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HIGGS BUNDLES OVER NON-COMPACT GAUDUCHON

MANIFOLDS

CHUANJING ZHANG, PAN ZHANG AND XI ZHANG

Abstract. In this paper, we prove a generalized Donaldson-Uhlenbeck-Yau theorem on
Higgs bundles over a class of non-compact Gauduchon manifolds.

1. Introduction

Let X be a complex manifold of dimension n and g a Hermitian metric with associated
Kähler form ω. The metirc g is called Gauduchon if ω satisfies ∂∂̄ωn−1 = 0. A Higgs
bundle (E, ∂E , θ) over X is a holomorphic bundle (E, ∂E) coupled with a Higgs field
θ ∈ Ω1,0

X (End(E)) such that ∂Eθ = 0 and θ ∧ θ = 0. Higgs bundles were introduced by
Hitchin ([12]) in his study of the self duality equations. They have rich structures and
play an important role in many areas including gauge theory, Kähler and hyperkähler
geometry, group representations and nonabelian Hodge theory. Let H be a Hermitian
metric on the bundle E, we consider the Hitchin-Simpson connection

∂θ := ∂E + θ, D1,0
H,θ := D1,0

H + θ∗H , DH,θ = ∂θ +D1,0
H,θ,

where DH is the Chern connection of (E, ∂E , H) and θ∗H is the adjoint of θ with respect
to the metric H . The curvature of this connection is

FH,θ = FH + [θ, θ∗H ] + ∂Hθ + ∂̄Eθ
∗H ,

where FH is the curvature of DH and ∂H is the (1, 0)-part of DH . H is said to be a
Hermitian-Einstein metric on Higgs bundle (E, ∂E, θ) if the curvature of the Hitchin-
Simpson connection satisfies the Einstein condition, i.e.

√
−1Λω(FH + [θ, θ∗H ]) = λ · IdE ,

where Λω denotes the contraction with ω, and λ is a constant.
When the base space (X,ω) is a compact Kähler manifold, the stability of Higgs bun-

dles, in the sense of Mumford-Takemoto, was a well established concept. Hitchin ([12])
and Simpson ([29], [30]) obtained a Higgs bundle version of the Donaldson-Uhlenbeck-Yau
theorem ([28], [9], [32]), i.e. they proved that a Higgs bundle admits the Hermitian-
Einstein metric if and only if it’s Higgs poly-stable. Simpson ([29]) also considered
some non-compact Kähler manifolds case, he introduced the concept of analytic sta-
bility for Higgs bundle, and proved that the analytic stability implies the existence of
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Hermitian-Einstein metric. There are many other interesting and important works re-
lated ([1, 2, 3, 4, 8, 14, 16, 17, 18, 19, 23, 24, 25, 27, 33], etc.). The non-Kähler case is also
very interesting. The Donaldson-Uhlenbeck-Yau theorem is valid for compact Gauduchon
manifolds (see [6, 20, 21, 22]).

In this paper, we want to study the non-compact and non-Kähler case. In the following,
we always suppose that (X, g) is a Gauduchon manifold unless otherwise stated. By [29],
we will make the following three assumptions:

Assumption 1. (X, g) has finite volume.
Assumption 2. There exists a non-negative exhaustion function φ with

√
−1Λω∂∂̄φ

bounded.
Assumption 3. There is an increasing function a : [0,+∞) → [0,+∞) with a(0) =

0 and a(x) = x for x > 1, such that if f is a bounded positive function on X with√
−1Λω∂∂̄f ≥ −B then

sup
X

|f | ≤ C(B)a(

∫

X

|f |ω
n

n!
).

Furthermore, if
√
−1Λω∂∂̄f ≥ 0, then

√
−1Λω∂∂̄f = 0.

We fix a background metric K in the bundle E, and suppose that

sup
X

|ΛωFK,θ|K < +∞.

Define the analytic degree of E to be the real number

degω(E,K) =
√
−1

∫

X

tr(ΛωFK,θ)
ωn

n!
.

According to the Chern-Weil formula with respect to the metric K (Lemma 3.2 in [29]),
we can define the analytic degree of any saturated sub-Higgs sheaf V of (E, ∂E, θ) by

(1.1) degω(V,K) =

∫

X

√
−1tr(πΛωFK,θ)− |∂θπ|2K

ωn

n!
,

where π denotes the projection onto V with respect to the metric K. Following [29], we
say that the Higgs bundle (E, ∂E , θ) is K-analytic stable (semi-stable) if for every proper
saturated sub-Higgs sheaf V ⊂ E,

degω(V,K)

rank(V )
< (≤)

degω(E,K)

rank(E)
.

In this paper, we will show that, under some assumptions on the base space (X, g), the
analytic stability implies the existence of Hermitian-Einstein metric on (E, ∂E , θ), i.e. we
obtain the following Donaldson-Uhlenbeck-Yau type theorem.

Theorem 1.1. Let (X, g) be a non-compact Gauduchon manifold satisfying the Assump-
tions 1,2,3, and |dωn−1|g ∈ L2(X), (E, ∂̄E , θ) be a Higgs bundle over X with a Hermitian
metric K satisfying supX |ΛωFK,θ|K < +∞. If (E, ∂̄E , θ) is K-analytic stable, then there

exists a Hermitian metric H with ∂θ(logK
−1H) ∈ L2, H and K are mutually bounded,

such that √
−1Λω(FH + [θ, θ∗H ]) = λK,ω · IdE ,
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where the constant λK,ω = degω(E,K)
rank(E)Vol(X,g)

.

From the Chern-Weil formula (1.1), it is easy to see that the existence of Hermitian-
Einstein metric H implies (E, ∂̄E , θ) is H-analytic poly-stable. Our result is slightly
better than that in [29], where Simpson only obtained a Hermitian metric with vanishing
trace-free curvature. The reason is that, in Section 4, we can solve the following Poisson
equation

(1.2) − 2
√
−1Λω∂̄∂f = ψ

on the non-Kähler and non-compact manifold (X, g) when
∫
X
ψ ωn

n!
= 0. In [29], Simpson

used Donaldson’s heat flow method to attack the existence problem of the Hermitian-
Einstein metrics on Higgs bundles, and his proof relies on the properties of the Donaldson
functional. However, the Donaldson functional is not well-defined when g is only Gaudu-
chon. So Simpson’s argument is not applicable in our situation directly. In this paper,
we follow the argument of Uhlenbeck-Yau in [32], where they used the continuity method
and their argument is more natural. We first solve the following perturbed equation on
(X, g):

(1.3)
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(K−1H) = 0.

The above perturbed equation can be solved by using the fact that the elliptic operators
are Fredholm if the base manifold is compact. Generally speaking, this fact is not true in
the non-compact case, which means we can not directly apply this method to solve the
perturbed equation on the non-compact manifold. To fix this, we combine the method of
heat flow and the method of exhaustion to solve the perturbed equation on (X, g) for any
0 < ε ≤ 1, see Section 5 for details. For simplicity, we set

(1.4) Φ(H, θ) =
√
−1Λω(FH + [θ, θ∗H ])− λK,ω · IdE.

Under the assumptions as that in Theorem 1.1, we can prove the following identity:

(1.5)

∫

X

tr(Φ(K, θ)s) + 〈Ψ(s)(∂θs), ∂θs〉K
ωn

n!
=

∫

X

tr(Φ(H, θ)s),

where s = log(K−1H) and

(1.6) Ψ(x, y) =

{
ey−x−1
y−x

, x 6= y;

1, x = y.

