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Abstract

Let X1, X2, . . . be independent random variables observed sequen-
tially and such that X1, . . . , Xθ−1 have a common probability density
p0, while Xθ, Xθ+1, . . . are all distributed according to p1 6= p0. It is
assumed that p0 and p1 are known, but the time change θ ∈ Z+ is
unknown and the goal is to construct a stopping time τ that detects
the change-point θ as soon as possible. The existing approaches to this
problem rely essentially on some a priori information about θ. For in-
stance, in Bayes approaches, it is assumed that θ is a random variable
with a known probability distribution. In methods related to hypoth-
esis testing, this a priori information is hidden in the so-called average
run length. The main goal in this paper is to construct stopping times
which do not make use of a priori information about θ, but have nearly
Bayesian detection delays. More precisely, we propose stopping times
solving approximately the following problem:

∆(θ; τα)→ min
τα

subject to α(θ; τα) ≤ α for any θ ≥ 1,

where α(θ; τ) = Pθ

{
τ < θ

}
is the false alarm probability and ∆(θ; τ) =

Eθ(τ − θ)+ is the average detection delay, and explain why such stop-
ping times are robust w.r.t. a priori information about θ.
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delay, Bayes stopping time, CUSUM method, multiple hypothesis test-
ing.
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1 Introduction

Let X1, X2, . . . be independent random variables observed sequentially. It
is assumed X1, . . . , Xθ−1 have a common probability density p0(x), x ∈ Rd,
while Xθ, Xθ+1, . . . are all distributed according to a probability density
p1(x)x ∈ Rd. This paper deals with the simplest change-point detection
problem where it is supposed p0 and p1 are known, but the time change
θ ∈ Z+ is unknown, and the goal is to construct a stopping time τ ∈
Z+ that detects θ as soon as possible. The existing approaches to this
problem rely essentially on some a priori information about θ. For instance,
in Bayes approaches, it is assumed that θ is a random variable with a known
probability distribution, see e.g. [12]. In methods related to hypothesis
testing, this a priori information is hidden in the so-called average run length,
see e.g. [7]. Our main goal in this paper is to construct robust stopping times
which do not make use of a priori information about θ, but have detection
delays close to Bayes ones.

In order to be more precise, denote by Pθ the probability distribution
of (X1, . . . , Xθ−1, Xθ, . . .)

> and by Eθ the expectation with respect to this
measure. In this paper, we characterize τ with the help of two functions in
θ:

• false alarm probability

α(θ; τ) = Pθ

{
τ < θ

}
;

• average detection delay

∆(θ; τ) = Eθ(τ − θ)+, where (x)+ = max{0, x},

and our goal is to construct stopping times solving the following problem:

∆(θ; τα)→ min
τα

subject to α(θ; τα) ≤ α for any θ ≥ 1. (1)

The main difficulty in this problem is related to the fact that for a given
stopping time τα the average delay ∆(θ; τα) depends on θ. This means that
in order to compare two stopping times τα1 and τα2 , one has to compare two
functions in θ ∈ Z+. Obviously, this is not feasible from a mathematical
viewpoint and the principal objective in this paper is to propose stopping
times providing good approximative solutions to (1). Notice also here that
similar problems are common and well-known in statistics and there are
reasonable approaches to obtain their solutions.

In change-point detection, there are two standard methods for construct-
ing stopping times.
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• A Bayes approach. The first Bayes change detection problem was
stated in [4] for on-line quality control problem for continuous techno-
logical processes. In detecting changes in distributions this approach
assumes that θ is a random variable with a known distribution

πm = P{θ = m}, m = 1, 2, . . . ,

and the goal is to construct a stopping time ταπ that solves the averaged
version of (1), i.e.,

∞∑
m=1

πm∆(m; ταπ )→ min
ταπ

subject to
∞∑
m=1

πmα(m; ταπ ) ≤ α. (2)

Emphasize that in contrast to (1), this problem is well defined from a
mathematical viewpoint, but its solution depends on a priori law π.

