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and Their Multilevel Channel Polarization

Yuta Sakai, Member, IEEE, Ken-ichi Iwata, Member, IEEE, and Hiroshi Fujisaki, Member, IEEE,

Abstract

This study proposes modular arithmetic erasure channels (MAECs), a novel class of erasure-like channels with an input
alphabet that need not be binary. This class contains the binary erasure channel (BEC) and some other known erasure-like channels
as special cases. For MAECs, we provide recursive formulas of Arıkan-like polar transform to simulate channel polarization. In
other words, we show that the synthetic channels of MAECs are equivalent to other MAECs. This is a generalization of well-known
recursive formulas of the polar transform for BECs. Using our recursive formulas, we also show that a recursive application of the
polar transform for MAECs results in multilevel channel polarization, which is an asymptotic phenomenon that is characteristic of
non-binary polar codes. Specifically, we establish a method to calculate the limiting proportions of the partially noiseless and
noisy channels that are generated as a result of multilevel channel polarization for MAECs. In the particular case of MAECs, this
calculation method solves an open problem posed by Nasser (2017) in the study of non-binary polar codes.

Index Terms

Non-binary polar codes, multilevel channel polarization, partially noiseless channels, asymptotic distribution, generalized
erasure channels.

I. INTRODUCTION

Arıkan [3] proposed binary polar codes as a class of channel codes that provably achieves the symmetric capacity of
a binary-input discrete memoryless channel (DMC), admits a deterministic construction, and has low encoding/decoding
complexities. A key operation employed in polar codes is the polar transform. This transform results in almost noiseless and
useless synthetic channels as the number of polarization steps increases. This phenomenon is called channel polarization, and
the limiting proportions of noiseless and useless synthetic channels coincide with I(W) and 1 − I(W), respectively, where I(W)
stands for the symmetric capacity of the given binary-input DMC W .

In the study of non-binary polar codes, there are two types of channel polarization: two-level channel polarization [4], [5]
and multilevel channel polarization [6]–[15]. In the context of two-level channel polarization, the synthetic channels converge
to either noiseless or useless channels. In contrast, in the context of multilevel channel polarization, the synthetic channels
converge to several types of partially noiseless channels. It was independently shown in [4]–[13] that two-level and multilevel
channel polarization can achieve the symmetric capacity I(W) of the DMC W . However, it is difficult to characterize the limiting
proportions of the partially noiseless synthetic channels in the context of multilevel channel polarization (see [13, Section 9.2.1]).
In this study, we term these limiting proportions as the asymptotic distribution of multilevel channel polarization.

To construct and analyze polar codes, we have to calculate channel parameters, e.g., the symmetric capacity, the Bhattacharyya
parameter, etc., of the synthetic channels induced by the polar transform. However, the computational complexities of these
channel parameters grow doubly-exponentially in the number of polar transforms. In the binary-input case, Tal and Vardy
[16] solved this issue by applying approximation algorithms for the synthetic channels at each polar transform. Such an
approximation method was recently extended from the binary to non-binary settings by Gulch, Ye, and Barg [17]. On the
other hand, it is well-known that for binary erasure channels (BECs), one can avoid the use of any approximation arguments.
Obviously, the asymptotic distribution of a BEC can be simply characterized by its erasure probability. Therefore, BECs are
excellent toy problems in the study of binary polar codes. In non-binary polar codes, similar easily-analyzable channel models
have been proposed by Park and Barg [7, Section III] and Sahebi and Pradhan [8, Figs. 3 and 4], and the recursive formulas of
the polar transform were given therein.1

A. Main Contributions

The main contributions of this study can be broadly divided into the following two parts: Firstly, we propose a novel
channel model called modular arithmetic erasure channels (MAECs), which can be naturally specialized to the following
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1Note that the recursive formula [8, Equation (4)] for the minus transform is valid, but the recursive formula [8, Equation (3)] for the plus transform is

incorrect. Theorem 1 of Section III corrects this error (see Example 4 of Section III-A).
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indices of s (sorted in increasing order of I(V s
ε ))

µ
(∞)
1 = 29/150 ≈ 0.193333

µ
(∞)
5 = 1/15 ≈ 0.066667

µ
(∞)
15 =

11/150 ≈ 0.073333

µ
(∞)
30 =

9/50 = 0.18

µ
(∞)
150 =

11/75 ≈ 0.146667

µ
(∞)
450 =

1/150 ≈ 0.006667

µ
(∞)
900 =

7/75 ≈ 0.093333

µ
(∞)
4500 =

6/25 = 0.24

Fig. 1. Plot of the symmetric capacities {I (V s
ε ) | s ∈ {−, +}n } under n = 28-steps of the polar transform. The initial MAEC Vε is given in Example 8 of

Section V-B (see also Table I of Section V-B). Note that the logarithm is taken to be the natural logarithm so the units of the symmetric capacity is nats. The
proportion of synthetic channels V s

ε satisfying I (V s
ε ) ≈ log d and I (V s

ε [kerϕd ]) ≈ log d is roughly equal to µ(∞)
d

for each d |q (cf. Corollary 3 of Section V-B),
where µ(∞)

d
is defined in (54) of Section V. For example, the proportion of synthetic channels V s

ε satisfying I (V s
ε ) ≈ log 30 and I (V s

ε [kerϕ30]) ≈ log 30 is
roughly equal to µ(∞)30 = 0.18.

erasure-like channels: BECs, a naïve definition of q-ary erasure channels (q-ECs) (see, e.g., [18, p. 589]), q-ary input ordered
erasure channels (OECs) proposed by Park and Barg [19, p. 2285], and Sahebi and Pradhan’s senary-input channels [8, Fig. 4:
Channel 2]. Then, we show that analyzing the polarization properties for MAECs is a straightforward endeavor under our
framework. Similar to the polar transform for BECs, we show that the synthetic channels generated from an MAEC are
again equivalent to other MAECs with certain transition probabilities. Secondly, we characterize the asymptotic distribution of
multilevel channel polarization for MAECs. Specifically, we establish an algorithm for calculating the asymptotic distribution
for a given MAEC. Figure 1 illustrates the symmetric capacities of the synthetic channels induced by the polar transform for an
MAEC with input alphabet size q = 4500; this channel results in multilevel channel polarization. This figure is plotted using
our proposed recursive formulas of the polar transform for MAECs and its asymptotic distribution is calculated by our proposed
algorithm. This result solves an open problem in the study of multilevel channel polarization (cf. [13, Section 9.2.1]) in the
particular case of MAECs.

B. Paper Organization

The rest of this paper is organized as follows: Section II introduces basic notations and definitions for this study. Specifically,
modular arithmetic is introduced in Section II-A, DMCs and their channel parameters are defined in Section II-B, the Arıkan-like
polar transform is defined in Section II-C, and a notion of the channel equivalence is given in Section II-D. Section III
introduces MAECs, and characterizes the ease of analyzing polar transform for MAECs. The definition of MAECs is given in
Definition 2, and the recursive formulas of the polar transform for MAECs are stated in Theorem 1. In Section III-A, some
reductions of MAECs to known erasure-like channels are introduced. Section IV briefly compares the notions of two-level
and multilevel channel polarization, these are revisited in Sections IV-A and IV-B, respectively. An open problem in the study
of multilevel channel polarization is described in Section IV-B. Some numerical simulations for MAECs are provided in
Section IV-C. Section V discusses our solution to the asymptotic distribution of multilevel channel polarization for MAECs.
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The main statement is given in Corollary 3. In Section V-A, we characterize the asymptotic distribution in the simplest case
when the input alphabet size is a prime power. In Section V-B, we consider the general case when the input alphabet size is
not necessarily a prime power. We then give Algorithm 1 for calculating the asymptotic distribution. A formal statement of the
asymptotic distribution is given in Section V-C. Finally, Section VI concludes this study.

II. PRELIMINARIES AND PROBLEM PRESENTATIONS

A. Basic Notations in Elementary Number Theory

Firstly, we introduce standard notations in elementary number theory. Let Z be the set of integers, and N the set of positive
integers. Given two positive integers a, b ∈ N, define the following three sets:

aZ B {az | z ∈ Z} = {. . . ,−2a,−a, 0, a, 2a, . . . }, (1)
b + aZ B {b + z | z ∈ aZ} = {. . . , b − 2a, b − a, b, b + a, b + 2a, . . . }, (2)
Z

aZ
B {z + aZ | z ∈ Z} = {aZ, 1 + aZ, . . . , (a − 1) + aZ}. (3)

For two positive integers a, b ∈ N, let a|b be a shorthand for “a divides b,” which means that there exists a positive integer
c ∈ N satisfying ac = b. If we define the sum set2 S + T B {s + t | s ∈ S and t ∈ T } for given two subsets S,T ⊂ Z, then it
is clear that aZ + bZ = aZ whenever a|b. These definitions naturally introduce the congruence relation on the integers modulo
q (see (126) of Appendix C for details). Given q ∈ N, the multiplication · on Z/qZ is defined as (a + qZ) · (b + qZ) = ab + qZ.

B. DMCs and Channel Parameters

We now define DMCs as follows: The input alphabet is given by Z/qZ for some integer q ≥ 2. The output alphabet Y is a
nonempty and countable set. The transition probability from an input symbol x ∈ Z/qZ to an output symbol y ∈ Y is denoted
by W(y | x). Let W : Z/qZ→ Y, or simply W , be a shorthand for such a DMC. The α-symmetric capacity of W , which is the
α-mutual information [21], [22] between the input and output of W under a uniform input distribution on Z/qZ, is defined by

Iα(W) B



min
y∈Y

(
log

q
|{x ∈ Z/qZ | W(y | x) > 0}|

)
if α = 0,

I(W) if α = 1,

log ©­«
∑
y∈Y

max
x∈Z/qZ

W(y | x)ª®¬ if α = ∞,

α

α − 1
log

©­­«
∑
y∈Y

©­«
∑

x∈Z/qZ

1
q

W(y | x)αª®¬
1/αª®®¬ otherwise

(4)

for each order α ∈ [0,∞], where the symmetric capacity I(W) is defined by

I(W) B
∑
y∈Y

∑
x∈Z/qZ

1
q

W(y | x) log
W(y | x)∑

x′∈Z/qZ(1/q)W(y | x ′) . (5)

Unless stated otherwise, assume throughout this paper that the base of logarithms is q. Several relations between the α-symmetric
capacity Iα(W) and other channel parameters are summarized in the following remark.

Remark 1 (connections between the α-symmetric capacity and the other channel parameters). The following identities hold:

Iα(W) =
α

1 − αE0

(
1 − α
α

,W
)

(6)

for α ∈ (0, 1) ∪ (1,∞) and

I1/2(W) = E0(1,W) = log
(

q
1 + (q − 1)Z(W)

)
, (7)

I∞(W) = (log q) + log(1 − Pe(W)), (8)

Pe(W) B 1 −
∑
y∈Y

1
q

max
x∈Z/qZ

W(y | x) (9)

2The term sum set or sumset is used in additive combinatorics [20].
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denotes the average probability of maximum likelihood decoding error of uncoded communication via a channel W,

Z(W) B 1
q(q − 1)

∑
x,x′∈Z/qZ:

x,x′

∑
y∈Y

√
W(y | x)W(y | x ′) (10)

denotes the average Bhattacharyya distance of a channel W [23], and

E0(ρ,W) B − log
©­­«
∑
y∈Y

©­«
∑

x∈Z/qZ

1
q

W(y | x)1/(1+ρ)ª®¬
1+ρª®®¬ (11)

denotes Gallager’s reliability function E0 of a channel W under a uniform input distribution for ρ ∈ (−1,∞) [24, Equa-
tion (5.6.14)].

C. Arıkan-like Polar Transform over Modular Arithmetic

Let γ ∈ Z/qZ be a unit of the ring, i.e., it has a multiplicative inverse element γ−1 ∈ Z/qZ satisfying γ ·γ−1 = γ−1 ·γ = 1+qZ.
Given two DMCs W1 : Z/qZ→ Y1 and W2 : Z/qZ→ Y2, the polar transform creates two synthetic channels: the worse channel
W1 iW2 : Z/qZ→ Y1 × Y2 defined by

(W1 iW2)(y1, y2 | u1) B
∑

u′2∈Z/qZ

1
q

W1(y1 | u1 + γ · u′2)W2(y2 | u′2), (12)

and the better channel W1 � W2 : Z/qZ→ Y1 × Y2 × Z/qZ defined by

(W1 � W2)(y1, y2, u1 | u2) B
1
q

W1(y1 | u1 + γ · u2)W2(y2 | u2). (13)

These polar transforms with a unit γ ∈ Z/qZ are inspired by the study of entropy weighted sums (see [25]). Since this polar
transform is an analogue of the polar transform with a 2×2 kernel, in this paper, we call these polar transforms Arıkan-like polar
transform. Note that when γ = 1 + qZ, one can think of our polar transform as being defined over a cyclic group (Z/qZ,+).

Arıkan-like polar transforms with distinct initial channels W1 , W2 have been studied in the study of polar codes for
non-stationary memoryless channels [26], [27]. When both W1 and W2 are identical to a given channel W : Z/qZ→ Y, the
polar transform stated in (12) and (13) can be specialized to standard polar transform for a stationary DMC W . We then simply
write

W− B W iW, (14)
W+ B W � W . (15)

After applying the polar transform n times, the synthetic channel W s : Z/qZ→ Y2n × (Z/qZ)w(s) is given by

W s B (· · · (W s1 )s2 · · · )sn (16)

for each s = s1s2 · · · sn ∈ {−,+}n, where the function3 w : {−,+}∗ → N0 is recursively defined by4

w(s1, . . . , sn) B


2 w(s1, . . . , sn−1) if n ≥ 1 and sn = −,
2 w(s1, . . . , sn−1) + 1 if n ≥ 1 and sn = +,
0 otherwise,

(17)

and {−,+}∗ B {�,−,+,−−,−+,+−,++, . . . } denotes the set of {−,+}-valued finite-length sequences containing the empty
sequence �. Note that the output alphabet size |Y2n × (Z/qZ)w(s) | of the synthetic channel W s grows doubly-exponentially in
n. The difficulties in analyzing the performance of polar codes are mainly due to this issue as the computational complexities
for calculating the channel parameters depends on the size of the output alphabet |Y2n × (Z/qZ)w(s) |; see Section II-B.

3The set N0 B N ∪ {0} consists of all nonnegative integers.
4For example, we observe that w(+, −, +) = 2w(+, −) + 1 = 2 · 2w(+) + 1 = 2 · 2 · 1 + 1 = 5. As w(·) seems binary expansions by replacing (−, +) with
(0, 1), it is clear that w : {−, +}n → {0, 1, . . . , 2n − 1} is bijective.
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D. Output Degradedness and Equivalence of Channels

We now introduce an equivalence relation between two channels having the same input alphabet X as follows:

Definition 1 (stochastic degradedness and equivalence). A channel W : X → Y is said to be degraded with respect to another
channel W̃ : X → Z if there exists an intermediate channel Q : Z → Y satisfying

W(y | x) =
∑
z∈Z

W̃(z | x)Q(y | z) (18)

for every (x, y) ∈ X × Y. We denote this degradedness relation as W � W̃. In particular, we say that W and W̃ are equivalent
if W � W̃ and W̃ � W. We denote this equivalence as W ≡ W̃.

Remark 2. To rigorously deal with the convergence of synthetic channels, Nasser [15] introduced an equivalent class of
DMCs via this equivalence relation. A different notion of an equivalence relation has been discussed by Mori and Tanaka
[5, Section IV] and Gulcu, Ye, and Barg [17, Definition 3] in the context of non-binary polar source and channel coding,
respectively.

The following lemma implies that the above equivalence relation preserves the α-symmetric capacity.

Lemma 1. For any α ∈ [0,∞], it holds that

W � W̃ =⇒ Iα(W) ≤ Iα(W̃). (19)

Consequently, for any α ∈ [0,∞], it holds that

W ≡ W̃ =⇒ Iα(W) = Iα(W̃). (20)

Proof of Lemma 1: Equation (19) is a direct consequence of the data-processing lemma5 for the α-mutual information
(see [28, Theorem 5]).

Lemma 1 is a minor extension of [16, Lemma 3] because the α-symmetric capacity Iα(W) can be specialized to the symmetric
capacity I(W), the average Bhattacharyya distance Z(W), and the probability of error Pe(W); see Remark 1. The following
lemma shows that channel degradedness is preserved under the polar transform.

Lemma 2. Given four channels W1 : Z/qZ→ Y1, W̃1 : Z/qZ→Z1, W2 : Z/qZ→ Y2, and W̃2 : Z/qZ→Z2, it holds that

W1 � W̃1 and W2 � W̃2 =⇒ W1 iW2 � W̃1 i W̃2 and W1 � W2 � W̃1 � W̃2. (21)

Consequently, it holds that

W1 ≡ W̃1 and W2 ≡ W̃2 =⇒ W1 iW2 ≡ W̃1 i W̃2 and W1 � W2 ≡ W̃1 � W̃2. (22)

Proof of Lemma 2: See Appendix A.
Note that Lemma 2 is a straightforward extension of [29, Lemma 4.7] and [16, Lemma 5].

III. MODULAR ARITHMETIC ERASURE CHANNELS AND THEIR POLAR TRANSFORM

In the following, we propose a general type of erasure-like channels with input alphabet Z/qZ.

Definition 2 (Modular arithmetic erasure channels (MAECs)). Given a probability vector ε = (εd)d |q ,6 the MAEC Vε : Z/qZ→
Y is defined by

Vε(y | x) B
{
εd if y = x + dZ for some divisor d of q,

0 otherwise
(23)

for each (x, y) ∈ X × Y, where the output alphabet is given by

Y =
⋃
d |q

Z

dZ
=

{
z + dZ

���� z ∈ Z,
d runs over all positive divisors of q

}
. (24)

We denote this channel model as MAECq(ε).

