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Every planar graph without 4-cycles adjacent to two triangles is

DP-4-colorable

Runrun Liu and Xiangwen Li∗
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Central China Normal University, Wuhan 430079, China

Abstract

Wang and Lih in 2002 conjectured that every planar graph without adjacent triangles is

4-choosable. In this paper, we prove that every planar graph without any 4-cycle adjacent

to two triangles is DP-4-colorable, which improves the results of Lam, Xu and Liu [Journal

of Combin. Theory, Ser. B, 76 (1999) 117–126], of Cheng, Chen and Wang [Discrete Math.,

339(2016) 3052–3057] and of Kim and Yu [arXiv:1709.09809v1].

1 Introduction

Coloring is one of the main topics in graph theory. A proper k-coloring of G is a mapping

f : V (G) → [k] such that f(u) 6= f(v) whenever uv ∈ E(G), where [k] = {1, 2, . . . , k}. The

smallest k such that G has a k-coloring is called the chromatic number of G and is denoted by

χ(G). List coloring was introduced by Vizing [11], and independently Erdős, Rubin, and Taylor

[6]. A list assignment of a graph G is a function L that assigns to each vertex v ∈ V a list L(v)

of colors. An L-coloring of G is a function λ : V → ∪v∈V L(v) such that λ(v) ∈ L(v) for every

v ∈ V and λ(u) 6= λ(v) whenever uv ∈ E. A graph G is k-choosable if G has an L-coloring for

every assignment L with |L(v)| ≥ k for each v ∈ V (G). The choice number, denoted by χl(G), is

the minimum k such that G is k-choosable.

The techniques to approach the list problems are less than those used in ordinary coloring. For

ordinary coloring, identifications of vertices are involved in the reduction configurations. In list

coloring, since different vertices have different lists, it is no possible for one to use identification

of vertices. With this motivation, Dvořák and Postle [5] introduced correspondence coloring

(or DP-coloring) as a generalization of list-coloring. For this literature, the readers can see

[1, 2, 3, 7, 9, 10]. The definitions are as follows.

A k-correspondence assignment for G consists of a list assignment L on vertices in V (G) such

that L(u) = [k] and a function C that assigns every edge e = uv ∈ E(G) a matching Ce between

{u} × [k] and {v} × [k].
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A C-coloring of G is a function φ that assigns each vertex v ∈ V (G) a color φ(v) ∈ L(v), such

that for every e = uv ∈ E(G), the vertices (u, φ(u)) and (v, φ(v)) are not adjacent in Ce. We say

that G is C-colorable if such a C-coloring exists.

The correspondence chromatic number χDP (G) of G is the smallest integer k such that G is

C-colorable for every k-correspondence assignment (L,C).

Two triangles are intersecting if they have at least one common vertex. Two triangles are

adjacent if they have at least one common edge. Lam, Xu and Liu [8] proved that every planar

graph without 4-cycles is 3-choosable. Wang and Lih [12] proved that every planar graph without

intersecting triangles is 4-choosable and posed the following conjecture.

Conjecture 1.1 (Wang and Lih, [12]) Every planar graph without adjacent triangles is 4-choosable.

Conjecture 1.1 is still open. There have been a few results about this conjecture since 2002.

Recently, Cheng, Chen and Wang [4] proved that every planar graph without 4-cycle adjacent

to 3-cycle is 4-choosable, which was improved to DP-4-colorable by Kim and Yu [7]. As we

mention above, DP-coloring is as a generation of list coloring. One naturally try to approach

Conjecture 1.1 by utilizing DP-coloring. Motivated by this observation, we present the following

result in this paper.

Theorem 1.2 Every planar graph G without any 4-cycle adjacent to two triangles is DP-4-

colorable.

Note that if every planar graph G without any 4-cycle adjacent to two triangles, then G has

no adjacent triangles. Thus, Theorem 1.2 generalized the results of Lam, Xu and Liu [8], of

Cheng, Chen and Wang [4] and of Kim and Yu [7]. In order to show Theorem 1.2, We prove a

little stronger theorem, as follows.