• A hypothesis testing approach. The first non-Bayesian change de-
tection algorithm based on sequential hypothesis testing was proposed
in [7]. Denote by Xn = (X1, . . . , Xn)> the observations till moment
n. The main idea in this approach is to test sequentially

simple hypothesis

Hn
0 : Xn ∼

n∏
i=1

p0(xi)

vs. compound alternative

Hn
1 : Xn ∼

m−1∏
i=1

p0(xi)

n∏
i=m

p1(xi), m ≤ n.

(3)

So, stopping time τ is defined as follows:

– if Hn
0 is accepted, the observations are continued, i.e., we test

Hn+1
0 vs. Hn+1

1 ;

– If Hn
1 is accepted, then we stop and τ = n.

In order to motivate our idea of robust stopping times, we discuss very
briefly basic statistical properties of the above mentioned approaches.

1.1 A Bayes approach

Usually in this approach the geometric a priori distribution

πm = γ(1− γ)m−1, m = 1, 2, . . . , γ > 0,
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is used. Positive parameter γ is assumed to be known. In this case, the
optimal stopping time is given by the following famous theorem [12]:

Theorem 1.1. The optimal Bayes stopping time (see (2)) is given by

ταγ = min{k : π̄(Xk) ≥ 1− αγ}, (4)

where
π̄γ(Xk) = P

{
θ ≤ k|Xk

}
,

and αγ ≈ α is a constant.

Notice that the geometric a priori distribution results in the following
recursive formula for a posteriori probability (see, e.g., [12]):

π̄γ(Xk) =

=
[γ + (1− γ)π̄γ(Xk−1)]p1(Xk)

[γ + (1− γ)π̄γ(Xk−1)]p1(Xk) + [1− π̄γ(Xk−1)](1− γ)p0(Xk)
.

(5)

So, if we denote for brevity

ργ(Xk) =
π̄γ(Xk)

1− π̄γ(Xk)
,

then (5) may be rewritten in the following equivalent form:

ργ(Xk) =
γ + ργ(Xk−1)

1− γ
× p1(Xk)

p0(Xk)
. (6)

From this equation we see, in particular, that the Bayes stopping time
depends on γ that is hardly known in practice. In statistics, in order to
avoid such dependence, the uniform a priori distribution is usually used.
Let’s look how this idea works in change point detection. The uniform a
priori distribution assumes that γ = 0 and in this case we obtain immediately
from (6)

ρ0(X
k) = ρ0(X

k−1)× p1(Xk)

p0(Xk)
.

Therefore, for
L0(X

k) = log[ρ0(X
k)],

we get

L0(X
k) =

k∑
i=1

log
p1(Xi)

p0(Xi)
.
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Hence, the optimal stopping time in the case of the uniform a priori
distribution is given by

τα◦ = min
{
k : L0(X

k) ≥ tα
}
, (7)

where tα is some constant. Fig. 1 shows a typical trajectory of L0(X
k), k =

1, 2, . . ., in detecting change in the Gaussian distribution with θ = 80.
Computing the false alarm probability for this stopping time is not dif-

ficult and based on the following simple fact. Let

φ(λ) = E∞ exp

[
λ log

p1(X1)

p0(X1)

]
.

Lemma 1.1. For any λ > 0

E∞ exp
{
−τα◦ log[φ(λ)]

}
1
(
τα◦ <∞

)
≤ exp(−λtα).

It follows immediately from the definition of φ(λ) that if λ = 1, then
φ(λ) = 1. So, by this Lemma we get

P∞
{
τα◦ <∞

}
≤ exp(−tα).

As to the average detection delay, it can be easily computed with the
help of the famous Wald identity [14, 2]. The next theorem summarizes
principal properties of τα◦ . Let us assume that

µ0
def
=

∫
log

p0(x)

p1(x)
p0(x) dx > 0 and µ1

def
=

∫
log

p1(x)

p0(x)
p1(x) dx > 0.

Theorem 1.2. Let tα = log(1/α). Then for τα◦ defined by (7) we have

α(θ; τα◦ ) ≤ α,

∆(θ; τα◦ ) =
log(1/α) + θµ0

µ1
.