By the above identity (1.5) and Uhlenbeck-Yau’s result ([32]), that L2
1 weakly holomorphic

sub-bundles define coherent sub-sheaves, we can obtain the existence result of Hermitian-
Einstein metric by using the continuity method. It should be pointed out that application
of the identity (1.5) plays a key role in our argument (see Section 6), which is slightly
different with that in [32] (or [6, 20, 21]).

In the end of this paper, we also study the semi-stable case. A Higgs bundle is said
to be admitting an approximate Hermitian-Einstein structure, if for every δ > 0, there
exists a Hermitian metric H such that

sup
X

|
√
−1Λω(FH + [θ, θ∗H ])− λK,ω · IdE |H < δ.
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This notion was firstly introduced by Kobayashi([15]) in holomorphic vector bundles (i.e.
θ = 0). He proved that over projective manifolds, a semi-stable holomorphic vector bundle
must admit an approximate Hermitian-Einstein structure. In [17], Li and the third author
proved this result is valid for Higgs bundles over compact Kähler manifolds. There are
also some other interesting works related, see references [5, 7, 13, 26] for details. In this
paper, we obtain an existence result of approximate Hermitian-Einstein structures on
analytic semi-stable Higgs bundles over a class of non-compact Gauduchon manifolds. In
fact, we prove that:

Theorem 1.2. Under the same assumptions as that in Theorem 1.1, if the Higgs bundle
(E, ∂̄E , θ) is K-analytic semi-stable, then there must exist an approximate Hermitian-
Einstein structure, i.e. for every δ > 0, there exists a Hermitian metric H with H and
K mutually bounded, such that

sup
X

|
√
−1Λω(FH + [θ, θ∗H ])− λK,ω · IdE |H < δ.

This paper is organized as follows. In Section 2, we give some estimates and preliminar-
ies which will be used in the proof of Theorems 1.1 and 1.2. At the end of Section 2, we
prove the identity (1.5). In Section 3, we get the long-time existence result of the related
heat flow. In Section 4, we consider the Poisson equation (1.2) on some non-compact
Gauduchon manifolds. In Section 5, we solve the perturbed equation (1.3). In Section 6,
we complete the proof of Theorems 1.1 and 1.2.

2. Preliminary results

Let (M, g) be an n-dimensional Hermitian manifold. Let (E, ∂̄E , θ) be a rank r Higgs
bundle over M and H0 be a Hermitian metric on E. We consider the following heat flow.

(2.1) H−1∂H

∂t
= −2(

√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)),

where H(t) is a family of Hermitian metrics on E and ε is a nonnegative constant. Choos-
ing local complex coordinates {zi}ni=1 on M , then ω =

√
−1gij̄dz

i ∧ dzj . We define the
complex Laplace operator for functions

∆̃f = −2
√
−1Λω∂̄∂f = 2gij̄

∂2f

∂zi∂z̄j
,

where (gij̄) is the inverse matrix of the metric matrix (gij̄). As usual, we denote the
Beltrami-Laplcaian operator by ∆. It is well known that the difference of the two Lapla-
cians is given by a first order differential operator as follows

(∆̃−∆)f = 〈V,∇f〉g,
where V is a well-defined vector field on M .

Proposition 2.1. Let H(t) be a solution of the flow (2.1), then

(2.2) (
∂

∂t
− ∆̃){e2εt · tr(

√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log h)} = 0
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and

(2.3) (
∂

∂t
− ∆̃)|

√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log h|2H ≤ 0.

Proof. For simplicity, we denote
√
−1Λω(FH + [θ, θ∗H ]) − λ · IdE + ε log h = Φε. By

calculating directly, we have

(2.4)
∂

∂t
Φε =

√
−1Λω{∂̄E(∂H(h−1∂h

∂t
)) + [θ, [θ∗H , h−1∂h

∂t
]]}+ ε

∂

∂t
(log h),

and

∆̃|Φε|2H = −2
√
−1Λω∂̄∂tr{ΦεH

−1Φ̄t
εH}

= −2
√
−1Λω∂̄tr{∂ΦεH

−1Φ̄t
εH − ΦεH

−1∂HH−1Φ̄t
εH

+ ΦH−1∂̄Φε

t
H + ΦεH

−1Φ̄t
εHH

−1∂H}
= 2Re〈−2

√
−1Λω∂̄E∂HΦε,Φε〉H + 2|∂HΦε|2H + 2|∂̄EΦε|2H .

From (2.4), it is easy to conclude that

(2.5) (
∂

∂t
− ∆̃)trΦε = −2εtrΦε.

Then, (2.5) implies (2.2).
From [22, p. 237], we can choose an open dense subset W ⊂ M × [0, T0] satisfying at

each (x0, t0) ∈ W there exist an open neighborhood U of (x0, t0), a local unitary basis
{ei}ri=1 with respect to H and functions {λi ∈ C∞(U,R)}ri=1 such that

h(y, t) =
r∑

i=1

eλi(y,t)ei(y, t)⊗ ei(y, t)

for all (y, t) ∈ U , where {ei}ri=1 is the corresponding dual basis. Then we get

∂

∂t
(log h) =

r∑

i=1

(
dλi
dt

)ei ⊗ ei +
∑

i 6=j

(λj − λi)αjiei ⊗ ej ,

and

h−1∂h

∂t
=

r∑

i=1

(
dλi
dt

)ei ⊗ ei +
∑

i 6=j

(eλj−λi − 1)αjiei ⊗ ej,

where d
dt
ei = αijej . Since (λi − λj)(e

λi−λj − 1) ≥ 0 for all λi, λj ∈ R, we have

〈 ∂
∂t

(log h), h−1∂h

∂t
〉H ≥ 0.

Using the above formulas, we conclude that

(
∂

∂t
− ∆̃)|Φε|2H = −4〈

√
−1Λω[θ, [θ

∗H ,Φε]],Φε〉H − 2|∂HΦε|2H − 2|∂̄EΦ|2H

+ 2ε〈 ∂
∂t

(log h),Φε〉H
≤ 0.

�
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We introduce the Donaldson’s distance on the space of the Hermitian metrics as follows.

Definition 2.2. For any two Hermitian metrics H and K on the bundle E, we define

σ(H,K) = tr(H−1K) + tr(K−1H)− 2rank(E).

It is obvious that σ(H,K) ≥ 0, with equality if and only if H = K. A sequence of
metrics Hi converges to H in the usual C0 topology if and only if supM σ(Hi, H) → 0.

Proposition 2.3. Let H(t), K(t) be two solutions of the flow (2.1), then

(∆̃− ∂

∂t
)σ(H(t), K(t)) ≥ 0.

Proof. Setting h(t) = K(t)−1H(t), we have

(∆̃− ∂

∂t
)(trh + trh−1)

= 2tr(−
√
−1Λω∂̄Ehh

−1∂Kh) + 2tr(−
√
−1Λω∂̄Eh

−1h∂Hh
−1)

+ 2tr{h(
√
−1Λω[θ, θ

∗H − θ∗K ])) + 2tr(h−1(
√
−1Λω[θ, θ

∗K − θ∗H ])}
+ 2εtr{h(log(H−1

0 H)− log(H−1
0 K)) + h−1(log(H−1

0 K)− log(H−1
0 H))}

≥ 0,

where we used

tr{h(
√
−1Λω[θ, θ

∗H − θ∗K ])} = |θh 1
2 − hθh−

1
2 |2K

and

tr{h−1(
√
−1Λω[θ, θ

∗K − θ∗H ])} = |h− 1
2θ − h

1
2 θh−1|2K .

It remains to show that

A := tr{h(log(H−1
0 H)− log(H−1

0 K)) + h−1(log(H−1
0 K)− log(H−1

0 H))} ≥ 0.

Once we set log(H−1
0 H) = s1, log(H

−1
0 K) = s2, we have

A = tr
(
e−s2es1(s1 − s2) + e−s1es2(s2 − s1)

)

= tr
(
e−s2(es1 − es2)(s1 − s2) + e−s1(es2 − es1)(s2 − s1)

)
.

