

Claim 6’. For 0 6 j, l 6 m− 1, the multiplication between uj and ul satisfies that

ujul =
1

m
x−d−

∑θ
i=1(ei−1)mid

2

θ∏

i=1

(−1)liξ−li
mi
γm

2
i

li(li+1)

2 [ji, ei − 2− li]mi
yj+lg

where j + l is interpreted mod m.

We can prove Proposition 6.11 now. The statement (1) is gotten from Claim 1 and the
proof of Claim 7. For (2), by Claims 1,2’,3,4,5,6’ and 7, we have a natural surjective
Hopf homomorphism

f : D(m,d, γ) → H, x 7→ x, ymi
7→ ymi

, g 7→ g, uj 7→ uj

for 1 ≤ i ≤ θ and 0 ≤ j ≤ m − 1. It is not hard to see that f |Dst : Dst → Hst is an
isomorphism of k[x±1]-modules for 0 6 s, t 6 2m− 1. So f is an isomorphism. �

7. Main result and consequences

We conclude this paper by giving the classification of prime Hopf algebras of GK-
dimension one satisfying (Hyp1), (Hyp2) and some consequences.

7.1. Main result. The main result of this paper can be stated as follows.

Theorem 7.1. Let H be a prime Hopf algebra of GK-dimension one which satisfies
(Hyp1) and (Hyp2). Then H is isomorphic to one of Hopf algebras constructed in
Section 4.

Proof. Let π : H → k be the canonical 1-dimensional representation of H which exits
by (Hyp1). If PI-deg(H) = 1, then it is easy to see that H is commutative and thus
H ∼= k[x] or k[x±1]. So, we assume that n := PI-deg(H) > 1 in the following analysis.
If min(π) = 1, then H is isomorphic to either a T (n, 0, ξ) or kD by Proposition 5.4.
If ord(π) = min(π), then H is isomorphic to either a T (n, 1, ξ) or a B(n, ω, γ) by
Proposition 5.7. The last case is n = ord(π) > m := min(π) > 1. In such case, using
Corollary 6.3, H is either additive or multiplicative. If, moreover, H is additive then
H is isomorphic to a T (m, t, ξ) by Proposition 6.9 for t = n

m and if H is multiplicative
then it is isomorphic to a D(m,d, γ) by Proposition 6.11. �

Remark 7.2. (1) All prime Hopf algebras of GK-dimension one which are regular
are special cases of their fraction versions. For example, the infinite dimensional Taft
algebra T (n, t, ξ) is isomorphic to T (n, t, ξ) where n = {1} is a fraction of n of length
1 (that is, θ = 1 by previous notation).

(2) By Proposition 4.13, we know that D(m,d, γ) is not a pointed Hopf algebra if
m 6= 1. Thus we get more examples of non-pointed Hopf algebras of GK-dimension
one.
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(3) In [9, Question 7.3C.], the authors asked that what other Hopf algebras can be
included if the regularity hypothesis is dropped. So our result gives many this kind
of Hopf algebras.

7.2. Question (1.1). As an application, we can give the answer to question (1.1)
now. We give the following definition at first.

Definition 7.3. We call an irreducible algebraic curve C a fraction line if there is a
natural number m and a fraction m1, . . . ,mθ of m such that it’s coordinate algebra
k[C] is isomorphic to k[ym1 , . . . , ymθ

]/(yeimi
− y

ej
mj , 1 ≤ i 6= j ≤ θ).

The answer to question (1.1) is given as follows.

Proposition 7.4. Assume C is an irreducible algebraic curve over k which can be
realized as a Hopf algebra in Zn

Zn
YD where n is as small as possible. Then C is either

an algebraic group or a fraction line.

Proof. If n = 1, then k[C] is a Hopf algebra and thus C is an algebraic group of
dimension one. Now assume n > 1. By assumption, Zn acts on k[C] faithfully. Using
Lemma 2.11 and the argument developed in the proof of Corollary 2.14, the Hopf
algebra k[C]#kZn (the Radford’s biproduct) is a prime Hopf algebra of GK-dimension
one with PI-degree n. It is known that kZn has a 1-dimensional representation of
order n:

kZn = k〈g|gn = 1〉 −→ k, g 7→ ξ

for a primitive nth root of unity ξ. Through the canonical projection k[C]#kZn →
kZn we get a 1-dimensional representation π of H := k[C]#kZn of order n =PI-
deg(H). Therefore, H satisfies (Hyp1). Also, by the definition of the Radford’s
biproduct we know that the right invariant component Hr

0 of π is exactly the domain
k[C]. Therefore, H satisfies (Hyp2) too. The classification result, that is Theorem
7.1, can be applied now. One can check the proposition case by case. �

7.3. Finite-dimensional quotients. We realize that from the Hopf algebraD(m,d, γ)
we can get many new finite-dimensional Hopf algebras through quotient method.
Among of them, two kinds of Hopf algebras are particularly interesting for us: one
series are semisimple and another series are nonsemisimple. As a byproduct of these
new examples, we can give an answer to a professor Siu-Hung Ng’s question at least.
We will give and analysis the structures and representation theory of these two kinds
of finite-dimensional Hopf algebras.

• The series of semisimple Hopf algebras. Keep the notations used in Section 4 and
let D = D(m,d, γ) where m = {m1, . . . ,mθ} a fraction of m. For simple, we assume
that (m1,m2, . . . ,mθ) = 1. Consider the quotient Hopf algebra

D := D/(ym1 , . . . , ymθ
).

We want to give the generators, relations and operations for D at first. For notational
convenience, the images of x, g, uj in D are still written as x, g and uj respectively.
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By the definition of D, we see that: As an algebra, D = D(m,d, γ) is generated by
x±1, g±1, u0, u1, · · · , um−1, subject to the following relations

xx−1 = x−1x = 1, gg−1 = g−1g = 1, xg = gx,

0 = 1− xeimid, gm = xmd,(7.1)

xuj = ujx
−1, 0 = φmi,juj+mi

, ujg = γjx−2dguj ,

ujul =

{
1
mx

a
∏θ

i=1(−1)liγ
li(li+1)

2 ξ−li
mi

[ji, ei − 2− li]mi
g, j + l ≡ 0 (mod m),

0, otherwise,

for 1 ≤ i ≤ θ, 0 ≤ j, l ≤ m− 1 and a = −2+
∑θ

i=1(ei−1)mi

2 d.

