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Abstract

The multifractal formalism for measures hold whenever the existence of correspond-
ing Gibbs-like measures supported on the singularities sets holds. In the present
work we tried to relax such a hypothesis and introduce a more general framework
of mixed (and thus single) multifractal analysis where the measures constructed on
the singularities sets are not Gibbs but controlled by an extra-function allowing the
multifractal formalism to hold. We fall on the classical case by a particular choice
of such afunction.
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1 Introduction

The multifractal analysis of a single measure passes through its local dimension
or its Hölder exponent. For a measure µ eventually Borel and finite on R

d and
x ∈ supp(µ), the local dimension of µ at the point x is defined by

αµ(x) = lim
r↓0

log(µ(B(x, r)))

log r

when such a limit exists. The next step concerns the geometric study of the
α-singularity set of the measure µ defined by

X(α) = { x ∈ supp(µ) ; αµ(x) = α }

by means of its Hausdorff dimension

d(α) = dimX(α)

which defines the so-called spectrum of singularities. This means that the
study of the behaviour of the measure is transformed into a study of sets
where the focuses may somehow forget about the measure and its point-wise
character and falls in set theory and the suitable coverings that permits the
computation of the Hausdorff dimension. For a subset E ⊂ R

d and α ≥ 0, the
α-Hausdorff measure is defined by

Hα(E) = lim
ε↓0


inf

∑

j

(diam(Uj))
α




where the inf is taken over all coverings of E with subsets Uj , j ∈ N such that
diam(Uj) ≤ ε.

However, some geometric sets are essentially known by means of measures
that are supported by them, i.e., given a set E and a measure µ, the quantity
µ(E) may be computed as the maximum value µ(F ) for all subsets F ⊂ E.
So, contrarily to the previous idea, we mathematically forget the geometric
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set structure of E and focus instead on the properties of the measure µ. The
set E is thus partitioned into α-level sets relatively to the regularity exponent
of µ into subsets X(α).

This makes the including of the measure µ into the computation of the Haus-
dorff (or fractal) dimension and thus into the definition of the Hausdorff mea-
sure a necessity to understand more the geometry of the set simultaneously
with the behaviour of the measure that is supported on. One step ahead in
this direction has been conducted by Olsen in [11] where the author intro-
duced multifractal generalisations of the fractal dimensins such as Hausdorff,
packing and Bouligand ones by considering general variants of measures. For
a Borel probability measure µ on R

d, a nonempty set E ⊆ R
d and q, t ∈ R,

he considered the pre-mesure

H
q,t

µ (E) = lim
ǫ↓0

(
inf{

∑

i

(µ(B(xi, ri)))
q(2ri)

t }
)
,

where the inf is taken over the set of all centered ǫ-coverings of E, and for the
empty set, H

q,t

µ,ǫ(∅) = 0. This yields next the measure

Hq,t
µ (E) = sup

F⊆E

H
q,t

µ (F ).

Similarly, the following pre-measure is considered.

P
q,t

µ (E) = lim
ǫ↓0

(
sup{

∑

i

(µ(B(xi, ri)))
q(2ri)

t }
)
,

where the sup is taken over the set of all centered ǫ-packings of E. For the
empty set, we set as usual P

q,t

µ,ǫ(∅) = 0. This yields next the measure

Pq,t
µ (E) = inf

E⊆∪iEi

∑

i

P
q,t

µ (Ei).

In [11], it has been proved that the measures Hq,t
µ , Pq,t

µ and the pre-measure

P
q,t

µ assign in a usual way a dimension to every set E ⊆ R
d called respec-

tively multifractal generalizations of the Hausdorff dimension (dimq
µ(E),), the

packing dimension (Dimq
µ(E)) and the logarithmic index (∆q

µ(E)) of the set
E. These quantities satisfies the cut-off relations

Hq,t
µ (E) = +∞ for t < dimq

µ(E) and 0 for t > dimq
µ(E).

Pq,t
µ (E) = +∞ for t < Dimq

µ(E) and 0 for t > Dimq
µ(E).

P
q,t

µ (E) = +∞ for t < ∆q
µ(E) and 0 for t > ∆q

µ(E).

In [11], the characteristics of these functions such as monotony, convexity,
lower and upper bounds have been studied. Next, to come back to the essential
problem in multifractal formalism which consists in the computation of the
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spectrum of singularities d(α), the author proved that such generalizations
may lead to a multifractal formalism but when some bad restriction for the
single measure µ toke place. By assuming that µ belongs to the whole class
of Gibbs-like measures the multifractal formalism has been proved to hold.
This was one motivation that led us to develop the present paper where such
a restriction has been avoided.

Next, a first step in the direction of the mixed multifractal analysis the same
author already affected by the restriction on the single measure µ developed
a mixed multifractal analysis for one very restrictive class of measures known
as the self affine measures [13] dealing precisely with Rényi dimensions for
finitely many self similar measures. It was one step ahead but in a restrictive
case. This study has been the motivation of our paper [3] where we developed
a general mixed analysis for vector valued measures by proving some results
for general measures and some ones for special classes. However, we noticed
that the hypothesis of Gibbs-like measures is somehow not possible to avoid
and thus by contouring such hypothesis with some extra-hypothesis on the
measure and by proving a general mixed large deviation formalism a mixed
multifractal formalism has been proved there also. This study itself has been
one motivation behind the one developed in [4] and [5] where a mixed mul-
tifractal analysis inspired from the one for measures has been developed in
the functional case. By concentring a vector valued Gibbs-like measure on the
singularities set of finitely and simultaneously many functions, we introduced
a mixed multifractal formalism for functions. General results for almost all
functions have been proved and a mixed multifractal formalism have been
proved for self similar quasi self similar functions as well as their superposi-
tions (which are not self similar neither quasi self similar). For more details
and backgrounds on multifractal analysis as well as the mixed generalizations
the readers may be referred also to the following essential references [1], [2],
[12], [17], [18], [19], [20], [21], [22], [23].

In the present paper we are concerned with the introduction of a multifractal
analysis in a mixed case (but which can already adapted to single cases)
where the hypothesis of the existence of Gibbs-like and/or doubling measures
supported by the singularities sets is relaxed. We aim to consider some cases
of simultaneous behaviors of measures where the local Hölder behaviour is
controlled by special and suitable function that allow the extra-hypothesis of
Gibbs-like measures not to be necessary.

The present work will be organized as follows. The next section concerns
the introduction of the new variant of the mixed multifractal generalizations
of Hausdorff and packing measures and dimensions relatively to the control
function ϕ. Section 3 is devoted to the mixed multifractal generalization of
Bouligand-Minkowsky or Rényi dimension already with the control ϕ. In sec-
tion 4, a mixed multifractal formalism associated to the mixed multifractal
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generalizations of Hausdorff and packing measures and dimensions introduced
in section 2 is proved in some case based on a generalization of the well known
large deviation formalism and where no extra-hypothesis of Gibbs-like mea-
sures existence is assumed.

2 ϕ-mixed multifractal generalizations of Hausdorff and packing

measures and dimensions

The purpose of this section is to present our ideas about mixed multifractal
generalizations of Hausdorff and packing measures and dimensions. Consider a
vector valued measure µ = (µ1, µ2, . . . , µk) composed of probability measures
on R

d. We aim to study the simultaneous scaling behavior of µ relatively to
an exponential density function. Let ϕ : R+ → R be such that

ϕ is non-decreasing and ϕ(r) < 0 for r small enough. (1)

The mixed generalized multifractal Hausdorff ϕ-measure is defined as follows.
For x ∈ R

d and r > 0 we denote B(x, r) the ball of radius r and center x. We
denote next

µ(B(x, r)) ≡
(
µ1(B(x, r)), . . . , µk(B(x, r))

)

and the product

(µ(B(x, r)))q ≡ (µ1(B(x, r)))q1 . . . (µk(B(x, r)))qk .

Let E ⊆ R
d be a nonempty set and ǫ > 0. Let also q = (q1, q2, . . . , qk) ∈ R

k

and t ∈ R and consider the quantity

H
q,t

µ,ϕ,ǫ(E) = inf{
∑

i

(µ(B(xi, ri)))
qetϕ(ri) },

where the inf is taken over the set of all centered ǫ-coverings of E, and for the
empty set, H

q,t

µ,ǫ(∅) = 0. It consists of a non increasing function of the variable
ε. We denote thus

H
q,t

µ,ϕ(E) = lim
ǫ↓0

H
q,t

µ,ϕ,ǫ(E) = sup
δ>0

H
q,t

µ,ϕ,ǫ(E).

Let finally

Hq,t
µ,ϕ(E) = sup

F⊆E

H
q,t

µ,ϕ(F ).

Lemma 2.1 Hq,t
µ,ϕ is an outer metric measure on R

d.

Proof. We will prove firstly that Hq,t
µ,ϕ is an outer measure. This means that
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i. Hq,t
µ,ϕ(∅) = 0.

ii. Hq,t
µ,ϕ is monotone, i.e.

Hq,t
µ,ϕ(E) ≤ Hq,t

µ,ϕ(F ),

whenever E ⊆ F ⊆ R
d.

iii. Hq,t
µ,ϕ is sub-additive, i.e.