Fig. 1 illustrates this theorem showing L0(X
k), k = 1, . . . , 200, in the

case of the change in the mean of the Gaussian distribution with θ = 80.
We would like to emphasize that the fact that ∆(θ; τα◦ ) is linear in θ is

not good from practical and theoretical viewpoints. In order to understand
why it is so, let us now turn back to the Bayes setting assuming that γ > 0.
In this case the following theorem holds true.
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Figure 1: Detecting change in the mean of Gaussian distribution with the
help of τα◦ .

Theorem 1.3. Suppose γ > 0. Then for ταγ defined by (4) we have

max
θ∈Z+

α(θ; ταγ ) = 1,

∆(θ; ταγ ) =
log[1/(γα)]

µ1
+O(1), as γ, α→ 0. (8)

This theorem may be proved with the help of the standard techniques
described, e.g., in [1].

Fig. 2 illustrates typical behavior of log[ργ(Xk)] with γ > 0. Notice that
if τα◦ is used in the considered case, then we obtain by (8)

E∆(θ; τα◦ ) =
log(1/α)

µ1
+
µ0
µ1
× 1

γ
.

So, we see that this mean detection delay is far away from the optimal Bayes
one given by

E∆(θ; ταγ ) =
log(1/α)

µ1
+

1

µ1
× log

1

γ
+O(1), as γ, α→ 0.

Let us now summarize briefly main facts related to the classical Bayes
approach.
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Figure 2: Detecting change in the mean of Gaussian distribution with the
help of ταγ (γ = 0.005).

• if γ = 0, then the average detection delay of the Bayes stopping time
grows linearly in θ;

• when γ > 0, the maximal false alarm probability is not controlled.

In view of these facts it is clear that the standard Bayes technique cannot
provide reasonable solutions to (1).

1.2 A hypothesis testing approach

The idea of this approach is based on the well-known sequential testing
of two simple hypothesis [15]. However, we would like to emphasize that
in contrast to the standard setting in [15], in the change-point detection,
this approach has a rather heuristic character since here we test a simple
hypothesis versus a compound alternative whose complexity grows with the
observations volume.

In sequential hypothesis testing there are two common methods

• maximum likelihood;

• Bayesian.
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The maximum likelihood test accepts hypothesis Hn
1 (see (3)) when

max
k≤n

∏k−1
i=1 p0(Xi)

∏n
i=k p1(Xi)∏n

i=1 p0(Xi)
≥ tα

or, equivalently,
M(Xn) ≥ tα,

where

M(Xn) = max
k≤n

n∑
i=k

log
p1(Xi)

p0(Xi)
.

The threshold tα is computed as follows

tα = min
{
t : P∞

{
M(Xn) ≥ t

}
≤ α

}
,

where α is the first type error probability. Notice that by Lemma 1.1

P∞
{
M(Xn) ≥ x

}
≤ exp(−x).

Therefore the maximum likelihood test results in the following stopping
time:

ταml = min

{
n : M(Xn) ≥ log

1

α

}
. (9)

Notice also that M(Xn) admits a simple recursive computation [7]. In-
deed, notice

max
k≤n

n∑
i=k

log
p1(Xi)

p0(Xi)

= max

{
log

p1(Xn)

p0(Xn)
, log

p1(Xn)

p0(Xn)
+ max
k≤n−1

n−1∑
i=k

log
p1(Xi)

p0(Xi)

}

= log
p1(Xn)

p0(Xn)
+ max

{
0, max
k≤n−1

n−1∑
i=k

log
p1(Xi)

p0(Xi)

}
.

Therefore

M(Xn) = log
p1(Xn)

p0(Xn)
+
[
M(Xn−1)

]
+
. (10)

This method is usually called CUSUM algorithm. It is well known that
it is optimal in Lorden [5] sense, i.e., for properly chosen α, ταml minimizes

sup
θ∈Z+

ess sup Eθ

[
(τ − θ)+|X1, . . . , Xθ−1

]
8



in the class of stopping times
{
τ : E∞τ ≥ T

}
, see [6].

However, with this method cannot control the false alarm probability as
shows the following theorem.