The coproduct ∆, the counit ǫ and the antipode S of D(m,d, γ) are given by

∆(x) = x⊗ x, ∆(g) = g ⊗ g,

∆(uj) =

m−1∑

k=0

γk(j−k)uk ⊗ x−kdgkuj−k;

ǫ(x) = ǫ(g) = ǫ(u0) = 1, ǫ(us) = 0;

S(x) = x−1, S(g) = g−1,

S(uj) = xbgm−1
θ∏

i=1

(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimiuj ,

for 1 ≤ s ≤ m−1 , 0 ≤ j ≤ m−1 and b = (1−m)d−
∑θ

i=1(ei−1)mi

2 d. As an observation,
we find that

Lemma 7.5. The Hopf algebra D is a semisimple Hopf algebra of dimension 2m2d.

Proof. Before the proof, we want to simplify a relation given in the definition of D.
That is, a relation formulated in (7.1): xeimid = 1 for all 1 ≤ i ≤ θ. We claim that it
it equivalent to the following relation

(7.2) xmd = 1.

Clearly, it is enough to show that (7.1) implies (7.2) since by definition m|eimi for all
1 ≤ i ≤ θ. Indeed, by (3) of the definition of a fraction 3.1, ei|m and thus we know
that (e1m1

m , e2m2
m , . . . , eθmθ

m ) = 1 since we already assume that (m1,m2, . . . ,mθ) = 1.

Therefore, there exist si ∈ Z such that
∑θ

i=1 si
eimi

m = 1 and thus

xmd = xmd
∑θ

i=1 si
eimi
m = x

∑θ
i=1 sieimid = 1.

By (7.2), we further get gm = 1 since gm = xmd.

We use the classical Maschke Theorem to show that D is semisimple. To do that, we
construct the left integral of D as follows:

∫ l
D
:=

md−1∑

i=0

m−1∑

j=0

xigj +

md−1∑

i=0

m−1∑

j=0

xigju0.
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Let’s show that it is really a left integral. Indeed, it is not hard to see that x
∫l
D =

g
∫l
D =

∫l
D and

u0 ·
∫ l
D
=

md−1∑

i=0

m−1∑

j=0

xigju0 +
md−1∑

i=0

m−1∑

j=0

xigju20

=

md−1∑

i=0

m−1∑

j=0

xigju0 +

md−1∑

i=0

m−1∑

j=0

xigj

= ǫ(u0) ·
∫ l
D
.

Now by the relation 0 = φmi,juj+mi
,

(7.3) uj+mi
= γ1+ji

i xmiduj+mi

for 0 ≤ j ≤ m − 1 and γi = γ−m2
i . So for any 1 ≤ s ≤ m − 1, there must exit an

1 ≤ i ≤ θ such that si 6= 0. From (7.3), we have us = γsii x
midus and thus

us ·
∫ l
D
=

md−1∑

i=0

m−1∑

j=0

γsjxigjus

=

md−1∑

i=0

m−1∑

j=0

γsjxigjγsii x
dus

= γsii

md−1∑

i=0

m−1∑

j=0

γsjxigjus,

which implies that
md−1∑
i=0

m−1∑
j=0

γsjxigjus = 0, and so us ·
∫l
D = 0 = ǫ(us)

∫l
D for all

1 6 s 6 m − 1. Combining above equations together,
∫l
D is a left integral of D.

Clearly, ǫ(
∫l
D) = 2m2d 6= 0. So D is semisimple.

At last, we want to determine the dimension of this semisimple Hopf algebra. The
main idea is to apply the bigrading (4.24) and (4.25) of D to D. To apply them, we
need determine the dimension of space spanned by {xtuj |0 ≤ t ≤ md − 1} for any
0 ≤ j ≤ m− 1. To do that, we want give an equivalent form of the (7.3). By (7.3),
xmiduk = γmikuk for any 0 ≤ k ≤ m − 1. Note that (m1, . . . ,mθ) = 1 and thus we

have si ∈ Z such that
∑θ

i=1 simi = 1. Therefore

(7.4) xduk = x
∑θ

i=0 simiduk = γ
∑θ

i=0 simikuk = γkuk.

By this formula, the space spanned by {xtuj|0 ≤ t ≤ md−1} is the same as the space
spanned by {xtuj |0 ≤ t ≤ d− 1} and its dimension is d. Now applying the bigrading
(4.24) and (4.25), we see that the set

{xigj , xtgjus|0 ≤ i ≤ md− 1, 0 ≤ j ≤ m− 1, 0 ≤ t ≤ d− 1, 0 ≤ s ≤ m− 1}
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is a basis of D and thus

dim
k

D = 2m2d.

�

Next we want to analysis the coalgebra and algebra structure of this semisimple Hopf
algebra. Its coalgebra structure can be determined easily.

Proposition 7.6. Keep above notations.

(1) Let C be the subspace spanned by {giuj|0 ≤ i, j ≤ m− 1}. Then C is simple
coalgebra.

(2) The following is the decomposition of D into simple coalgbras

D =
md−1⊕

i=0

m−1⊕

j=0

kxigj ⊕
d−1⊕

i=0

xiC.

(3) Up to isomorphisms of comodules, D has m2d-number of 1-dimensional co-
modules and d-number of m-dimensional simple comodules.

Proof. (1) One can apply similar method used in [35] to prove this statement. For
completeness, we write the details out. Clearly, to show the result, it is sufficient
to show that the k-linear dual C∗ := Hom

k

(C,k) is a simple algebra. In fact, we
will see that C∗ is the matrix algebra of order m. We change the basis of C for the
convenience. Using relation (7.4), C is also spanned by {(x−dg)iuj|0 ≤ i, j ≤ m− 1}.
Denote by fij := ((x−dg)iuj)

∗, that is, {fij|0 6 i, j 6 m− 1} is the dual basis of the

basis {(x−dg)iuj|0 ≤ i, j ≤ m − 1} of C. We prove this fact by two steps: firstly,
we study the multiplication of the dual basis; secondly, we construct an algebraic
isomorphism from C∗ to the matrix algebra of order m.