The MAEC can be thought of as being similar to a channel with additive noise. To wit, the input symbol is modeled by a
random variable (r.v.) X taking values in Z/qZ, and the noise symbol is modeled by a r.v. Z taking values in {dZ | d divides q}
with the probability law P{Z = dZ} = εd for each d |q. Then, the output symbol is modeled by the r.v. Y = X + Z . In this

5Note that the data-processing lemma [28, Theorem 5] is usually stated in terms of the conditional independence between two random variables given a
third one; such a notion is stronger than the stochastic degradedness assumed in Definition 1.

6A nonnegative real vector is called a probability vector if the sum of elements is unity.
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Z/qZ 3 X
⊕

Y = X + Z

Z

Fig. 2. An interpretation of MAECq (ε) defined in Definition 2. The noise symbol Z follows the probability law P{Z = dZ} = εd for each d |q, where Z
takes values in the set {dZ | d runs over all positive divisors of q }.

case, it can be verified that the conditional probability distribution PY |X of Y given X is equal to the transition probability
distribution Vε given in (23). This observation implies that the input symbol X is erased according to the modular arithmetic
rule. See Fig. 2 for this interpretation.

It can be easily verified that every MAEC is Gallager-symmetric [24, p. 94] (see also [30, Definition 4]), i.e., its channel
capacity coincides with the symmetric capacity I(Vε) (cf. [24, Theorem 4.5.2]). In addition, note that MAECq(ε) is determined
by the pair of an input alphabet size q and a probability vector ε = (εd)d |q , so is its α-symmetric capacity Iα(Vε). The following
proposition provides formulas for the α-symmetric capacity of an MAEC.

Proposition 1. For any probability vector ε = (εd)d |q , it holds that

Iα(Vε) =



min
d |q:εd>0

(
log d

)
if α = 0,∑

d |q
(log d) εd if α = 1,

log ©­«
∑
d |q

d εd
ª®¬ if α = ∞,

α

α − 1
log ©­«

∑
d |q

d(α−1)/α εd
ª®¬ otherwise

(25)

for each α ∈ [0,∞].

Proof of Proposition 1: See Appendix B.

Remark 3. By Remark 1 and Proposition 1, after some algebra, we observe that

Z(Vε) =
1

q − 1
©­«
∑
d |q

( q
d

)
εd − 1ª®¬ , (26)

Pe(Vε) = 1 −
∑
d |q

(
d
q

)
εd . (27)

The following theorem is our main result establishing recursive formulas of the polar transform for MAECs.

Theorem 1. Let q ≥ 2 be an integer, γ ∈ Z/qZ a unit of the ring, and ε = (εd)d |q and ε ′ = (ε′
d
)d |q two probability vectors.

Then, it holds that

MAECq(ε) iMAECq(ε ′) ≡ MAECq(ε i ε ′), (28)
MAECq(ε)� MAECq(ε ′) ≡ MAECq(ε � ε ′), (29)

where two probability vectors ε i ε ′ B (εi
d
)d |q and ε � ε ′ B (ε�

d
)d |q are given by

εid = ε
i
d (ε, ε

′) B
∑

d1 |q,d2 |q:
gcd(d1,d2)=d

εd1 ε
′
d2
, (30)

ε�
d
= ε�

d
(ε, ε ′) B

∑
d1 |q,d2 |q:

lcm(d1,d2)=d

εd1 ε
′
d2
, (31)

respectively, for each d |q.

Proof of Theorem 1: See Appendix C.
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It is worth mentioning that while the polar transform of a DMC depends on the unit γ ∈ Z/qZ in general (see [25]), the
statement of Theorem 1 is independent of the choice of the unit γ ∈ Z/qZ.

Remark 4. An interesting observation from Theorem 1 is that the recursive formulas stated in (30) and (31) are derived from
the Chinese remainder theorem (see Appendix C for details). Namely, Theorem 1 characterizes an algebraic structure of the
polar transform over the ring Z/qZ. More specifically, one of the key technical tools used in the proof of Theorem 1 is the
second isomorphism theorem of a group when the polar transform is defined by the group operation (see [31]).

Combining Lemma 2 and Theorem 1, we readily obtain the following corollary.

Corollary 1. Let q ≥ 2 be an integer, γ ∈ Z/qZ a unit of the ring, and ε = (εd)d |q a probability vector. Then, it holds that

MAECq(ε)s ≡ MAECq(εs) (32)

for every s ∈ {−,+}∗, where the probability vector εs = (εs
d
)d |q is recursively given by

εs−
d
=

∑
d1 |q,d2 |q:

gcd(d1,d2)=d

εsd1
εsd2
,

εs+
d
=

∑
d1 |q,d2 |q:

lcm(d1,d2)=d

εsd1
εsd2

(33)

for each d |q.

A. Specializations to Binary Erasure Channels and Other Erasure-Like Channels

This subsection considers the reduction of MAECs to known erasure-like channels. Given an erasure probability 0 ≤ ε ≤ 1,
the BEC WBEC(ε) : Z/2Z→ Y can be defined by

WBEC(ε)(y | x) B


1 − ε if y = x,
ε if y = Z,
0 otherwise

(34)

for each (x, y) ∈ Z/2Z × Y, where the output alphabet is given as Y = (Z/2Z) ∪ (Z/Z) = {Z, 2Z, 1 + 2Z}. This BEC is indeed
equivalent to MAECq(ε) with q = 2 and ε = (ε1, ε2) = (ε, 1 − ε). Note that the erasure symbol of this BEC corresponds to Z.
For the sake of brevity, we denote this channel model as BEC(ε).

Now, consider the polar transform as stated in (12) and (13) with γ = 1+ 2Z. As summarized in the following proposition, it
is well-known that both synthetic channels BEC(ε) i BEC(ε′) and BEC(ε)� BEC(ε′) are equivalent to BECs with modified
erasure probabilities.

Proposition 2 ([3, Proposition 6]; see also [32, Corollary 1]). For any 0 ≤ ε, ε′ ≤ 1, it holds that

BEC(ε) i BEC(ε′) ≡ BEC(ε + ε′ − εε′), (35)
BEC(ε)� BEC(ε′) ≡ BEC(εε′). (36)

It is clear that Theorem 1 can be specialized to Proposition 2. Analogously, Corollary 1 can be specialized to the following
corollary.

Corollary 2. For each s ∈ {−,+}∗ and each 0 ≤ ε ≤ 1, it holds that

BEC(ε)s ≡ BEC(εs), (37)

where the erasure probability 0 ≤ εs ≤ 1 can be recursively calculated by{
εs− = 2εs − (εs)2,
εs+ = (εs)2. (38)

By Corollary 2, to analyze the polar transform of a stationary BEC, it suffices to propagate its erasure probability by using
the recursive formulas in (38) and to analyze the propagated erasure probabilities. This is a well-known fact in the study of
binary polar codes. Moreover, we can verify from Corollary 2 that for any fixed 0 < δ < 1,

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� I(W s
BEC(ε)) > 1 − δ

}��� = 1 − ε, (39)

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� I(W s
BEC(ε)) < δ

}��� = ε. (40)
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These relations imply that the asymptotic distribution of two-level channel polarization for a BEC can be simply characterized
by the initial erasure probability ε.

The following three examples introduce reductions of MAECs to other erasure-like channels.

Example 1 (q-ary erasure channels (q-ECs), see, e.g., [18, p. 589]). Let q ≥ 2 be an arbitrary integer. Suppose that the
probability vector ε = (εd)d |q satisfies ε1 + εq = 1, i.e., εd = 0 for every d |q in which 1 < d < q. Then,

Vε(y | x) =


εq if y = x,
ε1 if y = Z,
0 otherwise

(41)

for each (x, y) ∈ Z/qZ × Y. In this case, the output alphabet Y and the probability vector ε = (εd)d |q can be simplified as
Y ′ = (Z/qZ) ∪ (Z/Z) and ε ′ = (ε1, εq), respectively. The erasure symbol corresponds to Z as in the BEC.

Example 2 (ordered erasure channels (OECs) [19, p. 2285]). Let q = pr be a prime power. Note that each divisor d |q can be
written by d = pt for some 0 ≤ t ≤ r. Given a probability vector ε = (ε1, εp, εp2, . . . , εpr−1, εpr ), it holds that

Vε(y | x) =



εpr if y = x,
εpr−1 if y = x + pr−1Z,
...

...

εp if y = x + pZ,
ε1 if y = Z,
0 otherwise

(42)

for each (x, y) ∈ Z/qZ × Y. Note that if q = 4, then this channel model is also equivalent to Sahebi and Pradhan’s
quaternary-input erasure-like channel [8, Fig. 3: Channel 1].

Example 3 (Sahebi and Pradhan’s senary-input erasure-like channel [8, Fig. 4: Channel 2]). Consider the case in which q = 6.
Then, the output alphabet is given by Y = (Z/Z) ∪ (Z/2Z) ∪ (Z/3Z) ∪ (Z/6Z) = {Z, 2Z, 1+ 2Z, 3Z, 1+ 3Z, 2+ 3Z, 6Z, 1+ 6Z, 2+
6Z, 3 + 6Z, 4 + 6Z, 5 + 6Z}, and the transition probability is given by

Vε(y | x) =



ε6 if y = x,
ε3 if y = x + 3Z,
ε2 if y = x + 2Z,
ε1 if y = Z,
0 otherwise

(43)

for each (x, y) ∈ Z/6Z × Y.

The following example gives a special case of Theorem 1 for the channel model given in Example 3.

Example 4. The minus channel MAEC6(ε1, ε2, ε3, ε6)− is equivalent to MAEC6(ε−1 , ε
−
2 , ε
−
3 , ε
−
6 ), where

ε−6 = 1 − ε−1 − ε
−
2 − ε

−
3 ,

ε−3 = 2ε3 − (ε2
3 + 2ε1ε3 + 2ε2ε3),

ε−2 = 2ε2 − (ε2
2 + 2ε1ε2 + 2ε2ε3),

ε−1 = 2ε1 + 2ε2ε3 − ε2
1,

(44)

the plus channel MAEC6(ε1, ε2, ε3, ε6)+ is equivalent to MAEC6(ε+1 , ε
+
2 , ε
+
3 , ε
+
6 ), where

ε+6 = 1 − ε+1 − ε
+
2 − ε

+
3 ,

ε+3 = ε
2
3 + 2ε1ε3,

ε+2 = ε
2
2 + 2ε1ε2,

ε+1 = ε
2
1 .

(45)

Note that (44) coincides with Sahebi and Pradhan’s recursive formula [8, Equation (4)] for the minus transform.

IV. TWO TYPES OF CHANNEL POLARIZATION

We review two-level and multilevel channel polarization in the context of non-binary polar coding in Sections IV-A and IV-B,
respectively. These subsections can be omitted if readers are aware of these differences. Some numerical simulations of multilevel
channel polarization for MAECs are given in Section IV-C.
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A. Two-level Channel Polarization

When the input alphabet size q is a prime number, Şaşoğlu, Telatar, and Arıkan [23] showed that for any q-ary input DMC
W : Z/qZ→ Y and any fixed 0 < δ < 1, both identities

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� I(W s) > 1 − δ
}��� = I(W), (46)

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� I(W s) < δ
}��� = 1 − I(W) (47)

hold under the polar transform stated in (16) with γ = 1 + qZ. The left-hand sides of (46) and (47) are the limiting proportions
of almost noiseless and almost useless synthetic channels, respectively. Moreover, Equations (46) and (47) imply that the
limiting proportion of mediocre synthetic channels is zero, i.e.,

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ I(W s) ≤ 1 − δ
}��� = 0 (48)

for every fixed 0 < δ < 1. In this paper, we call the phenomenon exhibited in (48) as two-level channel polarization. When the
input alphabet size q ≥ 2 is not necessarily a prime number, two-level polarization was investigated by Şaşoğlu [4] and Mori
and Tanaka [5].

B. Multilevel Channel Polarization

In contrast to Section IV-A, when the input alphabet size q is a composite number, there are polar transforms in which the
two-level channel polarization stated in (48) does not hold in general (cf. [4, Example 1]). In this case, another polarization
phenomenon called multilevel channel polarization occurs. Following [9, Section VI], we now introduce a more precise notion
of multilevel channel polarization as follows: Let G be a finite group, and N C G a shorthand for a normal subgroup N of a
group G. Given a DMC W : G→ Y and a normal subgroup N C G, the homomorphism channel W[N] : G/N → Y is defined
by

W[N](y | aN) B 1
|N |

∑
x∈aN

W(y | x), (49)

where the quotient group of G by N C G is denoted by G/N . Then, Nasser and Telatar [9, Theorem 6] showed that7∑
NCG

lim
n→∞

1
2n

�����
{
s ∈ {−,+}n

����� |I(W s) − log[G : N]| < δ,

|I(W s[N]) − log[G : N]| < δ

}����� = 1 (50)

for fixed δ > 0 small enough,8 where the synthetic channel W s is generated by a certain polar transform defined on a group G,
and [G : N] = |G/N | denotes the index of a normal subgroup N in a group G. Thus, the limiting proportions of mediocre
(partially noiseless) synthetic channels are allowed to be positive in the context of multilevel channel polarization.

Remark 5. Notions of multilevel channel polarization have been independently introduced by several researchers [6]–[15] in
different forms. In particular, formulations of multilevel channel polarization are more complicated if the polar transform is
defined on a quasigroup [9] or a weaker algebraic structure [10], [11], [13].

We now consider each term in the sum of (50). It is clear that the left-hand sides of (46) and (47) coincide with the terms
in the sum with the trivial subgroup N = {e} and with the whole group N = G, respectively, where e stands for the identity
element of G. Thus, two-level channel polarization (48) is a special case of (50). Other terms in the sum refer to the limiting
proportions of partially noiseless synthetic channels W s . Roughly speaking, the first condition��I(W s[N]) − log[G : N]

�� < δ (for δ > 0 small enough) (51)

implies that the homomorphism channel W s[N] is almost noiseless, and the second condition��I(W s) − log[G : N]
�� < δ (for δ > 0 small enough) (52)

implies that the original synthetic channel W s has almost the same symmetric capacity as W s[N]. These observations give us
intuition as to why polar codes can achieve the symmetric capacity with multilevel channel polarization.

While the limiting proportions stated in the left-hand sides of (46) and (47) are fully and simply characterized by the
symmetric capacity I(W), the exact characterization of each term in the sum of (50) remains an open problem (see [13,
Section 9.2.1]). Recently, Nasser [14] showed that a term in the sum of (50) is positive only if N is a characteristic subgroup,
provided that G is abelian and W is automorphic-symmetric. While every DMC W : Z/qZ→ Y is automorphic-symmetric (see
[14, Example 3]), since every subgroup of the cyclic group (Z/qZ,+) is characteristic, the results in [14] are insufficient to
characterize the polarization levels induced by the polar transform stated in (12) and (13).

7In [9, Theorem 6], the rate of polarization for Bhattacharyya parameters is also shown.
8For example, it suffices to take small δ so that δ < log |G | − log( |G | − 1).
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(b) input alphabet size q = 6 (case 2)
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(d) input alphabet size q = 512 (= 29)

Fig. 3. Plots of the symmetric capacities {I (V s
ε ) | s ∈ {−, +}n } under n = 28-steps of the polar transform for several MAECs defined in Definition 2.

Each initial probability vector ε = (εd )d |q is given as follows: (a) ε = (ε1, ε2, ε3, ε6) = (0, 3/10, 3/5, 1/10), (b) ε = (ε1, ε2, ε3, ε6) = (1/4, 1/4, 1/4, 1/4),
(c) ε = (ε1, ε3, ε5, ε9, ε15, ε45) = (0, 0, 0, 1/3, 2/3, 0), and (d) ε = (ε1, ε2, ε4, ε8, ε16, ε32, ε64, ε128, ε256, ε512) = (1/10, 1/10, . . . , 1/10). Note that Fig. 3d is
analogous to that of [7, Fig. 2] with different n (see also Example 2).

C. Simulations of Multilevel Channel Polarization for Modular Arithmetic Erasure Channels

Consider the synthetic channels V s
ε induced by the polar transform for an MAEC Vε . It follows from Lemma 1, Proposition 1,

and Corollary 1 that it suffices to propagate the probability vector εs by the recursive formulas given in (33) for calculating the
α-symmetric capacity Iα(V s

ε ). Some numerical examples are plotted in Fig. 3, which illustrates the symmetric capacities I(V s
ε )

of the synthetic channels V s
ε . From Fig. 3, we may naturally conjecture that the polar transform for MAECs induce multilevel

channel polarization. On the other hand, whereas Fig. 3a appears to depict the multilevel channel polarization phenomenon
with q = 6, Figure 3b seems to imply that two-level channel polarization occurs with q = 6. Moreover, in Fig. 3c, we may
conjecture that the limiting proportion of almost useless synthetic channels V s

ε (i.e., I(V s
ε ) ≈ 0) approaches zero as n→ ∞,

while the limiting proportion of almost noiseless synthetic channels V s
ε (i.e., I(V s

ε ) ≈ 1) does not approach one as n → ∞.
These questions are completely solved in the next section.

V. ASYMPTOTIC DISTRIBUTIONS OF MULTILEVEL CHANNEL POLARIZATION

Let q be an integer, and ε = (εd)d |q an arbitrary probability vector. In this section, we characterize the asymptotic distribution
of multilevel channel polarization for MAECq(ε) defined in Definition 2. Define

µ
(n)
d
B

1
2n

∑
s∈{−,+}n

εsd (53)
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for each d |q and n ∈ N, where εs
d

can be calculated by (33). Note that εs = (εs
d
)d |q is a probability vector for every s ∈ {−,+}∗,

and so is the vector (µ(n)
d
)d |q for every n ∈ N. In addition, we define

µ
(∞)
d
B lim

n→∞
µ
(n)
d

(54)

for each d |q, provided that the limit exists. As will be shown later, the limit µ(∞)
d

exists for every d |q, and the probability
vector (µ(∞)

d
)d |q coincides with the desired asymptotic distribution. We summarize this fact in the following corollary.

