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Abstract—We consider a wireless network where multiple
energy harvesting transmitters communicate with the common
receiver in a time sharing manner. In each slot, a transmitter can
either harvest energy or send its data to the receiver. Given a time
deadline, the goal is to maximize the sum-rate of transmitters
under random energy arrivals with both perfect and imperfect
channel state information (CSI) at the receiver. The original sum-
rate maximization (SRM) problem is a non-convex mixed integer
non-linear program (MINLP). To obtain the optimal scheduling
policy, we first reduce the original optimization problem to
a convex MINLP and solve it using the generalized Benders
decomposition algorithm. We observe that the SRM problem
results in an unfair rate allocation among transmitters, i.e., the
transmitter closer to the receiver achieves a higher rate than
that by the transmitter farther from the receiver. Hence, to
induce fairness among transmitters, we consider the minimum-
rate maximization (MRM) problem. For the bounded channel
estimation error, we obtain a robust scheduling policy by solving
the worst-case SRM and MRM problems. Finally, we compare
the proposed policies with myopic policies studied in the literature
and show that the former outperform the latter in terms of
achievable rates.

Index Terms—Energy harvesting, imperfect CSI, mixed integer
programming, power control, scheduling.

I. INTRODUCTION

IN recent years, energy harvesting (EH) in wireless net-

works has emerged as a promising technology to achieve a

sustained and low-cost operation of communication devices

[1]–[5]. These devices obtain energy from environmental

sources such as solar power, vibration, radio-frequency (RF)

signals, etc. The sporadic nature of energy arrival demands

designing optimal resource allocation policies to optimize the

energy utilization and the system performance simultaneously.

In multiple access networks such as wireless sensor networks,

multiple transmitters wish to communicate with a common

receiver. However, due to varying channel conditions, the

network throughput is significantly affected by the order in

which the transmitters access the channel. In addition, if the

transmitters have energy harvesting capability, the network

throughput depends on the energy availability at transmitters.

Hence, the design of optimal user scheduling and power con-

trol policies is important to maximize the network throughput

in EH multiple access networks.

∗Authors are with the Department of Electrical Engineering, Indian In-
stitute of Technology Kanpur, UP, 208016 India, e-mail: {kalpant, adr-
ish}@iitk.ac.in.

†Author is with the Department of Electrical Engineering, University of
Notre Dame, IN, 46556, USA, e-mail: skalamka@nd.edu.

This work was carried out while Sanket. S. Kalamkar was at Indian Institute
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A. Background Work

Transmission and scheduling policies in EH wireless net-

works have been studied extensively in the literature. Optimal

transmission policies for a point-to-point link with infinite

energy buffer were proposed for random energy arrivals in [6],

[7], for random data and energy arrivals in [6], and for fading

channels in [8]. The works in [9]–[13] considered the design

of optimal scheduling and transmission policies for multi-user

EH networks assuming the perfect channel state information

(CSI). In an RF energy harvesting setting, the authors in [9]

considered a time-division multiple access (TDMA) network

with a half-duplex hybrid access point (HAP). The communi-

cation period was divided into an EH phase and a transmission

phase. In the EH phase, all transmitters harvested RF energy

from the constant-power signal transmitted by the HAP and

then transmitted their data to the HAP in the transmission

phase following the TDMA protocol in a fixed order of their

distances from the HAP. Each transmitter followed a myopic

transmission policy, where it consumed all the harvested

energy for the transmission. Under these settings, authors

obtained an optimal time allocation policy that maximized

the sum-rate and the minimum rate among the transmitters.

In [10], the authors proposed a myopic scheduling policy that

outperformed the one presented in [9] by jointly optimizing the

HAP’s transmit power and the transmission time allocation.

The authors considered the sum-rate maximization problem

only, where the transmitters sent their data in a fixed order

using TDMA. In [11], the authors extended the system model

of [9] to a full-duplex HAP where it could transmit RF

energy and receive information simultaneously. During the

transmission phase, when a transmitter was transmitting, the

transmitters that were scheduled to transmit later harvested the

energy transmitted by the HAP. In this way, the transmitters

farther from the HAP had higher energies than those in

[9], which improved the sum-rate and the fairness among

transmitters. However the authors considered only the sum-

rate maximization problem. In [12], the authors considered an

underlay cognitive radio network (CRN) following the fixed-

order TDMA protocol. Similar to the harvest-then-transmit

model of [10], authors jointly optimized the transmit power of

the base station (BS) and the time allocation among secondary

users (SUs) transmitting according to a myopic policy. In [13],

the authors considered a similar model to [11]. However the

authors jointly optimized the transmit power of the HAP and

time allocation among transmitters. In the direction of previous

works on fixed-order TDMA, the authors in [14] considered a

http://arxiv.org/abs/1804.09040v2
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TABLE I
BACKGROUND WORKS

Literature EH System Model Policy CSI

J. Yang et al. [6] Generic
Point-to-point link, no fading,

random data and energy arrivals
Transmission completion time minimization

(TCTM)
Not

required

K. Tutuncuoglu et al.

[7]
Generic

Point-to-point link, no fading,
random energy arrivals, Finite

battery
Short-term throughput maximization (STTM)