Hence we only need to show

tr
(
e−s2(es1 − es2)(s1 − s2)

)
≥ 0.
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Choose unitary basis {eα}rα=1 such that s2(eα) = λαeα. Similarly, s1(ẽβ) = λ̃β ẽβ under
the unitary basis {ẽβ}rβ=1. We also assume that eα = bαβ ẽβ. Direct calculation yields

tr
(
e−s2(es1 − es2)(s1 − s2)

)
=

r∑

α=1

〈e−s2(es1 − es2)(s1 − s2)(eα), eα〉H0

=

r∑

α=1

e−λα〈
r∑

β=1

bαβ(λ̃β − λα)ẽβ ,

r∑

γ=1

bαγ(e
λ̃γ − eλα)ẽγ〉H0

=

r∑

α,β=1

e−λαbαβbαβ(λ̃β − λα)(e
λ̃β − eλα)

≥ 0.

�

Corollary 2.4. Let H, K be two Hermitian metrics satisfying (1.3), then

∆̃σ(H,K) ≥ 0.

At the end of this section, we give a proof of the identity (1.5). We first recall some
notation. Set Herm(E,H0) = {η ∈ End(E) | η∗H0 = η}. Given s ∈ Herm(E,H0), we can
choose a local unitary basis {eα}rα=1 respect to H0 and local functions {λα}rα=1 such that

s =

r∑

α=1

λα · eα ⊗ eα,

where {eα}rα=1 denotes the dual basis of E
∗. Let Ψ ∈ C∞(R×R,R) and A =

r∑
α,β=1

Aα
βeα⊗

eβ ∈ End(E). We define:

Ψ(η)(A) = Ψ(λα, λβ)A
α
βeα ⊗ eβ.

Let (M, g) be a compact Gauduchon manifold with non-empty smooth boundary ∂M .
Let ϕ be a smooth function defined on M and satisfy the boundary condition ϕ|∂M = t,
where t is a constant. By Stokes’ formula, we have

∫

M

|dϕ|2ω
n

n!
= 2

∫

M

(t− ϕ)
√
−1∂∂̄ϕ ∧ ωn−1

(n− 1)!
− 2

∫

M

√
−1∂((t − ϕ)∂̄ϕ) ∧ ωn−1

(n− 1)!

=

∫

M

(t− ϕ)∆̃ϕ
ωn

n!
+

∫

M

√
−1∂̄((t− ϕ)2 ∧ ∂ ωn−1

(n− 1)!
)

+

∫

M

√
−1∂(∂̄(t− ϕ)2 ∧ ωn−1

(n− 1)!
)−

∫

M

√
−1(t− ϕ)2∂̄(∂

ωn−1

(n− 1)!
)

=

∫

M

(t− ϕ)∆̃ϕ
ωn

n!
.

(2.6)

Using (2.6), by the same argument as that in [29] (Lemma 5.2), we can obtain the following
lemma.
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Lemma 2.5 ([29, Lemma 5.2]). Suppose (X, g) is a non-compact Gauduchon manifold

admitting an exhaustion function φ with
∫
X
|∆̃φ|ωn

n!
<∞, and suppose η is a (2n−1)-form

with
∫
X
|η|2ωn

n!
<∞. Then if dη is integrable,

∫

X

dη = 0.

Proposition 2.6. Let (E, ∂̄E , θ) be a Higgs bundle with a fixed Hermitian metric H0 over
a Gauduchon manifold (M, g). Let H be a Hermitian metric on E and s := log(H−1

0 H).
If one of the following two conditions is satisfied:

(1)Suppose that M is a compact manifold with non-empty smooth boundary ∂M , and
H is a Hermitian metric on E with the same boundary condition as that of H0, i.e.
H|∂M = H0|∂M .

(2)Suppose that M is a non-compact manifold admitting an exhaustion function φ with∫
M
|∆̃φ|ωn

n!
< +∞. Furthermore, we also assume that |dωn−1|g ∈ L2(M), s ∈ L∞(M) and

D1,0
H0,θ

s ∈ L2(M).
Then we have the following identity:

(2.7)

∫

M

tr(Φ(H0, θ)s)
ωn

n!
+

∫

M

〈Ψ(s)(∂θs), ∂θs〉H0

ωn

n!
=

∫

M

tr(Φ(H, θ)s)
ωn

n!
,

where ∂θ = ∂̄E + θ and Ψ is the function which is defined in (1.6).

Proof. Set h = H−1
0 H = es. By the definition, we have

(2.8) tr((Φ(H, θ)− Φ(H0, θ))s) = 〈
√
−1Λω(∂̄(h

−1∂H0h) + [θ, θ∗H − θ∗H0 ]), s〉H0.

Using tr(h−1(∂H0h)s) = tr(s∂H0s), tr(s[θ
∗H0 , s]) = 0 and ∂∂̄ωn−1 = 0, we have

∫

M

〈
√
−1Λω(∂̄(h

−1∂H0h)), s〉H0

ωn

n!

=

∫

M

√
−1∂̄tr(s∂H0s) ∧

ωn−1

(n− 1)!
+

∫

M

√
−1tr(h−1∂H0h∂̄s) ∧

ωn−1

(n− 1)!

=

∫

M

√
−1tr(s∂H0s) ∧ ∂(

ωn−1

(n− 1)!
) +

∫

M

√
−1tr(h−1∂H0h∂̄s) ∧

ωn−1

(n− 1)!

+

∫

M

√
−1∂̄(tr(s∂H0s) ∧

ωn−1

(n− 1)!
)

=

∫

M

∂(

√
−1

2
tr(s2) ∧ ∂( ωn−1

(n− 1)!
)) +

∫

M

√
−1∂̄(tr(s∂H0s) ∧

ωn−1

(n− 1)!
)

+

∫

M

√
−1tr(h−1∂H0h∂̄s) ∧

ωn−1

(n− 1)!

=

∫

M

∂(

√
−1

2
tr(s2) ∧ ∂( ωn−1

(n− 1)!
)) +

∫

M

√
−1∂̄(tr(sD1,0

H0,θ
s) ∧ ωn−1

(n− 1)!
)

+

∫

M

√
−1tr(h−1∂H0h∂̄s) ∧

ωn−1

(n− 1)!
.

(2.9)
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In condition (1), by using s|∂M = 0 and Stokes formula, in condition (2), by using Lemma
2.5, we have

(2.10)

∫

M

〈
√
−1Λω(∂̄(h

−1∂H0h)), s〉H0

ωn

n!
=

∫

M

√
−1tr(h−1∂H0h∂̄s) ∧

ωn−1

(n− 1)!
.

In [26, p.635], it was proved that

(2.11) tr
√
−1Λω(h

−1D1,0
H,θh∂θs) = 〈Ψ(s)(∂θs), ∂θs〉H0,

and

(2.12)

∫

M

tr(
√
−1Λω[θ, θ

∗H − θ∗H0 ]s)
ωn

n!
=

∫

M

tr(
√
−1h−1[θ∗H0 , h][θ, s])

ωn−1

(n− 1)!
.

By (2.10), (2.11) and (2.12), we obtain

(2.13)

∫

M

〈
√
−1Λω(∂̄(h

−1∂H0h) + [θ, θ∗H − θ∗H0 ]), s〉H0

ωn

n!
=

∫

M

〈Ψ(s)(∂θs), ∂θs〉H0

ωn

n!
.