Corollary 3. Let q ≥ 2 be an integer, and ε = (εd)d |q a probability vector. For any fixed 0 < δ < log(q/(q − 1)), it holds that

1
2n

�����
{
s ∈ {−,+}n

����� |I(V s
ε ) − log d | < δ,

|I(V s
ε [ker ϕd]) − log d | < δ

}�����→ µ
(∞)
d

(55)

as n → ∞ for every d |q, where V s
ε [ker ϕd] denotes the homomorphism channel of V s

ε defined as in (49), the function
ϕd : x 7→ (x + dZ) denotes the natural projection, and ker ϕd B {x ∈ Z/qZ | ϕd(x) = dZ} denotes the kernel of ϕd .

Corollary 3 is a direct consequence of Theorem 4 that will be stated in Section V-C. A formal proof of Corollary 3 is given
in Appendix D. It follows from Corollary 3 that∑

d |q
lim
n→∞

1
2n

�����
{
s ∈ {−,+}n

����� |I(V s
ε ) − log d | < δ,

|I(V s
ε [ker ϕd]) − log d | < δ

}����� = 1, (56)

which is an analogue of (50). Therefore, Corollary 3 characterizes each term in the sum of (50) for every MAEC. Based on
Corollary 3, we regard the probability vector (µ(∞)

d
)d |q as the asymptotic distribution of multilevel channel polarization for

MAECq(ε). An algorithm of calculating the asymptotic distribution (µ(∞)
d
)d |q will be described in Theorem 3 of Section V-B.

A. Special Case: The Input Alphabet Size q = pr is a Prime Power

Let q = pr be a prime power for some prime number p and some positive integer r. Note that in this case, an MAEC is
equivalent to an OEC (see Example 2), and the probability vector ε = (εd)d |q can be written as ε = (εpi )ri=0.

Proposition 3. Let q be a prime power. For any probability vectors ε = (εd)d |q and ε ′ = (ε′
d
)d |q , it holds that

εid + ε
�
d
= εd + ε

′
d (57)

for every d |q, where εi
d

and ε�
d

are defined in (30) and (31), respectively.

Proof of Proposition 3: See Appendix E.
If ε and ε ′ are the same, then Proposition 3 can be readily specialized to the identity

1
2

(
εs−d + ε

s+
d

)
= εsd (58)

for every d |q and every s ∈ {−,+}∗, which can be thought of as a martingale-like property9 of the recursive formulas stated in
(33) with respect to the polarization process. Indeed, we observe from (58) that

µ
(n)
d
= εd (59)

for every d |q and every n ∈ N, where µ
(n)
d

is defined in (53). Equation (59) implies the following theorem.

Theorem 2. If q is a prime power, then µ
(∞)
d
= εd for every d |q.

Therefore, the asymptotic distribution (µ(∞)
d
)d |q coincides with an initial probability vector ε = (εd)d |q , provided that q = pr

is a prime power. Hence, we can verify that the asymptotic distribution of Fig. 3d is given by µ
(∞)
d
= 1/10 for every d |q.

In the following, we give another proof of Theorem 2. This alternative proof can be considered as a digression of our
discussion. It gives us, however, some ideas to solve for the asymptotic distribution (µ(∞)

d
)d |q when q is not a prime power.

For each integer a ≥ 1 and each sequence s ∈ {−,+}∗, we define

T s(a) B
r∑

i=a

εs
pi , (60)

Bs(a) B
a−1∑
i=0

εs
pi , (61)

9Strictly speaking, when we consider the pass of polar transform s ∈ {−, +}n as a sequence of independent and uniformly distributed Bernoulli r.v.’s
B1, . . . , Bn , we may think of (58) as a martingale property. See [3, Section IV] for details of the polarization process.
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where εs = (εs
d
)d |q = (εpi )ri=0 is recursively defined in (33). If the sequence s = � is empty, then we omit the superscripts s in

T s(a) and Bs(a) and denote these quantities respectively as T(a) and B(a). Clearly, it holds that

T s(a) + Bs(a) =
r∑
i=0

εs
pi = 1 (62)

for each a ≥ 1 and each s ∈ {−,+}∗.

Lemma 3. For each integer a ≥ 1 and each sequence s ∈ {−,+}∗, it holds that

T s−(a) = T s(a)2, (63)

Bs−(a) = 2 Bs(a)T s(a) + Bs(a)2, (64)

T s+(a) = 2 Bs(a)T s(a) + T s(a)2, (65)

Bs+(a) = Bs(a)2. (66)

Proof of Lemma 3: See Appendix F.
One can see from Lemma 3 that the pair of partial sums T s(a) and Bs(a) behave similarly to the polar transform for BECs

(see Section III-A). The following lemma is a straightforward consequence of Lemma 3.

Lemma 4. For each integer a ≥ 1 and each sequence s ∈ {−,+}∗, it holds that

1
2

(
T s−(a) + T s+(a)

)
= T s(a), (67)

1
2

(
Bs−(a) + Bs+(a)

)
= Bs(a). (68)

Consequently, it holds that

1
2n

∑
s∈{−,+}n

T s(a) = T(a), (69)

1
2n

∑
s∈{−,+}n

Bs(a) = B(a) (70)

for every integers n ≥ 1 and a ≥ 1.

Lemma 4 presents a martingale-like property for two partial sums T s(a) and Bs(a) with respect to the polarization process.
Employing this martingale-like property, we can give an alternative proof of Theorem 2 by induction.

Alternative Proof of Theorem 2: As a counterpart of (59), it suffices to verify that

µ
(n)
pi = εpi (71)

for every n ∈ N and every i = 0, 1, . . . , r . We prove (71) by induction. We observe that

µ
(n)
1 =

1
2n

∑
s∈{−,+}n

εs1

=
1
2n

∑
s∈{−,+}n

Bs(1)

(a)
= B(1)
= ε1 (72)
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for every n ∈ N, where (a) follows from Lemma 4. This implies (71) with i = 0. Let 0 ≤ k < r be an integer. Suppose that (71)
holds for every n ∈ N and every i = 0, 1, . . . , k. Then, we have

µ
(n)
pk+1 =

1
2n

∑
s∈{−,+}n

εs
pk+1

=
1
2n

∑
s∈{−,+}n

k+1∑
i=0

εs
pk+1 −

k∑
j=0

εp j

=
1
2n

∑
s∈{−,+}n

Bs(k + 1) −
k∑
j=0

εp j

(a)
= B(k + 1) −

k∑
j=0

εp j

=

k+1∑
i=0

εpi −
k∑
j=0

εp j

= εpk+1 (73)

for every n ∈ N, where (a) follows from Lemma 4. This completes the proof of Theorem 2.
Even if q is not a prime factor, we can deduce some martingale-like properties in the probability vector (εs

d
)d |q by considering

four partial sums of (εs
d
)d |q , instead of T s(·) and Bs(·). Such martingale-like properties as well as the above alternative proof

are useful to solve the asymptotic distribution (µ(∞)
d
)d |q . In the next subsection, we define four such partial sums and explore

these properties.

B. General Case: The Input Alphabet Size q = pr1
1 pr2

2 · · · p
rm
m is a Composite Number

Henceforth, assume that the input alphabet size q can be factorized as10 q = pr1
1 pr2

2 · · · p
rm
m with m distinct prime factors

pr1
1 , pr2

2 , . . ., and prmm . If a positive integer d of q can be factorized by d = pt11 pt22 · · · p
tm
m , then we write it as d = 〈t〉 for the

sake of brevity, where t = (t1, t2, . . . , tm). Namely, defining a partial order t ≤ u between two m-tuples t and u by ti ≤ ui for
every i = 1, 2, . . . ,m, we observe that d divides q if and only if 0 ≤ t ≤ r with d = 〈t〉 and q = 〈r〉, where 0 = (0, . . . , 0)
denotes the all zeros vector. As in (60) and (61), the key idea of our analyses is that for each pair of integers i and j satisfying
1 ≤ i < j ≤ m, we combine the probability masses (εs〈t 〉)0≤t≤r into the following four quantities:11

θsi, j(a, b) B
∑

t:0≤t≤r,
ti ≥a,tj ≥b

εs〈t 〉, (74)

λsi, j(a, b) B
∑

t:0≤t≤r,
ti ≥a,tj<b

εs〈t 〉, (75)

ρsi, j(a, b) B
∑

t:0≤t≤r,
ti<a,tj ≥b

εs〈t 〉, (76)

βsi, j(a, b) B
∑

t:0≤t≤r,
ti<a,tj<b

εs〈t 〉, (77)

where a, b ≥ 1 are integers, s ∈ {−,+}∗ a sequence, and εs = (εs
d
)d |q = (εs〈t 〉)0≤t≤r is recursively defined in (33) with an initial

probability vector ε = (εd)d |q . If the sequence s = � is empty, then we omit the superscripts s in the notations in (74)–(77)
and write them as θi, j(a, b), λi, j(a, b), ρi, j(a, b), and βi, j(a, b). Note that

θsi, j(a, b) + λsi, j(a, b) + ρsi, j(a, b) + βsi, j(a, b) =
∑
d |q

εsd = 1 (78)

for each 1 ≤ i < j ≤ m, each a, b ≥ 1, and each s ∈ {−,+}∗. Some examples of (74)–(77) are given as follows:

10Even if q has only one prime factor q = p
r1
1 , in this subsection, we write q = p

r1
1 p

r2
2 · · · p

rm
m for some m ≥ 2 by setting r2 = · · · = rm = 0. Doing so,

the analyses in Section V-B can specialize to the case where q is a prime power.
11Note that (74)–(77) are well-defined even if 0 ≤ j < i ≤ r , and it holds that λi, j (a, b) = ρ j, i (b, a).
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p3
1p2

2 θs1,2(a, b)
λs1,2(a, b)

βs1,2(a, b)

ρs1,2(a, b)

(a) when (a, b) = (1, 2)

•
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•
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1
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1
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1p2
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1p2
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1p2

2 θs1,2(a, b)
λs1,2(a, b)

βs1,2(a, b)

ρs1,2(a, b)

(b) when (a, b) = (2, 1)

Fig. 4. Hasse diagram of the positive divisors of q = p3
1 p2

2 (see Example 6).

Example 5. Consider the case where q = 6 (see Examples 3 and 4). Set m = 2, (p1, p2) = (2, 3), and (r1, r2) = (1, 1). Let
(εd)d |q = (ε1, ε2, ε3, ε6) be an initial four-dimensional probability vector. Since m = 2, it suffices to consider the case where
(i, j) = (1, 2). For every a, b ≥ 2 and every s ∈ {−,+}∗, we observe that

θs1,2(1, 1) = ε
s
6,

λs1,2(1, 1) = ε
s
2,

ρs1,2(1, 1) = ε
s
3,

βs1,2(1, 1) = ε
s
1 .

(79)


θs1,2(a, 1) = 0,

λs1,2(a, 1) = 0,

ρs1,2(a, 1) = ε
s
3 + ε

s
6,

βs1,2(a, 1) = ε
s
1 + ε

s
2 .

(80)


θs1,2(1, b) = 0,

λs1,2(1, b) = ε
s
2 + ε

s
6,

ρs1,2(1, b) = 0,

βs1,2(1, b) = ε
s
1 + ε

s
3 .

(81)


θs1,2(a, b) = 0,

λs1,2(a, b) = 0,

ρs1,2(a, b) = 0,

βs1,2(a, b) = ε
s
1 + ε

s
2 + ε

s
3 + ε

s
6 = 1.

(82)

Example 6. Let q = p3
1p2

2, where p1 and p2 are distinct prime numbers (e.g., q = 72 = 23 · 32). Then, we see that

θs1,2(1, 2) = ε
s
p1p

2
2
+ εs

p2
1p2
+ εs

p3
1p

2
2
,

λs1,2(1, 2) = ε
s
p1 + ε

s
p1p2 + ε

s
p2

1
+ εs

p2
1p2
+ εs

p3
1
+ εs

p3
1p2
,

ρs1,2(1, 2) = ε
s
p2

2
,

βs1,2(1, 2) = ε
s
1 + ε

s
p2 .

(83)
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

θs1,2(2, 1) = ε
s
p2

1p2
+ εs

p2
1p

2
2
+ εs

p3
1p2
+ εs

p3
1p

2
2
,

λs1,2(2, 1) = ε
s
p2

1
+ εs

p3
1
,

ρs1,2(2, 1) = ε
s
p2 + ε

s
p2

2
+ εsp1p2 + ε

s
p1p

2
2
,

βs1,2(2, 1) = ε
s
1 + ε

s
p1 .

(84)

Graphical interpretations of these partial sums via Hasse diagrams are plotted in Fig. 4.

In the following, to characterize the asymptotic distribution (µ(∞)
d
)d |q , we state some technical lemmas concerning these four

partial sums θsi, j , λ
s
i, j , ρ

s
i, j , and βsi, j . Firstly, we provide recursive formulas of these partial sums under the polar transform as

follows:

Lemma 5. For any s ∈ {−,+}∗, 1 ≤ i < j ≤ m, and a, b ≥ 1, it holds that

θs−i, j (a, b) = θsi, j(a, b)2,

λs−i, j (a, b) = λsi, j(a, b)
[
λsi, j(a, b) + 2 θsi, j(a, b)

]
,

ρs−i, j (a, b) = ρsi, j(a, b)
[
ρsi, j(a, b) + 2 θsi, j(a, b)

]
,

βs−i, j (a, b) = βsi, j(a, b)
[
2 − βsi, j(a, b)

]
+ 2 λsi, j(a, b) ρsi, j(a, b),

(85)



θs+i, j (a, b) = θsi, j(a, b)
[
2 − θsi, j(a, b)

]
+ 2 λsi, j(a, b) ρsi, j(a, b),

λs+i, j (a, b) = λsi, j(a, b)
[
λsi, j(a, b) + 2 βsi, j(a, b)

]
,

ρs+i, j (a, b) = ρsi, j(a, b)
[
ρsi, j(a, b) + 2 βsi, j(a, b)

]
,

βs+i, j (a, b) = βsi, j(a, b)2.

(86)

Proof of Lemma 5: See Appendix G.
Similar to Lemma 4, as shown in the following lemma, Lemma 5 characterizes the average value of (74)–(77) when the

polar transform is applied once.

Lemma 6. For any s ∈ {−,+}∗, 1 ≤ i < j ≤ m, and a, b ≥ 1, it holds that

1
2

[
θs−i, j (a, b) + θs+i, j (a, b)

]
= θsi, j(a, b) + λsi, j(a, b) ρsi, j(a, b), (87)

1
2

[
λs−i, j (a, b) + λs+i, j (a, b)

]
= λsi, j(a, b)

[
1 − ρsi, j(a, b)

]
, (88)

1
2

[
ρs−i, j (a, b) + ρs+i, j (a, b)

]
= ρsi, j(a, b)

[
1 − λsi, j(a, b)

]
, (89)

1
2

[
βs−i, j (a, b) + βs+i, j (a, b)

]
= βsi, j(a, b) + λsi, j(a, b) ρsi, j(a, b). (90)

Proof of Lemma 6: Lemma 6 follows in a straightforward manner from Lemma 5.
The idea of Lemma 6 comes from the conservation property [I(W−)+ I(W+)]/2 = I(W). Note that in general, these quantities

are not conserved by the polar transform. In fact, Lemma 6 can be thought of as being equivalent to the following sub- and
super-martingale-like properties with respect to the polarization process:

1
2

[
θs−i, j (a, b) + θs+i, j (a, b)

]
≥ θsi, j(a, b), (91)

1
2

[
λs−i, j (a, b) + λs+i, j (a, b)

]
≤ λsi, j(a, b), (92)

1
2

[
ρs−i, j (a, b) + ρs+i, j (a, b)

]
≤ ρsi, j(a, b), (93)

1
2

[
βs−i, j (a, b) + βs+i, j (a, b)

]
≥ βsi, j(a, b). (94)

The following lemma states a property between λsi, j(a, b) and ρsi, j(a, b); it shows that the inequality between λsi, j(a, b) and
ρsi, j(a, b) is invariant under one pass of the polar transform s ∈ {−,+}∗.

Lemma 7. For each 1 ≤ i < j ≤ m and a, b ≥ 1, it holds that λsi, j(a, b) ≤ ρsi, j(a, b) for every s ∈ {−,+}∗ if and only if
λi, j(a, b) ≤ ρi, j(a, b).

Proof of Lemma 7: See Appendix H.
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We now define the average value of (74)–(77) as follows:

µ
(n)
i, j [θ](a, b) B

1
2n

∑
s∈{−,+}n

θsi, j(a, b), (95)

µ
(n)
i, j [λ](a, b) B

1
2n

∑
s∈{−,+}n

λsi, j(a, b), (96)

µ
(n)
i, j [ρ](a, b) B

1
2n

∑
s∈{−,+}n

ρsi, j(a, b), (97)

µ
(n)
i, j [β](a, b) B

1
2n

∑
s∈{−,+}n

βsi, j(a, b). (98)

For convenience, when n = 0, we write µ
(0)
i, j [θ](a, b) B θi, j(a, b), µ(0)i, j [λ](a, b) B λi, j(a, b), µ(0)i, j [ρ](a, b) B ρi, j(a, b), and

µ
(0)
i, j [β](a, b) B βi, j(a, b). Unlike the case when q is a prime power (see Lemma 4), these quantities are not preserved under the

polar transform. However, as shown in the following lemma, the difference between µ
(n)
i, j [λ](a, b) and µ

(n)
i, j [ρ](a, b), and several

addition between two quantities are preserved under the polar transform.

Lemma 8. For any n ≥ 0, 1 ≤ i < j ≤ m, and a, b ≥ 1, it holds that

µ
(n)
i, j [λ](a, b) − µ

(n)
i, j [ρ](a, b) = λi, j(a, b) − ρi, j(a, b), (99)

µ
(n)
i, j [θ](a, b) + µ

(n)
i, j [λ](a, b) = θi, j(a, b) + λi, j(a, b), (100)

µ
(n)
i, j [θ](a, b) + µ

(n)
i, j [ρ](a, b) = θi, j(a, b) + ρi, j(a, b), (101)

µ
(n)
i, j [β](a, b) + µ

(n)
i, j [λ](a, b) = βi, j(a, b) + λi, j(a, b), (102)

µ
(n)
i, j [β](a, b) + µ

(n)
i, j [ρ](a, b) = βi, j(a, b) + ρi, j(a, b). (103)

Proof of Lemma 8: See Appendix I.
Lemma 8 implies that the left-hand sides of (99)–(103) has martingale-like properties. It is worth mentioning that Lemma 8

is useful to prove the limits of (95)–(98) as n→∞.