Step 1. Since

(fi1,j1 ∗ fi2,j2)((x−dg)iuj)

= m(fi1,j1 ⊗ fi2,j2)(∆((x−dg)iuj))

= m(fi1,j1 ⊗ fi2,j2)(

m−1∑

s=0

γs(j−s)(x−dg)ius ⊗ (x−dg)i+suj−s)

=
m−1∑

s=0

γs(j−s)fi1,j1((x
−dg)ius)fi2,j2((x

−dg)i+suj−s)

one can see that (fi1,j1 ∗ fi2,j2)((x−dg)iuj) 6= 0 if and only if i1 = i, j1 = s, i2 = i + s
and j2 = j− s for some 0 6 s 6 m− 1. This forces i1+ j1 = i2, i = i1 and j = j1+ j2.
So we have

(7.5) fi1,j1 ∗ fi2,j2 =
{
γj1j2fi1,j1+j2 , if i1 + j1 = i2,

0, otherwise.
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Step 2. Set M =Mm(k) and let Eij be the matrix units (that is, the matrix with 1
is in the (i, j) entry and 0 elsewhere) for 0 6 i, j 6 m− 1. Now we claim that

ϕ : C∗ →M,fij 7→ γijEi,i+j

is an algebraic isomorphism (the index i + j in Ei+j is interpreted mod m). It is
sufficient to verify that ϕ is an algebraic map. In fact,

ϕ(fi1,j1)ϕ(fi2,j2) = γi1j1Ei1,i1+j1γ
i2j2Ei2,i2+j2

=

{
γi1j1+i2j2Ei1,i2+j2 , if i1 + j1 = i2,

0, otherwise,

=

{
γi1j1+i2j2−i1(j1+j2)ϕ(fi1,j1+j2), if i1 + j1 = i2,

0, otherwise,

=

{
ϕ(fi1,j1+j2), if i1 + j1 = i2,

0, otherwise,

= ϕ(fi1,j1 ∗ fi2,j2).

So ϕ is an algebraic map and the proof is completed.

(2) Comparing the dimensions of left side and right side, we have the statement.

(3) This is a direct consequence of (2). �

Next, we want to determine the algebraic structure of D. As in the proof of Lemma
7.5, {xigj , xtgjus|0 ≤ i ≤ md − 1, 0 ≤ j ≤ m − 1, 0 ≤ t ≤ d − 1, 0 ≤ s ≤ m − 1}
is a basis of D. Denote by G the group of all group-likes of D. Then clearly every
element in D can be written uniquely in the following way:

f +

m−1∑

i=0

fiui

for f, fi ∈ kG and 0 ≤ i ≤ m− 1.

We use C(D) to denote the center of D. Next result helps us to determine the center
of D.

Lemma 7.7. The element e = f +
∑m−1

i=0 fiui ∈ C(D) if and only if f, f0u0 ∈ C(D)
and f1 = . . . = fm−1 = 0.

Proof. The sufficiency is obvious. We just prove the necessity. At first, we show that
f1 = . . . = fm−1 = 0. Otherwise, assume that, say, f1 6= 0. By assumption, ge = eg
which implies that gf1u1 = f1u1g. By the definition of D, f1u1g = γ−1gf1u1. So we
have γ−1gf1u1 = gf1u1 which is absurd. Similarly, we have f2 = . . . = fm−1 = 0.
Secondly, let’s show that f ∈ C(D). Also, by eui = uie we know that fui = uif
for 0 ≤ i ≤ m − 1. By definition, f commutes with all elements in G. Therefore,
f ∈ C(D). Since e = f + f0u0 and e ∈ C(D), f0u0 ∈ C(D) too. �



A CLASSIFICATION RESULT ON PRIME HOPF ALGEBRAS OF GK-DIMENSION ONE 79

Let ζ be an mdth root of unity satisfying ζd = γ. Define

1xi :=
1

md

md−1∑

j=0

ζ−ijxj, 1gk :=
1

m

m−1∑

j=0

γ−kjgj

for 0 ≤ i ≤ md−1 and 0 ≤ k ≤ m−1. It is well-known that {1xi 1
g
k|0 ≤ i ≤ md−1, 0 ≤

k ≤ m− 1} is also a basis of kG. Therefore, one can assume that

f =

md−1∑

i=0

m−1∑

j=0

aij1
x
i 1

g
j =

∑

i,j

aij1
x
i 1

g
j .

For any natural number i, we use i′ to denote the remainder of i divided by m in the
following of this subsection.

Lemma 7.8. Let f =
∑

i,j aij1
x
i 1

g
j be an element in kG. Then f ∈ C(D) if and only

if aij = amd−i,j−i′ for all 0 ≤ i ≤ md− 1, 0 ≤ j ≤ m− 1.

Proof. Define

1

x
i :=

1

d
(1 + ζ−ix+ ζ−2ix2 + . . .+ ζ−(d−1)ixd−1)

for 0 ≤ i ≤ md − 1. For any 0 ≤ k ≤ m − 1, it is not hard to see that the elements
in {1xi |i ≡ k (mod m)} are linear independent. Using equation (7.4) and a direct
computation, one can show that

(7.6) 1xi uk =

{
1

x
i uk, if i ≡ k (mod m),

0, otherwise,

(7.7) uk1
x
i =

{
uk1

x
i , if i+ k ≡ 0 (mod m),

0, otherwise.

and

1xmd−i = 1x
−1

i .

Therefore, we have

fuk =
∑

i,j

aij1
x
i 1

g
juk =

∑

i,j

aij1
x
i uk1

g
j−k =

∑

i≡k (mod m),j

aij1
x
i 1

g
juk,

ukf =
∑

i,j

aijuk1
x
i 1

g
j =

∑

i+k≡0 (mod m),j

aijuk1
x
i 1

g
j =

∑

i+k≡0 (mod m),j

aij1
x−1

i uk1
g
j

=
∑

i+k≡0 (mod m),j

aij1
x
md−iuk1

g
j =

∑

i+k≡0 (mod m),j

aij1
x
md−i1

g
j+kuk.