Theorem 1.4. For any α ∈ (0, 1)

max
θ∈Z+

α(θ; ταml) = 1.

As α→ 0

∆(θ; ταml) =
1 + o(1)

µ1
log

1

α
.

The Bayesian test is based on the assumption that θ is uniformly dis-
tributed on [1, n]. So, this test accepts Hn

1 when

S(Xn)
def
=

n∑
k=1

∏k−1
i=1 p0(Xi)

∏n
i=k p1(Xi)∏n

i=1 p0(Xi)
≥ tα. (11)

Since

S(Xn) =
n∑
k=1

n∏
i=k

p1(Xi)

p0(Xi)
,

and

n∑
k=1

n∏
i=k

p1(Xi)

p0(Xi)
=

n−1∑
k=1

n∏
i=k

p1(Xi)

p0(Xi)
+
p1(Xn)

p0(Xn)

=

[
1 +

n−1∑
k=1

n−1∏
i=k

p1(Xi)

p0(Xi)

]
p1(Xn)

p0(Xn)
,

the test statistics in (11) admits the following recursive computation:

S(Xn) =
[
1 + S(Xn−1)

]
× p1(Xn)

p0(Xn)
.

So, the corresponding stopping time is given by

ταS = min
{
k : S(Xk) ≥ tα

}
.

In the literature, this method is known as Shirayev-Roberts (SR) algo-
rithm. It was firstly proposed in [11] and [10]. In [8] and [3] it was shown
that it minimizes the integral average delay

1

E∞τ

∞∑
θ=1

Eθ(τ − θ)+

9



Figure 3: Detecting change in the mean of Gaussian distribution with the
help of CUSUM and SR procedures.

over all stopping times τ with E∞τ ≥ T. More detailed statistical properties
of SR procedure can be found in [9].

As one can see on Fig. 3, in practice, there is no significant difference
between CUSUM and SR algorithms.

Notice also that for SR method the fact similar to Theorem 1.4 holds
true. So, the standard hypothesis testing methods results in stopping times
with uncontrollable false alarm probabilities.

2 Robust stopping times

The main idea in this paper is to make use of multiple hypothesis testing
methods for constructing stopping times. This can be done very easily by
replacing the constant threshold in the ML test (9) by one depending on k.
So, we define the stopping time

τ̃α = min
{
k : M(Xk) ≥ tα(k)

}
.

In order to control the false alarm probability and to obtain a nearly
minimal average detection delay, we are looking for a minimal function
tα(k), k = 1, 2, . . ., such that

P∞
{

max
k≥Z+

[
M(Xk)− tα(k)

]
≥ 0
}
≤ α.
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We begin our construction of tα(k) with the following function:

ϕ(x) = 1 + log(x), x ∈ R+,

and define m-iterated ϕ(·) by

Φm(x) = ϕ
[
Φm−1(x)

]
, with Φ1(x) = ϕ(x).

Next, for given ε ∈ (0, 1), define

bm,ε(x) = − log

[
1

εΦε
m(x)

− 1

εΦε
m(x+ 1)

]
, x ∈ R+. (12)

Consider the following random variable:

ζm,ε = max
k∈Z+

{
M(Xk)− bm,ε(k)

}
.

The next theorem plays a cornerstone role in our construction of robust
stopping times.

Theorem 2.1. For any ε ∈ (0, 1), m ≥ 1, and x > − log(1 − 0.2075/2) ≈
0.11

P
{
ζm,ε ≥ x

}
≤ 1− exp

{
−e−x

[
ε−1 + e−x

]}
.

Therefore we can define the quantile of order α of ζm,ε by

tαm,ε = min
{
x : P

{
ζm,ε ≥ x

}
≤ α

}
.

Fig. 4 shows the distribution functions and quantiles of ζ1,ε for ε = {0.01, 0.2, 1}
computed with the help of Monte-Carlo method.

The next theorem describes principal properties of the stopping time

τ̃αm,ε = min
{
k : M(Xk) ≥ bm,ε(k) + tαm,ε

}
.