Lemma 9. For each 1 ≤ i < j ≤ m and a, b ≥ 1, the four sequences (µ(n)i, j [θ](a, b))∞n=1, (µ(n)i, j [λ](a, b))∞n=1, (µ(n)i, j [ρ](a, b))∞n=1,

and (µ(n)i, j [β](a, b))∞n=1 are convergent.

Proof of Lemma 9: See Appendix J.
By Lemma 9, we can define the following limits:

µ
(∞)
i, j [θ](a, b) B lim

n→∞
µ
(n)
i, j [θ](a, b), (104)

µ
(∞)
i, j [λ](a, b) B lim

n→∞
µ
(n)
i, j [λ](a, b), (105)

µ
(∞)
i, j [ρ](a, b) B lim

n→∞
µ
(n)
i, j [ρ](a, b), (106)

µ
(∞)
i, j [β](a, b) B lim

n→∞
µ
(n)
i, j [β](a, b). (107)

The following theorem shows that these limits can be evaluated easily in terms of the initial probability vector ε = (εd)d |q .

Lemma 10. For any 1 ≤ i < j ≤ m and a, b ≥ 1, it holds that

µ
(∞)
i, j [θ](a, b) = θi, j(a, b) +min{λi, j(a, b), ρi, j(a, b)}, (108)

µ
(∞)
i, j [λ](a, b) =

��λi, j(a, b) − ρi, j(a, b)��+, (109)

µ
(∞)
i, j [ρ](a, b) =

��ρi, j(a, b) − λi, j(a, b)��+, (110)

µ
(∞)
i, j [β](a, b) = βi, j(a, b) +min{λi, j(a, b), ρi, j(a, b)}, (111)

where |c |+ B max{0, c} for c ∈ R.

Proof of Lemma 10: See Appendix K.
If q is a semiprime, i.e., if q = p1p2 for some distinct prime numbers p1 and p2, then Lemma 10 immediately yields the

asymptotic distribution (µ(∞)
d
)d |q defined in (54), as shown in the following example.
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Algorithm 1: Solving asymptotic distribution
Data: An initial probability vector ε = (εd)d |q
Result: The asymptotic distribution (µ(∞)

d
)d |q

1 Initialize (µ(∞)
d
)d |q by the zero vector (0, . . . , 0)

2 ξ ←− 0
3 t = (t1, . . . , tm) ←− (0, . . . , 0)
4 while 0 ≤ ξ < 1 do
5 (i, j) ←− (1, 2)
6 while j ≤ m do
7 if λi, j(ti + 1, tj + 1) ≤ ρi, j(ti + 1, tj + 1) then
8 (k, l) ←− ( j, i)
9 (i, j) ←− (k, j + 1)

10 else
11 (k, l) ←− (i, i)
12 j ←− j + 1

13 µ
(∞)
〈t 〉 ←− βl,m(tl + 1, tm + 1) +min{λl,m(tl + 1, tm + 1), λl,m(tl + 1, tm + 1)} − ξ

14 ξ ←− ξ + µ(∞)〈t 〉
15 tk ←− tk + 1

Example 7. Let q = 6 = 2 · 3 (see Examples 3–5). It follows from (79) of Example 5 and Lemma 10 that

µ
(∞)
6 = µ

(∞)
1,2 [θ](1, 1) = ε6 +min{ε2, ε3},

µ
(∞)
2 = µ

(∞)
1,2 [λ](1, 1) = |ε2 − ε3 |+,

µ
(∞)
3 = µ

(∞)
1,2 [ρ](1, 1) = |ε3 − ε2 |+,

µ
(∞)
1 = µ

(∞)
1,2 [β](1, 1) = ε1 +min{ε2, ε3}

(112)

for every initial probability vector ε = (εd)d |q = (ε1, ε2, ε3, ε6). Therefore, the asymptotic distribution of Fig. 3a is given by
(µ(∞)1 , µ

(∞)
2 , µ

(∞)
3 , µ

(∞)
6 ) = (3/10, 0, 3/10, 2/5), and Fig. 3b by (µ(∞)1 , µ

(∞)
2 , µ

(∞)
3 , µ

(∞)
6 ) = (1/2, 0, 0, 1/2).

The following theorem shows that the limit µ(∞)
d

defined in (54) always exists for each d |q, and the asymptotic distribution
(µ(∞)

d
)d |q can be calculated algorithmically and exactly for every composite number q having two or more distinct prime factors.

Theorem 3. The asymptotic distribution (µ(∞)
d
)d |q can be calculated by Algorithm 1 in12 time O(ωNT(q)ΩNT(q) τ(q)), where

ωNT(q) = m denotes the number of distinct prime factors of q, ΩNT(q) B
∑m

i=1 ri denotes the number of prime factors of q
with multiplicity, and τ(q) B ∏m

i=1(ri + 1) denotes the number of positive divisors of q.

Proof of Theorem 3: See Appendix L.
By Theorem 3, we can immediately observe the following corollary.

Corollary 4. For any initial probability vector ε = (εd)d |q , there exists a sequence (t (h) = (t(h)1 , . . . , t(h)m ))mh=0 satisfying (i)
0 = t (0) ≤ t (1) ≤ · · · ≤ t (m) = r and (ii) µ(∞)〈t 〉 > 0 only if t = t (h) for some 0 ≤ h ≤ m. Consequently, the asymptotic distribution

(µ(∞)
d
)d |q has at most ΩNT(q) + 1 positive probability masses.

By Algorithm 1, we can solve for the asymptotic distribution of Fig. 3c as

(µ(∞)1 , µ
(∞)
3 , µ

(∞)
5 , µ

(∞)
9 , µ

(∞)
15 , µ

(∞)
45 ) = (0, 0, 1/3, 0, 1/3, 1/3). (113)

A more complicated example of Algorithm 1 is given as follows:

Example 8. Consider an MAEC Vε defined in Definition 2 with an initial probability vector ε = (εd)d |q as follows: The
input alphabet size is q = 4500 = 22 · 32 · 53, where note that the set of positive divisors d of q is {1, 2, 3, 4, 5, 6, 9, 10, 12,
15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 125, 150, 180, 225, 250, 300, 375, 450, 500, 750, 900, 1125, 1500, 2250, 4500}. The initial
probability vector (εd)d |q is given by13 (εd)d |q = (1/150) × (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0,

12While O(·) stands for the Big-O notation used to denote the computational complexity of a certain procedure, note that ωNT(·) and ΩNT(·) are number
theoretic notations, i.e., these notations do not stand for the little-omega and Big-Omega notations, respectively, of the computational complexity.

13The elements εd of (εd )d |q are sorted in increasing order of divisors d.
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TABLE I
EXAMPLE OF ALGORITHM 1 WITH THE SETTING OF EXAMPLE 8 (SEE ALSO FIG. 1). THE INPUT ALPHABET SIZE IS q = 4500 = 22 · 32 · 53 . AN INITIAL

PROBABILITY VECTOR (εd )d |q AND ITS RESULTANT ASYMPTOTIC DISTRIBUTION (µ(∞)
d
)d |q ARE SUMMARIZED IN THE TABLE.

divisor d 1 2 3 4 5 6 9 10 12 15 18 20

(εd )d |q 0 1/150 2/150 3/150 4/150 5/150 6/150 7/150 8/150 9/150 0 1/150

(µ(∞)
d
)d |q 29/150 0 0 0 1/15 0 0 0 0 11/150 0 0

divisor d 25 30 36 45 50 60 75 90 100 125 150 180

(εd )d |q 2/150 3/150 4/150 5/150 6/150 7/150 8/150 9/150 0 1/150 2/150 3/150

(µ(∞)
d
)d |q 0 9/50 0 0 0 0 0 0 0 0 11/75 0

divisor d 225 250 300 375 450 500 750 900 1125 1500 2250 4500

(εd )d |q 4/150 5/150 6/150 7/150 8/150 9/150 0 1/150 2/150 3/150 4/150 5/150

(µ(∞)
d
)d |q 0 0 0 0 1/150 0 0 7/75 0 0 0 6/25

1, 2, 3, 4, 5). Then, Algorithm 1 solves the asymptotic distribution (µ(∞)
d
)d |q = (29/150, 0, 0, 0, 1/15, 0, 0, 0, 0, 11/150, 0, 0, 0, 9/50,

0, 0, 0, 0, 0, 0, 0, 0, 11/75, 0, 0, 0, 0, 0, 1/150, 0, 0, 7/75, 0, 0, 0, 6/25). We summarize this result in Table I.

Figure 1 in Section I-A shows an example of multilevel channel polarization for the MAEC given in Example 8 (see also
Table I), where note that Fig. 1 is calculated and plotted by employing Proposition 1 and the recursive formulas stated in (33)
of Corollary 1.

In this subsection, we have given an algorithm for calculating the asymptotic distribution (µ(∞)
d
)d |q . In the next subsection, we

will show that (µ(∞)
d
)d |q is, in a rigorous sense, the asymptotic distribution of multilevel channel polarization for MAECq(ε).

C. Formal Statement of Asymptotic Distribution

The following theorem states that (εs
d
)d |q uniformly tends to a unit vector (0, . . . , 0, 1, 0, . . . , 0) as n goes to infinity for each

sequence of polarization process (s = s1s2 · · · sn)∞n=1, and the limiting proportions are exactly characterized by the asymptotic
distribution (µ(∞)

d
)d |q .

Theorem 4. For any fixed δ ∈ (0, 1), it holds that

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εsd ≤ 1 − δ
}��� = 0, (114)

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� εsd > 1 − δ
}��� = µ(∞)d

(115)

for every d |q, where (µ(∞)
d
)d |q can be calculated by Algorithm 1 (cf. Theorem 3).

Proof of Theorem 4: See Appendix M.
Theorem 4 immediately proves Corollary 3 of Section V; this corollary formally characterizes the asymptotic distribution of

multilevel channel polarization for MAECs. See Appendix D for the proof of Corollary 3.

VI. CONCLUDING REMARKS

We have proposed a general type of erasure-like channels called modular arithmetic erasure channels (MAECs). Similar to
the well-known recursive formulas of the polar transform for a BEC, in Theorem 1 and Corollary 1, we derived the recursive
formulas for an MAEC. Hence, the MAEC is a simple toy model to study the phenomenon of multilevel channel polarization.
In Section V, we exactly characterized the asymptotic distribution of multilevel channel polarization for an MAEC. In particular,
we also established an algorithm to calculate the asymptotic distribution in Algorithm 1. This partially solves an open problem
in the study of non-binary polar coding (cf. [13, Section 9.2.1]).

An interesting future work is to generalize the results in Section V from MAECs to general DMCs. On the other hand, it
is also interesting to generalize the requirement of working over a ring Z/qZ to weaker algebraic structures. Recently, the
present authors [31] generalized the results of this study to the case in which the polar transform is defined on a group with
infinite order and where the polar coding is used in the context of source coding. In short, this follow-up work [31] generalizes
the results in Section V from a cyclic group (Z/qZ,+) to a locally cyclic group. It is worth pointing out that generalizing the
algebraic structure is important to deal with the multiple access channel polarization. Abbe and Telatar [6] considered the polar
transform for m-user multiple-access channels over an elementary abelian group Fm2 = F2 × F2 × · · · × F2. Nasser and Telatar
[9, Section VII] and Nasser [12] also considered polar transforms defined on an arbitrary finite abelian group. Specifically,
Nasser and Telatar [9, Section VIII] studied another erasure-like channel called a combination of l linear channels in which the
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input alphabet is given as an elementary abelian group. On the other hand, it is difficult to exactly characterize the asymptotic
distribution of such an erasure-like channel (cf. [9, Section VIII-B]). Generalizing our results to an abelian, or a non-abelian,
group is of interests to gain deeper understanding of multilevel channel polarization or polarization in network information
theory problems (such as the multiple-access channel).
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APPENDIX A
PROOF OF LEMMA 2

By Definition 1, there exist two channels Q1 : Z1 → Y1 and Q2 : Z2 → Y2 satisfying

W1(y1 | x1) =
∑

z1∈Z1

Q1(y1 | z1) W̃1(z1 | x1), (116)

W2(y2 | x2) =
∑

z2∈Z2

Q2(y2 | z2) W̃2(z2 | x2). (117)

For each (u1, y1, y2) ∈ Z/qZ × Y1 × Y2, we have

(W1 iW2)(y1, y2 | u1) =
∑

u′2∈Z/qZ

1
q

W1(y1 | u1 + γ · u′2)W2(y2 | u′2)

=
∑

u′2∈Z/qZ

1
q

©­«
∑

z1∈Z1

Q1(y1 | z1) W̃1(z1 | u1 + γ · u′2)
ª®¬ ©­«

∑
z2∈Z2

Q2(y2 | z2) W̃2(z2 | u′2)
ª®¬

=
∑

(z1,z2)∈Z1×Z2

Q1(y1 | z1)Q2(y2 | z2) +
∑

u′2∈Z/qZ

1
q

W̃1(z1 | u1 + γ · u′2) W̃2(z2 | u′2)

=
∑

(z1,z2)∈Z1×Z2

Q1,2(y1, y2 | z1, z2) (W̃1 i W̃2)(z1, z2 | u1), (118)

which implies that W1 iW2 � W̃1 i W̃2, where the product channel Q1,2 : Z1 ×Z2 → Y1 × Y2 is given by

Q1,2(y1, y2 | z1, z2) = Q1(y1 | z1)Q2(y2 | z2). (119)

Similarly, for each (u1, u2, y1, y2) ∈ (Z/qZ)2 × Y1 × Y2, we see that

(W1 � W2)(y1, y2, u1 | u2) =
1
q

W1(y1 | u1 + γ · u2)W2(y2 | u2)

=
1
q

©­«
∑

z1∈Z1

Q1(y1 | z1) W̃1(z1 | u1 + γ · u2)
ª®¬ ©­«

∑
z2∈Z2

Q2(y2 | z2) W̃2(z2 | u2)
ª®¬

=
∑

(z1,z2)∈Z1×Z2

Q1(y1 | z1)Q2(y2 | z2)
(

1
q

W̃1(z1 | u1 + γ · u2) W̃2(z2 | u2)
)

=
∑

(z1,z2)∈Z1×Z2

Q1,2(y1, y2 | z1, z2) (W̃1 � W̃2)(z1, z2, u1 | u2)

=
∑

(z1,z2,u
′
1)∈Z1×Z2×X

Q̂1,2(y1, y2, u1 | z1, z2, u′1) (W̃1 � W̃2)(z1, z2, u′1 | u2), (120)

which implies that W1 � W2 � W̃1 � W̃2, where the channel Q̂1,2 : Z1 ×Z2 × Z/qZ→ Y1 × Y2 × Z/qZ is given by

Q̂1,2(y1, y2, u1 | z1, z2, u′1) =
{

Q1,2(y1, y2 | z1, z2) if u1 = u′1,
0 if u1 , u′1.

(121)

This completes the proof of Lemma 2.
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APPENDIX B
PROOF OF PROPOSITION 1

A direct calculation shows that

Iα(Vε) =
α

α − 1
log ©­«

∑
y∈Y

(∑
x∈X

1
q

Vε(y | x)α
)1/αª®¬

=
α

α − 1
log

©­­«
∑
d |q

∑
y∈Z/dZ

©­«
∑

x∈Z/qZ

1
q

Vε(y | x)αª®¬
1/αª®®¬

=
α

α − 1
log

©­­­«
∑
d |q

∑
y∈Z/dZ

©­­­«
∑

x∈Z/qZ:
x≡y (mod d)

1
q
εαd

ª®®®¬
1/αª®®®®¬

=
α

α − 1
log ©­«

∑
d |q

∑
y∈Z/dZ

(
q
d

1
q
εαd

)1/αª®¬
=

α

α − 1
log ©­«

∑
d |q

∑
y∈Z/dZ

εd

d1/α
ª®¬

=
α

α − 1
log ©­«

∑
d |q

εd

d(1/α)−1
ª®¬

=
α

α − 1
log ©­«

∑
d |q

d(α−1)/α εd
ª®¬ (122)

for each α ∈ (0, 1) ∪ (1,∞). The rest of formulas can be verified as follows:

I0(Vε) = min
y∈Y

(
log

q
|{x ∈ X | Vε(y | x) > 0}|

)
= min

d |q
min
y∈Z/dZ

(
log

q
|{x ∈ X | Vε(y | x) > 0}|

)
= min

d |q:εd>0
min
y∈Z/dZ

(
log

q
(q/d)

)
= min

d |q:εd>0

(
log d

)
, (123)

I(Vε) =
∑
y∈Y

∑
x∈X

1
q

Vε(y | x) log
Vε(y | x)∑

x′∈X(1/q)Vε(y | x ′)

=
∑
d |q

∑
y∈Z/dZ

∑
x∈Z/qZ

1
q

Vε(y | x) log
Vε(y | x)∑

x′∈Z/qZ(1/q)Vε(y | x ′)

=
∑
d |q

∑
y∈Z/dZ

∑
x∈Z/qZ:

x≡y (mod d)

1
q
εd

©­­­«log εd − log
∑

x′∈Z/qZ:
x′≡y (mod d)

1
q
εd

ª®®®¬
=

∑
d |q

d
q
d

1
q
εd log d

=
∑
d |q
(log d) εd, (124)

I∞(Vε) = log ©­«
∑
y∈Y

max
x∈X

Vε(y | x)ª®¬
= log ©­«

∑
d |q

∑
y∈Z/dZ

max
x∈Z/qZ

Vε(y | x)ª®¬
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= log ©­«
∑
d |q

∑
y∈Z/dZ

εd
ª®¬

= log ©­«
∑
d |q

d εd
ª®¬ . (125)

This completes the proof of Proposition 1.