Not
required

O. Ozel et al. [8] Generic
Point-to-point link, random data

and energy arrivals
STTM and TCTM, optimal offline and online

policies
Perfect

H. Ju et al. [9] RF Half-duplex HAP, TDMA Optimal time allocation, myopic policy Perfect

Z. Hadzi-Velkov et al.

[10]
RF Half-duplex HAP, TDMA

Joint optimization of HAP power and time
allocation, myopic policy

Perfect

X. Kang et al. [11] RF Full-duplex HAP, TDMA Optimal time allocation, myopic policy Perfect

D. Xu et al. [12] RF
CRN with multiple EH-SUs,

TDMA
Joint optimization of BS power and time

allocation, myopic policy
Perfect

H. Ju et al. [13] RF Full-duplex HAP, TDMA
Joint optimization of HAP power and time

allocation, myopic policy
Perfect

Q. Wu et al. [14] RF
Harvest from PB, transmit to AP,

circuit power consumption,
TDMA, NOMA

Optimal time allocation in TDMA and NOMA,
myopic policy

Perfect

I. Ahmed et al. [15] Generic
Two-way half-duplex DF relay,

multiple access and time division
broadcast relaying

Robust joint energy and transmission time
allocation, optimal offline

Imperfect

I. Ahmed et al. [16] Hybrid
Half-duplex DF relay, energy state

uncertainty
Robust power allocation, optimal offline,

optimal online, and suboptimal online
Imperfect

S. Gong et al. [17] Generic
Underlay CRN, energy state

uncertainty
Robust power control of SUs under worst case

interference constraint of PUs
Imperfect

E. Boshkovska et al.

[18]
RF

EH MIMO users communicate
with a common receiver using

TDMA

Joint time allocation and power control,
myopic policy

Imperfect

J. Xiao et al. [19] RF
Two-user EH MIMO interference

channel with SWIPT
Robust transceiver design Imperfect

T. Peng et al. [20] RF
EH-MISO interference channel

with SWIPT
Robust transmit beamforming and power

splitting
Imperfect

system model inspired by [9], where multiple users harvested

RF energy from the power beacon (PB) and communicated

with an access point (AP) using TDMA and non-orthogonal

multiple access (NOMA) protocols. It was shown that, for

energy-limited networks, the spectral efficiency (SE) of both

protocols is the same; in fact, when the power consumption

by the circuitry is not neglected, the TDMA outperformed the

NOMA with a significant gap in terms of energy consumption

and SE.

The aforementioned works on scheduling policies for EH

networks considered only a fixed transmission order with

myopic policies and perfect CSI. However, the presence of

the noise makes it difficult to estimate channel coefficients

perfectly. Thus the study of EH wireless networks under

channel estimation errors is important. Robust offline re-

source allocation policies for the decode-and-forward (DF)

relay network were proposed in [15] for the multiple access

broadcast channel and in [16] for a half-duplex relay. In [17],

the authors considered the distribution uncertainty model for

imperfect CSI, where the distribution of channel coefficients

was unknown but had a finite divergence from an empirical

distribution. Under this setting, the authors obtained a robust

power allocation policy for SUs in an underlay CRN. In [18],

the authors considered a non-linear EH model and obtained

a robust time and power allocation policy in a wireless pow-

ered TDMA-MIMO communication network with a single-

slot setting. In [19], the authors considered a two-user EH

multiple input multiple output (MIMO) interference channel

with simultaneous wireless information and power transfer

(SWIPT). The authors proposed a robust transceiver design

considering the bounded channel uncertainty model. In [20],

the authors considered a multiple-input single-output (MISO)

interference channel where multiple multi-antenna transmitters

communicated with their respective single-antenna receivers.

Using the bounded uncertainty model, the authors obtained a

robust transmit beamforming and power splitting that min-

imized the total transmit power. Table I summarizes the

background work.

B. Motivation

While communicating over a fading channel, a myopic

policy may not be optimal for an EH transmitter due to varying

channel conditions; rather saving energy for future slots might

improve the throughput. Also apart from time sharing, the

scheduling order of transmitters, which plays an important

role in determining the performance of multi-user networks

[11], has not been studied in the literature so far. Therefore

we propose a scheduling policy where the finite number of

available slots are optimally distributed among transmitters. In

addition, the proposed policy considers the power optimization

in the sense that the harvested energy might not be used
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completely in a single transmission. The amount of energy

used depends on channel conditions and the energy harvested

by other transmitters. Different from previous works in [9]–

[13], in the proposed scheduling policy, a slot is not shared

among the harvesting and transmission phases and its length

remains fixed; rather, for each transmitter, a slot is dedicated to

either harvesting energy from the environment or transmitting

its data depending on the energy availability and channel

conditions. Also, in the scheduling policies of [9], [10], and

[12], a transmitter gets a single chance to harvest energy,

and once the energy harvesting phase is over, it remains idle

until its turn for transmission. On the other hand, in our

policy, a transmitter may transmit multiple times based on its

energy availability and channel conditions. Also a transmitter

harvests energy when an another transmitter is transmitting.

This strategy improves the system performance by allowing

a transmitter to accumulate more energy. The design of the

optimal order scheduling and power control policy requires

the CSI to be available at the receiver. However the channel

estimation techniques are prone to error, and therefore we also

consider the effect of imperfect CSI on the proposed policies,

which is not studied in [9]–[13].

C. Contributions

We propose a joint slot allocation and power control policy

in a multi-user time sharing network where a number of energy

harvesting transmitters wish to communicate with the common

receiver (Rx). We assume that the transmitters operate in an

energy half-duplex mode as in [21] and follow a harvest-

or-transmit protocol, i.e., in a slot, a transmitter can either

harvest energy or transmit its data to the receiver. In addition,

we consider the case where the CSIs of links between the

transmitters and the receiver are imperfect with bounded

uncertainties. The receiver first estimates channel coefficients

using the pilot symbols sent by the transmitters. Then it

obtains the optimal scheduling policy using the estimated

channel gains and the energy information of transmitters and

broadcasts the evaluated policy in the downlink using an ideal

backhaul. This network is a generic one, and to the best of our

knowledge, it has not been considered in the literature. We aim

to maximize the sum-rate of the network and the minimum rate

among the transmitters by a given time deadline. The major

highlights of this paper are as follows:

1) We first consider the problem of sum-rate maximization

(SRM) by a given time deadline assuming the perfect

CSI at the receiver. We formulate the problem as a

mixed integer non-linear program (MINLP), which is a

non-convex problem due to coupled variables. We then

reduce this non-convex MINLP to a convex MINLP

[22] by decoupling the variables and obtain the optimal

solution using the generalized Benders decomposition

(GBD) algorithm [23].

2) The SRM policy results in an unfair rate allocation among

transmitters. We address this issue by maximizing the

minimum rate among the transmitters when the perfect

CSI at the receiver is available.

TABLE II
NOTATION

K Number of transmitters

M Number of slots

τ Slot length

Ek
0

Initial energy in the battery of kth Tx

Ek,i

H
Energy harvested by kth Tx in ith slot

Pk,i Transmit power of kth Tx in ith slot

gk,i
Channel coefficient between kth Tx and
receiver in ith slot

hk,i
Channel power gain between kth Tx and
receiver in ith slot

Dk Distance between kth Tx and receiver

α Path loss exponent

R̄ Target rate for the MRM policy

3) We then consider the case of imperfect CSI at the

receiver. We assume a bounded channel estimation er-

ror model and obtain a robust scheduling policy that

maximizes the worst-case sum-rate and worst-case min-

imum rate in SRM and MRM problems, respectively.