This means that fuk = ukf if and only if ak+lm,j = am(d−l)−k,j−k for some 0 ≤ k ≤
m− 1. From this, the proof is done. �

Assume that f0 =
∑

i,j bij1
x
i 1

g
j . Using (7.6), we know that

f0u0 =
∑

i≡0 (mod m),j

bij1
x
i 1

g
ju0.
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So we can assume that f0 =
∑

i≡0 (mod m),j bij1
x
i 1

g
j directly. With this assumption,

we have the following result.

Lemma 7.9. The element f0u0 belongs to the center of D if and only if

(7.8) f0 =

{ ∑
j b0j1

x
01

g
j , if d is odd,∑

j b0j1
x
01

g
j +

∑
j b d

2
m,j1

x
d
2
m
1gj , if d is even.

Proof. From xf0u0 = f0u0x, we have xf0 = x−1f0, which implies exactly the equation
(7.8). The converse is straightforward. �

Next, we want determine when a central element is idempotent.

Lemma 7.10. Let e = f+f0u0 be an element living in the center C(D). Then e2 = e
if and only if f = f2 + f20u

2
0 and f0 = 2ff0.

Proof. By Lemma 7.7, f commutes with f0u0 and (f0u0)
2 = f20u

2
0. From this, the

lemma becomes clear. �

Lemma 7.11. Let f =
∑

i,j aij1
x
i 1

g
j and f0 =

∑
i,j bij1

x
i 1

g
j satisfying e = f + f0u0 is

a central element. Then e is an idempotent if and only if

asm,j = a2sm,j + b2sm,jζ
asmγj (0 ≤ s ≤ d− 1, 0 ≤ j ≤ m− 1)(7.9)

a2ij = aij (i 6≡ 0 (mod m), 0 ≤ j ≤ m− 1)(7.10)

bij = 2aijbij (0 ≤ i ≤ md− 1, 0 ≤ j ≤ m− 1).(7.11)

where a = −2+
∑θ

i=1(ei−1)mi

2 d.

Proof. We just translate the equivalent conditions in Lemma 7.10 into the equalities
about coefficients. �

By equation (7.11), we know that aij =
1
2 if bij 6= 0. By equation (7.9), we have that

bsm,j = ±1
2

√
γ−jζ−asm if bsm,j 6= 0. We use [.] to denote the floor function, i.e. for

any rational number t, [t] is the biggest integer which is not bigger than t. Now we
can give the algebraic structure of D.

Proposition 7.12. Keep above notations.

(1) If d is even, then the following is a complete set of primitive central idempo-
tents of D:

1

2
1x01

g
j +

1

2

√
γ−j1x01

g
ju0,

1

2
1x01

g
j −

1

2

√
γ−j1x01

g
ju0,

1

2
1xd

2
m
1gj +

1

2

√
γ−j(−1)−a1xd

2
m
1gju0,

1

2
1xd

2
m
1gj −

1

2

√
γ−j(−1)−a1xd

2
m
1gju0,

1xsm1gj + 1x(d−s)m1gj , (0 < s ≤ d− 1, s 6= d

2
, 0 ≤ j ≤ m− 1)

1xlm+i1
g
j + 1x(d−l−1)m+(m−i)1

g
j−i, (0 ≤ l ≤ d− 1, 0 < i ≤ [

m

2
], 0 ≤ j ≤ m− 1).
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If d is odd, then the following is a complete set of primitive central idempotents
of D:

1

2
1x01

g
j +

1

2

√
γ−j1x01

g
ju0,

1

2
1x01

g
j −

1

2

√
γ−j1x01

g
ju0,

1xsm1gj + 1x(d−s)m1gj , (0 < s ≤ d− 1, 0 ≤ j ≤ m− 1)

1xlm+i1
g
j + 1x(d−l−1)m+(m−i)1

g
j−i, (0 ≤ l ≤ d− 1, 0 < i ≤ [

m

2
], 0 ≤ j ≤ m− 1).

(2) If d is even, then as an algebra D has the following decomposition:

D = k

(4m) ⊕M2(k)
(m

2d−2m
2

).

If d is odd, then as an algebra D has the following decomposition:

D = k

(2m) ⊕M2(k)
(m

2d−m
2

).

Proof. (1) According to Lemmas 7.8-7.11, we know all above elements are central
idempotents. It is easy to find that the sum of these elements is just 1. So to show
the result, it is enough to show that they are all primitive central idempotents. We
just prove this fact for the case d even since the other case can be proved in the same
way. In fact, by definition we can find the elements in the last two lines presented
in this proposition can be decomposed into a sum of two idempotents which are not
central, and so the simple modules corresponding to these central idempotents have

dimension ≥ 2. There are (d−2)m
2 + (m−1)dm

2 cental idempotents in the last two lines
and 4m ones in the first two lines. Therefore, all of these idempotents create an ideal

with dimension ≥ 4m + 4( (d−2)m
2 + (m−1)dm

2 ) = 2m2d = dim
k

D. This implies they
are all primitive.

(2) This is just a direct consequence of the statement (1). �

Due to our recent great interest on finite tensor categories [10], in particular fusion
categories [11], it seems better to present all simple modules of D and their tensor
product decomposition law here.

As the proof of above proposition, we only deal with the case d being even (actually,
the case of d being odd is quite similar and in fact easier). According to the central
idempotents stated in Proposition 7.12 (1), we construct the following six kinds of
simple modules of D:

(1) V +
0,j (0 ≤ j ≤ m− 1): The dimension of V +

0,j is 1 and the action of D is given
by

x 7→ 1, g 7→ γj

u0 7→
√
γj , ui 7→ 0 (1 ≤ i ≤ m− 1).

A basis of this module can be chosen as 1
21

x
01

g
j +

1
2

√
γ−j1x01

g
ju0.
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(2) V −
0,j (0 ≤ j ≤ m− 1): The dimension of V −

0,j is 1 and the action of D is given
by

x 7→ 1, g 7→ γj

u0 7→ −
√
γj, ui 7→ 0 (1 ≤ i ≤ m− 1).