APPENDIX C
PROOF OF THEOREM 1

Given a, b ∈ Z/qZ and d |q, define the congruence between a and b modulo d as

a ≡ b (mod d) def⇐⇒ a + dZ = b + dZ. (126)

To prove Theorem 1, we employ the following well-known result in elementary number theory.

Lemma 11 (A variant of Chinese Remainder Theorem). Let d1, d2 ∈ N. For every a and b, the system of two congruences

z ≡ a (mod d1), (127)
z ≡ b (mod d2) (128)

has a solution z if and only if

a ≡ b (mod gcd(d1, d2)). (129)

In particular, when the solution z exists, it is unique modulo lcm(d1, d2).

We now introduce two useful notations. Let P be a probability distribution on X and W : X → Y a channel. Then, the
output distribution PW on Y is defined by

PW(y) B
∑
x∈X

P(x)W(y | x) (130)

for each y ∈ Y. In addition, the backward channel WP : Y → X is defined by

WP(x | y) B
P(x)W(y | x)

PW(y) (131)

for each (x, y) ∈ X × Y. Throughout this proof, assume that every input distribution P is uniform, and we drop the subscript,
writing WP as W for brevity.

Recall that MAECs are defined in Definition 2. Let q ≥ 2 be an integer. Consider two probability vectors ε = (εd)d |q and
ε ′ = (ε′

d
)d |q . By the construction of the output alphabet Y (see (24)), note that each output symbol y ∈ Y can be written by

y = z + dZ for some z ∈ Z/qZ and some divisor d |q. It follows from (23) and (130) that

PVε(z + dZ) =
∑

x∈Z/qZ

1
q

Vε(z + dZ | x)

=
∑

x∈Z/qZ:
x≡z (mod d)

εd
q

=
εd
d

(132)

for each z ∈ Z/qZ and d |q. In addition, it follows from (23), (132), and (131) that

Vε(x | z + dZ) = 1
q

Vε(z + dZ | x)
PVε(z + dZ)

=
d
q

Vε(z + dZ | x)
εd

=


d
q

if x ≡ z (mod d),

0 otherwise,
(133)

provided that εd > 0, for each x, z ∈ Z/qZ and d |q. Similarly, one has

PVε′(z + dZ) =
ε′
d

d
(134)
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and

Vε′(x | z + dZ) =


d
q

if x ≡ z (mod d),

0 otherwise,
(135)

provided that ε′
d
> 0, for each z ∈ Z/qZ and d |q.

Given a unit γ ∈ Z/qZ, consider the worse channel Vε i Vε′ and the better channel Vε � Vε′ defined in (12) and (13),
respectively. We first prove the assertion of Theorem 1 for the worse channel.

A. Proof for the Worse Channel Vε i Vε′

It follows from (12) and (130) that

P(Vε i Vε′)(y1, y2) =
∑
u1∈X

1
q
(Vε i Vε′)(y1, y2 | u1)

=
∑
u1∈X

1
q

∑
u′2∈X

1
q

Vε(y1 | u1 + γ · u′2)Vε′(y2 | u′2)

=

( ∑
u1∈X

1
q

Vε(y1 | u1)
) ©­«

∑
u′2∈X

1
q

Vε′(y2 | u′2)
ª®¬

= PVε(y1) PVε′(y2) (136)

for each y1, y2 ∈ Y, where the third equality follows from the fact that the map a 7→ a + γ · b is a bijection on Z/qZ for each
b ∈ Z/qZ. Moreover, it follows from (12), (131), and (136) that

(Vε i Vε′)(u1 | y1, y2) =
1
q
(Vε i Vε′)(y1, y2 | u1)

P(Vε i Vε′)(y1, y2)

=
1
q
(Vε i Vε′)(y1, y2 | u1)

PVε(y1) PVε′(y2)

=
∑
u′2∈X

(
1
q

Vε(y1 | u1 + γ · u′2)
PVε(y1)

) (
1
q

Vε′(y2 | u′2)
PVε′(y2)

)
=

∑
u′2∈X

Vε(u1 + γ · u′2 | y1)Vε′(u′2 | y2), (137)

provided that PVε(y1) PVε′(y2) > 0, for each (u1, y1, y2) ∈ X × Y2. Furthermore, it follows from (133) and (135) that

Vε(u1 + γ · u′2 | z1 + d1Z)Vε′(u′2 | z2 + d2Z) =


d1d2

q2 if u1 + γ · u′2 ≡ z1 (mod d1),

u′2 ≡ z2 (mod d2),
0 otherwise,

(138)

provided that εd1 ε
′
d2
> 0, for each u1, u′2, z1, z2 ∈ Z/qZ and d1, d2 |q. Note that in (138), the system of two congruences

u1 + γ · u′2 ≡ z1 (mod d1), (139)
u′2 ≡ z2 (mod d2) (140)

can be rewritten as

u′2 ≡ γ
−1 · (z1 − u1) (mod d1), (141)

u′2 ≡ z2 (mod d2); (142)

and thus, it follows from Lemma 11 that this system has a unique solution u′2 ∈ Z/lcm(d1, d2)Z if and only if

γ−1 · (z1 − u1) ≡ z2 (mod gcd(d1, d2)), (143)

which is equivalent to

u1 ≡ z1 − γ · z2 (mod gcd(d1, d2)). (144)

Therefore, for every u1, u′2, z1, z2 ∈ Z/qZ and d1, d2 |q satisfying εd1ε
′
d2
> 0, there exists a representative

r ∈ (γ−1 · (z1 − u1) + d1Z) ∩ (z2 + d2Z) (145)
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such that

Vε(u1 + γ · u′2 | z1 + d1Z)Vε′(u′2 | z2 + d2Z) =


d1d2

q2 if u1 ≡ z1 − γ · z2 (mod gcd(d1, d2)),

u′2 ≡ r (mod lcm(d1, d2)),
0 otherwise.

(146)

Hence, we have from (137) and (146) that

(Vε i Vε′)(u1 | z1 + d1Z, z2 + d2Z) =
∑

u′2∈Z/qZ
Vε(u1 + γ · u′2 | z1 + d1Z)Vε′(u′2 | z2 + d2Z)

=


∑

u′2∈Z/qZ:
u′2≡r (mod lcm(d1,d2))

d1d2

q2 if u1 ≡ z1 − γ · z2 (mod gcd(d1, d2)),

0 otherwise

=


q

lcm(d1, d2)
d1d2

q2 if u1 ≡ z1 − γ · z2 (mod gcd(d1, d2)),

0 otherwise

=


gcd(d1, d2)

q
if u1 ≡ z1 − γ · z2 (mod gcd(d1, d2)),

0 otherwise,
(147)

provided that εd1 ε
′
d2
> 0, for each u1, z1, z2 ∈ Z/qZ and d1, d2 |q. Therefore, it follows from (131), (133), (135), (136), and

(147) that

(Vε i Vε′)(z1 + d1Z, z2 + d2Z | u1) = q (Vε i Vε′)(u1 | z1 + d1Z, z2 + d2Z) P(Vε i Vε′)(z1 + d1Z, z2 + d2Z)
= q (Vε i Vε′)(u1 | z1 + d1Z, z2 + d2Z) PVε(z1 + d1Z) PVε′(z2 + d2Z)

= q (Vε i Vε′)(u1 | z1 + d1Z, z2 + d2Z)
εd1

d1

ε′
d2

d2

=


εd1 ε

′
d2

lcm(d1, d2)
if u1 ≡ z1 − γ · z2 (mod gcd(d1, d2)),

0 otherwise
(148)

for each u1, z1, z2 ∈ Z/qZ and d1, d2 |q.
Finally, to prove the equivalence between Vε iVε′ and Vεiε′ with underlying probability vector ε i ε ′ = (εi

d
)d |q given in (30),

it suffices to show the existence of two intermediate channels Q1 : Y2 → Y and Q2 : Y → Y2 ensuring that Vεiε′ � Vε i Vε′
and Vε i Vε′ � Vεiε′ , respectively. Define the channel Q1 : Y2 → Y by

Q1(z + dZ | z1 + d1Z, z2 + d2Z) =


1 if gcd(d1, d2) = d

and z1 − γ · z2 ≡ z (mod d),
0 otherwise

(149)

for each z, z1, z2 ∈ Z/qZ and d, d1, d2 |q. Then, a direct calculation shows that∑
y1, y2∈Y

(Vε i Vε′)(y1, y2 | u1)Q1(z + dZ | y1, y2) =
∑
d1 |q

∑
y1∈Z/d1Z

∑
d2 |q

∑
y2∈Z/d2Z

(Vε i Vε′)(y1, y2 | u1)Q1(z + dZ | y1, y2)

(a)
=

∑
d1 |q,d2 |q:

gcd(d1,d2)=d

∑
y1∈Z/d1Z,
y2∈Z/d2Z:

y1−γ ·y2≡z (mod d)

(Vε i Vε′)(y1, y2 | u1)

(b)
=


∑

d1 |q,d2 |q:
gcd(d1,d2)=d

∑
y1∈Z/d1Z,
y2∈Z/d2Z:

y1−γ ·y2≡z (mod d)

εd1 ε
′
d2

lcm(d1, d2)
if u1 ≡ z (mod d),

0 otherwise

=


∑

d1 |q,d2 |q:
gcd(d1,d2)=d

d1d2
gcd(d1, d2)

εd1 ε
′
d2

lcm(d1, d2)
if u1 ≡ z (mod d),

0 otherwise
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=


∑

d1 |q,d2 |q:
gcd(d1,d2)=d

εd1 ε
′
d2

if u1 ≡ z (mod d),

0 otherwise

(c)
=

{
εid (ε, ε

′) if u1 ≡ z (mod d),
0 otherwise

(d)
= Vεiε′(z + dZ | u1) (150)

for every u1, z ∈ Z/qZ and d |q, where
• (a) follows from (149),
• (b) follows from (148),
• (c) follows from (30), and
• (d) follows from (23).

Similarly, define the DMC Q2 : Y → Y2 by

Q2(z1 + d1Z, z2 + d2Z | z + dZ) =


εd1 ε

′
d2

εi
d

lcm(d1, d2)
if gcd(d1, d2) = d

and z1 − γ · z2 ≡ z (mod d),
0 otherwise

(151)

for each z, z1, z2 ∈ Z/qZ and d, d1, d2 |q. Then a simple calculation yields that∑
y∈Y

Vεiε′(y | u1)Q2(z1 + d1Z, z2 + d2Z | y) =
∑
d |q

∑
y∈Z/dZ

Vεiε′(y | u1)Q2(z1 + d1Z, z2 + d2Z | y)

(a)
=

∑
d |q:

d=gcd(d1,d2)

∑
y∈Z/dZ:

y≡z1−γ ·z2 (mod d)

Vεiε′(y | u1)
εd1 ε

′
d2

εi
d

lcm(d1, d2)

= Vεiε′((z1 − γ · z2) + gcd(d1, d2)Z | u1)
εd1 ε

′
d2

εigcd(d1,d2) lcm(d1, d2)

(b)
=


εd1 ε

′
d2

lcm(d1, d2)
if u1 ≡ z1 − γ · z2 (mod gcd(d1, d2)),

0 otherwise
(c)
= (Vε i Vε′)(z1 + d1Z, z2 + d2Z | u1) (152)

for every u1, z1, z2 ∈ Z/qZ and d1, d2 |q, where
• (a) follows from (151),
• (b) follows from (23), and
• (c) follows from (148).

Therefore, we observe from (150) and (152) that Vε iVε′ is equivalent to Vεiε′ . This completes the proof of (28) in Theorem 1.

B. Proof for the Better Channel Vε � Vε′

After some algebra, we get

P(Vε � Vε′)(y1, y2, u1)
(a)
=

∑
u′2∈X

1
q
(Vε � Vε′)(y1, y2, u1 | u′2)

(b)
=

∑
u′2∈X

1
q2 Vε(y1 | u1 + γ · u′2)Vε′(y2 | u′2)

= PVε(y1) PVε′(y2)
∑
u′2∈X

(
1
q

Vε(y1 | u1 + γ · u′2)
PVε(y1)

) (
1
q

Vε′(y2 | u′2)
PVε′(y2)

)
(c)
= PVε(y1) PVε′(y2)

∑
u′2∈X

Vε(y1 | u1 + γ · u′2)Vε′(y2 | u′2)

(d)
= PVε(y1) PVε′(y2) (Vε i Vε′)(u1 | y1, y2), (153)
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provided that PVε(y1) PVε′(y2) > 0, for each u1 ∈ Z/qZ and y1, y2 ∈ Y, where
• (a) follows from (130),
• (b) follows from (13),
• (c) follows from (131), and
• (d) follows from (137).

Moreover, noting that

PVε(z1 + d1Z) > 0
(132)
⇐⇒ εd1 > 0, (154)

PVε′(z2 + d2Z) > 0
(134)
⇐⇒ ε′d2

> 0, (155)

(Vε i Vε′)(u1 | z1 + d1Z, z2 + d2Z) > 0
(147)
⇐⇒ z1 − γ · z2 ≡ u1 (mod gcd(d1, d2)), (156)

we have

(Vε � Vε′)(u2 | y1, y2, u1)
(a)
=

1
q
(Vε � Vε′)(y1, y2, u1 | u2)

P(Vε � Vε′)(y1, y2, u1)
(b)
=

1
q

(Vε � Vε′)(y1, y2, u1 | u2)
PVε(y1) PVε′(y2) (Vε i Vε′)(u1 | y1, y2)

(c)
=

1
q2

Vε(y1 | u1 + γ · u2)Vε′(y2 | u2)
PVε(y1) PVε′(y2) (Vε i Vε′)(u1 | y1, y2)

(d)
=

Vε(u1 + γ · u2 | y1)Vε′(u2 | y2)
(Vε i Vε′)(u1 | y1, y2)

, (157)

provided that PVε(y1) PVε′(y2) (Vε i Vε′)(u1 | y1, y2) > 0, for each (u1, u2, y1, y2) ∈ X2 × Y2, where
• (a) follows from (131),
• (b) follows from (153),
• (c) follows from (13), and
• (d) follows from (131).

Referring to the conditions in (154)–(155), for every u1, u2, z1, z2 ∈ Z/qZ and d1, d2 |q satisfying εd1ε
′
d2
> 0 and z1 − γ · z2 ≡ u1

(mod gcd(d1, d2)), we observe that

(Vε � Vε′)(u2 | z1 + d1Z, z2 + d2Z, u1)
(a)
=

Vε(u1 + γ · u2 | z1 + d1Z)Vε′(u2 | z2 + d2Z)
(Vε i Vε′)(u1 | z1 + d1Z, z2 + d2Z)

(b)
=

q
gcd(d1, d2)

Vε(u1 + γ · u2 | z1 + d1Z)Vε′(u2 | z2 + d2Z)

(c)
=


lcm(d1, d2)

q
if u1 + γ · u2 ≡ z1 (mod d1),

u2 ≡ z2 (mod d2),
0 otherwise

(d)
=


lcm(d1, d2)

q
if u2 ≡ r (mod lcm(d1, d2)),

0 otherwise,
(158)

where
• (a) follows from (157),
• (b) follows from (147),
• (c) follows from (146), and
• (d) follows from Lemma 11 with some solution r ∈ (γ−1(z1 − u1) + d1Z) ∩ (z2 + d2Z) of the system of two congruences

u1 + γ · u2 ≡ z1 (mod d1), (159)
u2 ≡ z2 (mod d2) (160)

with respect to u2 ∈ Z/qZ for given u1, z1, z2 ∈ Z/qZ and d1, d2 |q.
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Therefore, we have that

(Vε � Vε′)(z1 + d1Z, z2 + d2Z, u1 | u2)
(a)
= q P(Vε � Vε′)(z1 + d1Z, z2 + d2Z, u1) (Vε � Vε′)(u2 | z1 + d1Z, z2 + d2Z, u1)
(b)
= q PVε(z1 + d1Z) PVε′(z2 + d2Z) (Vε i Vε′)(u1 | z1 + d1Z, z2 + d2Z) (Vε � Vε′)(u2 | z1 + d1Z, z2 + d2Z, u1)
(c)
= q

εd1

d1

ε′
d2

d2
(Vε i Vε′)(u1 | z1 + d1Z, z2 + d2Z) (Vε � Vε′)(u2 | z1 + d1Z, z2 + d2Z, u1)

(d)
=


εd1 ε

′
d2

q
d1d2

gcd(d1, d2)
q

(Vε � Vε′)(u2 | z1 + d1Z, z2 + d2Z, u1) if z1 − γ · z2 ≡ u1 (mod gcd(d1, d2)),

0 otherwise

=


εd1 ε

′
d2

lcm(d1, d2)
(Vε � Vε′)(u2 | z1 + d1Z, z2 + d2Z, u1) if z1 − γ · z2 ≡ u1 (mod gcd(d1, d2)),

0 otherwise

(e)
=


εd1 ε

′
d2

lcm(d1, d2)
lcm(d1, d2)

q
if z1 − γ · z2 ≡ u1 (mod gcd(d1, d2)),

u2 ≡ r (mod lcm(d1, d2))
0 otherwise

=


εd1 ε

′
d2

q
if z1 − γ · z2 ≡ u1 (mod gcd(d1, d2)),

u2 ≡ r (mod lcm(d1, d2)),
0 otherwise

(161)

for every u1, u2, z1, z2 ∈ Z/qZ and d1, d2 |q satisfying the right sides of the conditions (154)–(156), where
• (a) follows from (131),
• (b) follows from (153),
• (c) follows from (132) and (134),
• (d) follows from (147), and
• (e) follows from (158).