We compare the proposed joint slot allocation and power

control policies and study the effects of various system

parameters such as the number of slots and users, path

loss exponent, and the channel estimation error.

4) Finally, we compare the proposed SRM and MRM poli-

cies with the myopic policies proposed in [9], [11] and

show that the proposed policies outperform the myopic

policies in terms of achievable rates.

D. Paper Organization and Notation

The rest of the paper is organized as follows. Section II

presents the system model. Section III discusses the SRM

policy with perfect CSI. Section IV presents the MRM policy

with perfect CSI. Sections V and VI present the SRM and

MRM policies with imperfect CSI, respectively. Section VII

presents myopic policies proposed in [9], [11]. The results

are discussed in Section VIII. Section IX discusses the future

directions and Section X provides the conclusions.

Notation: A bold-faced symbol (e.g., A or θθθ) represents

a matrix and [A]i,j represents the entry in ith row and jth

column of matrix A. A bold-faced symbol with a “bar” (e.g.,

x̄ or δ̄δδ) represents a vector, x̄ � 0̄00 implies that every element

xi of vector x̄ is less than or equal to 0, [u]+ represents

max{u, 0}, E[·] denotes the expectation operator, ‖x̄‖p rep-

resents the lp-norm, and u ∝ c means that u is proportional

to c. R
m represents a set of m-dimensional vectors whose

elements are real numbers, while R
n1×n2

+ represents a set of

n1 × n2 matrices such that every element of the matrix is a

positive real number. Other notations used in the paper are

given in Table II.

II. SYSTEM MODEL

Fig. 1 shows an energy harvesting network consisting of

K energy harvesting single-antenna transmitters that commu-

nicate with a common single-antenna receiver located at a

distance of Dk meters from the transmitter Txk, k = 1, . . . ,K .
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Fig. 1. An energy harvesting network with a harvest-or-transmit protocol.

The transmitters send their data to the receiver over M slots

each of length τ seconds.

The channel coefficient gk,i between the kth transmitter and

the receiver in the ith slot is an i.i.d. complex Gaussian random

variable with zero mean and unit variance. Hence the channel

power gains hk,i = |gk,i|2 are i.i.d. exponential random

variables. We assume quasi-static flat-fading where the channel

coefficients gk,i remain constant for each transmission slot

and may vary independently from one slot to another. These

channel coefficients can be obtained before the transmission

using a channel estimation/prediction technique [24]–[27].

The proposed model employs a harvest-or-transmit protocol

where the energy arrivals are random in nature. In slot i,

i = 1, . . . ,M , the transmitter Txk∈{1,...,K} transmits with

power Pk,i while the transmitters Txj∈{1,...,K}\{k} harvest en-

ergy E
j,i
H , ∀j ∈ {1, . . . ,K}\k and store it in their sufficiently

large-capacity batteries. Each transmitter Txk has some initial

energy Ek
0 in its battery so that the transmission can start from

the first slot itself.

During the transmission in ith slot, Txk transmits a signal

sk,i with power Pk,i = E
[
|sk,i|2

]
. The received signal at the

receiver is

yk,i = gk,isk,i + nk,i,

where nk,i ∼ CN (0, σ2
n) with CN (µ, σ2) representing the cir-

cularly symmetric complex Gaussian (CSCG) random variable

with mean µ and variance σ2. The instantaneous achievable

throughput (in bits/Hz) by Txk in ith slot is given by Shan-

non’s capacity formula as [28]:

Rk,i(Pk,i) = τ log2

(

1 +
|gk,i|2Pk,i

σ2
n

)

. (1)

A. Energy Causality Constraint

At an EH transmitter, the energy causality constraint

governs the transmit power. This constraint states that, for

Txk∈{1,2,...,K}, the total energy consumed upto slot i cannot

exceed the total energy harvested upto slot i−1, plus the initial

energy in the battery.

B. Imperfect CSI with Bounded Uncertainty

Using the pilot symbol based method, the channel coef-

ficient between a transmitter Txk and the receiver can be

estimated at the receiver. However, due to the noise, the

channel coefficient is often estimated erroneously. For Txk,

in ith slot, the actual channel coefficient gk,i can be given as

gk,i = ĝk,i +∆gk,i, ∀k, i, (2)

where ĝk,i and ∆gk,i are the estimated channel coefficient

and the estimation error, respectively. We consider a bounded

uncertainty model that requires no statistical information about

the channel estimation error. Specifically, we bound the esti-

mation error as |∆gk,i| ≤ ǫ, where ǫ > 0 is the radius of

the uncertainty region. The estimated channel coefficient ĝk,i
is modeled as CN (0, 1). In this case, when kth transmitter

transmits in ith slot, the instantaneous achievable throughput

is given as

Rk,i(Pk,i) = τ log2

(

1 +
|ĝk,i +∆gk,i|2Pk,i

σ2
n

)

. (3)

Remark: Similar to conventional nodes, the channel estima-

tion in an EH network can be done using a standard channel

estimation/prediction technique [24]–[27]. The extension of

the proposed policies incorporating the energy consumed in

pilot symbol and energy information transmission could be

as follows. Let Pc be the power of the symbols containing

pilot symbols and energy information transmitted by each

transmitter. In the first slot, each of the kth transmitter

transmits its pilot and energy information for τ
K

fraction of

the slot using TDMA. We assume that Pc

(
τ
K

)
≤ Ek

0 , ∀k,

i.e., the batteries have sufficient initial energy to transmit

pilot symbols. Then using the channel estimates and energy

information, the receiver obtains the optimal scheduling policy

by considering the initial available energy at kth transmitter

to be Ek
0 − Pc

(
τ
K

)
.