Theorem 1.3 Let G be a plane graph without any 4-cycle adjacent two triangles. Let S be a set

of vertices of G such that either |S| = 1, or S consists of all vertices on a face of G. If |S| ≤ 6,

then for every C-coloring φ0 of G[S], there exists a C-coloring φ of G whose restriction to S is

φ0.

Proof of Theorem 1.2 By Theorem 1.3, it suffices to show that G is C-colorable for arbitrary

3-correspondence assignment C. Assume that G has a assignment C. Take S to be an arbitrary

vertex in G. By Theorem 1.3, G is C-colorable.

In the end of this section, we introduce some notations used in the paper. Graphs mentioned

in this paper are all simple. Let K be a cycle of a plane graph G. We use int(K) and ext(K)

to denote the sets of vertices located inside and outside K, respectively. The cycle K is called

a separating cycle if int(K) 6= ∅ 6= ext(K). Let V and F be the set of vertices and faces of G,

respectively. For a face f ∈ F , if the vertices on f in a cyclic order are v1, v2, . . . , vk, then we

write f = [v1v2 . . . vk]. Let b(f) be the vertex set of f . A k-vertex (k+-vertex, k−-vertex) is a

vertex of degree k (at least k, at most k). A k-face (k+-face, k−-face) is a face contains k (at

least k, at most k) vertices. The same notation will be applied to cycles. Let N(v) be the set of

all the neighbors of v and let N [v] = N(v) ∪ {v}.
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2 Proof of Theorem 1.3

This section is devoted to proving Theorem 1.3. Let (L,C) be a k-correspondence assignment on

G. An edge uv ∈ E(G) is straight if every (u, c1)(v, c2) ∈ E(Cuv) satisfies c1 = c2. The following

lemma is from ([5], Lemma 7) immediately.

Lemma 2.1 Let G be a graph with a k-correspondence assignment C. Let H be a subgraph of G

which is a tree. Then we may rename L(u) for u ∈ H to obtain a k-correspondence assignment

C ′ for G such that all edges of H are straight in C ′.

From now on, we always let C be a 4-correspondence assignment on G. Assume that The-

orem 1.3 fails. Let G be a minimal counterexample, that is, there exists no C-coloring φ of G

whose restriction to S is equal to φ0 such that

|V (G)| is minimized. (1)

Subject to (1), the number of edges of G that do not join the vertices of S

|E(G)| − |E(G[S])| is minimized. (2)

When S consists of the vertices of a face, we will always assume that D is the outer face of

the embedding of plane graph G. A vertex v or a face f is internal if v /∈ D or f 6= D.

For convenience, let Fk = {f : f is a k-face and b(f)∩D = ∅} and F ′

k
= {f : f is a k-face and

b(f) ∩ D 6= ∅}. A 3-face in F3 is special if it contains a 4-vertex v incident with at most one

triangle and N(v) ∩ D = ∅. Let f be a (4, 4, 4, 4, 4+)-face in F5 adjacent to five triangles. Let

v be the vertex on the triangle but not on f . We call f a sink of v and v a source of f . The

properties in Lemma 2.2 (a)-(e) is similar to [5]. For completeness, we include the proofs here.

Lemma 2.2 Each of the following holds:

(a) V (G) 6= S;

(b) G is 2-connected;

(c) each vertex not in S has degree at least 4;

(d) G does not contain separating k-cycle for 3 ≤ k ≤ 6;

(e) S = V (D) and D is an induced cycle.

(f) If u and v on D are not adjacent, then they have no common neighbor not on D.

(g) If f is a sink in G, then at most one of its source is on D.

Proof. (a) Suppose otherwise that V (G) = S. In this case, φ0 is a C-coloring of G, a contradic-

tion.
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(b) By the condition (1), G is connected. Suppose otherwise that v is a cut-vertex of G.