Then (2.8) and (2.13) imply (2.7).
�

3. The related heat flow on Hermitian manifolds

In this section, we consider the existence of long-time solutions of the related heat flow
(2.1). Let (M, g) be a compact Hermitian manifold (with possibly non-empty boundary),
and (E, ∂̄E , θ) be a Higgs bundle over M . If M is closed then we consider the following
evolution equation:

(3.1)

{
H−1 ∂H

∂t
= −2(

√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)),

H(0) = H0.

If M is a compact manifold with non-empty smooth boundary ∂M , for given data H̃ on
∂M , we consider the following Dirichlet boundary value problem:

(3.2)





H−1 ∂H
∂t

= −2(
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)),

H(0) = H0,

H|∂M = H̃.

When ε = 0, (2.1) is just the Hermitian-Yang-Mills flow, the existence of long-time
solutions of (3.1) and (3.2) on Hermitian manifolds was proved in [34]. It is easy to see
that the flow (2.1) is strictly parabolic, so standard parabolic theory gives the short-time
existence.

Proposition 3.1. For sufficiently small T > 0, (3.1) and (3.2) have a smooth solution
defined for 0 ≤ t < T .

Next, following the arguments in [9, Lemma 19] and [29, Lemma 6.4], we will prove the
long-time existence.

Lemma 3.2. Suppose that a smooth solution H(t) of (3.1) or (3.2) is defined for 0 ≤ t <
T < +∞. Then H(t) converge in C0-topology to some continuous non-degenerate metric
HT as t→ T .
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Proof. Given ǫ > 0, by continuity at t = 0 we can find a δ such that

sup
M

σ(H(t0), H(t′0)) < ǫ

for 0 < t0, t
′
0 < δ. Then Proposition 2.3 and the maximum principle imply that

sup
M

σ(H(t), H(t′)) < ǫ

for all t, t′ > T − δ. This implies that H(t) are uniformly Cauchy and converge to a
continuous limiting metric HT . On the other hand, by Proposition 2.1, we know that

sup
M×[0,T )

|
√
−1Λω(FH(t) + [θ, θ∗H (t)])− λ · IdE + ε log(H−1

0 H(t))|H(t) < B,

where B is a uniform constant depending only on the initial data H0. Then using

| ∂
∂t

(log trh)|H ≤ 2|
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)|H,

and

| ∂
∂t

(log trh−1)|H ≤ 2|
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)|H,

one can conclude that σ(H(t), H0) are bounded uniformly on M × [0, T ), therefore HT is
a non-degenerate metric. �

For further consideration, we recall the following lemma.

Lemma 3.3 (Lemma 3.3 in [34]). LetM be a compact Hermitian manifold without bound-
ary (with non-empty boundary). Let H(t), 0 ≤ t < T , be any one-parameter family of
Hermitian metrics on the Higgs bundle E over M (and satisfying Dirichlet boundary
condition), and suppose H0 is the initial Hermitian metric. If H(t) converge in the C0

topology to some continuous metric HT as t→ T , and if supM |ΛωFH(t)|H0 is bounded uni-
formly in t, then H(t) are bounded in C1 and also bounded in Lp

2 (for any 1 < p < +∞)
uniformly in t.

Proposition 3.4. (3.1) and (3.2) have a unique solution H(t) which exists for 0 ≤ t <
+∞.

Proof. Proposition 3.1 guarantees that a solution exists for a short time. Suppose that
the solution H(t) exists for 0 ≤ t < T < +∞. By Lemma 3.2, H(t) converges in C0 to
a non-degenerate continuous limit metric H(T ) as t → T . Since t < +∞, (2.3) implies
supM |ΛωFH(t)|H0 is bounded uniformly in [0, T ). Then by Lemma 3.3, H(t) are bounded
in C1 and also bounded in Lp

2 (for any 1 < p < +∞) uniformly in t. Since (3.1) and (3.2)
is quadratic in the first derivative of H we can apply Hamilton’s method [11] to deduce
that H(t) → H(T ) in C∞, and the solution can be continued past T . Then (3.1) and
(3.2) have a solution H(t) defined for all time.

From Proposition 2.3 and the maximum principle, it is easy to conclude the uniqueness
of the solution.

�
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Proposition 3.5. Suppose H(t) is a long-time solution of the flow (2.1) on compact
Hermitian manifold M (with nonempty smooth boundary ∂M). Set h(t) = H−1

0 H(t) and
assume that there exists a constant C0 such that

sup
(x,t)∈M×[0,+∞)

| log h|H0 ≤ C0.

Then, for any compact subset Ω ⊂M , there exists a uniform constant C1 depending only
on C0, d

−1 and the geometry of Ω̃ such that

(3.3) sup
(x,t)∈Ω×[0,+∞)

|h−1∂H0h|H0 ≤ C1,

where d is the distance of Ω to ∂M and Ω̃ = {x ∈M |dist(x,Ω) ≤ 1
2
d}.

Proof. We will follow the argument in [18, Lemma 2.4] to get local uniform C1-estimate.
Let T = h−1∂H0h. Direct computations give us that

(3.4) (∆̃− ∂

∂t
)trh ≥ −2tr(

√
−1Λω(∂̄hh

−1∂H0h)) + 2tr(hΦ(H0, θ)) + 2εtr(h log h),

∂

∂t
T = ∂H(h

−1 ∂

∂t
h),

and

(∆̃− ∂

∂t
)|T |2H ≥ |∇HT |2H − Č1(|ΛωFH |H + |FH0|H + |θ|2H + |Rm(g)|g + |∇gJ |2g + ε)|T |2H

− Č2|∇H0(ΛωFH0)|H |T |H − 4|∇H0θ|2H − ε| logh|2H ,(3.5)

where J is the complex structure on M and positive constants Č1, Č2 depend only on the
dimension n and the rank r. By (3.5) and Proposition 2.1, we have

(3.6) (∆̃− ∂

∂t
)|T |2H ≥ |∇HT |2H − Č3|T |2H − Č3

on the domain Ω̃ × [0,+∞), where Č3 is a uniform constant depending only on C0,

maxΩ̃ |θ|H0 and the geometry of Ω̃.
Setting Ω = {x ∈ M |dist(x,Ω) ≤ 1

4
d}. Let ψ1, ψ2 be non-negative cut-off functions

satisfying:

ψ1 =

{
0, x ∈M\Ω,
1, x ∈ Ω,

ψ2 =

{
0, x ∈M\Ω̃,
1, x ∈ Ω.

and

|dψi|2 + |∆̃ψi| ≤ c, i = 1, 2,

where c = 32d−2. Consider the following test function

f(·, t) = ψ2
1 |T |2H +Wψ2

2trh,
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where the constant W will be chosen large enough later. It follows from (3.4) and (3.6)
that

(∆̃− ∂

∂t
)f ≥ ψ2

2(2We−C0 − Č3 − 18c− 8e2C0)|T |2H − C̃0,

where C̃0 is a positive constant depending only on C0. If we choose

W =
1

2
e−C0(Č3 + 18c+ 8e2C0 + 1),

then

(3.7) (∆̃− ∂

∂t
)f ≥ ψ2

2 |T |2H − C̃0

on M × [0,+∞). Let f(q, t0) = maxM×[0,+∞) f . On the basis of the definition of ψi and
the uniform C0-bound of h(t), we may assume that:

(q, t0) ∈ Ω× (0,+∞).

Of course the inequality (3.7) yields

|T (t0)|2H(t0)
(q) ≤ C̃0,

and then (3.3). �

In the next part of this section, we will consider the long-time existence of the heat
flow (2.1) on some non-compact Hermitian manifold (X, g). In the following, we suppose
that there exists a non-negative exhaustion function φ with

√
−1Λω∂∂̄φ bounded, i.e.