III. SUM-RATE MAXIMIZATION WITH PERFECT CSI

In this section, we formulate the SRM problem under the

assumption of perfect CSI at the receiver. The objective is to

maximize the sum-rate Rsum of all K transmitters over M

slots. Since only one transmitter is allowed to transmit in a

slot, the achievable rate in a slot can be characterized using

an indicator variable wk,i defined as

wk,i =

{

0, transmitter k harvests in ith slot,

1, transmitter k transmits in ith slot.
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Let us consider a K ×M matrix W = [w̄1, . . . , w̄M ] where

each K dimensional vector w̄i contains the values of wk,i

for ith slot. Hence, we have ‖w̄i‖1 = 1 ∀i, i.e., only one

transmitter transmits in a slot. The achievable sum-rate in ith

slot follows as

Ri(w̄i, Pk,i) =

K∑

k=1

τwk,i log2

(

1 +
|gk,i|2Pk,i

σ2
n

)

, ∀i,

and the achievable sum-rate over M slots is given as

Rsum(W,P) =

M∑

i=1

K∑

k=1

τwk,i log2

(

1 +
|gk,i|2Pk,i

σ2
n

)

, (4)

where P is a K ×M matrix whose (k, i)th element [P]k,i =
Pk,i represents the power transmitted by kth transmitter in

ith slot. The optimization problem (Psum
1 ) of maximizing the

sum-rate subject to the energy causality constraint is given as

P
sum
1 : max

W,P
Rsum(W,P) (5a)

s.t. τwk,1Pk,1 ≤ Ek
0 , k = 1, . . . ,K, (5b)

(Energy causality constraint for 1st slot)

i∑

j=1

τwk,jPk,j ≤ Ek
0 +

i−1∑

j=1

(1− wk,j)E
k,j
H ,

k = 1, . . . ,K, i = 2, . . . ,M, (5c)

(Energy causality constraint for 2nd to M th slot)

K∑

k=1

wk,i = 1, i = 1, . . . ,M, (5d)

(Time sharing constraint)

wk,i ∈ {0, 1}, Pk,i ≥ 0,

k = 1, . . . ,K, i = 1, . . . ,M, (5e)

where τwk,iPk,i represents the energy consumed by kth

transmitter in ith slot. Observe that the optimization problem

P
sum
1 is a non-convex MINLP due to coupled variables wk,i

and Pk,i. However, we can exploit the binary nature of the

variable wk,i to decouple and reduce the problem P
sum
1 to a

convex MINLP [29] Psum
2 given as

P
sum
2 : max

W,P

M∑

i=1

K∑

k=1

τ log2

(

1 +
|gk,i|

2Pk,i

σ2
n

)

(6a)

s.t. τPk,1 ≤ wk,1E
k
0 , k = 1, . . . ,K, (6b)

τPk,i ≤ wk,i



Ek
0 +

M∑

j=1

E
k,j
H



 ,

k = 1, . . . ,K, i = 2, . . . ,M, (6c)

i∑

j=1

τPk,j ≤ Ek
0 +

i−1∑

j=1

(1 − wk,j)E
k,j
H ,

k = 1, . . . ,K, i = 2, . . . ,M, (6d)

K∑

k=1

wk,i = 1, i = 1, . . . ,M, (6e)

wk,i ∈ {0, 1}, Pk,i ≥ 0,

k = 1, . . . ,K, i = 1, . . . ,M. (6f)

The correspondence between (5) and (6) can be understood

as follows. When wk,i = 0 for a fixed (k, i), constraint (6b)

or (6c) results in Pk,i ≤ 0, which along with constraint (6f)

results in Pk,i = 0. In this case, the constraint (6d) would have

no effect as the right-hand side of the inequality is a positive

number. On the other hand when wk,i = 1, the constraint (6c)

gives an outer bound on Pk,i and hence, has no effect. In this

case, the constraint (6d) dominates and represents the energy

causality constraint in (5c).

The problem (6) is a convex MINLP as the objective

function is concave in P and constraints are linear inequal-

ities in P and W. Since the optimization problem is now

linearly separable in variables P and W, it can be efficiently

solved using the GBD algorithm [23], [30]. In the following

subsection, we describe the optimal scheduling policy using

the GBD algorithm.

A. Optimal Scheduling Policy using the GBD Algorithm

In [31], an approach to solve mixed integer linear programs

(MILPs) with complicating variable was proposed. In these

problems, once the complicating variable is fixed, the resulting

problem might become tractable and could be parameterized

by the value of this complicating variable. Then the optimal

value of the complicating variable is obtained using the

cutting-plane approach. In [23], the author extended this work

for MINLPs and employed a non-linear convex duality theory

to obtain the natural families of cuts.

The GBD algorithm [23] decomposes the optimization

problem P
sum
2 into two subproblems: 1) a primal problem

(with respect to a real variable) and 2) a master problem (with

respect to an integer variable). In our problem, the variable W

is the complicating variable. Fixing this variable results in a

primal problem that is parameterized by the value of W. In

each iteration, the algorithm solves the primal problem and

gives a solution P along with Lagrange multipliers for fixed

W, which is obtained from the previous iteration of the master

problem. Then, for the given solution P and the corresponding

Lagrangian of current primal problem, the algorithm solves

the master problem and obtains W, which is then passed

to the next iteration of the primal problem. This process is

repeated until the convergence is reached. The GBD algorithm

is initiated by considering some feasible value of W as W(0)

and solving the first iterate of the primal problem for this

W
(0). The primal and master problems for lth iteration are

given as follows:

1) Primal problem (lth iteration): Let W
∗(l−1) be the

solution of the master problem in (l − 1)th iteration. Then

the primal problem for the lth iteration is given as

max
Pk,i≥0, ∀k,i

M∑

i=1

K∑

k=1

τ log2

(

1 +
|gk,i|2Pk,i

σ2
n

)

(7a)

s.t. τPk,1 ≤ w
∗(l−1)
k,1 Ek

0 , k = 1, . . . ,K, (7b)

τPk,i ≤ w
∗(l−1)
k,i



Ek
0 +

M∑

j=1

E
k,j
H



 ,
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k = 1, . . . ,K, i = 2, . . . ,M, (7c)

i∑

j=1

τPk,j ≤ Ek
0 +

i−1∑

j=1

(

1− w
∗(l−1)
k,j

)

E
k,j
H ,

k = 1, . . . ,K, i = 2, . . . ,M, (7d)

where w
∗(l−1)
k,i represents the entry in W

∗(l−1) corresponding

to kth row and ith column.

The primal problem (7a)-(7d) is a convex optimization

problem [29] in P. Therefore, an optimal solution can be

efficiently obtained using any standard convex optimization

solver such as CVX [32]. The primal problem can be decom-

posed and solved in a distributive manner among the users.

The solution of the primal problem obtained in lth iteration,

P
∗(l) is then used to obtain the optimal solution of the master

problem in lth iteration, W∗(l). The primal problem is convex

with affine constraints, and the constraint set is non-empty.