Theorem 2.2. For any ε ∈ (0, 1]

α
(
θ; τ̃αm,ε

)
≤ α,

∆
(
θ; τ̃αm,ε

)
≤ dαm,ε(θ),

where dαm,ε(θ) is a solution to

µ1d
α
m,ε(θ) = bm,ε

[
θ + dαm,ε(θ)

]
+ tαm,ε. (13)

The asymptotic behavior of the average delay is described by the follow-
ing theorem
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Figure 4: Distribution functions and quantiles of ζ1,ε.

Theorem 2.3. For any ε ∈ (0, 1], as α→ 0 and θ →∞

∆
(
θ; τ̃αm,ε

)
≤ 1

µ1

{
log

θ

α
+

m∑
j=1

log[Φj(θ)]+ε log[Φm(θ)]+log
1

ε

}
+o(1). (14)

Remark. It is easy to check with a simple algebra that for any given θ > 1

lim
j→∞

j log[Φj(θ)] = 2.

The robustness of τ̃αm,ε w.r.t. a priori geometric distribution of θ follows
now almost immediately from (14). Indeed, suppose θ is a random variable
with

P
{
θ = k

}
= γ(1− γ)k−1, k ∈ Z+.

Then, averaging (14) w.r.t. this distribution, we obtain

E∆
(
θ; τ̃αm,ε

)
≤ 1

µ1

{
log

1

αγ
+

m∑
j=1

log

[
Φj

(
1

γ

)]
+ε log

[
Φm

(
1

γ

)]
+log

1

ε

}
+o(1)

as α, γ → 0, and with (8) we arrive at

12



Theorem 2.4. As α, γ → 0

E∆
(
θ; τ̃αm,ε

)
≤E∆

(
θ; ταγ

)
+

1

µ1

{ m∑
j=1

log

[
Φj

(
1

γ

)]
+ ε log

[
Φm

(
1

γ

)]
+ log

1

ε

}
+O(1)

=(1 + o(1))E∆
(
θ; ταγ

)
,

where ταγ is the optimal Bayesian stopping time (see Theorem 1.1).

A Appendix section

Proof of Lemma 1.1. Since

Yk = exp
{
−k log[φ(λ)] + λL0(X

k)
}

is a martingale with E∞Yk = 1, we have

1 =E∞Yτα◦ = E∞Yτα◦ 1(τα◦ <∞) + E∞Yτα◦ 1(τα◦ =∞)

≥E∞Yτα◦ 1(τα◦ <∞) = E∞ exp
{
−τα◦ log[φ(λ)] + λA

}
1(τα◦ <∞).

In what follows we denote by ek be i.i.d. standard exponential random
variables.

Lemma A.1. For any m ≥ 1 and x > − log(1− 0.2075/2) ≈ 0.11

P
{

max
k∈Z+

[ek − bm,ε(k)] ≥ x
}
≤ 1− exp

{
−e−x

[
ε−1 + e−x

]}
,

where bm,ε(·) is defined by (12).

Proof. It is easy to check with a simple algebra that for any u ∈ [0, 1)

log(1− u) ≥ −u− u2

2(1− u)
.

Therefore with this inequality we obtain

P
{

max
k∈Z+

[ek − bm,ε(k)] ≥ x
}

= 1−
∞∏
k=1

{
1−P

{
ek ≥ x+ bm,ε(k)

}}
= 1− exp

{ ∞∑
k=1

log
[
1− e−x−bm,ε(k)

]}

≤ 1− exp

{
−e−x

∞∑
k=1

e−bm,ε(k) − e−2x

2(1− e−x)

∞∑
k=1

e−2bm,ε(k)
}
.

(15)
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It follows immediately from the definition of bm,ε, see (12), that

∞∑
k=1

e−bm,ε(k) =
1

εΦm(1)
=

1

ε
.

It is also easy to check numerically that for any m ≥ 1 and ε > 0

∞∑
k=1

e−2bm,ε(k) < 0.2075.

Therefore, substituting the above equations in (15), we complete the proof.

Lemma A.2. For any x > 0

P∞

{
max
k∈Z+

[M(Xk)− bm,ε(k)] ≥ x
}
≤ P

{
max
k∈Z+

[ek − bm,ε(k)] ≥ x
}
,

where random process M(Xk) is defined by (10).