A basis of this module can be chosen as 1
21

x
01

g
j − 1

2

√
γ−j1x01

g
ju0.

(3) V +
d
2
m,j

(0 ≤ j ≤ m − 1): The dimension of V +
d
2
m,j

is 1 and the action of D is

given by

x 7→ −1, g 7→ γj

u0 7→
√
γj(−1)−a, ui 7→ 0 (1 ≤ i ≤ m− 1).

A basis of this module can be chosen as 1
21

x
d
2
m
1gj + 1

2

√
γ−j(−1)−a1xd

2
m
1gju0.

Recall that by definition a = −2+
∑θ

i=1(ei−1)mi

2 d.

(4) V −
d
2
m,j

(0 ≤ j ≤ m − 1): The dimension of V −
d
2
m,j

is 1 and the action of D is

given by

x 7→ −1, g 7→ γj

u0 7→ −
√
γj(−1)−a, ui 7→ 0 (1 ≤ i ≤ m− 1).

A basis of this module can be chosen as 1
21

x
d
2
m
1gj − 1

2

√
γ−j(−1)−a1xd

2
m
1gju0.

(5) Vsm,j (0 < s ≤ d − 1, s 6= d
2 , 0 ≤ j ≤ m − 1): The dimension of Vsm,j is 2

with basis {1xsm1gj , 1
x
(d−s)m1gju0} and the action of D is given by

x 7→
(
ζsm 0

0 ζ(d−s)m

)
, g 7→

(
γj 0
0 γj

)

u0 7→
(

0 ζasmγj

1 0

)
, ui 7→ 0 (1 ≤ i ≤ m− 1).

Note that we have

Vsm,j
∼= V(d−s)m,j .

(6) Vlm+i,j (0 ≤ l ≤ d−1, 0 < i < m, 0 ≤ j ≤ m−1): The dimension of Vlm+i,j is

2 with basis {1xlm+i1
g
j , 1

x
(d−l−1)m+(m−i)1

g
j−ium−i} and the action of D is given

by

x 7→
(
ζ lm+i 0

0 ζ(d−l−1)m+(m−i)

)
, g 7→

(
γj 0
0 γj−i

)

um−i 7→
(

0 0
1 0

)
, ui 7→

(
0 ci
0 0

)
,
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ut 7→ 0 (0 ≤ t ≤ m− 1, t 6= m− i, i),

where ci =
1
mζ

(lm+i)aγj
∏θ

s=1(−1)−isξisms
γm

2
s
−is(−is+1)

2 [is, es − 2− (m− i)s]ms .
Note that we have

Vlm+i,j
∼= V(d−l−1)m+(m−i),j−i.

The following table give us the tensor product decomposition law for these simple
modules. We omit the proof since it is routine.

The fusion rule I

V +
0,j ⊗ V +

0,j′ = V +
0,j+j′ V −

0,j ⊗ V +
0,k = V −

0,j+k

V +
0,j ⊗ V −

0,k = V −
0,j+k V −

0,j ⊗ V −
0,k = V +

0,j+k

V +
0,j ⊗ V +

d
2
m,k

= V +
d
2
m,j+k

V −
0,j ⊗ V +

d
2
m,k

= V −
d
2
m,j+k

V +
0,j ⊗ V −

d
2
m,k

= V −
d
2
m,j+k

V −
0,j ⊗ V −

d
2
m,k

= V +
d
2
m,j+k

V +
0,j ⊗ Vsm,k = Vsm,j+k V −

0,j ⊗ Vsm,k = Vsm,j+k

V +
0,j ⊗ Vlm+i,k = Vlm+i,j+k V −

0,j ⊗ Vlm+i,k = Vlm+i,j+k

V +
d
2
m,j

⊗ V +
0,k = V +

d
2
m,j+k

V −
d
2
m,j

⊗ V +
0,k = V −

d
2
m,j+k

V +
d
2
m,j

⊗ V −
0,k = V −

d
2
m,j+k

V −
d
2
m,j

⊗ V −
0,k = V +

d
2
m,j+k

V +
d
2
m,j

⊗ V +
d
2
m,k

= V +
0,j+k V −

d
2
m,j

⊗ V +
d
2
m,k

= V −
0,j+k

V +
d
2
m,j

⊗ V −
d
2
m,k

= V −
0,j+k V −

d
2
m,j

⊗ V −
d
2
m,k

= V +
0,j+k

V +
d
2
m,j

⊗ Vsm,k = V(s+ d
2
)m,j+k V −

d
2
m,j

⊗ Vsm,k = V(s+ d
2
)m,j+k

V +
d
2
m,j

⊗ Vlm+i,k = V(l+ d
2
)m,j+k V −

d
2
m,j

⊗ Vlm+i,k = V(l+ d
2
)m,j+k



84 GONGXIANG LIU

The fusion rule II

Vsm,j ⊗ V +
0,k = Vsm,j+k

Vsm,j ⊗ V −
0,k = Vsm,j+k

Vsm,j ⊗ V +
d
2
m,k

= V(s+ d
2
)m,j+k

Vsm,j ⊗ V −
d
2
m,k

= V(s+ d
2
)m,j+k

Vsm,j ⊗ Vlm,k = V(s+l)m,j+k ⊕ V(s−l)m,j+k (∗)

Vsm,j ⊗ Vlm+i,k = V(s+l)m+i,j+k ⊕ V(l−s)m+i,j+k

Vlm+i,j ⊗ V +
0,k = Vlm+i,j+k

Vlm+i,j ⊗ V −
0,k = Vlm+i,j+k

Vlm+i,j ⊗ V +
d
2
m,k

= V(l+ d
2
)m+i,j+k

Vlm+i,j ⊗ V −
d
2
m,k

= V(l+ d
2
)m+i,j+k

Vlm+i,j ⊗ Vsm,k = V(s+l)m+i,j+k ⊕ V(l−s)m+i,j+k

Vlm+i,j ⊗ Vsm+t,k = V(s+l)m+(i+t),j+k ⊕ V(l−s)m+(i−t),j+k−t (∗)
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where the mark (∗), say for the case Vsm,j ⊗ Vlm,k, has the following meaning:

(1) If (s+ l)m 6≡ 0, d2m (mod dm) and (s− l)m 6≡ 0, d2m (mod dm), then

(7.12) Vsm,j ⊗ Vlm,k = V(s+l)m,j+k ⊕ V(s−l)m,j+k.