Note that by the definition stated in (23), we readily see that

(Vε � Vε′)(z1 + d1Z, z2 + d2Z, u1 | u2) = 0 (162)

for every u1, u2, z1, z2 ∈ Z/qZ and d1, d2 |q satisfying εd1ε
′
d2
= 0. Moreover, it follows from Lemma 11 that (162) also holds for

every u1, u2, z1, z2 ∈ Z/qZ and d1, d2 |q in which

z1 − γ · z2 ≡ u1 (mod gcd(d1, d2)) (163)

does not hold. Hence, we conclude that (161) holds for every u1, u2, z1, z2 ∈ Z/qZ and d1, d2 |q.
Finally, to prove the equivalence between Vε � Vε′ and Vε�ε′ with underlying probability vector ε � ε′ = (ε�

d
)d |q given in

(31), it suffices to show the existence of two intermediate channels Q3 : Y2 × Z/qZ→ Y and Q4 : Y → Y2 × Z/qZ ensuring
that Vε�ε′ � Vε � Vε′ and Vε � Vε′ � Vε�ε′ , respectively. Define the channel Q3 : Y2 × Z/qZ→ Y by

Q3(z + dZ | z1 + d1Z, z2 + d2Z, u1) =


1 if lcm(d1, d2) = d

and z ≡ r (mod d)
and z1 − γ · z2 ≡ u1 (mod gcd(d1, d2)),

0 otherwise

(164)

for each u1, z, z1, z2 ∈ Z/qZ and d, d1, d2 |q. Then, a direct calculation shows that∑
y1∈Y

∑
y2∈Y

∑
u1∈X
(Vε � Vε′)(y1, y2, u1 | u2)Q3(z + dZ | y1, y2, u1)

=
∑
d1 |q

∑
y1∈Z/d1Z

∑
d2 |q

∑
y2∈Z/d2Z

∑
u1∈Z/qZ

(Vε � Vε′)(y1, y2, u1 | u2)Q3(z + dZ | y1, y2, u1)

(a)
=

∑
d1 |q,d2 |q:

lcm(d1,d2)=d

∑
u1∈Z/qZ,
y1∈Z/d1Z,
y2∈Z/d2Z:

y1−γ ·y2≡u1 (mod gcd(d1,d2))

(Vε � Vε′)(y1, y2, u1 | u2)1[z ≡ r (mod d)]
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(b)
=


∑

d1 |q,d2 |q:
lcm(d1,d2)=d

q
lcm(d1, d2)

d1d2
gcd(d1, d2)

εd1 ε
′
d2

q
if u2 ≡ z (mod d),

0 otherwise

=


∑

d1 |q,d2 |q:
lcm(d1,d2)=d

εd1 ε
′
d2

if u2 ≡ z (mod d),

0 otherwise

(c)
=

{
ε�
d
(ε, ε ′) if u2 ≡ z (mod d),

0 otherwise
(d)
= Vε�ε′(z + dZ | u2) (165)

for every u2, z ∈ Z/qZ and d |q, where
• (a) follows from (164) and defining the indicator function of a condition A as

1[A] B
{

1 if A is true,
0 if A is false,

(166)

• (b) follows from (161),
• (c) follows from (31), and
• (d) follows from (23).

Similarly, define the channel Q4 : Y → Y2 × Z/qZ by

Q4(z1 + d1Z, z2 + d2Z, u1 | z + dZ) =



εd1 ε
′
d2

q ε�
d
(ε, ε ′)

if lcm(d1, d2) = d

and z ≡ r (mod d)
and z1 − γz2 ≡ u1 (mod gcd(d1, d2)),

0 otherwise

(167)

for each u1, z, z1, z2 ∈ Z/qZ and d, d1, d2 |q. Then, a simple calculation yields that∑
y∈Y

Vε�ε′(y | u2)Q4(z1 + d1Z, z2 + d2Z, u1 | y)

=
∑
d |q

∑
y∈Z/dZ

Vε�ε′(y | u2)Q4(z1 + d1Z, z2 + d2Z, u1 | y)

(a)
=

∑
d |q:

d=lcm(d1,d2)

∑
y∈Z/dZ:

y≡r (mod d)

Vε�ε′(y | u2)
εd1 ε

′
d2

q ε�
d
(ε, ε ′)

1[z1 − γz2 ≡ u1 (mod gcd(d1, d2))]

= Vε�ε′(r + lcm(d1, d2)Z | u2)
εd1 ε

′
d2

q ε�
lcm(d1,d2)(ε, ε

′)
1[z1 − γz2 ≡ u1 (mod gcd(d1, d2))]

(b)
=


εd1 ε

′
d2

q
if z1 − γz2 ≡ u1 (mod gcd(d1, d2)),

u2 ≡ r (mod lcm(d1, d2))
0 otherwise

(c)
= (Vε � Vε′)(z1 + d1Z, z2 + d2Z, u1 | u2) (168)

for every u1, u2, z1, z2 ∈ Z/qZ and d1, d2 |q, where
• (a) follows from (167),
• (b) follows from (23), and
• (c) follows from (161).

Therefore, we observe from (165) and (168) that Vε � Vε′ is equivalent to Vε�ε′ . This completes the proof of (28) written in
Theorem 1; and all assertions of Theorem 1 are proved.
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APPENDIX D
PROOF OF COROLLARY 3

Consider an MAEC Vε : Z/qZ→ Yq defined in Definition 2, where recall from (24) that

Yq =
⋃
d′ |q

Z

d ′Z
. (169)

It follows from (49) that for each d |q, the homomorphism channel Vε[ker ϕd] : (Z/qZ)/(ker ϕd) → Yq is given by

Vε[ker ϕd](y | x + ker ϕd) =
1

| ker ϕd |
∑

u∈x+kerϕd

Vε(y | u)

=
d
q

∑
u∈x+kerϕd :
y=u+d′Z

εd′

=


d εd′

lcm(d, d ′) if y ∈
{

x + w + d ′Z
���� w ∈ Z/qZ,w + dZ = dZ

}
0 otherwise

(170)

for every x ∈ Z/qZ, d ′ |q, and y ∈ Z/d ′Z, where

x + ker ϕd =
{

x + w
���� w ∈ ZqZ and w + dZ = dZ

}
(171)

and the last equality follows from Lemma 11.
Now, we shall verify that, after relabelling the input symbols in (Z/qZ)/(ker ϕd) appropriately, the homomorphism channel

Vε[ker ϕd] is equivalent to another MAEC Vε̄ : Z/dZ→ Yd with probability vector ε̄ = (ε̄d′)d′ |d given as

ε̄d1 B
∑
d2 |q:

gcd(d2,d)=d1

εd2 (172)

for each d1 |d. Since the first isomorphism theorem states that the quotient group (Z/qZ)/(ker ϕd) is isomorphic to Z/dZ,
instead of Vε[ker ϕd] : (Z/qZ)/(ker ϕd) → Yq , it suffices to consider the equivalent channel Uε,d : Z/dZ→ Yq given as

Uε,d(y | x) B Vε[ker ϕd](y | ϕ−1
d (x))

=


d εd′

lcm(d, d ′) if y + dZ = x + d ′Z,

0 otherwise
(173)

for each x ∈ Z/dZ, d ′ |q, and y ∈ Z/d ′Z, where ϕ−1
d

stands for the preimage of ϕd . Defining the channel Q5 : Yq → Yd as

Q5(y1 | y2) B
{

1 if y1 = y2 + dZ,

0 otherwise,
(174)

we observe that for all x ∈ Z/dZ, d1 |d, and y1 ∈ Z/d1Z,∑
y2∈Yq

Uε,d(y2 | x)Q5(y1 | y2) =
∑
d2 |q

∑
y2∈Z/d2Z

Uε,d(y2 | x)Q5(y1 | y2)

(a)
=

∑
d2 |q

∑
y2∈Z/d2Z:
y1=y2+dZ

Uε,d(y2 | x)

(b)
=

∑
d2 |q:

gcd(d,d2)=d1

∑
y2∈Z/d2Z:
y1=y2+d1Z

Uε,d(y2 | x)

(c)
=

∑
d2 |q:

gcd(d,d2)=d1

∑
y2∈Z/d2Z:
y1=y2+d1Z,
y2=x+d2Z

d εd2

lcm(d, d2)

(d)
=


∑
d2 |q:

gcd(d,d2)=d1

εd2 if y1 = x + d1Z,

0 otherwise,

(175)
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where
• (a) follows by the definition of Q5 : Yq → Yd in (174),
• (b) follows from the fact that dZ + d2Z = gcd(d, d2)Z,
• (c) follows by the definition of Uε,d : Z/dZ→ Yq in (170) and (173), and
• (d) follows from Lemma 11.

On the other hand, defining the channel Q6 : Yd → Yq as

Q6(y2 | y1) B


d εd2

ε̄d1 lcm(d, d2)
if y1 = y2 + dZ

and ε̄d1 > 0,
0 otherwise

(176)

for each d1 |d, d2 |q, y1 ∈ Z/d1Z, and y2 ∈ Z/d2Z, we obtain∑
y1∈Yd

Vε̄(y1 | x)Q6(y2 | y1) =
∑
d1 |d

∑
y1∈Z/d1Z

Vε̄(y1 | x)Q6(y2 | y1)

(a)
=

∑
d1 |d

ε̄d1 Q6(y2 | x + d1Z)

(b)
=


d εd1

lcm(d, d1)
if y2 + dZ = x + d1Z,

0 otherwise.
(177)

for every x ∈ Z/dZ, d2 |q, and y2 ∈ Z/d2Z, where
• (a) follows by the definition of Vε̄ : Z/dZ→ Yd in Definition 2, and
• (b) follows by the definition of Q : Yd → Yq in (176).

Combining (175) and (177), we conclude that Vε[ker ϕd] : (Z/qZ)/(ker ϕd) → Yq is equivalent to Vε̄ : Z/dZ→ Yd .
Therefore, it follows from Proposition 1 that

I(Vε[ker ϕd]) =
∑
d1 |d

©­­­«
∑
d2 |q:

gcd(d2,d)=d1

εd2

ª®®®¬ log d1. (178)

Finally, we observe that

µ
(∞)
d

(a)
= lim

n→∞
1
2n

���{s ∈ {−,+}n ��� εsd > 1 − δ
}���

= lim
n→∞

1
2n

�����
{
s ∈ {−,+}n

����� |I(V s
ε ) − log d | < δ,

|I(V s
ε [ker ϕd]) − log d | < δ

}����� (179)

for every d |q, where
• (a) follows from Theorem 4, and
• (b) follows from Proposition 1, (178), and the fact that εd > 1 − δ implies that ε̄d > 1 − δ (see (172)).

This completes the proof of Corollary 3.

APPENDIX E
PROOF OF PROPOSITION 3

For each i = 0, 1, . . . , r , we have

εi
pi =

∑
d1 |q,d2 |q:

gcd(d1,d2)=pi

εd1 ε
′
d2

=

r∑
j=0

r∑
k=0

εp j ε′
pk 1[min{ j, k} = i]

=

r∑
j=0

r∑
k=0

εp j ε′
pk

(
1[i = j ≤ k] + 1[i = k < j]

)
, (180)

ε�
pi =

∑
d1 |q,d2 |q:

lcm(d1,d2)=pi

εd1 ε
′
d2
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=

r∑
j=0

r∑
k=0

εp j ε′
pk 1[max{ j, k} = i]

=

r∑
j=0

r∑
k=0

εp j ε′
pk

(
1[k < j = i] + 1[ j ≤ k = i]

)
. (181)

Hence, for each i = 0, 1, . . . , r , it holds that

εi
pi + ε

�
pi =

r∑
j=0

r∑
k=0

εp j ε′
pk

(
1[i = j ≤ k] + 1[i = k < j] + 1[k < j = i] + 1[ j ≤ k = i]

)
=

r∑
j=0

r∑
k=0

εp j ε′
pk

(
1[i = j] + 1[i = k]

)
= εpi

r∑
k=0

ε′
pk + ε

′
pi

r∑
j=0

εp j

= εpi + ε′
pi . (182)

This completes the proof of Proposition 3.

APPENDIX F
PROOF OF LEMMA 3

We now prove the assertion for the minus transform. A straightforward calculation yields

εs−
pi =

∑
d1 |pr ,d2 |pr :
gcd(d1,d2)=pi

εsd1
εsd2

=

r∑
j=i

r∑
k=i

εs
p j ε

s
pk 1[min{ j, k} = i]

= εs
pi

(
r∑
j=i

εs
p j +

r∑
k=i+1

εs
pk

)
(183)

for each i = 0, 1, . . . , r , where the first equality follows from (33). Then, we have

T s−(a) =
r∑

i=a

εs−
pi

=

r∑
i=a

εs
pi

(
r∑
j=i

εs
p j +

r∑
k=i+1

εs
pk

)
=

r∑
i=a

εs
pi

(
r∑
j=i

εs
p j +

i−1∑
k=a

εs
pk

)
=

r∑
i=a

εs
pi

r∑
j=a

εs
p j

= T s(a)2, (184)

where the third equality follows from the fact that 1[a ≤ i ≤ r]1[i < k ≤ r] = 1[a ≤ i < k ≤ r] = 1[a ≤ k ≤ r]1[a ≤ i < k].
This is indeed (63). Moreover, it follows from (62) and (63) that

Bs−(a) = 1 − T s−(a)
= 1 − T s(a)2

=
(
1 − T s(a)

) (
1 + T s(a)

)
=

(
T s(a) + Bs(a) − T s(a)

) (
T s(a) + Bs(a) + T s(a)

)
= Bs(a)

(
2 T s(a) + Bs(a)

)
= 2 T s(a) Bs(a) + Bs(a)2, (185)

which is indeed (64). The assertion for the plus transform can be dually proved; and this completes the proof of Lemma 3.
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APPENDIX G
PROOF OF LEMMA 5

By symmetry, it suffices to prove the required statement for the minus transform. Fix a sequence s ∈ {−,+}∗, indices
1 ≤ i < j ≤ m, and integers a, b ≥ 1 arbitrarily. It follows from (33) that

εs−〈t 〉 =
∑

d1 |q,d2 |q:
gcd(d1,d2)=〈t 〉

εsd1
εsd2

=
∑

u:0≤u≤r

∑
v:0≤v≤r

εs〈u〉 ε
s
〈v 〉 1{t=u∧v } (186)

for every 0 ≤ t ≤ r , where

u ∧ v B (min{u1, v1},min{u2, v2}, . . . ,min{um, vm}). (187)

Defining an m-tuple c = (c1, . . . , cm) by

ck =


a if k = i,
b if k = j,
0 otherwise

(188)

for each k = 1, 2, . . . ,m, we observe that

θs−i, j (a, b)
(a)
=

∑
t:c≤t≤r

εs−〈t 〉

(b)
=

∑
t:c≤t≤r

∑
u:0≤u≤r

∑
v:0≤v≤r

εs〈u〉 ε
s
〈v 〉 1{t=u∧v }

(c)
=

∑
t:c≤t≤r

∑
u:c≤u≤r

∑
v:c≤v≤r

εs〈u〉 ε
s
〈v 〉 1{t=u∧v }

=
∑

u:c≤u≤r

∑
v:c≤v≤r

εs〈u〉 ε
s
〈v 〉

∑
t:c≤t≤r

1{t=u∧v }

=
∑

u:c≤u≤r

∑
v:c≤v≤r

εs〈u〉 ε
s
〈v 〉

= θsi, j(a, b)2 (189)

where
• (a) follows by the definition of θsi, j(a, b) in (74),
• (b) follows from (186), and
• (c) follows from the fact that c ≤ t = u ∧ v imply that c ≤ u and c ≤ v .

On the other hand, we have

λs−i, j (a, b)
(a)
= θs−i, j (a, 0) − θs−i, j (a, b)
(b)
= θsi, j(a, 0)2 − θsi, j(a, b)2

=
(
θsi, j(a, 0) − θsi, j(a, b)

) (
θsi, j(a, 0) + θsi, j(a, b)

)
(c)
= λsi, j(a, b)

(
λsi, j(a, b) + 2 θsi, j(a, b)

)
, (190)

where
• (a) and (c) follow by the definition of λsi, j(a, b) in (75), and
• (b) follows from (189).

Since λsi, j(a, b) = ρsj,i(b, a), we readily see from (190) that

ρs−i, j (a, b) = ρsi, j(a, b)2 + 2 ρsi, j(a, b) θsi, j(a, b). (191)
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Finally, as θsi, j(a, b) + λsi, j(a, b) + ρsi, j(a, b) + βsi, j(a, b) = 1 (see (78)), it follows from (189)–(191) that

βs−i, j (a, b) = 1 − θs−i, j (a, b) − λs−i, j (a, b) − ρs−i, j (a, b)
= 1 − θsi, j(a, b)2 −

[
λsi, j(a, b)2 + 2 λsi, j(a, b) θsi, j(a, b)

]
−

[
ρsi, j(a, b)2 + 2 ρsi, j(a, b) θsi, j(a, b)

]
= 1 − θsi, j(a, b)2 −

[
λsi, j(a, b) + ρsi, j(a, b)

]2 − 2 θsi, j(a, b)
[
λsi, j(a, b) + ρsi, j(a, b)

]
+ 2 λsi, j(a, b) ρsi, j(a, b)

= 1 −
[
θsi, j(a, b) + λsi, j(a, b) + ρsi, j(a, b)

]2
+ 2 λsi, j(a, b) ρsi, j(a, b)

=
[
1 − θsi, j(a, b) + λsi, j(a, b) + ρsi, j(a, b)

] [
1 + θsi, j(a, b) + λsi, j(a, b) + ρsi, j(a, b)

]
+ 2 λsi, j(a, b) ρsi, j(a, b)

= βsi, j(a, b)
[
1 + θsi, j(a, b) + λsi, j(a, b) + ρsi, j(a, b)

]
+ 2 λsi, j(a, b) ρsi, j(a, b)

= βsi, j(a, b)
[
2 − βsi, j(a, b)

]
+ 2 λsi, j(a, b) ρsi, j(a, b). (192)

This completes the proof of Lemma 5.