(X, g) satisfies the Assumption 2. Fix a number ϕ and let Xϕ denote the compact space
{x ∈ X|φ(x) ≤ ϕ}, with boundary ∂Xϕ. Let H0 be an initial metric on E over X . We
consider the following Dirichlet boundary condition

(3.8) H|∂Xϕ
= H0|∂Xϕ

.

By Proposition 3.4, on every Xϕ, the flow (2.1) with the above Dirichlet boundary
condition and with the initial data H0 admits a unique long-time solution Hϕ(t) for
0 ≤ t < +∞.

Proposition 3.6. Suppose Hϕ(t) is a long-time solution of the flow (2.1) on Xϕ satisfying
the Dirichlet boundary condition (3.8), then

(3.9) | log h|H0(x, t) ≤
1

ε
max
Xϕ

|Φ(H0, θ)|H0, ∀(x, t) ∈ Xϕ × [0,+∞).

where h(t) = H−1
0 Hϕ(t), C0 is a uniform constant depending only on ε−1 and the initial

data maxXϕ
|Φ(H0, θ)|H0.

Proof. By a direct calculation, we have

〈H−1∂H

∂t
, log h〉H0 = −2〈

√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log h, log h〉H0

= −2〈Φ(H0, θ) +
√
−1Λω(∂̄(h

−1∂H0h) + [θ, θ∗H − θ∗H0 ]) + ε log h, log h〉H0

≤ −2〈Φ(H0, θ) +
√
−1Λω∂̄(h

−1∂H0h) + ε log h, log h〉H0 ,
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where we have used the inequality ((2.6) in [26])

〈
√
−1Λω[θ, θ

∗H − θ∗H0 ], log h〉H0 ≥ 0.

On the other hand, it is easy to check that

〈H−1∂H

∂t
, log h〉H0 = 〈h−1∂h

∂t
, log h〉H0 =

1

2

∂

∂t
| log h|2H0

and

〈
√
−1Λω∂̄(h

−1∂H0h), log h〉H0 ≥ −1

2
∆̃(| log h|2H0

).

Then
1

4
(
∂

∂t
− ∆̃)(| log h|2H0

) ≤ −ε| log h|2H0
+ |Φ(H0, θ)|H0| log h|H0 ,

which together with the maximum principle implies (3.9).
�

Lemma 3.7 ([29, Lemma 6.7]). Suppose u is a function on some Xϕ × [0, T ], satisfying

(∆̃− ∂

∂t
)u ≥ 0, u|t=0 = 0,

and suppose there is a bound supXϕ
u ≤ C1. Then we have

u(x, t) ≤ C1

ϕ
(φ(x) + C2t),

where C2 is the bound of ∆̃φ in Assumption 2.

In the following, we assume that there exists a constant C such that supX |Φ(H0, θ)|H0 ≤
C. For any compact subset Ω ⊂ X , there exists a constant ϕ0 such that Ω ⊂ Xϕ0. Let
Hϕ1(t) and Hϕ2(t) be the long-time solutions of the flow (2.1) satisfying the Dirichlet
boundary condition (3.8) for ϕ0 < ϕ1 < ϕ2. Let u = σ(Hϕ1, Hϕ2). Proposition 3.6 gives
a uniform bound on u, and u is a subsolution for the heat operator with u(0) = 0. By
Lemma 3.7, we have

(3.10) σ(Hϕ, Hϕ1) ≤ C1
(ϕ0 + C2T )

ϕ

on Xϕ0×[0, T ]. Then Hϕ is a Cauchy sequence on Xϕ0×[0, T ] for ϕ→ ∞. Proposition 3.6
and Proposition 3.5 give the uniform C0 and local C1 estimates of Hϕ(t). One can get the
local uniform C∞-estimate of Hϕ(t) by the standard Schauder estimate of the parabolic
equation. It should be point out that by applying the parabolic Schauder estimate, one
can only get the uniform C∞-estimate of h(t) on Xϕ× [τ, T ], where τ > 0 and the uniform
estimate depends on τ−1. To fix this, one can use the maximum principle to get a local
uniform bound on the curvature |FH |H , then apply the elliptic estimates to get local
uniform C∞-estimates. We will omit this step here, since it is similar to [18, Lemma 2.5].
By choosing a subsequence ϕ → ∞, we have that Hϕ(t) converge in C∞

loc-topology to a
long-time solution H(t) of the heat flow (2.1) on X . So, we obtain the following theorem.
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Theorem 3.8. Let (E, ∂̄E , θ) be a Higgs bundle with fixed Hermitian metric H0 over a
Hermitian manifold (X, g) satisfying the Assumptions 2. Suppose sup

X

|Φ(H0, θ)|H0 < +∞,

then, on the whole X, the flow (2.1) has a long-time solution H(t) satisfying:

(3.11) sup
(x,t)∈X×[0,+∞)

| log h|H0(x, t) ≤
1

ε
sup
X

|Φ(H0, θ)|H0.

4. Poisson equations on the non-compact manifold

In this section, we are devoted to solve the equation ∆̃f = ψ on a class of non-compact
Gauduchon manifold. Since the difference of the complex Laplacian and the Beltrami-
Laplcaian is given by a linear first order differential operator, the following proposition
should be well known, it also can be proved in the same way as that in Theorem 5.1.

Proposition 4.1. Let (M, g) be a compact Hermitian manifold with non-empty boundary

∂M . Suppose that ψ ∈ C∞(M), then for any function f̃ on the restriction to ∂M , there

is a unique function f ∈ C∞(M) which satisfies the equation ∆̃f = ψ + εf and f = f̃ on
∂M for any ε > 0.

Let (X, g) be a non-compact Gauduchon manifold with finite volume and a non-negative
exhaustion function φ. By Proposition 4.1, we know that the following Dirichlet problem
is solvable on Xϕ, i.e. {

∆̃fϕ − εfϕ − ψ = 0, ∀x ∈ Xϕ,

fϕ(x)|∂Xϕ
= 0.

By simple calculations, we have

∆̃|fϕ|2 ≥ 2|fϕ|(ε|fϕ| − |ψ|).
The maximum principle implies:

max
Xϕ

|fϕ| ≤
1

ε
sup
Xϕ

|ψ|.

By (2.6), we have
∫

Xϕ

|dfϕ|2
ωn

n!
= −

∫

Xϕ

fϕ∆̃fϕ
ωn

n!

≤ 1

ε
sup
Xϕ

|ψ|2Vol(Xϕ, g).

Then, by using the standard elliptic estimates, we can prove that, by choosing a subse-
quence, fϕ converge in C∞

loc-topology to a solution on whole X , i.e. we prove the following
proposition.

Proposition 4.2. Let (X, g) be a non-compact Gauduchon manifold with finite volume
and a non-negative exhaustion function φ. Suppose that ψ ∈ C∞(X) satisfies sup

X

|ψ| <
+∞. For any ε > 0, there is a function f ∈ C∞(X) which satisfies the equation

(4.1) ∆̃f = ψ + εf
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with

(4.2) sup
X

|f | ≤ 1

ε
sup
X

|ψ|

and

(4.3)

∫

X

|df |2ω
n

n!
≤ 1

ε
(sup

X

|ψ|)2Vol(X, g).

Now we are ready to solve the Poisson equation on the non-compact Gauduchon man-
ifold.

Proposition 4.3. Let (X, g) be a non-compact Gauduchon manifold satisfying Assump-
tions 1,2,3 and |dωn−1|g ∈ L2(X). Suppose that ψ ∈ C∞(X) satisfies

∫
X
ψ = 0 and

sup
X

|ψ| < +∞. Then there is a function f ∈ C∞(X) which satisfies the Possion equation

(4.4) ∆̃f = ψ,

(4.5)

∫

X

|df |2ω
n

n!
< +∞

and supX |f | < +∞.