(2) If (s+l)m ≡ 0 (mod dm), then in the formula (7.12) V(s+l)m,j+k is decomposed
further and represents

V +
0,j+k ⊕ V −

0,j+k.

(3) If (s+ l)m ≡ d
2m (mod dm), then in the formula (7.12) V(s+l)m,j+k is decom-

posed further and represents

V +
d
2
m,j+k

⊕ V −
d
2
m,j+k

.

(4) If (s−l)m ≡ 0 (mod dm), then in the formula (7.12) V(s−l)m,j+k is decomposed
further and represents

V +
0,j+k ⊕ V −

0,j+k.

(5) If (s− l)m ≡ d
2m (mod dm), then in the formula (7.12) V(s−l)m,j+k is decom-

posed further and represents

V +
d
2
m,j+k

⊕ V −
d
2
m,j+k

.

Similarly, one can work out the meaning of mark (∗) for the formula Vlm+i,j⊗Vsm+t,k.

That is, whenever (s+ l)m+ (i+ t) ≡ 0 (mod dm) or (s+ l)m+ (i+ t) ≡ d
2m (mod

dm) the item V(s+l)m+(i+t),j+k will split further and whenever (l − s)m+ (i− t) ≡ 0

(mod dm) or (l− s)m+(i− t) ≡ d
2m (mod dm) the item V(l−s)m+(i−t),j+k−t will split

further.

•The series of nonsemisimple finite-dimensional Hopf algebras. Using the Hopf al-
gebra D = D(m,d, γ), we also can get many nonsemisimple finite-dimensional Hopf
algebras, which are knew up the author’s knowledge. The main idea to construct
these finite-dimensional Hopf algebras is to generalize the exact sequence (5.2)

k −→ H00 −→ H −→ H −→ k.

That is, we want to substitute H by our Hopf algebra D(m,d, γ) and thus get finite-
dimensional quotients. One can realize this idea through showing that every Hopf
subalgebra k[x±t] for t ∈ N is a normal Hopf subalgebra of D. Since by definition we
know that the element x commutes with g, ymi

(1 ≤ i ≤ θ), we only need to show that
ad(uj)(x

t) = u′jx
tS(u′′j ) ∈ k[x±t] for all 0 ≤ j ≤ m− 1. Through direct computation,

we have

ad(uj)(x
t) = x−tu′jS(u

′′
j ) = x−tε(uj) ∈ k[x±t].

So we have the following exact sequence of Hopf algebras

(7.13) k −→ k[x±t] −→ D −→ D/(xt − 1) −→ k.

We denote the resulted Hopf algebra D/(xt − 1) by Dt, i.e., Dt := D/(xt − 1).

Lemma 7.13. The Hopf algebra Dt is finite-dimensional and has dimension 2m2t.
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Proof. We also want to use the bigrading of D to compute the dimension of Dt. By
equation (6.1), we know that D is a free k[x±1]-module of rank 2m2. Now through
this bigrading (6.1) and the relation modular xt − 1, Dt is also bigraded and is a free
k[x]/(xt−1)-module of rank 2m2. Therefore, dimkDt = 2m2t. Actually, the following
elements {xigjyt, xigjut|0 ≤ i ≤ t − 1, 0 ≤ j ≤ m − 1, 0 ≤ t ≤ m − 1} (we use the
same notations as D for simple) is a basis of Dt. �

It is not hard to give the generators and relations of this Hopf algebra: one just need
add one more relation in the definition of the Hopf algebra D, that is the relation
xt = 1. The coproduct, counit and the antipode are the same as D. It seems that
there is no need to repeat them again.

About this Hopf algebra, it has the following properties.

Proposition 7.14. Retain above notations.

(1) The Hopf algebra Dt is not pointed unless m = 1. And in case m > 1, its
coradical is not a Hopf subalgebra.

(2) The Hopf algebra Dt is not semisimple unless m = 1.
(3) The Hopf algebra Dt is pivotal, that is, its representation category is a pivotal

tensor category.

Proof. (1) Using totally the same method given the proof of Proposition 7.6, the
subspace spanned by {(x−dg)iuj|0 ≤ i, j ≤ m− 1} is a simple coalgebra, where x−d

means its image in k[x±1]/(xt − 1). So Dt has a simple coalgebra of dimension m2.
Therefore it is not pointed. If m = 1, then it is easy to see that Dt is just a group
algebra. Using the same arguments stated in the proof of Proposition 4.13 (3), its
coradical is not a Hopf subalgebra.

(2) Assume m > 1 and we want to show that Dt is not semisimple. On the contrary,
if Dt is semisimple then it is cosemisimple [20]. This implies every yj should lie in
the coradical. This is absurd since clearly ymi

does not due to it is a nontrivial skew
primitive element.

(3) Actually we can prove a stronger result, that is, the Hopf algebra D is pivotal. To
prove this stronger result, by Lemma 2.16 we only need to set the following formula
for S2:

(7.14) S2(h) = (g
∑θ

i=1 mixc)h(g
∑θ

i=1 mixc)−1, h ∈ D,

where c = −
∑θ

i=1(ei+1)mid
2 . Note that by second equation of (4.7),

∑θ
i=1(ei + 1)mid

is always even. Our task is to prove above formula. Indeed, on one hand,

S2(uj) = S(xbgm−1
θ∏

i=1

(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 xjimidg−jimiuj)

= S(uj)

θ∏

i=1

(−1)jiξ−ji
mi
γ−m2

i

ji(ji+1)

2 x−jimidgjimig1−mx−b
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= xbgm−1
θ∏

i=1

ξ−2ji
mi

γ−m2
i ji(ji+1)xjimidg−jimiujx

−jimidgjimig1−mx−b

= x2bgm−1γ(1−m)j
θ∏

i=1

ξ−2ji
mi

γ−m2
i ji(ji+1)γj(jimi)x−2(1−m)dg1−muj

= x2b−2(1−m)d
θ∏

i=1

γ−m2
i jiuj ,

where recall that b = (1−m)d−
∑θ

i=1(ei−1)mi

2 d.