Hq,t
µ,ϕ(

⋃

n

An) ≤
∑

n

Hq,t
µ,ϕ(An).

The first item is obvious. Let us prove (ii). Let E ⊆ F be nonempty subsets
of Rd. We have

Hq,t
µ,ϕ(E) = sup

A⊆E

H
q,t

µ,ϕ(A) ≤ sup
A⊆F

H
q,t

µ,ϕ(A) = Hq,t
µ,ϕ(F ).

We next prove (iii). If the right hand term is infinite, the inequality is obvious.
So, assume that it is finite. Let (En)n be a countable family of subsets Ei ⊆ R

d

for which
∑

n

Hq,t
µ,ϕ(En) < ∞. Let also ǫ, δ > 0 and (B(xni, rni))i a centered

ǫ-covering of En satisfying

∑

i

µ(B(xni, rni))
qetϕ(rni) ≤ H

q,t

µ,ϕ,ε(En) +
δ

2n
.

The whole set (B(xni, rni))n,i is a centered ǫ-covering of the whole union
⋃

n

En.

As a consequence,

H
q,t

µ,ϕ,ǫ(
⋃

n

En) ≤
∑

n

∑

i

(µ(B(xni, rni)))
qetϕ(rni)

≤
∑

n

(
H

q,t

µ,ϕ,ǫ(En) +
δ

2n

)

≤
∑

n

(
H

q,t

µ,ϕ(En) +
δ

2n

)

≤
∑

n

Hq,t
µ,ϕ(En) + δ.

Having ǫ and δ going towards 0, we obtain

H
q,t

µ,ϕ(
⋃

n

En) ≤
∑

n

Hq,t
µ,ϕ(En).
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Let next a set F covered with the countable set (An)n. That is F ⊆
⋃

n

An. We

have

H
q,t

µ,ϕ(F ) = H
q,t

µ,ϕ

(
⋃

n

(An ∩ F )

)

≤
∑

n

Hq,t
µ,ϕ(An ∩ F )

≤
∑

n

Hq,t
µ,ϕ(An).

Taking the sup on F , we obtain

Hq,t
µ,ϕ(F ) ≤

∑

n

Hq,t
µ,ϕ(An).

We now prove that Hq,t
µ,ϕ is metric. Let A,B subsets of Rd. We recall that the

Hausdorff distance d(A,B) is defined by

d(A,B) = inf{|x− y|; x ∈ A y ∈ B}.

Assume so that d(A,B) > 0, and that

Hq,t
µ,ϕ(A ∪ B) < ∞.

Let next 0 < δ < d(A,B), ε > 0, F1 ⊆ A, F2 ⊆ B and (B(xi, ri))i a centered
δ-covering of the set F1 ∪ F2 and such that

H
q,t

µ,ϕ,δ(F1 ∪ F2) ≤
∑

i

(µ(B(xi, ri)))
qetϕ(ri) ≤ H

q,t

µ,ϕ,δ(F1 ∪ F2) + ε.

This is always possible from the definition of H
q,t

µ,ϕ,δ(F1∪ F2). Denote next the
index sets

I = { i; B(xi, ri) ∩ F1 6= ∅ } and J = { i; B(xi, ri) ∩ F2 6= ∅ }.

The countable sets (B(xi, ri))i∈ I and (B(xi, ri))i∈ J are centered δ-coverings of
F1 and F2 respectively. Consequently,

H
q,t

µ,ϕ,δ(F1) +H
q,t

µ,ϕ,δ(F2) ≤
∑

i∈ I

(µ(B(xi, ri)))
qetϕ(ri)

+
∑

i∈J

µ(B(xi, ri))
qetϕ(ri)

=
∑

i

(µ(B(xi, ri)))
q(2ri)

t

≤ H
q,t

µ,ϕ,δ(F1 ∪ F2) + ε.
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As a result,

H
q,t

µ,ϕ(F1) +H
q,t

µ,ϕ(F2) ≤ H
q,t

µ,ϕ(F1 ∪ F2) + ε ≤ Hq,t
µ,ϕ(A ∪ B) + ε.

When ε ↓ 0 and taking the sup on the sets F1 ⊆ A and F2 ⊆ B, we obtain

Hq,t
µ,ϕ(A ∪ B) ≥ Hq,t

µ,ϕ(A) +Hq,t
µ,ϕ(B).

The inequality

Hq,t
µ,ϕ(A ∪ B) ≤ Hq,t

µ,ϕ(A) +Hq,t
µ,ϕ(B).

follows from the sub-additivity property of the measure Hq,t
µ,ϕ.

Lemma 2.2 Let (An)n be a non-decreasing sequence of subsets in R
d and

denote A =
⋃

n

An. Assume further that d(An, A \ An+1) > 0 for all n. Then,

Hq,t
µ,ϕ(A) = lim

n→+∞
Hq,t

µ,ϕ(An).

Proof. The result is obvious if the limit above is infinite. So assume that it is
finite and denote for k ∈ N, Ck = Ak+1 \ Ak. We then observe that

d(Cj, Cp) > 0, ∀j, p ; |j − p| ≥ 2 and A = An ∪
( ⋃

k≥n+1

Ck

)
, ∀n.

Therefore,

Hq,t
µ,ϕ(A) ≤ Hq,t

µ,ϕ(An) +
∑

k≥n+1

Hq,t
µ,ϕ(Ck).

︸ ︷︷ ︸
Rn

Now, it is straightforward that for all n we have

n∑

k=0

Hq,t
µ,ϕ(C2k) = Hq,t

µ,ϕ

(
n⋃

k=0

C2k

)
≤ Hq,t

µ,ϕ(A2n+2) ≤ Hq,t
µ,ϕ(A) < ∞

and similarly,

n∑

k=0

Hq,t
µ,ϕ(C2k+1) = Hq,t

µ,ϕ

(
n⋃

k=0

C2k+1

)
≤ Hq,t

µ,ϕ(A2n+1) ≤ Hq,t
µ,ϕ(A) < ∞.

Hence, Rn is the rest of a convergent series, so it goes to 0 as n goes to infinity.
Consequently,

Hq,t
µ,ϕ(A) ≤ lim

n→+∞
Hq,t

µ,ϕ(An).

The reciprocal inequality is obvious.

Lemma 2.3 Borel sets are Hq,t
µ,ϕ-measurable.
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Proof. Let B be a Borel subset of Rd (a closed subset for example), E ⊂ R
d

and denote for n ∈ N,

Bn = {x ∈ E ; d(x,B) ≥
1

n
}.

It consists of a non-decreasing sequence of subsets of Rd satisfying further that

E \B =
⋃

n

Bn and d(Bn, (E \B) \Bn+1) > 0, ∀n.

Hence, Lemma 2.2 yields that

Hq,t
µ,ϕ(E \B) = lim

n→+∞
Hq,t

µ,ϕ(Bn).

Observe now that

Hq,t
µ,ϕ(E) ≥ Hq,t

µ,ϕ(E ∩B) +Hq,t
µ,ϕ(Bn), ∀n.

When n → ∞, we get

Hq,t
µ,ϕ(E) ≥ Hq,t

µ,ϕ(E ∩ B) +Hq,t
µ,ϕ(E \B).

Definition 2.1 The restriction of Hq,t
µ,ϕ on Borel sets is called the mixed gen-

eralized Hausdorff measure on R
d.

Now, we define the mixed generalized multifractal packing measure. We use
already the same notations as previously. Let

P
q,t

µ,ϕ,ǫ(E) = sup{
∑

i

(µ(B(xi, ri)))
qetϕ(ri) }

where the sup is taken over the set of all centered ǫ-packings of E. For the
empty set, we set as usual P

q,t

µ,ϕ,ǫ(∅) = 0. Next, we consider the limit as ǫ ↓ 0,

P
q,t

µ,ϕ(E) = lim
ǫ↓0

P
q,t

µ,ϕ,ǫ(E) = inf
δ>0

P
q,t

µ,ϕ,ǫ(E)

and finally,
Pq,t

µ,ϕ(E) = inf
E⊆∪iEi

∑

i

P
q,t

µ,ϕ(Ei).

Lemma 2.4 Pq,t
µ,ϕ is an outer metric measure on R

d.

The proof of this lemma is more specific than Lemma 2.1 and uses the following
result.

P
q,t

µ,ϕ(A ∪ B) = P
q,t

µ,ϕ(A) + P
q,t

µ,ϕ(B), whenever d(A,B) > 0. (2)
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Indeed, let 0 < ǫ <
1

2
d(A,B) and (B(xi, ri))i be a centered ǫ-packing of the

union A ∪ B. It can be divided into two parts I and J ,

(B(xi, ri))i =
(
B(xi, ri)

)

i∈ I

⋃(
B(xi, ri)

)

i∈ J

where

∀ i ∈ I, B(xi, ri) ∩ B = ∅ and ∀ i ∈ J, B(xi, ri) ∩ A = ∅.