Hence the duality gap is zero and the Karush-Kuhn-Tucker

(KKT) stationarity conditions are necessary and sufficient

for optimality [29]. The Lagrangian L(P,W,λ̄λλλλλλλλ,γγγ,θθθ) of the

primal problem is given in (8) at the top of the next page,

where X = {P,W} and Y = {λ̄λλ,γγγ,θθθ} are the sets of primal

and dual variables, respectively.

The KKT stationarity conditions for kth transmitter are

τ |gk,1|2

σ2
n + |gk,1|2P ∗

k,1

− τλ∗
k − τ

M−1∑

j=1

θ∗k,j = 0, (9)

τ |gk,i|2

σ2
n + |gk,i|2P ∗

k,i

− τγ∗
k,i−1 − τ

M−1∑

j=i−1

θ∗k,j = 0,

for i =2, . . . ,M. (10)

The complimentary slackness conditions for kth transmitter

are

λ∗
k

(
τP ∗

k,1 − wk,1E
k
0

)
= 0, (11)

M−1∑

i=1

γ∗
k,i



τP ∗
k,i+1 − wk,i+1



Ek
0 +

M∑

j=1

E
k,j
H







 = 0, (12)

M−1∑

i=1

θ∗k,i





i+1∑

j=1

τP ∗
k,j − Ek

0 −
i∑

j=1

(1− wk,j)E
k,j
H



 = 0, (13)

where λ̄λλλλλλλλ ∈ R
K×1
+ , γγγ ∈ R

K×(M−1)
+ , and θθθ ∈ R

K×(M−1)
+

are dual variables associated with constraints (7b), (7c), and

(7d), respectively. For simplicity, we omit the non-negativity

constraint on P, which can be incorporated later by projecting

the optimal solution onto the positive orthant. Using the KKT

conditions, the optimal transmit power for kth transmitter in

lth iteration is given as

P ∗
k,1 =

[

1

λ∗
k +

∑M−1
i=1 θ∗k,j

−
σ2
n

|gk,1|2

]+

, (14)

P ∗
k,i =

[

1

γ∗
k,i−1 +

∑M−1
j=i−1 θ

∗
k,j

−
σ2
n

|gk,i|2

]+

,

for i = 2, . . . ,M, (15)

where x+ = max{0, x} represents the projection onto the

positive orthant. Equations (14) and (15) require the optimal

values of dual variables λ̄λλ
∗
, γγγ∗ and θθθ∗, which are obtained

using CVX [32]. Alternatively, these values can be obtained

using the iterative dual-descent method [33], [34]. Since the

objective function of the primal problem is concave and the

inequalities are linear, the duality gap is zero.

2) Master problem (lth iteration): The master problem

from the original optimization problem (6) is obtained using

the following two manipulations [23]:

1) Projecting (6) onto W-space as

max
W∈W

v(W)

where

v(W) =







sup
P

M∑

i=1

K∑

k=1

τ log2

(

1 +
|gk,i|

2Pk,i

σ2
n

)

s.t. (6b)− (6d), Pk,i ≥ 0, ∀k, i.

Note that v(W) is the primal problem discussed above.

2) Summoning the natural dual representation of v in terms

of the pointwise infimum of a collection of functions that

dominates it.

These manipulations result in the master problem for the lth

iteration given as [23]

max
W,β

β (16a)

s.t. β ≤ L(P∗(j), λ̄λλ
∗(j)

, γγγ∗(j), θθθ∗(j)), j ∈ {1, 2, . . . , l},
(16b)

W ∈ {0, 1}K×M ,

K∑

k=1

wk,i = 1, ∀i, (16c)

β ≥ 0, (16d)

where L(P∗(l), λ̄λλ
∗(l)

, γγγ∗(l), θθθ∗(l)) is the Lagrangian of the

primal problem and {λ̄λλ
∗(l)

, γγγ∗(l), θθθ∗(l)} is the set of optimal

dual variables corresponding to the constraints (7b), (7c), and

(7d), respectively, obtained by solving the lth iteration of the

primal problem.

The problem (16) is a mixed integer linear program (MILP)

of β and W. Therefore, an optimal solution can be efficiently

obtained using any standard MILP solver, e.g., MOSEK [35].

Generalized Benders decomposition algorithm: The mas-

ter problem gives a solution β∗(l) in the lth iteration. This

β∗(l) upper bounds the optimal solution of the original problem

P
sum
2 . In addition, in each iteration, an extra constraint (16b)

is being added to the master problem. Hence the upper bound

β∗(l) is non-increasing with the number of iterations.

The solution of the primal problem in lth iteration, P∗(l)

lower bounds the optimal solution of Psum
2 by solving P

sum
2

for a fixed W, i.e., W∗(l−1). The lower bound in each iteration

is set to be the maximum of the lower bounds obtained until

the current iteration.

In the lth iteration, the primal problem is solved for the solu-

tion obtained by the master problem in (l−1)th iteration. Then,

for the solution obtained by the primal problem in lth iteration,

we solve the lth iteration of the master problem. This process
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L(X ,Y) =
K∑

k=1

M∑

i=1

τ log2

(

1 +
|gk,i|2Pk,i

σ2
n

)

+

K∑

k=1

λk(wk,1E
k
0 − τPk,1) +

K∑

k=1

M−1∑

i=1

γk,i

×



wk,i+1



Ek
0 +

M∑

j=1

E
k,j
H



− τPk,i+1



+

K∑

k=1

M−1∑

i=1

θk,i



Ek
0 +

i∑

j=1

(1 − wk,j)E
k,j
H −

i+1∑

j=1

τPk,j



 . (8)

continues, and due to non-increasing (non-decreasing) nature

of the upper (lower) bound, the GBD algorithm converges to

the optimal solution in a finite number of iterations [23], [30].

The GBD algorithm is summarized in Algorithm 1, where S
is a set of constraint (16b) in which an additional constraint

is added in each iteration. The primal problem is convex and

Algorithm 1 GBD algorithm

Initialization: Initialize W
(0) and convergence parameter

ζ. Set S ← ∅ and j ← 1.