Thus, we may assume that G = G1 ∪G2 such that V (G1) ∩ V (G2) = {v}. If v ∈ S, then by the

condition (1) G1 and G2 have C-coloring extending φ0 such that these C-colorings have the same

color at v. Thus, G has a C-coloring, a contradiction. Thus, assume that v /∈ S. We assume,

without loss of generality, that S ⊆ V (G1). By the condition (1), φ0 can be extended to φ1 of

G1. Then, φ1(v) can be extended to φ2 of G2. Now φ1 and φ2 together give an extension of φ0

to G, a contradiction.

(c) Let v be a 3−-vertex in G−S. By the condition (1), φ0 can be extended to a C-coloring φ

of G− v. Then we can extend φ to G by selecting a color φ(v) for v such that for each neighbor

u of v, (u, φ(u))(v, φ(v)) /∈ E(Cuv), a contradiction.

(d) Let K be a separating k-cycle with 3 ≤ k ≤ 6. By the condition (1), φ0 can be extend

to a C-coloring φ1 of ext(K) ∪K, and the restriction of φ1 to K extends to a C-coloring φ2 of

int(K). Thus, φ1 and φ2 together give a C-coloring of G that extends φ0, a contradiction.

(e) Suppose otherwise that S = {v} for some vertex v ∈ V (G). If v is incident with a 6−-cycle

f1, we may assume that v is incident with a 6−-face by (d). We now redraw G such that f1 is

the outer cycle of G and choose a C-coloring φ on the boundary of f1. Let S1 = V (f1). In this

case, |E(G1)| − |E(G[S1])| < |E(G)| − |E(G[S])|. By the condition (2), G1 has a C-coloring that

extends the colors of S1, thus G has a C-coloring extends φ0, a contradiction. Thus, we may

assume that all cycles incident with v are 7+-cycles. Let f2 be a 7+-face incident with v. Let

v1 and v2 be the neighbors of v on f2. Let G2 = G ∪ {v1v2}. We redraw G such that [vv1v2] is

the outer cycle of G2. Let S2 = {v, v1, v2} and C2 be obtained from C by letting the matching

between v1 and v2 be edgeless. It is easy to verify that |E(G2)|−|E(G[S2])| < |E(G)|−|E(G[S])|.

By the condition (2), G2 has a C2-coloring that extends the colors of S2. This implies that G has

a C-coloring extends φ0, a contradiction again. So S = V (D).

We may assume that D contains a chord uv. By (a) V (G) 6= S. Thus D together with the

chord uv forms two cycles with common edge uv, each of which has of length less than 6 by our

assumption that |S| ≤ 6. By (d), such two cycles are the boundaries of two faces. This means

that S = V (G), a contradiction to (a).

(f) Let u and v be two non-adjacent vertices on D. Suppose otherwise that w /∈ D is the

common neighbor of them. By (c), d(w) ≥ 4. Since |D| ≤ 6, the path P = uvw and D form two

6−-cycles. By (d), N(w) ⊂ D. But this would create a 4-cycle adjacent to two triangles for any

D, a contradiction.

(g) Let u1, u2, . . . , u5 be the five sources around f in the clockwise order. Suppose otherwise

that there are two sources on D. We first claim that at most one of ui and ui+1 is on D, where

the subscripts are taken modulo 5. By symmetry we may assume that u1 and u2 are on D. since

a 4-cycle in G is adjacent to at most one triangle, u1u2 /∈ E(D), u1 and u2 are not adjacent and

u1 and u2 have a common neighbor not on D, a contradiction to (f). Thus, by symmetry, we

assume that u1 and u3 are on D. By the argument above, we may assume that none of u2 and u5

is on D. Let P be the path of length 3 from u1 to u3 by passing two vertices on f . Since |D| ≤ 6,

let P1 be the shortest path on D between u1 and u3. Then P1 has length at most 3. Thus, P and

P1 form a separating 6−-cycle, a contradiction to (d).
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The following lemma plays a key role in the proof of Theorem 1.3.

Lemma 2.3 Let v be a 4-vertex and N(v) = {vi : 1 ≤ i ≤ 4} in a cyclic order. If N [v] ∩D = ∅,

then each of the following holds:

(i) at most one of vi and vi+2 of v is a 4-vertex.