Therefore, (B(xi, ri))i∈ I is a centered ǫ-packing of A and (B(xi, ri))i∈J is a
centered ǫ-packing of the union B. Hence,

∑

i

(µ(B(xi, ri)))
qetϕ(ri) =

∑

i∈ I

(µ(B(xi, ri)))
qetϕ(ri)

+
∑

i∈ I

(µ(B(xi, ri)))
qetϕ(ri).

Now, it is straightforward that

∑

i∈ I

(µ(B(xi, ri)))
qetϕ(ri) ≤ P

q,t

µ,ϕ,ǫ(A)

and ∑

i∈ I

(µ(B(xi, ri)))
qetϕ(ri) ≤ P

q,t

µ,ϕ,ǫ(B).

Consequently,
P

q,t

µ,ϕ,ǫ(A ∪ B) ≤ P
q,t

µ,ϕ,ǫ(A) + P
q,t

µ,ϕ,ǫ(B)

and thus the limit for ǫ ↓ 0 gives

P
q,t

µ,ϕ(A ∪ B) ≤ P
q,t

µ,ϕ(A) + P
q,t

µ,ϕ(B).

The converse is more easier and it states that P
q,t

µ,ϕ,ǫ and next P
q,t

µ,ϕ are sub-
additive. Let (B(xi, ri))i be a centered ǫ-packing of A and (B(yi, ri))i be a

centered ǫ-packing of B. The union
(
B(xi, ri)

)

i

⋃(
B(yi, ri)

)

i

is a centered

ǫ-packing of A ∪ B. So that

P
q,t

µ,ϕ,ǫ(A ∪ B) ≥
∑

i

(µ(B(xi, ri)))
qetϕ(ri) +

∑

i

(µ(B(yi, ri)))
qetϕ(ri).

Taking the sup on (B(xi, ri))i as a centered ǫ-packing of A and next the sup
on (B(yi, ri))i as a centered ǫ-packing of B, we obtain

P
q,t

µ,ϕ,ǫ(A ∪ B) ≥ P
q,t

µ,ϕ,ǫ(A) + P
q,t

µ,ϕ,ǫ(B)

and thus the limit for ǫ ↓ 0 gives

P
q,t

µ,ϕ(A ∪ B) ≥ P
q,t

µ,ϕ(A) + P
q,t

µ,ϕ(B).
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Proof of Lemma 2.4. We shall prove as previously that

i. Pq,t
µ,ϕ(∅) = 0.

ii. Pq,t
µ,ϕ is monotone, i.e.

Pq,t
µ,ϕ(E) ≤ Pq,t

µ,ϕ(F ),

whenever E ⊆ F ⊆ R
d.

iii. Pq,t
µ,ϕ is sub-additive, i.e.

Pq,t
µ,ϕ(

⋃

n

An) ≤
∑

n

Pq,t
µ,ϕ(An).

The first item is immediate from the definition of Pq,t
µ,ϕ(∅) = 0. Let E ⊆ F be

subsets of Rd. We have

Pq,t
µ,ϕ(E) = inf

E⊆
⋃

i

Ei

∑

i

P
q,t

µ,ϕ(Ei)

≤ inf
F⊆

⋃

i

Ei

∑

i

P
q,t

µ,ϕ(Ei)

= Pq,t
µ,ϕ(F ).

So is the item ii. Let next (An)n a countable set of subsets of Rd, ε > 0 and
for each n, (Eni)i be a covering of An such that

∑

i

P
q,t

µ,ϕ(Eni) ≤ Pq,t
µ,ϕ(An) +

ε

2n
.

It follows for all ε > 0 that

Pq,t
µ,ϕ(

⋃

n

An) ≤
∑

n

∑

i

P
q,t

µ,ϕ(Eni)

≤
∑

n

Pq,t
µ,ϕ(An) + ε.

Hence,
Pq,t

µ,ϕ(
⋃

n

An) ≤
∑

n

Pq,t
µ,ϕ(An).

So is the item iii. We now prove that Pq,t
µ,ϕ is metric. Let A,B subsets of Rd

be such that d(A,B) > 0. We shall prove that

Pq,t
µ,ϕ(A ∪ B) = Pq,t

µ,ϕ(A) + Pq,t
µ,ϕ(B).

Since Pq,t
µ,ϕ is an outer measure, it suffices to show that

Pq,t
µ,ϕ(A ∪ B) ≥ Pq,t

µ,ϕ(A) + Pq,t
µ,ϕ(B).
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Of course, if the left hand term is infinite, the inequality is obvious. So, suppose
that it is finite. For ε > 0, there exists a covering (Ei)i of the union set A∪ B
such that ∑

i

P
q,t

µ,ϕ(Ei) ≤ Pq,t
µ,ϕ(A ∪ B) + ε.

By denoting Fi = A ∩ Ei and Hi = B ∩ Ei, we get countable coverings (Fi)i
of A and (Hi)i for B respectively. Furthermore, Fi ∩ Hj = ∅ pour all i and j.
Consequently,

Pq,t
µ,ϕ(A) + Pq,t

µ,ϕ(B) ≤
∑

i

(P
q,t

µ,ϕ(Fi) + P
q,t

µ,ϕ(Hi)).

Since d(A,B) > 0, Fi ⊂ A and Hi ⊂ B, it follows that d(Fi, Hj) > 0 for all i
and j. Hence, claim 2 affirms that

P
q,t

µ,ϕ(Ei) = P
q,t

µ,ϕ(Fi ∪ Hi) = P
q,t

µ,ϕ(Fi) + P
q,t

µ,ϕ(Hi).

Hence,

Pq,t
µ,ϕ(A) + Pq,t

µ,ϕ(B) ≤
∑

i

P
q,t

µ,ϕ(Ei) ≤ Pq,t
µ,ϕ(A ∪ B) + ε

and the result is obtained by having ε ↓ 0.

Lemma 2.5 Borel sets are Pq,t
µ,ϕ-measurable.

The Proof is similar as in Lemma 2.5 and thus it is left to the reader.

Definition 2.2 The restriction of Pq,t
µ,ϕ on Borel sets is called the mixed gen-

eralized packing measure on R
d.

It holds as for the case of the multifractal analysis of a single measure that
each of the measures Hq,t

µ , Pq,t
µ,ϕ and the pre-measure P

q,t

µ,ϕ assign a dimension
to every set E ⊆ R

d.

Proposition 2.1 Given a subset E ⊆ R
d,

(1) There exists a unique number dimq
µ,ϕ(E) ∈ [−∞,+∞] such that

Hq,t
µ,ϕ(E) =





+∞ for t < dimq
µ,ϕ(E)

0 si t > dimq
µ,ϕ(E)

(2) There exists a unique number Dimq
µ,ϕ(E) ∈ [−∞,+∞] such that

Pq,t
µ,ϕ(E) =





+∞ for t < Dimq
µ,ϕ(E)

0 for t > Dimq
µ,ϕ(E)
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(3) There exists a unique number ∆q
µ(E) ∈ [−∞,+∞] such that

P
q,t

µ,ϕ(E) =





+∞ for t < ∆q
µ(E)

0 for t > ∆q
µ(E)

Definition 2.3 The quantities dimq
µ,ϕ(E), Dimq

µ,ϕ(E) and ∆q
µ(E) define the

so-called mixed multifractal generalizations of the Hausdorff dimension, the
packing dimension and the logarithmic index of the set E.

Remark that for k = 1 and ϕ the log function ϕ(r) = log(r), we come back
to the classical definitions of the Hausdorff and packing measures and dimen-
sions in their original forms (by taking q = 0) and their generalized multifrac-
tal variants for q being arbitrary. The mixed case studied here may be also
applied for a single measure and thus the results and characterizations out-
pointed in the present work remains valid for a single measure. Indeed, denote
Qi = (0, 0, ..., qi, 0, ..., 0) the vector with zero coordinates except the ith one
which equals qi, we obtain the multifractal generalizations of the Hausdorff
ϕ-measure and ϕ-dimension, the packing ϕ-dimension and the logarithmic
ϕ-index of the set E for the single measure µi,

dimQi
µ,ϕ(E) = dimqi

µi,ϕ
(E),

DimQi
µ,ϕ(E) = Dimqi

µi,ϕ
(E)

and
∆Qi

µ,ϕ(E) = ∆qi
µi,ϕ

(E).

Similarly, for the null vector of Rk, we obtain

dim0
µ,ϕ(E) = dimϕ(E),

Dim0
µ,ϕ(E) = Dimϕ(E)

and
∆0

µ,ϕ(E) = ∆ϕ(E).

We may obtain further

dimQi

µ,log(E) = dimqi
µi,log

(E),

DimQi

µ,log(E) = Dimqi
µi,log

(E)

and
∆Qi

µ,log(E) = ∆qi
µi,log

(E).

Similarly, for the null vector of Rk, we obtain

dim0
µ,log(E) = dimlog(E) = dim(E),

Dim0
µ,log(E) = Dimlog(E) = Dim(E)

13



and
∆0

µ,log(E) = ∆log(E) = ∆(E).