Set flag← 1
while flag 6= 0 do

Solve the primal problem (7a)-(7d) and obtain

{P∗, λ̄λλ
∗
, γγγ∗, θθθ∗} and lower bound L(j)

S ← S ∪ {j}
Solve master problem (16a)-(16d) and obtain W

(j)∗ and

the upper bound U(j).

if |U(j)-L(j)| ≤ ζ then

flag← 0
end if

Set j ← j + 1
end while

return P and W

hence can be efficiently solved in polynomial time. The master

problem on the other hand is an MILP and hence has non-

polynomial complexity. However, the master problem can be

efficiently solved using MOSEK [35] as the GBD algorithm is

executed offline.1 We below provide the proof that the GBD

algorithm converges in a finite number of iterations.

Theorem. The GBD algorithm for MINLP P
sum
2 converges to

a ζ-optimal solution in a finite number of iterations for any

ζ ≥ 0.

Proof: The GBD algorithm achieves a ζ-optimal solution

if
∣
∣U(j) − L(j)

∣
∣ ≤ ζ, for any ζ ≥ 0 where j is the iteration

number [23], [30]. Let P ⊆ R
K×M
+ and W = {0, 1}K×M be

the sets such that

P = {P : Pk,i ≥ 0, ∀k, i} ⊆ R
K×M
+

W = {W : wk,i ∈ {0, 1}, ∀k, i},

and ḡgg(P,W) : P × W → X ⊆ R
p, h̄hh(P,W) : P × W →

Y ⊆ R
q be the functions such that ḡgg(P,W) � 0̄00 corresponds

to the constraints (6b)-(6d) and h̄hh(P,W) = 0̄00 corresponds to

1The channel coefficients and energy informations are assumed to be known
at the receiver in advance. Thus the SRM and MRM scheduling problems fall
in the category of offline optimization framework, which can be studied using
the GBD algorithm.

the constraint (6e), where p and q represent the number of

inequality and equality constraints, respectively.

In P
sum
2 , the set P is a non-empty convex set and the

functions ḡgg(P,W) and h̄hh(P,W) are convex and affine, re-

spectively. Also, both functions are continuous for each fixed

W ∈ W = {0, 1}K×M . In addition, for each W ∈ W ,

the problem P
sum
2 is a convex optimization problem [29] in

P ∈ P and, has a finite optimal solution (P∗) and optimal

Lagrange multiplier vectors (λ̄λλ
∗
, γγγ∗, θθθ∗) for inequalities and

equalities. Therefore, as per the steps outlined in [23], the

convergence holds for the problem P
sum
2 for any ζ ≥ 0.

As stated earlier, the optimization problem in (6) cannot be

solved in polynomial time. In the next subsection, we present

a low-complexity suboptimal scheduling policy, which can be

efficiently solved in polynomial time.

B. Suboptimal Scheduling Policy

In this subsection, we propose a low-complexity suboptimal

scheduling policy which can be obtained in polynomial time.

To obtain a low-complexity suboptimal scheduling policy,

we first replace the non-convex set NC = {wk,i : wk,i ∈
{0, 1}, ∀k, i} with a convex relaxation C = {wk,i : 0 ≤
wk,i ≤ 1, ∀k, i} such that NC ⊂ C, and then formulate a

relaxed version of the optimization problem P
sum
2 , Prel as

P
rel : max

W,P

M∑

i=1

K∑

k=1

τ log2

(

1 +
|gk,i|2Pk,i

σ2
n

)

(17a)

s.t. (6b)− (6e), (17b)

Pk,i ≥ 0, wk,i ≥ 0, ∀k, i. (17c)

Note that we have omitted the constraint wk,i ≤ 1, which

can be incorporated through the constraint
∑K

k=1 wk,i =
1, ∀i. The solution (W∗

rel,P
∗
rel) of this relaxed problem P

rel

upper bounds the solutions of (5) and (6) as this solution

belongs to the set C and can be infeasible for both the

problems (5) and (6). Hence, we need to project them onto

the feasible set NC. For this, we first round off the variable

W
∗
rel to the nearest integer as W

∗
sub = round(W∗

rel) such

that W
∗
sub ∈ NC and then obtain P

∗
sub by solving (6) for

fixed W
∗
sub. The suboptimal scheduling algorithm is given in

Algorithm 2.

From the optimal scheduling policy obtained for the SRM

problem, it can be noted that a transmitter closer to the

receiver achieves a higher rate than that of the farther one.

This is because the channel power gain hk is proportional to

D−α
k , where α ≥ 2 denotes the path loss exponent and Dk

denotes the distance between kth transmitter and the receiver.

This results in an unfair rate allocation among transmitters.
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Algorithm 2 Suboptimal algorithm

Initialization: Solve Relaxed problem P
rel and obtain

W
∗
rel.

Approximate: W∗
sub := round(W∗

rel).
Solve the optimization problem (6) for a fixed W

∗
sub and

obtain P
∗
sub.

return P
∗
sub and W

∗
sub

One way to tackle such an unfair rate allocation issue is

to maximize the minimum achievable rate. We discuss the

problem of the MRM in Section IV.

IV. MINIMUM-RATE MAXIMIZATION WITH PERFECT CSI

In the MRM problem, the goal is to maximize the minimum

rate in the network. The optimization problem P
min
1 for this

policy is given as

max
W,P,R̄

R̄ (18a)

s.t. min
k

{
M∑

i=1

τwk,i log2

(

1 +
|gk,i|2Pk,i

σ2
n

)}

≥ R̄,

(18b)

(5b)− (5e), (18c)

where R̄ is the target rate. The problem (18a)-(18c) is also

a non-convex MINLP problem in W,P and R̄, and can

be converted into a convex MINLP as discussed before in

Section III and solved efficiently using the GBD algorithm.

The convex MINLP P
min
2 can be given as

max
W,P,R̄

R̄ (19a)

s.t. min
k

{
M∑

i=1

τ log2

(

1 +
|gk,i|

2Pk,i

σ2
n

)}

≥ R̄, (19b)

(6b)− (6f). (19c)

The primal and the master problems for the MINLP (19a)-

(19c) are given in the following subsections.

A. Primal Problem (lth iteration)

The primal problem in the lth iteration is given as

max
P,R̄

R̄ (20a)

s.t. (19b) and (7b)− (7d), (20b)

which is a convex optimization problem in P and R̄. Hence

an optimal solution can be obtained using CVX [32] as

discussed in Section III-A1. The Lagrangian of the primal

problem is given in (21) at the top of the next page where

X = {R̄,P,W} and Y = {δ̄δδ, λ̄λλ,γγγ,θθθ} are the sets of primal

and dual variables, respectively.