On the other hand,

(g
∑θ

i=1 mixc)uj(g
∑θ

i=1 mixc)−1 = x2cx2d
∑θ

i=1 miγ−j
∑θ

i=1 miuj

= x2c+2d
∑θ

i=1 mi

θ∏

i=1

γ−m2
i jiuj.

Since

2c+ 2d

θ∑

i=1

mi = −
θ∑

i=1

(ei − 1)mid = 2b− 2(1−m)d,

we have S2(uj) = (g
∑θ

i=1 mixc)uj(g
∑θ

i=1 mixc)−1.

So to show the formula (7.14), we only need to check it for ymi
for 1 ≤ i ≤ θ now.

This is not hard. In fact,

S2(ymi
) = S(−ymi

g−mi)

= gmiymi
g−mi = γ−m2

i ymi

= γ−mi(m1+···+mθ)ymi

= (g
∑θ

i=1 mixc)ymi
(g

∑θ
i=1 mixc)−1

due to γmimj = 1 for i 6= j and x commutes with ymi
.

Therefore, the representation category of D is pivotal. As a tensor subcategory, the
category of representations of Dt is pivotal automatically. �

In [6], the authors posed the following sentence “it remains unknown whether there
exists any Hopf algebra H of dimension 24 such that neither H nor H∗ has the
Chevalley property” (see [6, Introduction, third paragraph]). With the helping of
the Hopf algebra Dt, we can give one now. We will show that D3 has dimension
24 and has no Chevalley property. However, its dual (D3)

∗ indeed has Chevalley
property. That is, we still can’t fix the question posed in [6]. Anyway, it seems that
the following example didn’t written out explicitly in [6] and should be implicated in
their classification in a dual version.

Example 7.15. Let m = 2 (this implies that m has no nontrivial fraction now, that
is, θ = 1) and take d = 6. The condition d = 6 guarantees the condition (4.7) is
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fulfilled and thus Hopf algebra D(m,d, γ) exists. So we take t = 3 and then we find

dim
k

Dt = 2m2t = 24.

In order to understand this Hopf algebra well, we give the presentation of this D3: as
an algebra, it is generated by g, x, y, u0, u1 and satisfies

x3 = 1, g2 = 1, xg = gx, y2 = 0, xy = yx, yg = −gy,
xu0 = u0x

−1, xu1 = u1x
−1, yu0 = 2u1 = iu0y, yu1 = 0 = u1y,

u0g = gu0, u1g = −u1g

u0u0 = g, u0u1 =
−i

2
yg, u1u0 =

1

2
yg, u1u1 = 0,

where i is the imaginary square root of −1, that is i =
√
−1. The coproduct ∆, the

counit ǫ and the antipode S of D3 are given by

∆(x) = x⊗ x, ∆(g) = g ⊗ g, ∆(y) = 1⊗ y + y ⊗ g,

∆(u0) = u0 ⊗ u0 − u1 ⊗ gu1, ∆(u1) = u0 ⊗ u1 + u1 ⊗ gu0,

ǫ(x) = ǫ(g) = ǫ(u0) = 1, ǫ(u1) = ǫ(y) = 0;

S(x) = x−1, S(g) = g−1, S(y) = −yg−1,

S(u0) = gu0, S(u1) = −iu1.

Next we claim that D3 has no Chevalley property while its (D3)
∗ does. Recall that a

Hopf algebra is said to have Chevalley property if it’s coradical is a Hopf subalgebra.
So to show the claim, it is enough to prove that the coradical of D3 is not a Hopf
subalgebra and its (Jacobson) radical is a Hopf ideal. In fact, by Proposition 7.14
(1), its coradical is not a Hopf subalgebra. Now let’s prove that its radical is a Hopf
ideal. As usual, denote its radical by J and then it is not hard to see that y ∈ J since
y generates a nilpotent ideal. Using the relation yu0 = 2u1, u1 ∈ J . Now consider the
quotient D3/(y, u1). It is not hard to see that D3/(y, u1) ∼= k(Z4 × Z3). Therefore,
J = (y, u1) and it is a Hopf ideal clearly.

7.4. The Hypothesis. We point out that our final aim is to classify all prime Hopf
algebras of GK-dimension one. So, as a natural step, we want to consider the question
about the Hypothesis (Hyp1) and (Hyp2) listed in the introduction.

• The Hypothesis (Hyp1). Let H be a prime Hopf algebra of GK-dimension one, does
H satisfy (Hyp1) automatically? It is a pity that this is not true as we have the
following counterexample.

Example 7.16. Let n be a natural number. As an algebra, Λ(n) is generated by
X1, . . . ,Xn and g subject to the following relations:

X2
i = X2

j , XiXj = −XjXi, g2 = 1, −gXi = Xig

for all 1 ≤ i 6= j ≤ n. The coproduct, counit and the antipode are given by

∆(Xi) = 1⊗Xi +Xi ⊗ g, ∆(g) = g ⊗ g,

ε(Xi) = 0, ε(g) = 1

S(Xi) = −Xig, S(g) = g−1
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for all 1 ≤ i ≤ n. By the following lemma, we know that Λ(n) is a prime Hopf algebra
of GK-dimension one when n is odd. Moreover, if n = 2m+ 1, then the PI-degree of
Λ(n) is 2m+1.

Now let

π : Λ(n) → k

be a 1-dimensional representation of Λ(n). Since g2 = 1, π(g) = 1 or π(g) = −1.
From the relation −gXi = Xig, we get π(Xi) = 0 for all 1 ≤ i ≤ n. This implies that
ord(π) = 1 or ord(π) = 2. In general, we find that PI-deg(Λ(n)) > ord(π) and the
difference PI-deg(H)− ord(π) can be very large.

Lemma 7.17. Keep the notations and operations used in above example. Then

(1) The algebra Λ(n) is a Hopf algebra of GK-dimension one.
(2) The algebra Λ(n) is prime if and only if n is odd.
(3) If n = 2m+ 1 is an odd, then PI-deg (Λ(n)) = 2m+1.