Proof of Proposition 2.1. We will sketch only the proof of the first point.
The rest is analogous.
1. We claim that ∀ t ∈ R such that Hq,t

µ,ϕ(E) < ∞ it holds that

Hq,t′

µ,ϕ(E) = 0 , ∀ t′ > t.

Indeed, let 0 < ǫ < 1, F ⊆ E and (B(xi, ri))i be a centered ǫ-covering of F .
We have

H
q,t′

µ,ǫ (F ) ≤
∑

i

(µ(B(xi, ri)))
qet

′ϕ(ri)

≤ e(t
′−t)ϕ(ε)

∑

i

(µ(B(xi, ri)))
qetϕ(ri).

Consequently,

H
q,t′

µ,ϕ,ǫ(F ) ≤ e(t
′−t)ϕ(ε)H

q,t

µ,ϕ,ǫ(F ).

Hence, as ϕ(ε) → −∞ as ε → 0, we obtain

H
q,t′

µ,ϕ(F ) = 0, ∀F ⊆ E.

As a result, Hq,t′

µ,ϕ(E) = 0. We then set

dimq
µ,ϕ(E) = inf{ t ∈ R; Hq,t

µ,ϕ(E) = 0 }.

One can proceed otherwise by claiming that ∀ t ∈ R such that Hq,t
µ,ϕ(E) > 0 it

holds that
Hq,t′

µ,ϕ(E) = +∞ , ∀ t′ < t.

Indeed, proceeding as previously, we obtain for ǫ > 0,

e(t
′−t)ϕ(ǫ)H

q,t

µ,ǫ(F ) ≤ H
q,t′

µ,ǫ (F ).

Hence, for the same reasons as above,

H
q,t′

µ,ϕ(F ) = +∞, ∀F ⊆ E.

As a result, Hq,t′

µ,ϕ(E) = +∞. We then set

dimq
µ(E) = sup{ t ∈ R; Hq,t

µ,ϕ(E) = +∞}.

Next, we aim to study the characteristics of the mixed multifractal gener-
alizations of dimensions. We now adapt the following notations. For q =
(q1, ..., qk) ∈ R

k,
bµ,ϕ(q, E) = dimq

µ,ϕ(E),

Bµ,ϕ(q, E) = Dimq
µ,ϕ(E)

14



and

Λµ,ϕ(q, E) = ∆q
µ,ϕ(E).

When E = supp(µ) is the support of the measure µ, we will omit the indexa-
tion with E and denote simply

bµ,ϕ(q), Bµ,ϕ(q) and Λµ,ϕ(q).

The following propositions resume the characteristics of these functions and
extends the results of L. Olsen [11] to our case.

Proposition 2.2 The following assertions hold.

a. bµ,ϕ(q, .) and Bµ,ϕ(q, .) are non decreasing with respect to the inclusion
property in R

d.
b. bµ,ϕ(q, .) and Bµ,ϕ(q, .) are σ-stable.

Proof. a. Let E ⊆ F be subsets of Rd. We have

Hq,t
µ,ϕ(E) = sup

A⊆E

H
q,t

µ,ϕ(A) ≤ sup
A⊆F

H
q,t

µ,ϕ(A) = Hq,t
µ,ϕ(F ).

So for the monotony of bµ,ϕ(q, .).
b. Let (An)n be a countable set of subsets An ⊆ R

d and denote A =
⋃

n

An. It

holds from the monotony of bµ,ϕ(q, .) that

bµ,ϕ(q, An) ≤ bµ,ϕ(q, A), ∀n.

Hence,

sup
n

bµ,ϕ(q, An) ≤ bµ,ϕ(q, A).

Next, for any t > sup
n

bµ,ϕ(q, An), there holds that

Hq,t
µ,ϕ(An) = 0, ∀n.

Consequently, from the sub-additivity property of Hq,t
µ,ϕ, it holds that

Hq,t
µ,ϕ(

⋃

n

An) = 0, ∀ t > sup
n

bµ,ϕ(q, An).

Which means that

bµ,ϕ(q, A) ≤ t, ∀ t > sup
n

bµ,ϕ(q, An).

Hence,

bµ,ϕ(q, A) ≤ sup
n

bµ,ϕ(q, An).

Similar arguments permit to prove the properties of Bµ,ϕ(q, .).
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Next, we continue to study the characteristics of the mixed generalized mul-
tifractal ϕ-dimensions. The following result is obtained.

Proposition 2.3 The following assertions are true.

a. The functions q 7−→ Bµ,ϕ(q) and q 7−→ Λµ,ϕ(q) are convex.
b. For i = 1, 2, ..., k and q̂i = (q1, . . . , qi−1, qi+1, . . . , qk) fixed, the functions

qi 7−→ bµ,ϕ(q), qi 7−→ Bµ,ϕ(q) and qi 7−→ Λµ,ϕ(q) are non increasing.

Proof. a. We start by proving that Λµ,,ϕ(., E) is convex. Let p, q ∈ R
k, α ∈]0, 1[

and let also
s > Λµ,ϕ(p, E) and t > Λµ,ϕ(q, E).

Consider next a centered ǫ-packing (Bi = B(xi, ri))i of E. Applying Hölder’s
inequality, it holds that

∑

i

(µ(Bi))
α q+(1−α)pe(α t+(1−α)s)ϕ(ri)

≤

(
∑

i

(µ(Bi))
qetϕ(ri)

)α(∑

i

(µ(Bi))
pesϕ(ri)

)1−α

.

Hence,

P
α q+(1−α)p,α t+(1−α)s
µ,ǫ (E) ≤

(
P

q,t

µ,ǫ(E)

)α(
P

p,s

µ,ǫ(E)

)1−α

.

The limit on ǫ ↓ 0 gives

P
αq+(1−α)p,α t+(1−α)s
µ,ϕ (E) ≤

(
P

q,t

µ,ϕ(E)

)α(
P

p,s

µ,ϕ(E)

)1−α

.

Consequently,

P
αq+(1−α)p,α t+(1−α)s
µ,ϕ (E) = 0 , ∀ s > Λµ,E(p) and t > Λµ,E(q).

It results that

Λµϕ(αq + (1− α)p, E) ≤ αΛµ,ϕ(q, E) + (1− α)Λµ,ϕ(p, E).

We now prove the convexity of Bµ,ϕ(., E). We set in this case

t = Bµ,ϕ(q, E) and s = Bµ,ϕ(p, E).

We have
Pq,t+ε

µ,ϕ (E) = Pp,s+ε
µ,ϕ (E) = 0.

Therefore, there exists (Hi)i and (Ki)i coverings of the set E for which

∑

i

P
q,t+ε

µ,ϕ (Hi) ≤ 1 et
∑

i

P
p,s+ε

µ,ϕ (Ki) ≤ 1.
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Denote for n ∈ N, En =
⋃

1≤ i,j≤n

(Hi ∩Kj). Thus, (En)n is a covering of E. So

that,

Pα q+(1−α)p,α t+(1−α)s+ε
µ,ϕ (En)

≤
n∑

i,j=1

Pα q+(1−α)p,αt+(1−α)s+ε
µ,ϕ (Hi ∩ Kj)

≤
n∑

i,j=1

P
α q+(1−α)p,αt+(1−α)s+ε

µ,ϕ (Hi ∩ Kj)

≤

(
n∑

i,j=1

P
q,t+ε

µ,ϕ (Hi ∩ Kj)

)α( n∑

i,j=1

P
p,s+ε

µ,ϕ (Hi ∩ Kj)

)1−α

≤ nα n1−α = n < ∞.

Consequently,

Bµ,ϕ(α q + (1− α)p, En) ≤ α t+ (1− α)s+ ε, ∀ ε > 0.

Hence,

Bµ,ϕ(α q + (1− α)p, E) ≤ αBµ,ϕ(q, E) + (1− α)Bµ,ϕ(p, E).

b. For i = 1, 2, . . . , k, let q̂i fixed and pi ≤ qi reel numbers. Denote next

q = (q1, . . . , qi−1, qi, qi+1, . . . , qk) and p = (q1, . . . , qi−1, pi, qi+1, . . . , qk).

Let finally A ⊆ E. For a centered ǫ-covering (B(xi, ri))i of A, we have imme-
diately

µ(B(xi, ri))
qetϕ(ri) ≤ µ(B(xi, ri))

petϕ(ri), ∀ t ∈ R.

Hence,
H

q,t

µ,ϕ,ǫ(A) ≤ H
p,t

µ,ϕ,ǫ(A).

When ǫ ↓ 0, we obtain
H

q,t

µ,ϕ(A) ≤ H
p,t

µ,ϕ(A).

Therefore,

Hq,t
µ,ϕ(E) = sup

A⊆E

H
q,t

µ,ϕ(A) ≤ sup
A⊆E

H
p,t

µ,ϕ(A) = Hp,t
µ,ϕ(E).

This induces the fact that

Hq,t
µ,ϕ(E) = 0, ∀ t > bµ,ϕ(p, E).

Consequently
bµ,ϕ(q, E) < t, ∀ t > bµ,ϕ(p, E).

Hence,
bµ,ϕ(q, E) ≤ bµ,ϕ(p, E).

17



The remaining part to prove the monotony Λµ,ϕ(., E) and Bµ,ϕ(., E) is analo-
gous.