The KKT stationarity conditions are

1−
K∑

k=1

δ∗k = 0, (22)

τδ∗k|gk,1|
2

σ2
n + |gk,1|2P ∗

k,1

− τλ∗
k −

M−1∑

j=1

τθ∗k,j = 0,

for k = 1, . . . ,K, (23)

τδ∗k|gk,i|
2

σ2
n + |gk,i|2P ∗

k,i

− τγ∗
k,i−1 −

M−1∑

j=i−1

τθ∗k,j = 0,

for i = 2, . . . ,M, k = 1, . . . ,K. (24)

The complimentary slackness conditions are

δ∗k

[

R̄−
M∑

i=1

τ log2

(

1 +
|gk,i|2Pk,i

σ2
n

)]

= 0, (25)

(11)− (13). (26)

where δ̄δδδδδδδδ ∈ R
K×1
+ , λ̄λλλλλλλλ ∈ R

K×1
+ , γγγ ∈ R

K×(M−1)
+ , and

θθθ ∈ R
K×(M−1)
+ are dual variables associated with constraints

(18b), (7b), (7c), and (7d), respectively. Using the KKT

conditions, the optimal transmit power for kth transmitter in

the lth iteration is given as

P ∗
k,1 =

[

δ∗k

λ∗
k +

∑M−1
j=1 θ∗k,j

−
σ2
n

|gk,1|2

]+

, (27)

P ∗
k,i =

[

δ∗k

γ∗
k,i−1 +

∑M−1
j=i−1 θ

∗
k,j

−
σ2
n

|gk,i|2

]+

, ∀i\{1}. (28)

B. Master Problem (lth iteration)

The Lagrangian of the primal problem is given in (21). The

master problem in lth iteration is given as

max
W,β

β (29a)

s.t. β ≤ L
(

R̄∗(j),P∗(j), δ̄δδ
∗(j)

, λ̄λλ
∗(j)

, γγγ∗(j), θθθ∗(j)
)

,

j ∈ {1, 2, . . . , l} (29b)

W ∈ {0, 1}K×M ,

K∑

k=1

wk,i = 1, ∀i (29c)

β ≥ 0. (29d)

V. SUM-RATE MAXIMIZATION WITH IMPERFECT CSI

Under the case of imperfect CSI, we aim to obtain a robust

scheduling policy maximizing the worst-case sum-rate of all

transmitters. Under the assumption of bounded uncertainty

given in (2), the achievable rate of the kth transmitter in ith

slot in the worst case scenario is given as

Rworst
k,i = min

|∆gk,i|≤ǫ
τwk,i log2

(

1 +
|ĝk,i +∆gk,i|2Pk,i

σ2
n

)

.



9

L(X ,Y) = R̄+

K∑

k=1

δk

[
M∑

i=1

τ log2

(

1 +
|gk,i|2Pk,i

σ2
n

)

− R̄

]

+

K∑

k=1

λk(wk,1E
k
0 − τPk,1)

+

K∑

k=1

M−1∑

i=1

γk,i



wk,i+1



Ek
0 +

M∑

j=1

E
k,j
H



−τPk,i+1



+

K∑

k=1

M−1∑

i=1

θk,i



Ek
0+

i∑

j=1

(1− wk,j)E
k,j
H −

i+1∑

j=1

τPk,j



 . (21)

Then the optimization problem of maximizing the worst-case

achievable sum-rate is given as

max
W,P

M∑

i=1

K∑

k=1

τwk,i min
|∆gk,i|≤ǫ

log2

(

1 +
|ĝk,i +∆gk,i|2Pk,i

σ2
n

)

(30a)

s.t. (5b)− (5e). (30b)

Using the inequality |ĝk,i +∆gk,i|2 ≥ |ĝk,i|2 + ǫ2 − 2|ĝk,i|ǫ,
the objective can further be simplified as

min
|∆gk,i|≤ǫ

log2

(

1 +
|ĝk,i +∆gk,i|2Pk,i

σ2
n

)

=

log2

(

1 +
(|ĝk,i|

2 + ǫ2 − 2|ĝk,i|ǫ)Pk,i

σ2
n

)

︸ ︷︷ ︸

R̂worst

k,i

.

The optimization problem is now given as

max
W,P

M∑

i=1

K∑

k=1

τwk,i log2

(

1 +
(|ĝk,i|2 + ǫ2 − 2|ĝk,i|ǫ)Pk,i

σ2
n

)

(31a)

s.t. (5b)− (5e). (31b)

The problem (31a)-(31b) is also an MINLP problem, and an

optimal solution can be obtained using the GBD algorithm as

discussed in Section III.

VI. MINIMUM-RATE MAXIMIZATION WITH IMPERFECT

CSI

The issue of unfair rate allocation still persists with the SRM

with imperfect CSI. We address this issue by maximizing the

minimum worst-case achievable rate in the network subject to

energy causality constraints. The corresponding optimization

problem is given as

max
R̄,W,P

R̄ (32a)

s.t. min
k

{
M∑

i=1

Rworst
k,i

}

≥ R̄, (32b)

(5b)− (5e). (32c)

Similar to (30a)-(30b), the optimization problem (32a)-(32c)

can further be simplified as

max
R̄,W,P

R̄ (33a)

s.t. min
k

{
M∑

i=1

τwk,iR̂
worst
k,i

}

≥ R̄, (33b)

(5b)− (5e). (33c)

which can be solved efficiently using the GBD algorithm as

discussed in Section III.

VII. MYOPIC POLICIES

The myopic scheduling policies presented in [9] and [11]

can be modified so that they can be applied to our system

model and compared with our proposed policies. We now

discuss the modification in the myopic policies.

1) Myopic policy of [9]: The ith slot of kth transmitter

under the scheduling policy of [9] is shown in Fig. 2.

��
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�

�� �
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�
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�
�� ��
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Fig. 2. The ith slot of kth transmitter in myopic policy [9].

Let E
k,i
h represent the energy available for harvesting in

ith slot for kth transmitter. If the slot length is assumed

to be T seconds, then according to the policy in [9], τ0,i
fraction of the slot is reserved for energy harvesting and

τk,i, k = 1, . . . ,K fraction of the slot is reserved for data

transmission for the kth user in ith slot. In this case we

have

K∑

k=0

τk,i = T, ∀i = 1, . . . ,M.