Proof. By a direct calculation, we have

∆̃ log(ef + e−f ) ≥ −|∆̃f |.
On the other hand, it is easy to check that

|f | ≤ log(ef + e−f ) ≤ |f |+ log 2.

From Proposition 4.2, for any ε > 0, we have a solution fε of the equation (4.1) and fε
satisfies (4.2). By Assumption 3, we have

sup
X

|fε| ≤ sup
X

log(efε + e−fε ) ≤ C̃1

∫

X

|fε|+ C̃2,

where constants C̃1 and C̃2 depend only on supX |ψ| and Vol(X).
In the following, we will use a contradiction argument to prove that ‖fε‖C0 is uniform

bounded. If ‖fε‖C0 is unbounded, then there exists a subsequence ε → 0, such that
‖fε‖L2 → +∞. Set uε = fε/ ‖ fε ‖L2 . It follows that

‖uε‖L2 = 1 and sup
X

|uε| < C̃3 < +∞,

where C̃3 is a uniform constant depending only on supX |ψ| and Vol(X). Using the
conditions ∂∂̄ωn−1 = 0, |dωn−1|g ∈ L2(X), (4.2), (4.3), and Lemma 2.5, one can check
that

(4.6)

∫

X

fε∆̃fε
ωn

n!
= −

∫

X

|dfε|2
ωn

n!
.

Substituting the perturbed equation into (4.6), we have
∫

X

|duε|2
ωn

n!
= −ε− 1

‖fε‖L2

∫

X

uεψ
ωn

n!
.
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Then, by passing to a subsequence, we have that uε converges weakly to u∞ in L2
1 as

ε → 0, and u∞ is constant almost everywhere. Note that for any relatively compact
Z ⊂ X , L2

1 → L2(Z) is compact. So
∫

Z

|uε|2 →
∫

Z

|u∞|2.

Recalling supX |uεi| < C̃3 < +∞ and X has finite volume, so for a small ǫ > 0, we have
∫

X\Z

|uε|2 < ǫ,

when Z is big enough. Thus 1 ≥
∫
Z
|u∞|2 ≥ 1− ǫ. So, we have

u∞ = const. 6= 0 a.e..

Using the conditions ∂∂̄ωn−1 = 0, |dωn−1|g ∈ L2(X), (4.2), (4.3) and Lemma 2.5, it is
easy to check that ∫

X

∆̃fε
ωn

n!
= 0.

Then combining ∆̃fε + εfε + ψ = 0 and
∫
X
ψ = 0, we have

∫

X

fε
ωn

n!
= 0,

and ∫

X

uε
ωn

n!
= 0.

Then, we can obtain ∫

X

u∞
ωn

n!
= 0.

We get a contradiction, so we have proved that ‖fϕ‖C0 is bounded uniformly when ε goes
to zero. By standard elliptic estimates, we obtain, by choosing a subsequence fε must
converge to a smooth function f∞ in C∞

loc-topology as ε→ 0, and f∞ satisfies the equation
(4.4). (4.6) implies (4.5). This completes the proof of Proposition 4.3. �

5. Solvability of the perturbed equation

We first solve the Dirichlet problem for the perturbed equation, i.e. we obtain the
following theorem.

Theorem 5.1. Let (E, ∂̄E , θ) be a Higgs bundle with fixed Hermitian metric H0 over
the compact Gauduchon manifold M with non-empty boundary ∂M . There is a unique
Hermitian metric H on E such that

(5.1)
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H) = 0, H|∂M = H0,

for any ε ≥ 0. When ε > 0, we have

(5.2) max
x∈M

|s|H0(x) ≤
1

ε
max
M

|Φ(H0, θ)|H0.
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and

(5.3) ‖D1,0
H0,θ

s‖L2(M) = ‖∂θs‖L2(M) ≤ C(ε−1,Φ(H0, θ),Vol(M)),

where s = log(H−1
0 H). Furthermore, if the initial metric H0 satisfies the following condi-

tion

(5.4) tr(
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE) = 0,

then tr(s) = 0 and H also satisfies the condition (5.4).

Proof. Proposition 3.4 guaranteed the existence of long-time solution H(t) of the heat
equation (3.2). By Proposition 2.1, we have

(5.5) (△̃ − ∂

∂t
)|
√
−1Λω(FH(t) + [θ, θ∗H(t)])− λ · IdE + ε log(H−1

0 H(t))|H(t) ≥ 0.

If the initial metric H0 satisfies the condition (5.4), by (2.2) and the maximum principle,
we know that H(t) must satisfy

tr{
√
−1Λω(FH(t) + [θ, θ∗H(t)])− λ · IdE + ε log(H−1

0 H(t))} = 0.

Then, we have

tr(logH−1
0 H(t)) = 0

and H(t) satisfies the condition (5.4) for all t ≥ 0.
By [31, Chapter 5, Proposition 1.8], one can solve the following Dirichlet problem on

M :

(5.6) △̃v = −|
√
−1Λω(FH0 + [θ, θ∗H0 ])− λ · IdE |H0, v|∂M = 0.

Set w(x, t) =
∫ t

0
|
√
−1Λω(FH+[θ, θ∗H ])−λ·IdE+ε log(H

−1
0 H)|H(x, ρ)dρ−v(x). From (5.5),

(5.6), and the boundary condition satisfied by H implies that, for t > 0, |
√
−1Λω(FH +

[θ, θ∗H ])−λ · IdE+ε log(H−1
0 H)|H(x, t) vanishes on the boundary ofM , it is easy to check

that w(x, t) satisfies

(△̃ − ∂

∂t
)w(x, t) ≥ 0, w(x, 0) = −v(x), w(x, t)|∂M = 0.

By the maximum principle, we have

(5.7)

∫ t

0

|
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)|H(x, ρ)dρ ≤ sup
y∈M

v(y),

for any x ∈M , and 0 < t < +∞.
Let t1 ≤ t ≤ t2, and let h̄(x, t) = H−1(x, t1)H(x, t). It is easy to check that

∂

∂t
log tr(h̄) ≤ 2|

√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)|H.

By integration, we have

tr(H−1(x, t1)H(x, t))

≤ r exp (2

∫ t

t1

|
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)|Hdρ).
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We have a similar estimate for tr(H−1(x, t)H(x, t1)). Combining them we have

σ(H(x, t), H(x, t1))

≤ 2r(exp (2

∫ t

t1

|
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H)|Hdρ)− 1).
(5.8)

By (5.7) and (5.8), we have that H(t) converge in the C0 topology to some continuous
metric H∞ as t −→ +∞. From Lemma 3.3, we know that H(t) are bounded uniformly in
C1

loc and also bounded uniformly in Lp
2,loc (for any 1 < p < +∞) . On the other hand, we

have known that |H−1 ∂H
∂t
| is bounded uniformly. Then, the standard elliptic regularity

implies that there exists a subsequence H(t) −→ H∞ in C∞
loc-topology. From formula (5.7),

we know that H∞ is the desired Hermitian metric satisfying the boundary condition. By
Corollary 2.4 and the maximum principle, it is easy to conclude the uniqueness of solution.

If ε > 0, (3.9) in Proposition 3.6 implies (5.2). By the definition, it is easy to check

|∂θs|2H0
≤ C̃〈Ψ(s)(∂θs), ∂θs〉H0,

where C̃ is a positive constant depending only on the L∞-bound of s. By the identity
(2.7) in Proposition 2.6 and the equation (5.1), we have

∫

M

|∂θs|2H0

ωn

n!
≤ C̃

∫

M

〈Ψ(s)(∂θs), ∂θs〉H0

ωn

n!