Proposition 2.4 The following assertions are true.

a. 0 ≤ bµ,ϕ(q) ≤ Bµ,ϕ(q) ≤ Λµ,ϕ(q), whenever qi < 1 for all i = 1, 2, ..., k.
b. bµ,ϕ(¶i) = Bµ,ϕ(¶i) = Λµ,ϕ(¶i) = 0, where ¶i = (0, 0, ..., 1, 0, ..., 0).
c. bµ,ϕ(q) ≤ Bµ,ϕ(q) ≤ Λµ,ϕ(q) ≤ 0 whenever qi > 1 for all i = 1, 2, ..., k.

The proof of this results reposes on the following intermediate ones.

Lemma 2.6 There exists a constant ξ ∈]0,+∞[ satisfying for any E ⊆ R
d,

Hq,t
µ,ϕ(E) ≤ ξPq,t

µ,ϕ(E) ≤ ξP
q,t

µ,ϕ(E), ∀ q, t.

More precisely, ξ is the number related to the Besicovitch covering theorem.

Proof. It suffices to prove the first inequality. The second is always true for all
ξ > 0. Let F ⊆ R

d, ǫ > 0 and V = {B(x, ǫ
2
); x ∈ F }. Let next

(
(Bij)j

)
1≤ i≤ξ

be the ξ sets of V obtained by the Besicovitch covering theorem. So that,
(Bij)i,j is a centered ǫ-covering of the set F and for each i, (Bij)j is a centered
ǫ-packing of F . Therefore,

H
q,t

µ,ϕ,ǫ(F ) ≤
ξ∑

i=1

∑

j

(
µ(Bij)

)q
etϕ(rij) ≤

ξ∑

i=1

P
q,t

µ,ϕ,ǫ(F ) = ξP
q,t

µ,ϕ,ǫ(F ).

Hence,
H

q,t

µ,ϕ(F ) ≤ ξP
q,t

µ,ϕ(F ).

Consequently, for E ⊆
⋃

i

Ei, we obtain

Hq,t
µ,ϕ(E) = Hq,t

µ,ϕ(
⋃

i

(Ei ∩ E))

≤
∑

i

Hq,t
µ,ϕ(Ei ∩ E)

≤
∑

i

sup
F⊆Ei∩E

H
q,t

µ,ϕ(F )

≤ ξ
∑

i

sup
F⊆Ei∩E

P
q,t

µ,ϕ(F )

≤ ξ
∑

i

P
q,t

µ,ϕ(Ei).

So as Lemma 2.6.
Proof of Proposition 2.4. It follows from Proposition 2.2, Proposition 2.3
and Lemma 2.6.
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3 ϕ-mixed multifractal generalization of Bouligand-Minkowski’s di-

mensions

Let k ≥ 1 be en integer and µ = (µ1, µ2, . . . , µk) be a vector valued measure
composed of probability measures on R

d. Denote as previously

µ(B(x, r)) ≡
(
µ1(B(x, r)), . . . , µk(B(x, r))

)

and for q = (q1, q2, . . . , qk) ∈ R
k,

(µ(B(x, r)))q ≡ (µ1(B(x, r)))q1 . . . (µk(B(x, r)))qk .

Next, for a nonempty subset E ⊆ supp(µ), δ > 0 and q ∈ R, we put

T q
µ,δ(E) = inf

{
∑

i

(
µ
(
B(xi, δ)

))q
}

where the inf is over the set of all centered δ-coverings
(
B(xi, δ)

)
i
of the set E.

The mixed multifractal generalized Bouligand-Minkowski ϕ-dimensions are

L
q

µ,ϕ(E) = lim sup
δ↓0

log
(
T q
µ,δ(E)

)

−ϕ(δ)

for the upper one and

Lq
µ,ϕ(E) = lim inf

δ↓0

log
(
T q
µ,δ(E)

)

−ϕ(δ)

for the lower. In the case of equality, the common value is denoted Lq
µ,ϕ(E) and

is called the mixed multifractal generalized Bouligand-Minkowski ϕ-dimension
of the set E.

Such dimensions may also be obtained via the δ-packings as follows. Indeed,
for δ > 0 and q ∈ R, we set

Sq
µ,δ(E) = sup

{
∑

i

(
µ
(
B(xi, δ)

))q
}

where the sup is taken over all the centered δ-packings
(
B(xi, δ)

)
i
of the set

E. The upper dimension is

C
q

µ,ϕ(E) = lim sup
δ↓0

log
(
Sq
µ,δ(E)

)

−ϕ(δ)
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and the lower is

Cq
µ,ϕ(E) = lim inf

δ↓0

log
(
Sq
µ,δ(E)

)

−ϕ(δ)

and similarly, when these are equal, the common value will be denoted Cq
µ,ϕ(E)

and it defines the dimension of E.

Definition 3.1 For E ⊆ supp(µ) and q = (q1, q2, . . . , qk) ∈ R
k, we will call

a. C
q

µ,ϕ(E) and L
q

µ,ϕ(E) the upper µ-mixed multifractal generalized Bouligand
Minkowski ϕ-dimension of E.

b. Cq
µ,ϕ(E) and Lq

µ,ϕ(E) the lower µ-mixed multifractal generalized Bouligand
Minkowski ϕ-dimension of E.

c. Cq
µ,ϕ(E) and Lq

µ,ϕ(E) the µ-mixed multifractal generalized Bouligand Minkowski
ϕ-dimension of E.

Remark 3.1 As for the classical multifractal contexts, each of the quantities
above defines in fact a mixed generalization that can be different from the
other.

Theorem 3.1 (1) For all q ∈ R
k, we have

Lq
µ,ϕ(E) ≤ Cq

µ,ϕ(E) and L
q

µ,ϕ(E) ≤ C
q

µ,ϕ(E).

(2) For any q ∈ R
∗ k
− , we have

i. bµ,ϕ(q, E) ≤ Lq
µ,ϕ(E) = Cq

µ,ϕ(E).

ii. Lµ,ϕ(q, E) = C
q

µ,ϕ(E) = Λµ,ϕ(q, E).
(3) For any q ∈ R

∗ k
+ , we have

Lµ,ϕ(q, E) ≤ C
q

µ,ϕ(E) ≤ Λµ,ϕ(q, E).

Proof. 1. Using Besicovitch covering theorem we get

T q
µ,ϕ,δ(E) ≤ CSq

µ,ϕ,δ(E),

with some constant C fixed. So 1. is proved.
2. We firstly prove that

Lq
µ,ϕ(E) ≥ Cq

µ,ϕ(E) and L
q

µ,ϕ(E) ≥ C
q

µ,ϕ(E).

Indeed, let
(
B(xi, δ)

)
i
be a centered δ-packing of E and

(
B(yi,

δ
2
)
)
be a cen-

tered δ
2
-covering of E. Consider for each i, the integer ki such that xi ∈

B(yki,
δ
2
). It is straightforward that for i 6= j we have ki 6= kj. Consequently,
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for q ∈ R
∗ k
− , there holds that

∑

i

(
µ(B(xi, δ))

)q
=
∑

i


 µ(B(xi, δ))

µ(B(yki, δ/2))




q(
µ(B(yki,

δ

2
))
)q

≤
∑

i

(
µ(B(yi,

δ

2
))
)q
.

Which means that
Sq
µ,ϕ,δ(E) ≤ T q

µ,ϕ, δ
2

(E)

and thus, for any q ∈ R
∗ k
− ,

Lq
µ,ϕ(E) ≥ Cq

µ,ϕ(E) and L
q

µ,ϕ(E) ≥ C
q

µ,ϕ(E)

Using assertion 1., we obtain the equalities

Lq
µ,ϕ(E) = Cq

µ,ϕ(E) and L
q

µ,ϕ(E) = C
q

µ,ϕ(E)

for all q ∈ R
∗ k
− . Therefore, to prove 2.i., it remains to prove the inequality of

the left hand side. So, let t > Lq
µ,ϕ(E) and F ⊆ E. Consider next a sequence

(δn)n ⊆]0, 1[ to be ↓ 0, and satisfying

t >
log(T q

µ,ϕ,δn
(E))

−ϕ(δn)
, ∀n ∈ N.

This means that for each n ∈ N, there exists a centered δn-covering
(
B(xni, δn)

)
i

of E such that ∑

i

(
µ(B(xni, δn))

)q
< e−tϕ(δn).

There balls may be considered to be intersecting the set F . Next, for each i,
choose an element yi ∈ B(xni, δn)∩ F . This results on a centered 2δn-covering(
B(yi, 2δn)

)
i
of F . Therefore,

H
q,t

µ,ϕ,2δn(F ) ≤
∑

i

(
µ(B(xni, δn))

)q
etϕ(2δn)

= Ct

∑

i


µ(B(yi, 2δn))

µ(B(xni, δn))




q(
µ(B(xni, δn))

)q
etϕ(δn)

≤ Ct

∑

i

(
µ(B(xni, δn))

)q
etϕ(δn)

≤ CtC
′
t.