APPENDIX H
PROOF OF LEMMA 7

Let 1 ≤ i < j ≤ m and a, b ≥ 1 be given. By the symmetry λsi, j(a, b) = ρsj,i(b, a), it suffices to prove the “if” part. We
prove the lemma by induction. If the sequence s is empty, then the lemma is obvious. Hence, it suffices to show that if
λsi, j(a, b) ≤ ρsi, j(a, b), then both λs−i, j (a, b) ≤ ρs−i, j (a, b) and λs+i, j (a, b) ≤ ρs+i, j (a, b) hold. It follows from Lemma 5 that

λs−i, j (a, b) = λsi, j(a, b)
[
λsi, j(a, b) + 2 θsi, j(a, b)

]
(a)
≤ ρsi, j(a, b)

[
ρsi, j(a, b) + 2 θsi, j(a, b)

]
= ρs−i, j (a, b), (193)

where (a) follows by the hypothesis λsi, j(a, b) ≤ ρsi, j(a, b). Similar to (193), we also have

λs+i, j (a, b) = λsi, j(a, b)
[
λsi, j(a, b) + 2 βsi, j(a, b)

]
≤ ρsi, j(a, b)

[
ρsi, j(a, b) + 2 βsi, j(a, b)

]
= ρs+i, j (a, b). (194)

This completes the proof of Lemma 7.

APPENDIX I
PROOF OF LEMMA 8

Let 1 ≤ i < j ≤ m and a, b ≥ 1 be given. For each n ∈ N0, we have

µ
(n+1)
i, j [λ](a, b) − µ

(n+1)
i, j [ρ](a, b) =

1
2n+1

∑
s∈{−,+}n

(
λs−i, j (a, b) + λs+i, j (a, b)

)
− 1

2n+1

∑
s∈{−,+}n

(
ρs−i, j (a, b) + ρs+i, j (a, b)

)
(a)
=

1
2n

∑
s∈{−,+}n

λsi, j(a, b)
[
1 − ρsi, j(a, b)

]
− 1

2n
∑

s∈{−,+}n
ρsi, j(a, b)

[
1 − λsi, j(a, b)

]
=

1
2n

∑
s∈{−,+}n

λsi, j(a, b) −
1
2n

∑
s∈{−,+}n

ρsi, j(a, b)

= µ
(n)
i, j [λ](a, b) − µ

(n)
i, j [ρ](a, b), (195)

where (a) follows by Lemma 6. This proves (99) by induction. The rest of equalities (100)–(103) can be similarly proved by
Lemma 6, as in (195). This completes the proof of Lemma 8.

APPENDIX J
PROOF OF LEMMA 9

Let 1 ≤ i < j ≤ m and a, b ≥ 1 be given. It follows from (91)–(94) that
• the number µ(n)i, j [θ](a, b) is nondecreasing as n increases,

• the number µ(n)i, j [λ](a, b) is nonincreasing as n increases,

• the number µ(n)i, j [ρ](a, b) is nonincreasing as n increases, and

• the number µ(n)i, j [β](a, b) is nondecreasing as n increases.
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Therefore, since these numbers are bounded as

0 ≤ µ(n)i, j [θ](a, b) ≤ 1, (196)

0 ≤ µ(n)i, j [λ](a, b) ≤ 1, (197)

0 ≤ µ(n)i, j [ρ](a, b) ≤ 1, (198)

0 ≤ µ(n)i, j [β](a, b) ≤ 1 (199)

for every n ∈ N0, we obtain the claim of Lemma 9.

APPENDIX K
PROOF OF LEMMA 10

Let 1 ≤ i < j ≤ m and a, b ≥ 1 be given. Since λsi, j(a, b) = ρsj,i(b, a), we may assume without loss of generality that
λi, j(a, b) ≤ ρi, j(a, b). A simple calculation yields

µ
(n+1)
i, j [λ](a, b) =

1
2n

∑
s∈{−,+}n

1
2

(
λs−i, j (a, b) + λs+i, j (a, b)

)
(a)
=

1
2n

∑
s∈{−,+}n

λsi, j(a, b)
[
1 − ρsi, j(a, b)

]
(b)
≤ 1

2n
∑

s∈{−,+}n
λsi, j(a, b)

[
1 − λsi, j(a, b)

]
(c)
= µ

(n)
i, j [λ](a, b) − ν

(n)
i, j [λ](a, b), (200)

where
• (a) follows by Lemma 6,
• (b) follows by Lemma 7, and
• (c) follows by the definition of the second moment:

ν
(n)
i, j [λ](a, b) B

1
2n

∑
s∈{−,+}n

λsi, j(a, b)2. (201)

It follows from (200) that

0 ≤ ν(n)i, j [λ](a, b) ≤ µ
(n)
i, j [λ](a, b) − µ

(n+1)
i, j [λ](a, b), (202)

and the squeeze theorem shows that ν(n)i, j [λ](a, b) → 0 as n → ∞, because µ
(n)
i, j [λ](a, b) − µ

(n+1)
i, j [λ](a, b) → 0 as n → ∞ (cf.

Lemma 9). On the other hand, we observe that

µ
(n)
i, j [λ](a, b)

2 =


1
2n

∑
s∈{−,+}n

λsi, j(a, b)


2

=
1

22n

∑
s1∈{−,+}n

λ
s1
i, j(a, b)

2 +
∑

s2∈{−,+}n :
s2,s1

λs1
i, j(a, b) λ

s2
i, j(a, b)


≤ 1

22n

∑
s1∈{−,+}n


λs1
i, j(a, b)

2 +
∑

s2∈{−,+}n :
λ
s2
i, j (a,b)≥λ

s1
i, j (a,b)

λs2
i, j(a, b)

2 +
∑

s3∈{−,+}n :
λ
s3
i, j (a,b)<λ

s1
i, j (a,b)

λs1
i, j(a, b)

2


≤ 1

22n

∑
s1∈{−,+}n

λs1
i, j(a, b)

2 +
∑

s2∈{−,+}n
λs2
i, j(a, b)

2 + (2n − 1) λs1
i, j(a, b)

2


= 2 ν(n)i, j [λ](a, b), (203)

which implies that

0 ≤ µ(n)i, j [λ](a, b) ≤
√

2 ν(n)i, j [λ](a, b). (204)
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Note that the second inequality of (204) can be seen as a version of Hölder’s inequality. Then, it also follows by the squeeze
theorem that µ(∞)i, j [λ](a, b) = 0, because ν(n)i, j [λ](a, b) → 0 as n→∞ (cf. (202)). Hence, we have

µ
(∞)
i, j [ρ](a, b) = µ

(∞)
i, j [ρ](a, b) − µ

(∞)
i, j [λ](a, b)

= lim
n→∞

(
µ
(n)
i, j [ρ](a, b) − µ

(n)
i, j [λ](a, b)

)
(a)
= ρi, j(a, b) − λi, j(a, b), (205)

µ
(∞)
i, j [θ](a, b) = µ

(∞)
i, j [θ](a, b) + µ

(∞)
i, j [λ](a, b)

= lim
n→∞

(
µ
(n)
i, j [θ](a, b) + µ

(n)
i, j [λ](a, b)

)
(b)
= θi, j(a, b) + λi, j(a, b), (206)

µ
(∞)
i, j [β](a, b) = µ

(∞)
i, j [β](a, b) + µ

(∞)
i, j [λ](a, b)

= lim
n→∞

(
µ
(n)
i, j [β](a, b) + µ

(n)
i, j [λ](a, b)

)
(c)
= βi, j(a, b) + λi, j(a, b), (207)

where (a)–(c) follow by Lemma 8. Considering the counterpart hypothesis λi, j(a, b) ≥ ρi, j(a, b), we have (108)–(111). This
completes the proof of Lemma 10.

APPENDIX L
PROOF OF THEOREM 3

We will show in this proof that the while loop in Lines 4–15 of Algorithm 1 is accomplished by the ΩNT(q)-th round. For
each 1 ≤ h ≤ ΩNT(q), denote by t (h) = (t(h)1 , . . . , t(h)m ) the vector t at the beginning of the h-th round of this while loop, where
note from the initialization in Line 3 of Algorithm 1 that t (1) = (0, . . . , 0). Given a number 1 ≤ h ≤ ΩNT(q), suppose that
we have completed the while loop in Lines 4–15 of Algorithm 1 until the (h − 1)-th round. That is, we now consider the
beginning of the h-th round of this while loop. In this proof, suppose that the variable k appearing from Line 8 of Algorithm 1
is initialized as 1 at Line 5 of Algorithm 1.

Firstly, we shall verify the following claim.

Claim 1. The while loop in Lines 6–12 of Algorithm 1 finds the number k such that for each 1 ≤ c ≤ m satisfying c , k, it
holds that µ(∞)〈t 〉 = 0 for every 0 ≤ t ≤ r satisfying 0 ≤ tk ≤ t(h)

k
and t(h)c < tc ≤ rc .

Since the “1” is added to the variable j at the end of each round of the while loop in Lines 6 and 12 of Algorithm 1 (see
Lines 9 and 12 of Algorithm 1), the total number of rounds of this while loop is just m − 1 (see Line 6 of Algorithm 1).
Consider the beginning of the -th round of this while loop for some 1 ≤  ≤ m − 1. To prove Claim 1, we shall shall verify
the following claim.

Claim 2. For each 1 ≤ c ≤  satisfying c , k, it holds that µ(∞)〈t 〉 = 0 for every 0 ≤ t ≤ r satisfying 0 ≤ tk ≤ t(h)
k

and

t(h)c < tc ≤ rc .

Note that Claim 2 coincides with Claim 1 if  = m. We prove Claim 2 by induction. It is clear from the initialization k = 1
that Claim 2 holds with  = 1. Now, suppose that 2 ≤  ≤ m − 1 and Claim 2 holds at the previous round before the -th round.
Consider the conditional branch in Lines 7 and 10 of Algorithm 1 at the -th round. Note that (i, j) = (k, + 1) at the beginning
of this conditional branch (see Lines 8, 9, 11, and 12 of Algorithm 1). If λi, j(t(h)i + 1, t(h)j + 1) ≤ ρi, j(t(h)i + 1, t(h)j + 1), then

it follows from (109) of Lemma 10 that µ(∞)〈t 〉 = 0 for every 0 ≤ t ≤ r satisfying t(h)i < ti ≤ ri and 0 ≤ tj ≤ t(h)j . Similarly,

if ρi, j(t(h)i + 1, t(h)j + 1) < λi, j(t(h)i + 1, t(h)j + 1), then it follows from (110) of Lemma 10 that µ(∞)〈t 〉 = 0 for every 0 ≤ t ≤ r

satisfying 0 ≤ ti ≤ t(h)i and t(h)j < tj ≤ rj . Thus, Claim 2 holds by replacing the variable k as in Line 8 or 11 of Algorithm 1
according to this conditional branch. Therefore, Claim 1 is also proven by induction.

For each 1 ≤ h ≤ ΩNT(q), denote by ξ(h) the variable ξ at the beginning of the h-th round of the while loop in Lines 4–15
of Algorithm 1. Secondly, we shall verify the following claim.

Claim 3. After executing the operation in Line 15 of Algorithm 1, the desired value µ
(∞)
〈t 〉 is given as

µ
(∞)
〈t 〉 = 0 if t , t (g) for all 1 ≤ g ≤ h, (208)

µ
(∞)
〈t 〉 ≥ 0 if t = t (g) for some 1 ≤ g ≤ h (209)
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for every 0 ≤ t ≤ r satisfying 0 ≤ tc < t(h+1)
c for some 1 ≤ c ≤ m, and the next variable ξ(h+1) is given by

ξ(h+1) =
h∑
g=1

µ
(∞)
〈t(g) 〉

=
∑

t:0≤t≤r,
0≤tc<t(h+1)

c for some 1≤c≤m

ε〈t 〉 . (210)

We prove Claim 3 by induction. Suppose that h = 1. It follows from the initialization in Line 2 of Algorithm 1 that ξ(1) = 0.
Moreover, it follows from (53), (77), and (98) that

µ
(n)
i, j [β](a, b) =

∑
t:0≤t≤r,ti<a,tj<b

µ
(n)
〈t 〉 . (211)

Since the pair (k, l) satisfies that l = k if k < m (see Line 11 of Algorithm 1), and l < k if k = m (see Line 9 of Algorithm 1),
we observe from (211) and Claim 1 that

µ
(∞)
〈t(1) 〉 = µ

(∞)
l,m
[β](t(1)

l
+ 1, t(1)m + 1) − ξ(1). (212)

In addition, it follows from (111) of Lemma 10 that

µ
(∞)
l,m
[β](t(1)

l
+ 1, t(1)m + 1) = βl,m(t(1)l

+ 1, t(1)m + 1) +min{λl,m(t(1)l
+ 1, t(1)m + 1), ρl,m(t(1)l

+ 1, t(1)m + 1)}. (213)

The right-hand sides of (212) and (213) correspond to the operation in Line 13 of Algorithm 1, and it follows from Claim 1
that the desired value µ

(∞)
〈t 〉 is obtained for every 0 ≤ t ≤ r satisfying 0 ≤ tk ≤ t(1)

k
. On the other hand, since k = m if and only

if λl,m(t(1)l
+ 1, t(1)m + 1) ≤ ρl,m(t(1)l

+ 1, t(1)m + 1) (see the while loop in Lines 6–12 of Algorithm 1), it follows from (75)–(77)
that (213) can be rewritten as

µ
(∞)
l,m
[β](t(1)

l
+ 1, t(1)m + 1) =

∑
t:0≤t≤r,
0≤tk ≤t(1)k

ε〈t 〉 . (214)

By Line 14 of Algorithm 1, the right-hand side of (214) corresponds to the next value ξ(2); therefore, we observe from Line 15
of Algorithm 1 that Claim 3 holds with h = 1. Now, suppose that 2 ≤ h ≤ ΩNT(q) and Claim 3 holds at the previous round
before the h-th round. Since the pair (k, l) satisfies that l = k if k < m (see Line 11 of Algorithm 1), and l < k if k = m (see
Line 9 of Algorithm 1), it follows from (211), Claim 1, and the induction hypothesis that

µ
(∞)
〈t(h) 〉 = βl,m(t

(h)
l
+ 1, t(h)m + 1) +min{λl,m(t(h)l

+ 1, t(h)m + 1), ρl,m(t(h)l
+ 1, t(h)m + 1)} − ξ(h), (215)

which is indeed the operation in Line 13 of Algorithm 1. Thus, the desired value µ(∞)〈t 〉 is determined as either (208) or (209) for

every 0 ≤ t ≤ r satisfying 0 ≤ tc < t(h+1)
c for some 1 ≤ c ≤ m. On the other hand, similar to (214), one has (210). Therefore,

Claim 3 is proved by induction.
If ξ(h) < ξ(h+1) = 1, then it follows from Claim 3 that the desired asymptotic distribution (µ(∞)

d
)d |q has been evaluated at the

end of the h-th round of the while loop in Lines 4–15 of Algorithm 1. Note from (210) that ξ(h+1) = 1 if there exists a 1 ≤ c ≤ m
satisfying t(h+1)

c > rc . Therefore, the total number of rounds of the while loop in Line 4–15 of Algorithm 1 is at most ΩNT(q);
and the output of Algorithm 1 yields the desired asymptotic distribution (µ(∞)

d
)d |q within a finite number of steps. Finally, we

shall verify the computational complexity of Algorithm 1. As said in this proof, the while loop in Lines 4–15 of Algorithm 1 is
repeated at most ΩNT(q) times, and the while loop in Lines 6–12 of Algorithm 1 is repeated just m− 1 times. In the conditional
branch of Lines 7 and 10 of Algorithm 1, both λi, j(ti + 1, tj + 1) and λi, j(ti + 1, tj + 1) can be calculated by a given initial
probability vector (εd)d |q with at most τ(q) additions (see (75) and (76)). Similarly, in Line 13 of Algorithm 1, the three values
βl,m(tl + 1, tm + 1), λl,m(tl + 1, tm + 1), and ρl,m(tl + 1, tm + 1) can also be calculated by a given initial probability vector (εd)d |q
with at most τ(q) additions (see (75)–(77)). Therefore, we conclude that Algorithm 1 runs in time O(ωNT(q)ΩNT(q) τ(q)). Note
that all calculations in Algorithm 1 are addition and subtraction, i.e., there is neither multiplication nor division. This completes
the proof of Theorem 3.

APPENDIX M
PROOF OF THEOREM 4

Theorem 4 can be simply proven by using a similar argument to Appendix D together with Nasser and Telatar’s result
[9, Section VI] summarized in (50). In the following, we provide an alternative proof of Theorem 4 to make this paper
self-contained.

To prove Theorem 4, we use the following technical lemma.
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Lemma 12. For each n ∈ N, let a nonempty collection Fn of subsets of a set be a field,14 and let fn : Fn → [0, 1] be an
additive set function. For each i ∈ N, let (Si,n)n be a sequence of sets such that Si,n ∈ Fn for every n ∈ N and fn(Si,n) → 1 as
n→∞. Then, it holds that

lim
n→∞

fn

(
k⋂
i=1

Si,n

)
= 1 for k ∈ N. (216)

Proof of Lemma 12: See Appendix N.
The proof of Theorem 4 is inspired by Alsan and Telatar’s simple proof of polarization [26, Theorem 1]. Let 1 ≤ i < j ≤ m

and a, b ≥ 1 be given. Define

ν
(n)
i, j [θ](a, b) B

1
2n

∑
s∈{−,+}n

θsi, j(a, b)2 (217)

for each n ∈ N. Then, we have that for a fixed δ ∈ (0, 1),

ν
(n+1)
i, j [θ](a, b) =

1
2n

∑
s∈{−,+}n

1
2

[
θs−i, j (a, b)2 + θs+i, j (a, b)2

]
(a)
=

1
2n

∑
s∈{−,+}n

[(
1
2

(
θs−i, j (a, b) + θs+i, j (a, b)

))2
+

(
1
2

(
θs−i, j (a, b) − θs+i, j (a, b)

))2
]

(b)
=

1
2n

∑
s∈{−,+}n

[(
θsi, j(a, b) + λsi, j(a, b) ρsi, j(a, b)

)2
+

(
θsi, j(a, b)

[
1 − θsi, j(a, b)

]
+ λsi, j(a, b) ρsi, j(a, b)

)2
]

≥ 1
2n

∑
s∈{−,+}n

[
θsi, j(a, b)2 + θsi, j(a, b)2

[
1 − θsi, j(a, b)

]2
]

≥ ν(n)i, j [θ](a, b) +
1
2n

∑
s∈{−,+}n :

δ≤θsi, j (a,b)≤1−δ

θsi, j(a, b)2
[
1 − θsi, j(a, b)

]2

≥ ν(n)i, j [θ](a, b) +
1
2n

∑
s∈{−,+}n :

δ≤θsi, j (a,b)≤1−δ

δ2(1 − δ)2, (218)

where
• (a) follows from the identity

x2 + y2

2
=

( x + y
2

)2
+

( x − y
2

)2
, (219)

and
• (b) follows by Lemma 5.