= C̃

∫

M

(−tr(Φ(H0, θ)s)− ε|s|2H0
)
ωn

n!

≤ C̃
1

ε
· sup

M

|Φ(H0, θ)|2H0
· Vol(M, g).

(5.9)

Then (5.9) implies (5.3). �

LetX be a non-compact Gauduchon manifold, {Xϕ} an exhausting sequence of compact
sub-domains of X . Suppose (E, ∂̄E, θ) is a Higgs bundle over X and H0 is a Hermitian
metric on E. By Theorem 5.1, we know that the following Dirichlet problem is solvable
on Xϕ, i.e. there exists a Hermitian metric Hϕ(x) such that

{√
−1Λω(FHϕ

+ [θ, θ∗Hϕ ])− λ · IdE + ε log(H−1
0 Hϕ) = 0, ∀x ∈ Xϕ,

Hϕ(x)|∂Xϕ
= H0(x).

In order to prove that we can pass to limit and eventually obtain a solution on the whole
manifold X , we need some a priori estimates. The key is the C0-estimate.

We denote hϕ = H−1
0 Hϕ. Theorem 5.1 implies:

sup
x∈Xϕ

| loghϕ|H0(x) ≤
1

ε
max
Xϕ

|Φ(H0, θ)|H0,

For any compact subset Ω ⊂ X , we can choose a ϕ0 such that Ω ⊂ Xϕ0. By Proposition
3.5, we have the following local uniform C1-estimates, i.e. for any ϕ > ϕ0, there exists

sup
x∈Ω

|h−1
ϕ ∂H0hϕ|H0 ≤ Ĉ1,
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where Ĉ1 is a uniform constant independent on ϕ. The perturbed equation (1.3) and
standard elliptic theory give us uniform local higher order estimates. Then, by passing
to a subsequence, Hϕ converge in C∞

loc topology to a metric H∞ which is a solution of the
perturbed equation (1.3) on the whole manifold X . Therefore we complete the proof of
the following theorem.

Theorem 5.2. Let (E, ∂̄E, θ) be a Higgs bundle with fixed Hermitian metric H0 over the
non-compact Gauduchon manifold (X, g) with finite volume. Suppose there exists a non-
negative exhaustion function φ on X and sup

X

|Φ(H0, θ)|H0 < +∞, then for any ε > 0,

there exists a metric H such that
√
−1Λω(FH + [θ, θ∗H ])− λ · IdE + ε log(H−1

0 H) = 0,

(5.10) sup
x∈X

| logH−1
0 H|H0(x) ≤

1

ε
sup
X

|Φ(H0, θ)|H0,

and

(5.11) ‖∂θ(logH−1
0 H)‖L2 ≤ C(ε−1,Φ(H0, θ),Vol(X)).

Furthermore, if the initial metric H0 satisfies the condition (5.4) then tr log(H−1
0 H) = 0

and H also satisfies the condition (5.4).

6. Proof of the theorems

Let (X, g) be a non-compact Gauduchon manifold satisfying the Assumptions 1,2,3,
and |dωn−1|g ∈ L2(X), (E, ∂̄E, θ) be a Higgs bundle over X . Fixing a proper background
Hermitian metric K satisfying sup

X

|ΛωFK,θ|K < +∞ on E. By Proposition 4.3, we can

solve the following Poisson equation on (X, g):

√
−1Λω∂̄∂f = −1

r
tr(

√
−1ΛωFK,θ − λK,ω · IdE),

where

λK,ω =

√
−1

∫
X
tr(ΛωFK,θ)

ωn

n!

rank(E)Vol(X)
.

By conformal change K = efK, we can check that K satisfies

(6.1) tr(
√
−1Λω(FK + [θ, θ∗K ])− λK,ω · IdE) = 0.

By the definition and properties of f , it is easy to check that if (E, ∂̄E, θ) is K-analytic
stable then it must be K-analytic stable. So, in the following we can assume that the
initial metric K satisfies the condition (6.1).

From Theorem 5.2, we can solve the following perturbed equation

(6.2) Lε(hε) :=
√
−1Λω(FHε

+ [θ, θ∗Hε ])− λK,ω · IdE + ε log hε = 0,

where hε = K−1Hε = esε . Since the initial metric K satisfies the condition (6.1), then we
have

log det(hε) = tr(sε) = 0
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and

tr(
√
−1Λω(FHε

+ [θ, θ∗Hε ])− λK,ω · IdE) = 0.

Lemma 6.1.

(6.3) sup
X

| log hε| ≤ C7‖ log hε‖L2(X) + C8,

where C7 and C8 are positive constants independent on ε.

Proof. By [29, Lemma 3.1 (d)], we have

∆̃ log(trhε + trh−1
ε ) ≥ −2(|ΛωFHε,θ|Hε

+ |ΛωFK,θ|K).
From (5.10) and (6.2), it is easy to check that |ΛωFHε,θ|Hε

is uniformly bounded. On the
other hand, we have

log(
1

2r
(trhε + trh−1

ε )) ≤ | log hε| ≤ r
1
2 log(trhε + trh−1

ε ),

Then by Assumption 3, we have (6.3). �

Proof of Theorem 1.1

When (E, ∂̄E , θ) is K-stable, we will show that, by choosing a subsequence, Hε con-
verge to a Hermitian-Einstein metric H in C∞

loc as ε → 0. By the local C1-estimates in
Proposition 3.5, the standard elliptic estimates and the identity (2.7) in Proposition 2.6,
we only need to obtain a uniform C0-estimate. By Lemma 6.1, the key is to get a uniform
L2-estimate for log hε, i.e. there exists a constant Ĉ independent of ε, such that

(6.4) ‖ log hε‖L2 =

∫

X

| loghε|Hε

ωn

n!
≤ Ĉ

for all 0 < ε ≤ 1. We prove (6.4) by contradiction. If not, there would exist a subsequence
εi → 0 such that

‖ log hεi‖L2 → +∞.

Once we set

sεi = log hεi, li = ‖sεi‖L2 , uεi =
sεi
li
,

we have

tr(uεi) = 0, ‖uεi‖L2 = 1.

Then combining Lemma 6.1, we also have

(6.5) sup
X

|uεi| ≤
1

li
(C7li + C8) < C10 < +∞.

• Step 1 We show that ‖uεi‖L2
1
are uniformly bounded. Since ‖uεi‖L2 = 1, we only

need to prove ‖∂θuεi‖L2 are uniformly bounded.
From Theorem 5.2 and Proposition 2.6, for each εi, we have

(6.6)

∫

X

tr(Φ(K, θ)uεi)
ωn

n!
+ li

∫

X

〈Ψ(liuεi)(∂θuεi), ∂θuεi〉K
ωn

n!
= −εili.
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Consider the function

lΨ(lx, ly) =

{
l, x = y;

el(y−x)−1
y−x

, x 6= y.

From (6.5), we may assume that (x, y) ∈ [−C10, C10] × [−C10, C10]. It is easy to check
that

(6.7) lΨ(lx, ly) →
{
(x− y)−1, x > y;

+∞, x ≤ y,

increases monotonically as l → +∞. Let ς ∈ C∞(R×R,R+) satisfying ς(x, y) < (x−y)−1

whenever x > y. From Eqs. (6.6), (6.7) and the arguments in [29, Lemma 5.4], we have

(6.8)

∫

X

tr(Φ(K, θ)uεi)
ωn

n!
+

∫

X

〈ς(uεi)(∂θuεi), ∂θuεi〉K
ωn

n!
≤ 0, i≫ 0.