Hence,
H

q,t

µ,ϕ(F ) ≤ C ∀F ⊆ E, t > Lq
µ,ϕ(E).

21



So that,

Hq,t
µ,ϕ(E) ≤ C < ∞, ∀ t > Lq

µ,ϕ(E).

Consequently,

bµ,ϕ(q, E) ≤ t, ∀ t > Lq
µ,ϕ(E) ⇒ bµ,ϕ(q, E) ≤ Lq

µ,ϕ(E).

The remaining part can be proved by following similar techniques.

Next we need to introduce the following quantities which will be useful later.
Let µ = (µ1, µ2, . . . , µk) be a vector valued measure composed of probability
measures on R

d. For j = 1, 2, . . . , k, a > 1 and E ⊆ supp(µ), denote

T j
a (E) = lim sup

r↓0

(
sup
x∈E

µj

(
B(x, ar)

)

µj

(
B(x, r)

)
)

and for x ∈ supp(µ), T j
a (x) = T j

a ({x}). Denote also

P0(R
d, E) = {µ ; ∃ a > 1 ; ∀ x ∈ E, T j

a (x) < ∞, ∀ j },

P1(R
d, E) = {µ ; ∃ a > 1 ; T j

a (E) < ∞, ∀ j },

P0(R
d) = P0(R

d, supp(µ)) and P1(R
d) = P1(R

d, supp(µ)).

Theorem 3.2 (1) For µ ∈ P0(R
d) and q ∈ R

∗ k
+ , there holds that

bµ,ϕ(q, E) ≤ L
q

µ,ϕ(E).

(2) For µ ∈ P1(R
d) and q ∈ R

∗ k
+ , there holds that

i. Lq
µ,ϕ(E) = Cq

µ,ϕ(E).

ii. Lµ,ϕ(q, E) = C
q

µ,ϕ(E) = Λµ,ϕ(q, E).

Proof. 1. The vector valued measure µ ∈ P0(R
d) yields that

E =
⋃

m∈N

Em

where

Em = { x ∈ E ;
µj(B(xi, 4r))

µj(B(xi, r))
< m , 0 < r <

1

m
, ∀ j }.

Next, remark that for t > L
q

µ,ϕ(E) and F ⊆ Em, there exists a sequence
(δn)n ↓ 0 for which

t <
log(T q

µ,δn
(F ))

−ϕ(δn)
, ∀n ∈ N.
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Therefore, there exists a centered δn-covering (B(xni, δn))i of F satisfying

∑

i

(
µ(B(xni, δn))

)q
< e−tϕ(δn).

Let next yni ∈ B(xni, δn). Then, (B(xni, 2δn))i is a centered 2δn-covering of
F . Hence,

H
q,t

µ,ϕ,2δn(F ) ≤
∑

i

(
µ(B(yni, 2δn))

)q
etϕ(2δn)

≤ Ct

∑

i


µ(B(yni, 2δn))

µ(B(xni, δn))




q(
µ(B(xni, δn))

)q
etϕ(δn)

≤ Ct

∑

i


µ(B(xni, 4δn))

µ(B(xni, δn))




q(
µ(B(xni, δn))

)q
etϕ(δn)

≤ Ctm
|q|
∑

i

(
µ(B(xni, δn))

)q
etϕ(δn)

≤ Ctm
|q|C ′

t

where |q| = q1 + q2 + · · ·+ qk. Thus,

H
q,t

µ,ϕ(F ) ≤ CtC
′
tm

|q|, ∀m, and F ⊆ Em.

Which means that

Hq,t
µ,ϕ(Em) ≤ CtC

′
tm

|q| < ∞, ∀m, and t > Lq
µ,ϕ(E).

Consequently,

bµ,ϕ(q, Em) ≤ t, ∀m and t > Lq
µ,ϕ(E).

Using the σ-stability of bµ,ϕ(q, .) (See Proposition 2.2. c.), it results that

bµ,ϕ(q, E) ≤ t, ∀ t > Lq
µ,ϕ(E).

As a result,
bµ,ϕ(q, E) ≤ Lq

µ,ϕ(E).

Assertion 2. is left to the reader.

We now re-introduce the mixed multifractal generalization of the Lq-dimensions
called also Renyi dimensions based on integral representations. See [13] for
more details and other results. For q ∈ R

∗,k, µ = (µ1, µ2, . . . , µk) and δ > 0,
we set

Iqµ,δ =
∫

Sµ

(
µ(B(t, δ))

)q

dµ(t),

23



where, in this case,

Sµ = supp(µ1)× supp(µ2)× . . . × supp(µk),

(
µ(B(t, δ))

)q

=
(
µ1(B(t1, δ))

)q1
(
µ2(B(t2, δ))

)q2

. . .
(
µk(B(tk, δ))

)qk

and
dµ(t) = dµ1(t1) dµ2(t2) . . . dµk(tk).

The (µ, ϕ)-mixed multifractal generalizations of the Renyi dimensions are

I
q

µ,ϕ = lim sup
δ↓0

log Iqµ,δ
−ϕ(δ)

, and Iqµ,ϕ = lim inf
δ↓0

log Iqµ,δ
−ϕ(δ)

.

We now propose to relate these dimensions to the quantities Cq
µ,ϕ, C

q

µ,ϕ, L
q
µ,ϕ,

L
q

µ,ϕ introduced previously.

Proposition 3.1 The following results hold.

a. ∀ q ∈ R
∗, k
− ,

Cq+I

µ,ϕ(supp(µ)) ≥ Iqµ,ϕ and C
q+I

µ,ϕ(supp(µ)) ≥ I
q

µ,ϕ.

b. ∀ q ∈ R
∗, k
+ ,

Cq+I

µ,ϕ(supp(µ)) ≤ Iqµ,ϕ and C
q+I

µ,ϕ(supp(µ)) ≤ I
q

µ,ϕ.

c. ∀ q ∈ R
∗, k, µ ∈ P1(R

d),

Cq+I

µ,ϕ(supp(µ)) = Iqµ,ϕ and C
q+I

µ,ϕ(supp(µ)) = I
q

µ,ϕ.

d. ∀ q ∈ R
∗, k
− ,

Iqµ,ϕ ≤ Lq+I

µ,ϕ(supp(µ)) and I
q

µ,ϕ ≤ L
q+I

µ,ϕ(supp(µ)).

Proof. We only prove a. The remaining proofs of points b., c. and d. follow

the same ideas. For δ > 0, let
(
B(xi, δ)

)

i

be a centered δ-covering of supp(µ)

and let next
(
B(xij , δ)

)

j

, 1 ≤ i ≤ ξ the ξ sets defined in Besicovitch covering

theorem. It holds that

∑

i,j

(
µ(B(xij, δ))

)q+I

=
∑

i,j

(
µ(B(xij, δ))

)q ∫

B(xij ,δ)k
dµ(t)

≥
∑

i,j

∫

B(xij ,δ)k

(
µ(B(t, 2δ))

)q

dµ(t)

≥
∫

Sµ

(
µ(B(t, 2δ))

)q

dµ(t).
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As a results,
ξSq+I

µ,δ (supp(µ)) ≥ Iqµ,2δ.

Which implies that

Cq+I

µ,ϕ(supp(µ)) ≥ Iqµ and C
q+I

µ,ϕ(supp(µ)) ≥ I
q

µ.

4 A ϕ-mixed multifractal formalism for vector valued measures

Let µ = (µ1, µ2, . . . , µk) be a vector valued probability measure on R
d. For

x ∈ R
d and j = 1, 2, . . . , k, we denote

αϕ
µj
(x) = lim inf

r↓0

log(µj(B(x, r)))

ϕ(r)
and αϕ

µj
(x) = lim sup

r↓0

log(µj(B(x, r)))

ϕ(r)

respectively the local lower ϕ-dimension and the local upper ϕ-dimension of
µj at the point x and as usually the local dimension αϕ

µj
(x) of µj at x will be

the common value when these are equal. Next for α = (α1, α2, . . . , αk) ∈ R
k
+,

let
Xα(ϕ) = { x ∈ supp(µ) ; αϕ

µj
(x) ≥ αj , ∀ j = 1, 2, . . . , k },

X
α
(ϕ) = { x ∈ supp(µ) ; αϕ

µj
(x) ≤ αj , ∀ j = 1, 2, . . . , k }

and
X(α, ϕ) = Xα(ϕ) ∩X

α
(ϕ).

The (µ, ϕ)-mixed multifractal spectrum of the vector valued measure µ is
defined by

α 7−→ dimX(α, ϕ)

where dim stands for the Hausdorff dimension.

In this section, we propose to compute such a spectrum for some cases of
measures that resemble to the situation raised by Olsen in [11] but in the
mixed case. This will permit to describe better the simultaneous behavior of
finitely many measures. We intend precisely to compute the mixed spectrum
based on the mixed multifractal generalizations of the Haudorff and packing
dimensions bµ, Bµ and Λµ. We start with the following technic results.

Lemma 4.1 Let ϕ : R+ → R be such that

ϕ is non-decreasing and, ϕ(r) = o(log r) as r → 0. (3)

The following assertions hold.