(ii) If v is incident with at most one triangle f , then f must be a (4, 5+, 5+)-face.

Proof. Let fi be the face with vertices vi, v, vi+1 on its boundary, where the subscripts are taken

modulo 4 for 1 ≤ i ≤ 4.

(i) We suppose otherwise that d(v1) = d(v3) = 4 by symmetry. By Lemma 2.1, we can rename

each of L(v2), L(v), L(v4) to make Cvv2 and Cvv4 straight. Let G′ be the graph by identifying v2

and v4 of G− {v1, v, v3} and let C ′ be the restriction of C to E(G′). Since {v2, v4} ∩D = ∅, the

identification does not create an edge between vertices of S, and thus φ0 is also a C ′-coloring of the

subgraph of G′ induced by S. If there exists a path P of length at most 4 between v2 and v4, then

G would have a separating 6−-cycle, contrary Lemma 2.2(d). This implies that G′ contains no

4-cycles adjacent to two triangles. Also G′ contains no loops or parallel edges. Thus, C ′ is also a

4-correspondence assignment on G′. Since |V (G′)| < |V (G)|, φ0 can be extended to a C ′-coloring

φ of G′ by (1). For x ∈ {v1, v, v3}, let L
∗(x) = L(x) \ ∪ux∈E(G){c

′ ∈ L(x) : (u, c)(x, c′) ∈ Cux and

(u, c) ∈ φ}. Then |L∗(v1)| = |L∗(v1)| ≥ 1, and |L∗(v)| ≥ 3. So we can extend φ to a C-coloring of

G by coloring v2 and v4 with the color of the identifying vertex and then color v1, v3, v in order,

a contradiction.

(ii) By Lemma 2.2 (c) each neighbor of v has degree at least 4. Suppose otherwise that

f1 = [vv1v2] is not a (4, 5+, 5+)-face. By symmetry let d(v1) = 4. By Lemma 2.1, we can rename

each of L(v2), L(v), L(v4) to make Cvv2 and Cvv4 straight. Let G′ be the graph by identifying v2

and v4 of G − {v1, v} and let C ′ be the restriction of C to E(G′). Since {v2, v4} ∩ D = ∅, the

identification does create an edge between vertices of S, and thus φ0 is also a C ′-coloring of the

subgraph of G′ induced by S. If there exists a path P of length at most 4 between v2 and v4, then

G would have a cycle K of length at most 6 which is obtained from the path v2vv4 and P . By our

assumption, both f2 and f3 are 4+-faces. If v3 ∈ P , then |P | ≥ 4. Furthermore, if |P | = 4, then

both f2 and f3 are 4-faces. Since each of f2 and f3 is incident to at most one triangle and since

f1 is a triangle, the new 4-cycle created by P in G′ is adjacent to at most one triangle. If v3 /∈ P ,

then K is a separating 6−-cycle, contrary to Lemma 2.2(d). This implies that G′ contains no

4-cycles adjacent to two triangles. Since G contains no separating 3-or 4-cycle by Lemma 2.2(d),

G′ contains no loops or parallel edges. Thus, C ′ is also a 4-correspondence assignment on G′.

Since |V (G′)| < |V (G)|, φ0 can be extended to a C ′-coloring φ of G′ by (1). For x ∈ {v1, v}, let

L∗(x) = L(x) \ ∪ux∈E(G){c
′ ∈ L(x) : (u, c)(x, c′) ∈ Cux and (u, c) ∈ φ}. Then |L∗(v)| ≥ 2 and

|L∗(v1)| ≥ 1. So we can extend φ to a C-coloring of G by coloring v2 and v4 with the color of the

identifying vertex and then color v1 and v in order, a contradiction.

We are now ready to present a discharging procedure that will complete the proof of the

Theorem 1.3. Let each vertex v ∈ V (G) have an initial charge of µ(v) = 2d(v) − 6, each face

f 6= D have an initial charge of µ(f) = d(f) − 6, and µ(D) = d(D) + 6. By Euler’s Formula,
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∑
x∈V ∪F

µ(x) = 0. Let µ∗(x) be the charge of x ∈ V ∪ F after the discharge procedure. To lead

to a contradiction, we shall prove that µ∗(x) ≥ 0 for all x ∈ V ∪ F and µ∗(D) is positive.