In particular, we take ζ(x, y) = 1
3C10

. It is obvious that when (x, y) ∈ [−C10, C10] ×
[−C10, C10] and x > y, 1

3C2
< 1

x−y
. This implies that

∫

X

tr(Φ(K, θ)uεi)
ωn

n!
+

1

3C10

∫

X

|∂θ(uεi)|2K
ωn

n!
≤ 0,

for i≫ 0. Then we have∫

X

|∂θ(uεi)|2K
ωn

n!
≤ 3C2

10 sup
X

|Φ(K, θ)|KVol(X).

Thus, uεi are bounded in L2
1. We can choose a subsequence {uεij} such that uεij ⇀ u∞

weakly in L2
1, still denoted by {uεi}∞i=1 for simplicity. Noting that L2

1 →֒ L2, we have

1 =

∫

X

|uεi|2K →
∫

X

|u∞|2K .

This indicates that ‖u∞‖L2 = 1 and u∞ is non-trivial. Using (6.8) and following a similar
discussion as in [29, Lemma 5.4], we have

(6.9)

∫

X

tr(Φ(K, θ)u∞)
ωn

n!
+

∫

X

〈ς(u∞)(∂θu∞), ∂θu∞〉K
ωn

n!
≤ 0.

• Step 2 Using Uhlenbeck and Yau’s trick ([32]) and Simpson’s argument ([29]), we
construct a Higgs subsheaf which contradicts the stability of (E, ∂̄E , θ).

By (6.9) and the same argument in [29, Lemma 5.5], we conclude that the eigenvalues
of u∞ are constant almost everywhere. Let µ1 < µ2 < · · · < µl be the distinct eigenvalues
of u∞. The facts that tr(u∞) = 0 and ‖u∞‖L2 = 1 force 2 ≤ l ≤ r. For each µα(1 ≤ α ≤
l − 1), we construct a function Pα : R → R such that

Pα =

{
1, x ≤ µα;

0, x ≥ µα+1.

Setting πα = Pα(u∞), from [29, p.887], we have: (i) πα ∈ L2
1; (ii)π

2
α = πα = π∗K

α ; (iii)
(IdE − πα)∂̄πα = 0 and (iv) (IdE − πα)[θ, πα] = 0. By Uhlenbeck and Yau’s regularity
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statement of L2
1-subbundle [32], {πα}l−1

α=1 determine l − 1 Higgs sub-sheaves of E. Set

Eα = πα(E). From tr(u∞) = 0 and u∞ = µl · IdE −
l−1∑
α=1

(µα+1 − µα)πα, it holds

(6.10) µlrank(E) =

l−1∑

α=1

(µα+1 − µα)rank(Eα).

Construct

ν = µldeg(E,K)−
l−1∑

α=1

(µα+1 − µα)deg(Eα, K).

Substituting Eq. (6.10) into ν,

(6.11) ν =
l−1∑

α=1

(µα+1 − µα)rank(Eα)(
deg(E,K)

rank(E)
− deg(Eα, K)

rank(Eα)
).

On the other hand, substituting Eq. (1.1) into ν we have

ν = µl

∫

X

√
−1tr(ΛωFK,θ)−

l−1∑

α=1

(µα+1 − µα){
∫

X

√
−1tr(παΛωFK,θ)− |∂θπα|2}

=

∫

X

tr{(µl · IdE −
l−1∑

α=1

(µα+1 − µα)πα)(
√
−1ΛωFK,θ)}+

l−1∑

α=1

(µα+1 − µα)

∫

X

|∂θπα|2

=

∫

X

tr(u∞
√
−1ΛωFK,θ) + 〈

l−1∑

α=1

(µα+1 − µα)(dPα)
2(u∞)(∂θu∞), ∂θu∞〉K ,

where the function dPα : R× R → R is defined by

dPα(x, y) =

{
Pα(x)−Pα(y)

x−y
, x 6= y;

P ′
α(x), x = y.

One can easily check that,

l−1∑

α=1

(µα+1 − µα)(dPα)
2(µβ, µγ) = |µβ − µγ|−1,

if µβ 6= µγ. Then using (6.9), we have

ν =

∫

X

tr(u∞
√
−1ΛωFK,θ) + 〈

l−1∑

α=1

(µα+1 − µα)(dPα)
2(u∞)(∂θu∞), ∂θu∞〉K

≤ 0.

(6.12)

Combining (6.11) and (6.12), we have

l−1∑

α=1

(µα+1 − µα)rank(Eα)(
deg(E,K)

rank(E)
− deg(Eα, K)

rank(Eα)
) ≤ 0,

which contradicts the stability of E.
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�

In the following, we will prove that the semi-stability implies the existence of approxi-
mate Hermitian-Einstein structure.

Proof of Theorem 1.2

We only need to prove the following claim.

Claim If (E, ∂̄E , θ) is semi-stable, then it holds

lim
ε→0

sup
X

|
√
−1ΛωFHε,θ − λK,ω · IdE |Hε

= lim
ε→0

ε sup
X

| log hε|Hε
= 0.

Proof. If the claim does not hold, then there exist δ > 0 and a subsequence εi → 0, i →
+∞, such that

(6.13) sup
X

|
√
−1ΛωFHεi

,θ − λK,ω · IdE|Hεi
= εi sup

X

| log hεi|Hεi
≥ δ,

for any εi, and
‖ log hεi‖L2 → +∞.

Setting

sεi = log hεi, li = ‖sεi‖L2 , uεi =
sεi
li
,

we have
tr(uεi) = 0, ‖uεi‖L2 = 1.

By (6.13) and Lemma 6.1, we have

(6.14) li ≥
δ

εiC7

− C8

C7

and

sup
X

|uεi| ≤
1

li
(C7li + C8) < C10 < +∞.

By (6.6) and (6.14), we have

(6.15)
δ

C7

+

∫

X

tr(Φ(K, θ)uεi)
ωn

n!
+ li

∫

X

〈Ψ(liuεi)(∂θuεi), ∂θuεi〉K
ωn

n!
≤ εi

C8

C7

.

By (6.15) and the arguments in [29, Lemma 5.4], we have

(6.16)
δ

2C7

+

∫

X

tr(Φ(K, θ)uεi)
ωn

n!
+

∫

X

〈ς(uεi)(∂θuεi), ∂θuεi〉K
ωn

n!
≤ 0, i≫ 0.

By the same argument as that in Step 1 in the proof of Theorem 1.1, we can prove that
‖∂θuεi‖L2 are uniformly bounded. By choosing a subsequence, we have uεi ⇀ u∞ weakly
in L2

1, and ‖u∞‖L2 = 1. Using Eq. (6.16) and following a similar discussion as in [29,
Lemma 5.4, Lemma 5.5], we have

(6.17)
δ

2C7

+

∫

X

tr(Φ(K, θ)u∞)
ωn

n!
+

∫

X

〈ς(u∞)(∂θu∞), ∂θu∞〉K
ωn

n!
≤ 0.

and u∞ = µl · IdE −
l−1∑
α=1

(µα+1−µα)πα, where µ1 < µ2 < · · · < µl, {πα}l−1
α=1 determine l− 1

Higgs sub-sheaves {Eα}l−1
α=1 := {πα(E)}l−1

α=1 of E.
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By (6.17) and the same arguments in [17, p.793-794], we have

ν =

l−1∑

α=1

(µα+1 − µα)rank(Eα)(
deg(E,K)

rank(E)
− deg(Eα, K)

rank(Eα)
)

=

∫

X

tr(u∞
√
−1ΛωFK,∂̄E ,θ) + 〈

l−1∑

α=1

(µα+1 − µα)(dPα)
2(u∞)(∂θu∞), ∂θu∞〉K

≤ − δ

2C7
,

which contradicts the semi-stability of (E, ∂̄E, θ). This completes the proof of the claim.
�
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