Proof. (1) is clear.

(2) If n is even, then we consider the element g
∏n

i=1Xi. Direct computation shows
that this element belongs to the center C(Λ(n)). Also we know that Xn

1 lives in the
center too. Thus

Xn
1 − ag

n∏

i=1

Xi ∈ C(Λ(n))

for any a ∈ k. Now, (Xn
1−ag

∏n
i=1Xi)(X

n
1 +ag

∏n
i=1Xi) = X2n

1 −a2(−1)
n(n+1)

2
∏n

i=1X
2
i =

X2n
1 −a2(−1)

n(n+1)
2 X2n

1 . Taking a such that a2(−1)
n(n+1)

2 = 1, we see that the central
element Xn

1 − ag
∏n

i=1Xi has nontrivial zero divisor and thus Λ(n) is not prime.

So the left task is to show that Λ(n) is prime when n is odd. To prove this, we give the
following two facts about the algebra Λ(n): 1) The center of Λ(n) is k[X2

1 ] (= k[X2
i ]

for 1 ≤ i ≤ n); 2) Λ(n) is a free module over its center with basis {gl ∏n
i=1X

ji
i |0 ≤ l ≤

1, 0 ≤ ji ≤ 1}. Both of these two facts can be gotten through the following observation
easily: As an algebra, one has Λ(n) ∼= U(n)#kZ2 where U(n) = U(n)/(X2

i −X2
j |1 ≤

i 6= j ≤ n) and U(n) is the enveloping algebra of the commutative Lie superalgebra
of dimension n with degree one basis {Xi|1 ≤ i ≤ n}.
From above two facts about Λ(n), every monomial generated by g and Xi (1 ≤ i ≤ n)
is not a zero divisor and in fact regular. Now to show the result, assume that I, J
be two nontrivial ideals of Λ(n) satisfying IJ = 0. We will show that I contains a
monomial and thus get a contradiction. For this, through setting deg(g) = 0 and
deg(Xi) = 1 we find that Λ(n) is a graded algebra. Let a and b be two nonzero
element of I and J respectively. Since Λ(n) is Z-graded which is an order group, we
can assume that both a and b are homogenous elements through ab = 0. In particular,
we can take a to be a nonzero homogenous element. For simple, we assume that a has
degree one (for other degrees one can prove the result using the same way as degree
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one). So,

a =

n∑

i=1

aiXi +

n∑

i=1

a′igXi,

for ai, a
′
i ∈ k. Now a′ := X1a + aX1 = 2a1X

2
1 − 2

∑
i 6=1 a

′
igX1Xi. For any i 6= 1,

we have a′′ := Xia
′ + a′Xi = 4a1X

2
1Xi − 4a′igX1X

2
i and continue this process a′′′ :=

Xja
′′+a′′Xj = −8a′igX1X

2
i Xj ∈ I for any j 6= 1, i (such j exists unless n = 1. But in

case n = 1, Λ(n) is clear prime). This implies that we have a monomial in I if a′i 6= 0
for i 6= 1. We next consider the case a′i ≡ 0 for all i 6= 1. Looking back the element
a′′, we can assume that a1 = 0 too. Repeat above precess through substituting X1

by other Xj and we can assume all aj = 0 and a′t = 0 with t 6= j. That’s impossible
since 0 6= a and in one word we must have a monomial in I.

(3) By the proof of the part (2), we know that Λ(n) is a free module over its center

with basis {gl ∏n
i=1X

ji
i |0 ≤ l ≤ 1, 0 ≤ ji ≤ 1} and so the rank of Λ(n) over its center

is 2n+1 = 22(m+1). Therefore, PI-deg(Λ(n)) =
√
22(m+1) = 2m+1. �

• The Hypothesis (Hyp2). We next want to consider the question about the second
hypothesis (Hyp2): Let H be a prime Hopf algebra of GK-dimension one, does H
has a one-dimensional representation π : H → k such its invariant components are
domains? This is also not true in general. In fact, by Example 7.16, we find that the
left invariant component must contains the subalgebra generated by Xi (1 ≤ i ≤ n)
for any one-dimensional representation and thus it is not a domain (if it is, it must
be commutative by the proof of Lemma 2.8).

• Relation between (Hyp1) and (Hyp2). In the introduction, (Hyp2) is built on (Hyp1),
i.e., they used the same one-dimensional representation. However, it is clear we can
consider (Hyp1) and (Hyp2) individually, that is, for each hypothesis we consider
a one-dimensional representation which may be different. Until now, we still don’t
know the exactly relationship between (Hyp1) and (Hyp2) for a prime Hopf algebra of
GK-dimension one. So, we formulate the following question for further considerations.

Question 7.18. (1) Let H be a prime Hopf algebra of GK-dimension one satis-
fying (Hyp1), does H satisfy (Hyp2) automatically?

(2) Let H be a prime Hopf algebra of GK-dimension one satisfying (Hyp2), does
H satisfy (Hyp1) automatically?

7.5. A conjecture. From all examples stated in this paper, it seems that prime Hopf
algebras of GK-dimension one exist widely. However, we still can find some common
points about them. Among of these points, we formulate a conjecture on the structure
of prime Hopf algebras of GK-dimension in the following way.

Conjecture 7.19. Let H be a prime Hopf of GK-dimension one. Then we have an
exact sequence of Hopf algebras:

(7.15) k −→ alg.gp −→ H −→ f.d. Hopf −→ k,

where “alg.gp” denotes the coordinate algebra of a connected algebraic group of di-
mension one and “f.d. Hopf” means a finite-dimensional Hopf algebra.
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It is not hard to see that all examples given in this paper always satisfy above con-
jecture.

Remark 7.20. Recently, professor Ken Brown showed the author one of his slides
in which he introduced the definition so called commutative-by-finite as follows: A
Hopf algebra is commutative-by-finite if it is a finite (left or right) module over a
commutative normal Hopf subalgebra. So our Conjecture 7.19 just says that every
prime Hopf algebra of GK-dimension one should be a commutative-by-finite Hopf
algebra.
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