This implies that the sequence
(
ν
(n)
i, j [θ](a, b)

)∞
n=1 is nondecreasing. As ν

(n)
i, j [θ](a, b) ≤ 1 for every n ∈ N, the sequence(

ν
(n)
i, j [θ](a, b)

)∞
n=1 is convergent; thus, it holds that ν(n+1)

i, j [θ](a, b) − ν
(n)
i, j [θ](a, b) → 0 as n→∞. We get from (218) that

0 ≤ 1
2n

���{s ∈ {−,+}n ��� δ ≤ θsi, j(a, b) ≤ 1 − δ
}��� ≤ ν

(n+1)
i, j [θ](a, b) − ν

(n)
i, j [θ](a, b)

δ2(1 − δ)2
. (220)

As δ ∈ (0, 1) is a fixed number that does not depend on n ∈ N, this implies that

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ θsi, j(a, b) ≤ 1 − δ
}��� = 0. (221)

Therefore, we observe that

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� εsd < δ or εsd > 1 − δ
}��� = 1 (222)

for every fixed δ ∈ (0, 1) and d |q.

lim sup
n→∞

(
1
2n

���{s ∈ {−,+}n ��� εsd > 1 − δ
}��� − µ(n)d

)
≤ δ (223)

14Note that this field Fn is a measure theoretic notion satisfying A{ ∈ Fn if A ∈ Fn , and A∪ B ∈ Fn if A, B ∈ Fn , where A{ denotes the complement
of a set A.
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We now prove (114). It follows from Corollary 4 that there exist an integer 0 ≤ m̃ ≤ m and a sequence (t (h))m̃
h=0 such that (i)

0 = t (0) ≤ t (1) ≤ · · · ≤ t (m̃) = r , (ii) t (h) , t (h
′) whenever h , h′, and (iii) µ〈t 〉 > 0 if and only if t = t (h) for some 0 ≤ h ≤ m̃.

If µ(∞)
d
= 0, then we observe that for a fixed δ ∈ (0, 1),

0 = µ(∞)
d

(a)
= lim

n→∞
1
2n

∑
s∈{−,+}n

εsd

(b)
≥ lim sup

n→∞

1
2n

∑
s∈{−,+}n :εd ≥δ

δ

= δ lim sup
n→∞

1
2n

���{s ∈ {−,+}n ��� εsd ≥ δ}���, (224)

where
• (a) follows by the definition of µ(∞)

d
and the hypothesis that µ(∞)

d
= 0, and

• (b) follows from the fact that

1
2n

∑
s∈{−,+}n

εsd ≥
1
2n

∑
s∈{−,+}n :εd ≥δ

εd

≥ 1
2n

∑
s∈{−,+}n :εd ≥δ

δ. (225)

This implies that

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� εsd < δ
}��� = 1, (226)

provided that µ(∞)
d
= 0. Therefore, it suffices to verify that

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εs〈t(h) 〉 ≤ 1 − δ
}��� = 0 (227)

for every h = 0, 1, . . . , m̃. We prove (227) by induction. Firstly, consider the case where h = m̃, where note that t (m̃) = r and
〈t (m̃)〉 = 〈r〉 = q. Since t (m̃−1) ≤ t (m̃) and t (m̃−1) , t (m̃), there exists an index 1 ≤ i ≤ m satisfying t(m̃−1)

i < t(m̃)i , which implies
that µ(∞)〈t 〉 = 0 for every 0 ≤ t ≤ r satisfying t , r and (ti, tj) = (ri, rj) for some j , i. For such an appropriate choice of (i, j),
we have that

0 (a)
= lim

n→∞
1
2n

���{s ∈ {−,+}n ��� δ ≤ θsi, j(ri, rj) ≤ 1 − δ

τ(q)

}���
≥ lim sup

n→∞

1
2n

��������
{
s ∈ {−,+}n

��� δ ≤ θsi, j(ri, rj) ≤ 1 − δ

τ(q)

}
∩

©­­­«
⋂

t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬
��������

(b)
≥ lim sup

n→∞

1
2n

��������
{
s ∈ {−,+}n

��� δ ≤ εsq ≤ 1 − δ
}
∩

©­­­«
⋂

t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬
��������

(c)
= lim sup

n→∞

1
2n

©­­­«
���{s ∈ {−,+}n ��� δ ≤ εsq ≤ 1 − δ

}��� +
��������

⋂
t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}��������
−

��������
{
s ∈ {−,+}n

��� δ ≤ εsq ≤ 1 − δ
}
∪

©­­­«
⋂

t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬
��������
ª®®®¬

(d)
≥ lim sup

n→∞

1
2n

©­­­«
���{s ∈ {−,+}n ��� δ ≤ εsq ≤ 1 − δ

}��� +
��������

⋂
t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}�������� − 2n
ª®®®¬
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(e)
≥ lim sup

n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εsq ≤ 1 − δ
}��� + lim inf

n→∞
1
2n

��������
⋂

t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}�������� − 1

(f)
= lim sup

n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εsq ≤ 1 − δ
}���, (228)

where
• (a) follows from (221), i.e.,

0 = lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ θsi, j(ri, rj) ≤ 1 − δ
}���

≤ lim inf
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ θsi, j(ri, rj) ≤ 1 − δ

τ(q)

}���
≤ 0 (229)

with τ(q) B ∏m
i=1(ri + 1),

• (b) follows from the identities

θsi, j(ri, rj)
(74)
=

∑
t:0≤t≤r,
(ti,tj )=(ri,rj )

εs〈t 〉 = ε
s
q +

∑
t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

εs〈t 〉 (230)

and the inclusions{
s ∈ {−,+}n

��� δ ≤ θsi, j(ri, rj) ≤ 1 − δ

τ(q)

}
∩

©­­­«
⋂

t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬
⊃

s ∈ {−,+}
n

�������� δ ≤ εsq ≤ 1 − δ

τ(q) −
∑

t:0≤t≤r,t,r
(ti,tj )=(ri,rj )

εs〈t 〉

 ∩
©­­­«

⋂
t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬
⊃

s ∈ {−,+}
n

�������� δ ≤ εsq ≤ 1 − δ

τ(q) −
∑

t:0≤t≤r,t,r
(ti,tj )=(ri,rj )

δ

τ(q)

 ∩
©­­­«

⋂
t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬
⊃

{
s ∈ {−,+}n

��� δ ≤ εsq ≤ 1 − δ

τ(q) − (τ(q) − 1) δ

τ(q)

}
∩

©­­­«
⋂

t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬
=

{
s ∈ {−,+}n

��� δ ≤ εsq ≤ 1 − δ
}
∩

©­­­«
⋂

t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬ , (231)

• (c) follows by the inclusion-exclusion principle,
• (d) follows from the fact that��������

{
s ∈ {−,+}n

��� δ ≤ εsq ≤ 1 − δ
}
∪

©­­­«
⋂

t:0≤t≤r,t,r,
(ti,tj )=(ri,rj )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®¬
�������� ≤ 2n (232)

• (e) follows from the fact that

lim sup
n→∞

(an + bn) ≥ lim sup
n→∞

an + lim inf
n→∞

bn (233)

for two sequences (an)n and (bn)n, and
• (f) follows from Lemma 12 and (226).
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Thus, it follows from (228) that

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εs〈t(m̃) 〉 ≤ 1 − δ
}��� = 0. (234)

We now suppose that for some integer 0 ≤ h < m̃, it holds that

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εs〈t(h′) 〉 ≤ 1 − δ
}��� = 0 (235)

for every h < h′ ≤ m̃. Note that µ(∞)〈t(h′) 〉 > 0 for every h ≤ h′ ≤ m̃, and µ
(∞)
〈t 〉 = 0 for every t (h) ≤ t ≤ r satisfying t , t (h

′) for

all h ≤ h′ ≤ m̃. If h > 0, then since t (h−1) ≤ t (h) and t (h−1) , t (h), there exists an index 1 ≤ i ≤ m satisfying t(h−1)
i < t(h)i , which

implies that µ(∞)〈t 〉 = 0 for every 0 ≤ t ≤ r satisfying t , t (h
′) for all h ≤ h′ ≤ m̃ and (ti, tj) ≥ (t(h)i , t(h)j ) for some j , i. If h = 0,

then it is obvious that µ(∞)〈t 〉 = 0 for every 0 ≤ t ≤ r satisfying t , t (h
′) for all 0 ≤ h′ ≤ m̃. For such an appropriate choice of

(i, j), similar to (228), we have that

0 (a)
= lim

n→∞
1
2n

���{s ∈ {−,+}n ��� δ ≤ θsi, j(t(h)i , t(h)j ) ≤ 1 − δ

τ(q)

}���
≥ lim sup

n→∞

1
2n

������������
{
s ∈ {−,+}n

��� δ ≤ θsi, j(t(h)i , t(h)j ) ≤ 1 − δ

τ(q)

}
∩

©­­­­­­­­«
⋂

t:0≤t≤r,
t,t(h

′) ∀h′≥h,
(ti,tj )≥(t(h)i ,t

(h)
j )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®®®®®®¬

������������
(b)
≥ lim sup

n→∞

1
2n

������������
{
s ∈ {−,+}n

����� δ ≤ m̃∑
h′=h

εs〈t(h′) 〉 ≤ 1 − δ
}
∩

©­­­­­­­­«
⋂

t:0≤t≤r,
t,t(h

′) ∀h′≥h,
(ti,tj )≥(t(h)i ,t

(h)
j )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®®®®®®¬

������������
(c)
≥ lim sup

n→∞

1
2n

©­­­­­­­­«
�����
{
s ∈ {−,+}n

����� δ ≤ m̃∑
h′=h

εs〈t(h′) 〉 ≤ 1 − δ
}����� +

������������
⋂

t:0≤t≤r,
t,t(h

′) ∀h′≥h,
(ti,tj )≥(t(h)i ,t

(h)
j )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}
������������
− 2n

ª®®®®®®®®¬
(d)
≥ lim sup

n→∞

1
2n

�����
{
s ∈ {−,+}n

����� δ ≤ m̃∑
h′=h

εs〈t(h′) 〉 ≤ 1 − δ
}����� + lim inf

n→∞
1
2n

������������
⋂

t:0≤t≤r,
t,t(h

′) ∀h′≥h,
(ti,tj )≥(t(h)i ,t

(h)
j )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}
������������
− 1

(e)
= lim sup

n→∞

1
2n

�����
{
s ∈ {−,+}n

����� δ ≤ m̃∑
h′=h

εs〈t(h′) 〉 ≤ 1 − δ
}�����, (236)

where
• (a) follows from (221),
• (b) follows from the the identities

θsi, j(t
(h)
i , t(h)j ) =

∑
t:0≤t≤r,

(ti,tj )≥(t(h)i ,t
(h)
j )

εs〈t 〉

=

(
m̃∑

h′=h

εs〈t(h′) 〉

)
+

©­­­­­­­­«
∑

t:0≤t≤r,
t,t(h

′) ∀h′≥h,
(ti,tj )≥(t(h)i ,t

(h)
j )

εs〈t 〉

ª®®®®®®®®¬
, (237)
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which arises from (74), and the inclusions as in (231),
• (c) follows by the inclusion-exclusion principle and the fact that������������

{
s ∈ {−,+}n

����� δ ≤ m̃∑
h′=h

εs〈t(h′) 〉 ≤ 1 − δ
}
∪

©­­­­­­­­«
⋂

t:0≤t≤r,
t,t(h

′) ∀h′≥h,
(ti,tj )≥(t(h)i ,t

(h)
j )

{
s ∈ {−,+}n

��� εs〈t 〉 < δ

τ(q)

}ª®®®®®®®®¬

������������
≤ 2n (238)

• (d) follows from (233), and
• (e) follows from Lemma 12 and (226).

Hence, it follows from (236) that

lim
n→∞

1
2n

�����
{
s ∈ {−,+}n

����� δ ≤ m̃∑
h′=h

εs〈t(h′) 〉 ≤ 1 − δ
}����� = 0. (239)

Furthermore, we observe that

0 (a)
= lim

n→∞
1
2n

�����
{
s ∈ {−,+}n

����� δ ≤ m̃∑
h′=h

εs〈t(h′) 〉 ≤ 1 − δ

m̃

}�����
≥ lim sup

n→∞

1
2n

�����
{
s ∈ {−,+}n

����� δ ≤ m̃∑
h′=h

εs〈t(h′) 〉 ≤ 1 − δ

m̃

}
∩

(
m̃⋂

h′=h+1

{
s ∈ {−,+}n

��� δ
m̃
≤ εs〈t(h) 〉 ≤ 1 − δ

m̃

}{) �����
(b)
≥ lim sup

n→∞

1
2n

�����{s ∈ {−,+}n ��� δ ≤ εs〈t(h) 〉 ≤ 1 − δ
}
∩

(
m̃⋂

h′=h+1

{
s ∈ {−,+}n

��� δ
m̃
≤ εs〈t(h) 〉 ≤ 1 − δ

m̃

}{) �����
(c)
≥ lim sup

n→∞

1
2n

(���{s ∈ {−,+}n ��� δ ≤ εs〈t(h) 〉 ≤ 1 − δ
}��� + ����� m̃⋂

h′=h+1

{
s ∈ {−,+}n

��� δ
m̃
≤ εs〈t(h) 〉 ≤ 1 − δ

m̃

}{ ����� − 2n
)

(d)
≥ lim sup

n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εs〈t(h) 〉 ≤ 1 − δ
}��� + lim inf

n→∞
1
2n

����� m̃⋂
h′=h+1

{
s ∈ {−,+}n

��� δ
m̃
≤ εs〈t(h) 〉 ≤ 1 − δ

m̃

}{ ����� − 1

(e)
= lim sup

n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εs〈t(h) 〉 ≤ 1 − δ
}���, (240)

where
• (a) follows from (239),
• (b) follows by the inclusions as in (231) and (237),
• (c) follows by the inclusion-exclusion principle and the fact that�����{s ∈ {−,+}n ��� δ ≤ εs〈t(h) 〉 ≤ 1 − δ

}
∪

(
m̃⋂

h′=h+1

{
s ∈ {−,+}n

��� δ
m̃
≤ εs〈t(h) 〉 ≤ 1 − δ

m̃

}{) ����� ≤ 2n (241)

• (d) follows from (233), and
• (e) follows from Lemma 12 and the hypothesis (235).

Therefore, it follows from (240) that

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εs〈t(h) 〉 ≤ 1 − δ
}��� = 0, (242)

which implies by induction of (227) together with (226) that (114) of Theorem 4 holds, i.e.,

lim
n→∞

1
2n

���{s ∈ {−,+}n ��� δ ≤ εsd ≤ 1 − δ
}��� = 0 (243)

for every fixed δ ∈ (0, 1) and every d |q.
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Finally, we prove (115) of Theorem 4. It follows by the definition (53) that

µ
(n)
d
=

1
2n

∑
s∈{−,+}n

εsd

≤ 1
2n

∑
s∈{−,+}n :
εd<δ

δ +
1
2n

∑
s∈{−,+}n :
δ≤εd ≤1−δ

(1 − δ) + 1
2n

∑
s∈{−,+}n :
εd>1−δ

1

= δ +
1
2n

∑
s∈{−,+}n :
δ≤εd ≤1−δ

(1 − 2δ) + 1
2n

∑
s∈{−,+}n :
εd>1−δ

(1 − δ),

which implies together with (114) that

µ
(∞)
d
≤ δ + (1 − δ) lim inf

n→∞
1
2n

���{s ∈ {−,+}n ��� ε(n)d
> 1 − δ

}��� (244)

In addition, we also get

µ
(n)
d
=

1
2n

∑
s∈{−,+}n

εsd

≥ 1
2n

∑
s∈{−,+}n :
δ≤εd ≤1−δ

δ +
1
2n

∑
s∈{−,+}n :
εd>1−δ

(1 − δ), (245)

which also implies together with (114) that

(1 − δ) lim sup
n→∞

1
2n

���{s ∈ {−,+}n ��� ε(n)d
> 1 − δ

}��� ≤ µ(∞)d
(246)

Since δ > 0 can be chosen arbitrarily small, as in Alsan and Telatar’s proof of [26, Theorem 1], it follows from (244) and
(246) that (115) holds. This completes the proof of Theorem 4.

APPENDIX N
PROOF OF LEMMA 12

We prove Lemma 12 by induction. Define

S(k)n B
k⋂
i=1

Si,n (247)

for each k, n ∈ N. By hypothesis, it is clear that

lim
n→∞

fn
(
S(1)n

)
= lim

n→∞
fn

(
S1,n

)
= 1. (248)

Suppose that

lim
n→∞

fn
(
S(k−1)
n

)
= 1. (249)

for a fixed integer k ∈ N. Then, we have

1 = lim
n→∞

fn
(
S(k−1)
n

)
≥ lim inf

n→∞
fn

(
S(k)n

)
= lim inf

n→∞

(
fn

(
S(k−1)
n

)
+ fn

(
Sk,n

)
− fn

(
S(k−1)
n ∪ Sk,n

) )
≥ lim inf

n→∞
fn

(
S(k−1)
n

)
+ lim inf

n→∞
fn

(
Sk,n

)
− lim sup

n→∞
fn

(
S(k−1)
n ∪ Sk,n

)
≥ 1 + 1 − 1
= 1, (250)

which implies that

lim
n→∞

fn
(
S(k)n

)
= 1. (251)

This completes the proof of Lemma 12.
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