1. ∀ δ > 0, t ∈ R and q ∈ R
k
+, α ∈ R

k such that 〈α, q〉+ t ≥ 0, we have
i. H〈α,q〉+t+kδ(X

α
) ≤ CHq,t

µ,ϕ(X
α
).

ii. P〈α,q〉+t+kδ(X
α
) ≤ CPq,t

µ,ϕ(X
α
).
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2. ∀ δ > 0, t ∈ R and q ∈ R
k
−, α ∈ R

k such that 〈α, q〉+ t ≥ 0, we have
i. H〈α,q〉+t+kδ(Xα) ≤ CHq,t

µ,ϕ(Xα).

ii. P〈α,q〉+t+kδ(Xα) ≤ CPq,t
µ,ϕ(Xα).

where C = C(α, q, k, δ) > 0 is a generic constant.

Proof. 1. i. We prove the first part. For m ∈ N
∗, consider the set

X
α

m = { x ∈ X
α
;
log(µj(B(x, r)))

ϕ(r)
≤ αj +

δ

qj
; 0 < r <

1

m
, 1 ≤ j ≤ k }.

Let next 0 < η <
1

m
and (B(xi, ri))i a centered η-covering of X

α

m. It holds

that

(µ(B(xi, ri)))
q ≥ e(〈α,q〉+kδ)ϕ(r).

Consequently, it holds from (3) that

H〈α,q〉+t+kδ
η (X

α

m) ≤
∑

i

(2ri)
〈α,q〉+t+kδ ≤ C

∑

i

(µ(B(xi, ri)))
qetϕ(r).

Hence, ∀η > 0, there holds that

H〈α,q〉+t+kδ
η (X

α

m) ≤ CH
q,t

µ,ϕ,η(X
α

m).

Which means that

H〈α,q〉+t+kδ(X
α

m) ≤ CH
q,t

µ,ϕ(X
α

m) ≤ CHq,t
µ,ϕ(X

α

m).

Next, observing that X
α
=
⋃

m

X
α

m, we obtain

H〈α,q〉+t+kδ(X
α
) ≤ CHq,t

µ,ϕ(X
α
).

ii. For q ∈ R
∗,k
+ and m ∈ N

∗, consider the set X
α

m defined previously and let

E ⊆ X
α

m, 0 < η <
1

m
and

(
B(xi, ri)

)
i
a centered η-packing of E. We have

∑

i

(2ri)
〈α,q〉+t+kδ ≤ C

∑

i

(µ(B(xi, ri)))
qetϕ(r) ≤ CP

q,t

µ,ϕ,η(E).

Consequently, ∀ η > 0,

P
〈α,q〉+t+kδ

η (E) ≤ CP
q,t

µ,ϕ,η(E).

Hence, ∀E ⊆ X
α

m,

P
〈α,q〉+t+kδ

(E) ≤ CP
q,t

µ,ϕ(E).
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Let next, (Ei)i be a covering of X
α

m. Thus,

P〈α,q〉+t+kδ(X
α

m) = P〈α,q〉+t+kδ


⋃

i

(X
α

m ∩ Ei)




=
∑

i

P〈α,q〉+t+kδ

(
X

α

m ∩ Ei

)

≤
∑

i

P
〈α,q〉+t+kδ

(
X

α

m ∩ Ei

)

≤ C
∑

i

P
q,t

µ,ϕ

(
X

α

m ∩ Ei

)

≤ C
∑

i

P
q,t

µ,ϕ(Ei).

Hence, ∀, m,
P〈α,q〉+t+kδ(X

α

m) ≤ CPq,t
µ,ϕ(X

α

m).

Consequently,
P〈α,q〉+t+kδ(X

α
) ≤ CPq,t

µ,ϕ(X
α
).

2. i. and ii. follow similar arguments and techniques as previously.

Proposition 4.1 Let α ∈ R
k
+, q ∈ R

k and ϕ satisfying (3). The following
assertions hold.

a. Whenever 〈α, q〉+ bµ,ϕ(q) ≥ 0, we have
i. dimX

α
≤ 〈α, q〉+ bµ,ϕ(q), ∀ qRk

+.
ii. dimXα ≤ 〈α, q〉+ bµ,ϕ(q), ∀ qRk

−.
b. Whenever 〈α, q〉+Bµ,ϕ(q) ≥ 0, we have

i. DimX
α
≤ 〈α, q〉+Bµ,ϕ(q), ∀ qRk

+.
ii. DimXα ≤ 〈α, q〉+Bµ,ϕ(q), ∀ qRk

−.

Proof. a. i. It follows from Lemma 4.1, assertion 1. i.,

H〈α,q〉+t+kδ(X
α
) = 0, ∀ t > bµ,ϕ(q), δ > 0.

Consequently,

dimX
α
≤ 〈α, q〉+ t + kδ, ∀ t > bµ,ϕ(q), δ > 0.

Hence,
dimX

α
≤ 〈α, q〉+ bµ,ϕ(q).

a. ii. It follows from Lemma 4.1, assertion 2. i., as previously, that

H〈α,q〉+t+kδ(Xα) = 0, ∀ t > bµ,ϕ(q), δ > 0.

Hence,
dimXα ≤ 〈α, q〉+ t+ kδ, ∀ t > bµ,ϕ(q), δ > 0
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and finally,
dimXα ≤ 〈α, q〉+ bµ,ϕ(q).

b. i. observing Lemma 4.1, assertion 1. ii., we obtain

P〈α,q〉+t+kδ(X
α
), ∀ t > Bµ,ϕ(q), δ > 0.

Consequently,

DimX
α
≤ 〈α, q〉+ t + kδ, ∀ t > Bµ,ϕ(q), δ > 0.

Hence,
DimX

α
≤ 〈α, q〉+Bµ,ϕ(q).

b. ii. observing Lemma 4.1, assertion 2. ii., we obtain

P〈α,q〉+t+kδ(Xα) = 0, ∀ t > Bµ,ϕ(q), δ > 0.

Hence,
DimXα ≤ 〈α, q〉+ t+ kδ, ∀ t > Bµ,ϕ(q), δ > 0

and finally,
DimXα ≤ 〈α, q〉+Bµ,ϕ(q).

Lemma 4.2 ∀ q ∈ R
k such that 〈α, q〉+ bµ,ϕ(q) < 0 or 〈α, q〉 + Bµ,ϕ(q) < 0,

we have X(α) = ∅.

Proof. It is based on

Claim 1. For q ∈ R
k
− with 〈α, q〉+bµ,ϕ(q) < 0 or 〈α, q〉+Bµ,ϕ(q) < 0, Xα = ∅.

Claim 2. For q ∈ R
k
+ with 〈α, q〉+bµ,ϕ(q) < 0 or 〈α, q〉+Bµ,ϕ(q) < 0, X

α
= ∅.

Indeed, let q ∈ R
k
− and assume that Xα 6= ∅. This means that there exists

at least one point x ∈ supp(µ) for which αµj
(x) ≥ αj , for 1 ≤ j ≤ k.

Consequently, for all ε > 0, there is a sequence (rn)n ↓ 0 and satisfying

0 < rn <
1

n
and µj(B(x, rn)) < e(αj−ε)ϕ(rn), 1 ≤ j ≤ k.

Hence, (
µ(B(x, rn))

)q

etϕ(rn) > Ce(〈(α−εI),q〉+t)ϕ(rn).

Choosing t = 〈(εI − α), q〉, this induces that Hq,t
µ,ϕ({x}) > C > 0 and conse-

quently,
bµ,ϕ(q) ≥ dimq

µ,ϕ({x}) ≥ t, ∀ ε > 0.

Letting ε ↓ 0, it results that bµ,ϕ(q) ≥ −〈α, q〉 which is impossible. So as the
first part of Claim 1. The remaining part as well as Claim 2 can be checked
by similar techniques.
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Theorem 4.1 Let µ = (µ1, µ2, . . . , µk) be a vector-valued Borel probability
measure on R

d and q ∈ R
k fixed. Let further t ∈ R, K, K > 0, ν a Borel

probability measure supported by supp(µ), ϕ : R+ → R satisfying (3). Let
finally (rn)n ⊂]0, 1[↓ 0 and satisfying

ϕ(rn+1)

ϕ(rn)
→ 1 and

∑

n

eεϕ(rn) < ∞, ∀ε > 0.

Assume next the following assumptions.

A1. ∀ x ∈ supp(µ) and r small enough,

K ≤
ν(B(x, r))(

µ(B(x, r))
)q

etϕ(r)
≤ K.

A.2 C(p) = lim
n→+∞

Cn(p) exists and finite for all p ∈ R, where

Cn(p) =
−1

ϕ(rn)
log

(∫

supp(µ)

(
µ(B(x, rn))

)p

dν(x)

)
.

Denote next α0
− = −∇−C(0), α0

+ = −∇+C(0) and Ψq(a, b) = aq + b, ∀ a, b.
The following assertions hold.

i. For q ∈ R
k
−, we have

dim(Xα0
+
∩X

α0
−) ≥ Ψq(α

0
−,Λµ(q)) ≥ Ψq(α

0
−, Bµ(q)) ≥ Ψq(α

0
−, bµ(q)).