Proof. Define random integers κ1 < κ2 < . . . by

κk = min
{
s > κk−1 : M(Xs) ≤ 0

}
, t0 = 0,

From (10) it is clear that these random variables are renovation points for
the random process M(Xk) and therefore random variables

µk = max
κk<s≤κk+1

M(Xs), k = 1, 2, . . . .

are independent. Since bm,ε(k) is non-decreasing in k and obviously κk ≥ k,
we get

max
k∈Z+

[M(Xk)− bm,ε(k)] ≤max
k∈Z+

max
κk<s≤κk+1

[M(Xs)− bm,ε(tk)]

≤max
k∈Z+

[µk − bm,ε(k)].

Therefore, to finish the proof, it suffices to notice that by (10) and Lemma
1.1

P∞
{
µk ≥ x

}
≤ P∞

{
max
k∈Z+

k∑
s=θ

log
p0(Xs)

p1(Xs)
≥ x

}
≤ exp(−x).

14



Theorem 2.1 follows now immediately from Lemmas A.1, A.2.

Proof of Theorem 2.2. It follows from (10) that for all k ≥ θ

M(Xk) ≥
k∑
s=θ

log
p0(Xs)

p1(Xs)

and therefore
∆(θ; τ̃m,ε) ≤ Eθτ

+,

where

τ+ = min

{
k ≥ 1 :

θ+k∑
s=θ

log
p0(Xs)

p1(Xs)
≥ bm,ε(θ + k) + tαm,ε

}
.

Computing Eθτ
+ is based on the famous Wald’s identity [14] (see also

[2]). For given θ ∈ Z+,m ∈ Z+, ε > 0, define function

B(k) = bm,ε(θ + k) + tαm,ε, k ∈ Z+.

It is clear that B(·) is a convex function and therefore for any k0 ≥ 1

B(k) ≤ B(k0) +B′(x0)(k − k0).

Hence,

τ+ ≤ τ++ = min

{
k ≥ 1 :

θ+k∑
s=θ

log
p0(Xs)

p1(Xs)
≥ B(k0) +B′(k0)(k − k0)

}
.

Next, we obtain by Wald’s identity

µ1Eθτ
++ ≤ B(k0) +B′(k0)

(
Eθτ

++ − k0
)

and thus

Eθτ
++ ≤ B(k0)−B′(x0)k0

µ1 −B′(k0)
. (16)

To finish the proof, we choose k0 = dαm,ε(θ) (see (13)), and notice that
B(k0) = µ1k0. Hence, by (16)

Eθτ
++ ≤ k0 = dαm,ε(θ).

15



Proof of Theorem 2.3. It follows immediately from Theorem 2.1 that as α→
0

tαm,ε ≤ log
1

αε
+ o(1). (17)

Next, by convexity of bm,ε(·) we obtain for any x, x0

bm,ε(θ + x) ≤ bm,ε(θ + x0) + b′m,ε(θ + x0)(x− x0).

Therefore, choosing

x0 =
bm,ε(θ) + tαm,ε

µ1

we get by (13)

dαm,ε(θ) ≤
bm,ε(θ + x0) + tαm,ε
µ1 − b′m,ε(θ + x0)

. (18)

So, our next step is to upper bound bm,ε(·). First, notice that

−1

ε

dΦ−εm (x)

dx
= Φ−1−εm (x)Φ′m(x) =

Φ−εm (x)

x

m∏
j=1

1

Φj(x)
,

and thus

− log

[
−1

ε

dΦ−εm (x)

dx

]
= log(x) +

m∑
j=1

log[Φj(x)] + ε log[Φm(x)].

Therefore it follows immediately from this equation and (12) that as
k →∞

bm,ε(k) = log(k) +

m∑
j=1

log[Φj(k)] + ε log[Φm(k)] + o(1). (19)

It is also easy to check that

b′m,ε(k) = O

(
1

k

)
. (20)

Finally, substituting (17), (19), and (20) in (18), we complete the proof.
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