Let t be the number of incident triangles of v. The discharging rules are as follows.

(R1) Let v /∈ D be a 4-vertex.

(a) Let t ≤ 1. If N(v)∩D = ∅, then v gives 1
2 to each incident face. If N(v)∩D 6= ∅, then

v gives 1 to each incident 3-face, 1
2 to each face in F4 or F5 and give its rest charge

evenly to other incident faces.

(b) If t = 2, then v gives 1 to each incident 3-face.

(R2) Let v /∈ D be a 5-vertex.

(a) If N(v)∩D = ∅, then v gives 5
4 to each special 3-face, 1 to each other 3-face, 1

2 to each

other incident face and 1
4 to each sink.

(b) If N(v)∩D 6= ∅, then v gives 5
4 to each incident 3-face, 1

2 to each incident face in F4 or

F5,
1
4 to each sink and gives the rest charge evenly to other incident faces.

(R3) Each 6+-vertex not on D gives 5
4 to each incident 3-face, 1

2 to each other incident face and
1
4 to each incident sink.

(R4) Each vertex on D gives its initial charge to D and D gives 2 to each face in F ′

3,
7
4 to each

other face in F ′

k
for k ≥ 4.

Lemma 2.4 Every vertex v and internal face f in G have nonnegative final charges.

Proof. We first check the final charges of vertices. Let v be a vertex in G. If v ∈ D, then

µ∗(v) ≥ 0 by (R4). Thus, we may assume that v /∈ D. By Lemma 2.2(c), d(v) ≥ 4. Let d(v) = 4.

Recall that t is the number of incident 3-faces of v. Since G contains no adjacent triangles, t ≤ 2.

Let t ≤ 1. If N(v) ∩ D = ∅, then v gives 1
2 to each incident face by (R1a). If N(v) ∩ D 6= ∅,

then v sends 1 to each incident 3-face, 1
2 to each face in F4 or F5 and give its rest charge evenly

to other incident faces. Furthermore, if t = 1, then v is incident with at most two faces from F4

or F5. Thus, µ∗(v) ≥ 2 × 4 − 6 − max{1
2 × 4, 1 + 1

2 × 2} = 0. If t = 2, then by (R1b)v gives 1

to each incident 3-face. So µ∗(v) ≥ 2 × 4 − 6 − 1 × 2 = 0. Next, assume that d(v) = 5. We first

assume that N(v) ∩D = ∅. By (R2a) v gives 5
4 to each special 3-face, 1 to each other 3-face, 1

2

to each other incident face and 1
4 to each sink. Let f be a special 3-face incident with v. Note

that the 4-vertex on f is incident with at most one triangle. Thus, the face adjacent to f but

v not on its boundary is not a sink. So µ∗(f) ≥ 2 × 5 − 6 −max{5
4 , 1 +

1
4} × 2 − 1

2 × 3 = 0. If

N(v) ∩ D 6= ∅, then by (R2b) v gives 5
4 to each incident 3-face, 1

2 to each incident face in F4

or F5,
1
4 to each sink and gives the rest charge evenly to other incident faces. If t ≤ 1, then

µ∗(v) ≥ 2× 5− 6 − 1
4 − 5

4 − 1
2 × 4 > 0. If t = 2, then v is incident with at most two faces in F4

or F5. So µ∗(v) ≥ 2 × 5 − 6 − 2(14 + 5
4 ) −

1
2 × 2 = 0. Finally, assume that d(v) ≥ 6. By (R3)

v gives 5
4 to each incident 3-face, 1

2 to each other incident face and 1
4 to each incident sink. So

µ∗(v) ≥ 2d(v) − 6− (54 + 1
4)⌊

d(v)
2 ⌋ − 1

2⌈
d(v)
2 ⌉ ≥ d(v) − 6 ≥ 0.
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Now we check the final charge of internal faces. Since 6+-faces are not involved in the dis-

charging procedure, they have non-negative final charge. Let f be a 5−-face in G. We first assume

that V (f) ∩D = ∅. Let d(f) = 3. If f is special, then by Lemma 2.3(ii) f is a (4, 5+, 5+)-face.