For q ∈ R
k
+,

dim(Xα0
+
∩X

α0
−) ≥ Ψq(α

0
+,Λµ(q)) ≥ Ψq(α

0
+, Bµ(q)) ≥ Ψq(α

0
+, bµ(q)).

ii. Whenever C is differentiable at 0, we have

fµ(−∇C(0)) = b∗µ(−∇C(0)) = B∗
µ(−∇C(0)) = Λ∗

µ(−∇C(0)).

The proof of this result is based on the application of a large deviation formalism.

This will permit to obtain a measure ν supported by X−∇+C(0) ∩ X
−∇−C(0)

.
To do this, we re-formulate a mixed large deviation formalism to be adapted
to the mixed multifractal formalism raised in our work.
Proof of Theorem 4.1. For x ∈ supp(µ), let

αϕ
µj
(x, rn) = lim inf

n

log
[
µj(B(x, rn)

]

ϕ(rn)
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and

αϕ
µj
(x, rn) = lim sup

n

log
[
µj(B(x, rn)

]

ϕ(rn)
.

i. Using the hypothesis A1. and Lemma 2.6 we obtain

bµ,ϕ(q) = Bµ,ϕ(q) = Λµ,ϕ(q) = t.

Next, it is straightforward that the set

M =
{
x ∈ supp(µ) ; −∇+C(0) ≤ αµ,ϕ(x, rn) ≤ αµ,ϕ(x, rn) ≤ −∇−C(0)

}

coincides with X−∇+C(0) ∩ X
−∇−C(0)

. Hence, by setting in the mixed large
deviation formalism 5.2,

Ω = supp(µ), A = B(supp(µ)),

IP = µ, Wn(x) = log(µ(B(x, rn)))

and

an = −ϕ(rn),

it holds that

αµ,ϕ(x) ≥





−∇−C(0)q + t for q ≤ 0

−∇+C(0)q + t for q ≥ 0.

Finally, applying the famous Billingsley’s Theorem [8], we obtain

dimM ≥





−∇−C(0)q + t for q ≤ 0

−∇+C(0)q + t for q ≥ 0.

ii. Remark that if C is differentiable at 0, item i. states that

dimM ≥ −∇C(0)q + t ≥ Λ∗
µ(−∇C(0)) ≥ B∗

µ(−∇C(0)) ≥ b∗µ(−∇C(0)).

In the other hand, since the set M is not empty, Lemma 4.2 implies that

−∇C(0)q + t ≥ 0.

Hence, Proposition 4.1 yields that

dimM ≤ −∇C(0)q + t

for any q ∈ R
k. Thus, taking the inf on q, we obtain

dimM ≤ b∗µ(−∇C(0)) ≤ B∗
µ(−∇C(0)) ≤ Λ∗

µ(−∇C(0)).
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iii. We firstly claim that, there exists β > 0 such that, for all x ∈ supp(µ) and
0 < r <<< 1, we have

µ(B(x, 2r))

µ(B(x, r))
< β.

So let (B(xij , rn))1≤iξ,j the ξ sets relatively to Besicovitch theorem extracted
from the set (B(xi, rn))i. A careful computation yields that

|p+ q − I|Ip+q−I

µ = Cq(p) + tq; ∀ p, q ∈ R
k (4)

where |p+q−I| =
k∑

i=1

(pi+qi−1). Theorem 3.1 and Proposition 3.1 guarantees

that

|p+ q − I|Ip+q−1
µ = Cp+q

µ (supp(µ)) = Λµ(p+ q).

Consequently,

Cq(p) = Λµ(p+ q)− Λµ(p).

So, if Λµ is differentiable at q, Cq will be too at 0 and ∇Cq(0) = ∇Λµ(q).
Thus, using the mixed large deviation formalism, we obtain

αµ(x) = −∇Cq(0) ; νq for almost all x ∈ supp(µ).

hence, finally, αµ(x) = −∇Λµ(q).
iv. Let q be such that ∇Λµ(q) exists. Then ∇Cq(0) exists too. So, item ii.

states that

fµ(−∇C(0)) = Λ∗
µ(−∇C(0)).

Which completes the proof.

Theorem 4.2 Assume that the hypotheses of Theorem 4.1 are satisfied for
all q ∈ R

k. Then, the following assertions hold.

i. αµ = −Bµ, νq a.s, whenever Bµ is differentiable at q.
ii. Dom(B) ⊆ αµ(supp(µ)) and fµ = B∗

µ on Dom(B).

Proof.

i. Using the same notations as in Theorem 4.1, we obtain C differentiable at
0, Bµ,ϕ differentiable at q, and ∇C(0) = ∇Bµ,ϕ(q). In the other hand, we
obtain also

αϕ
µ(x) = αϕ

µ(x, rn) = lim
n

Wn(x)

−an
= −∇C(0) = ∇Bϕ

µ (q), ν a.s.

ii. follows immediately from i. and Theorem 4.1.

31



5 Appendix

5.1 Besicovitch covering theorem

Theorem 5.1 There exists a constant ξ ∈ N satisfying: For any E ∈ R
d and

(rx)x∈E a bounded set of positive real numbers, there exists ξ sets B1, B2, ...,
Bξ, that are finite or countable composed of balls B(x, rx), x ∈ E such that

• E ⊆
⋃

1≤ i≤ξ

⋃

B∈Bi

B.

• each Bi is composed of disjoint balls.

5.2 A mixed large deviation theorem

To do this, we re-formulate a mixed large deviation formalism to be adapted
to the mixed multifractal formalism raised in our work.

Theorem 5.2 Consider a sequence (Wn = (Wn,1, Wn,2, . . . , Wn,k))n of vector-
valued random variables on a probability space (Ω, A, P) and (an)n ⊂]0,+∞[
with lim

n→+∞
an = +∞. Let next the function

Cn : Rk → R

t 7→ Cn(t) =
1

an
log
(
E(exp(〈 t,Wn〉))

)
.

Assume that

A1. Cn(t) is finite for all n and t.
A2. C(t) = lim

n→+∞
Cn(t) exists and is finite for all t.

There holds that

i. The function C is convex.
ii. If ∇−C(t) ≤ ∇+C(t) < α, for some t ∈ R

k, then

lim sup
n→+∞

1

an
log


e−anC(t)E

(
exp(〈 t,Wn〉)1{Wn

an
≥α}

)
 < 0.

iii. If
∑

n

e−εan < ∞ for all ε > 0, then

lim sup
n→+∞

Wn

an
≤ ∇+C(0) P a.s.
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iv. If α < ∇−C(t) ≤ ∇+C(t), for some t ∈ R
k, then

lim sup
n→+∞

1

an
log


e−anC(t)E

(
exp(〈 t,Wn〉)1{Wn

an
≤α}

)
 < 0.

v. If
∑

n

e−εan is finite for all ε > 0, then

∇−C(0) ≤ lim sup
n→+∞

Wn

an
P a.s.

Proof.

i. It follows from Holder’s inequality.
ii. Let h ∈ R

∗,k
+ be such that C(t) + 〈α, h〉 − C(t+ h) > 0. We have

1

an
log

[
e−anC(t)

E

(
exp(〈 t,Wn〉)1{Wn

an
≥α}

)]

=
1

an
log

[
e−anC(t)

∫

{Wn
an

≥α}
e〈 t,Wn〉dP

]

=
1

an
log

[
e−an(C(t)+〈α,h〉)

∫

{Wn
an

≥α}
e〈 t,Wn〉+an〈α,h〉dP

]

≤
1

an
log

[
e−an(C(t)+〈α,h〉)

∫

{Wn
an

≥α}
e〈 t+h,Wn〉dP

]

≤
1

an
log

[
e−an(C(t)+〈α,h〉)

E(exp(〈 t+ h,Wn〉))

]

=
1

an
log

[
e−an(C(t)+〈α,h〉−Cn(t+h))

]

= −(C(t) + 〈α, h〉 − Cn(t+ h)).

Next, by taking the limsup as n −→ +∞, the result follows immediately.
iii. Denote for n,m ∈ N,

Tn,m = {
Wn

an
≥ ∇+C(0) +

1

m
}.

By choosing in item ii. t = 0 and α = ∇+C(0) + 1
m
, and observing that

C(0) = 0, we obtain

lim sup
n→+∞

1

an
log


E

(
1{Wn

an
≥∇+C(0)+ 1

m
}

)
 < 0.

which means that

lim sup
n

1

an
logP(Tn,m) < 0.
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Consequently, for some ε > 0 and n large enough, there holds that

lim sup
n

1

an
logP(Tn,m) < −ε.

Thus,

P(Tn,m) < e−εan

which implies the convergence of the series
∑

n

P(Tn,m). Hence, using Borel-

Cantelli theorem, we obtain

P(lim sup
n

Tn,m) = 0, ∀m.

Therefore,

P

(
lim sup

n

Wn

an
> ∇+C(0)

)
= P(

⋃

m

lim sup
n

Tn,m) = 0

and finally,

lim sup
n

Wn

an
≤ ∇+C(0), P a.s.
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