By(R1), (R2) and (R3) f gets 1
2 from the incident 4-vertex and 5

4 from each incident 5+-vertex.

If not, then by (R1), (R2) and (R3) f gets at least 1 from each incident vertex. In either case,

µ∗(f) ≥ 3− 6+min{1
2 +

5
4 × 2, 1× 3} = 0. If d(f) = 4, then f is adjacent to at most one triangle.

So by (R1), (R2) and (R3) f gets 1
2 from each incident vertex. So µ∗(f) ≥ 4− 6− 1

2 × 4 = 0. For

d(f) = 5, let f = [v1v2 . . . v5]. By (R1), (R2) and (R3) f gets 1
2 from each incident 5+-vertex or

4-vertex that is incident with at most one triangle. If f is incident with at least two 5+-vertices

or 4-vertices that is incident with at most one triangle, then µ∗(f) ≥ 5 − 6 − 1
2 × 2 = 0. So we

may assume that f is a sink. By Lemma 2.2(g) at most one of the five sources of f is on D and

by Lemma 2.3(i) each source not on D is a 5+-vertex. So by (R2) and (R3) each source not on

D gives 1
4 to f . So µ∗(f) ≥ 5− 6− 1

4 × 4 = 0.

Now we assume that V (f) ∩ D 6= ∅. If d(f) = 3, then at least one vertex on f is not on

D by Lemma 2.2(e), which gives 1 to f by (R1), (R2) and (R3). By (R4) D gives 2 to f . So

µ∗(f) ≥ 3 − 6 + 2 + 1 ≥ 0. If d(f) = 4, then by Lemma 2.2(e) and (f) f either share one vertex

with D or one edge with D. Let f = [v1v2v3v4]. In the former case, by symmetry we may assume

that V (f) ∩ D = {v1}. Since f is adjacent to at most one triangle, at least one of v1v2 and

v1v4 is not on a 3-face, say v1v2. Then f gets at least
2−1− 1

2

2 = 1
4 from v2 if d(v2) = 4 by (R1),

4− 5

4
×2− 1

4
×2− 1

2

2 = 1
4 from v2 if d(v2) = 5 by (R2), and 1

2 from v2 if d(v) ≥ 6 by (R3). In addition,

by (R4) f gets 7
4 from D. So µ∗(f) ≥ 4 − 6 + 7

4 + 1
4 = 0. If d(f) = 5, then f gets 7

4 from D by

by (R4). So µ∗(f) ≥ 5− 6 + 7
4 > 0.

Proof of Theorem 1.3. By Lemmas 2.4, it is sufficient for us to check that the outer face D

has positive final charge. Let E(D,V (G)−D) be the set of edges between D and V (G)−D and

let e(D,V (G) −D) be its size. By (R4) we have

µ∗(D) = d(D) + 6 +
∑

v∈D

(2d(v) − 6)− 2|F ′

3| −
7

4
|F ′

k| (3)

= d(D) + 6 + 2
∑

v∈D

(d(v)− 2)− 2d(D) − 2|F ′

3| −
7

4
|F ′

k| (4)

= 6− d(D) +
1

8
e(D,V (G)−D) +

15

8
e(D,V (G) −D)− 2|F ′

3| −
7

4
|F ′

k| (5)

where k ≥ 4.

So we may think that each edge e ∈ E(C, V (G) − C) carries a charge of 15
8 . Then let f be a

face including e. Let e give 1 to f if f is a 3-face, 7
8 to f otherwise. Since G contains no adjacent

triangles and each face in F ′

k
for k ≥ 3 contains two edge in E(C, V (G) − C), this implies that

15
8 e(D,V (G)−D)− 2|F ′

3| −
7
4 |F

′

k
| ≥ 0. By Lemma 2.2(a) e(D,V (G)−D) > 0. Then µ∗(D) > 0

for any D.
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