Thus the energy harvested by kth transmitter in ith slot

is E
k,i
Harv =

( τ0,i
T

)
E

k,i
h . Without loss of generality, we

assume T = 1 second. Then the transmit power of kth

transmitter in ith slot, Pk,i is given as

Pk,i =

{
τ0,i
τk,i
· (Ek,i

h + Ek
0 ), for i = 1,

τ0,i
τk,i
· Ek,i

h , for i > 1,
(34)

where Ek
0 is the initial energy available in the battery of

the kth transmitter. The aim here is to optimize the time

sharing parameter τk,i such that the instantaneous sum-

rate and minimum-rate of the network are maximized.

2) Myopic policy of [11]: The ith slot of kth transmitter

under the scheduling policy of [11] is shown in Fig. 3.

If E
k,i
h represent the energy available for harvesting in ith

slot for kth transmitter, then the total energy harvested by

the transmitter is E
k,i
Harv =

(
∑k−1

j=1 τj,i

)

E
k,i
h , where we
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Fig. 3. The ith slot of kth transmitter in myopic policy [11].

have assumed the slot length to be 1 second. Then the

transmit power PFD
k,i of the kth transmitter in ith slot is

given as

PFD
k,i =







1
τk,i
·

[(
k−1∑

j=0

τj,i

)

E
k,i
h + Ek

0

]

, for i = 1,

1
τk,i
·

[(
k−1∑

j=0

τj,i

)

E
k,i
h

]

, for i > 1.

(35)

The aim here is to obtain an optimal time sharing among

the transmitters, τk,i such that the instantaneous sum-rate

and minimum-rate of the network are maximized.

VIII. RESULTS AND DISCUSSIONS

In this section, we present simulation results for scheduling

policies discussed in previous sections. All channel links are

subject to independent Rayleigh fading. We assume that all

transmitters have an initial energy of Ek
0 = 2 mJ, k =

1, . . . ,K . The noise power at the receiver is −30 dBm. Unless

otherwise stated, to gain insights, we focus on the case of two

transmitters (K = 2), where the distances of transmitters Tx1

and Tx2 from the receiver are 5 and 10 meters, respectively.

For the simulation purpose, the harvested energies for both the

transmitters are generated uniformly at random, i.e., U [0, 5] mJ

where U [a, b] represents a uniform probability density function

between a and b. The slot length τ is assumed to be 1 second.

A. Optimal Policy with Perfect CSI

1) Rate versus number of slots (M ): For the SRM and

MRM policies with perfect CSI, Fig. 4 shows the average

achievable sum-rate, the rate of Tx1 (R1), and the rate of Tx2

(R2) as a function of total number of slots (M ) averaged over

300 channel realizations. For both the policies, the average

achievable rate increases with the number of slots as expected.

However, the unfair achievable rates in SRM policy can be

observed from the figure. The farther transmitter Tx2 achieves

a much smaller rate than that by the transmitter Tx1 due

to higher path loss. The MRM policy, on the other hand,

improves the user fairness at the cost of reduced sum-rate as

shown in Fig. 5.

From Fig. 4, observe that the rate achieved by Tx1 is

reduced and the rate achieved by Tx2 is increased significantly

in the MRM policy. This is because the MRM policy allows

Tx2 to harvest for more number of slots and transmit with

higher power while restricting the transmit power of Tx1 at

the same time.

Remark: Ideally, the optimization problem in (19a)-(19c)

should result in R1 = R2 = R̄, but this is not the case (as
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Fig. 4. Comparison of achievable rates of transmitters between the SRM and
MRM policies.

5 10 15 20 25 30 35
Number of slots (M)

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

R
1
/R

2

MRM

Fig. 5. Ratio of average achievable rates, R1/R2 versus the total number of
slots (M ) for the MRM policy with perfect CSI.

shown in Fig. 5) if M is small. This is because an entire slot

is allocated to either of the transmitter for the transmission,

and therefore R1 and R2 may not always be equal. However,

as we increase M , the achievable rates by both transmitters

become equal asymptotically as shown in Fig. 5.

2) Effect of path loss exponent (α): Fig. 6 shows the

average achievable rates as a function of α for both the

policies. Observe that as α increases, the average achievable

rate reduces exponentially as hk,i ∝ D−α
i . However the effect

of increasing α is more severe on the farther transmitter Tx2

as D2 > D1, and thus h2,i (includes the path loss) reduces

more rapidly than h1,i. Also, as α increases, the rate achieved

by Tx2 approaches to zero.

The degree of unfairness caused by the SRM policy can

be observed by Fig. 7. We can measure the fairness by

defining a fairness index as F = Rworst

Rbest , where Rworst and

Rbest represent the rates achieved by the worst and the best

transmitter, respectively. A higher value of F represents more
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Fig. 9. Comparison of the effect of the path loss exponent α on transmit
power, M = 4.

fairness. In case of K = 2, we have Rbest = R1 and

Rworst = R2. It is observed that as the path loss exponent

increases, the rate achieved by the farther transmitter reduces

significantly. When α = 4, we have F ≈ 0.012, which means

that the transmitter closer to the receiver achieves a rate that is

82× the rate achieved by the farther transmitter. On the other

hand, the MRM policy introduces more fairness in the system,

which can be observed from Figs. 5 and 7 as FMRM > FSRM.

Specifically, when α = 4, we have F ≈ 0.18, which means

that the transmitter closer to the receiver achieves a rate that is

5.5× the rate achieved by the farther transmitter. In addition,

Fig. 7 shows that the fairness reduces with α, which is more

severe for SRM policy as the slope of fairness index F in the

SRM policy is higher than the slope in the MRM policy.

Figs. 8 and 9 show the effect of path loss exponent on slot

allocation and transmit powers, respectively, and are obtained

for 500 channel realizations with M = 4. In Fig. 8, observe

that for a fixed α, the SRM policy allocates less number of

transmission slots to Tx1 than Tx2, whereas the MRM policy

allocates more number of transmission slots to Tx1 than Tx2.

In addition, Fig. 9 shows that the total transmit power of Tx1 is

higher than that of the Tx2 in SRM policy for fixed α whereas,

the trend is opposite in MRM policy. This joint slot allocation

and transmit power control of MRM policy introduces fairness

among users. Since the number of transmission slots for Tx2

are less in MRM policy, Tx2 now harvests more energy and

transmits with higher power. This results in higher achievable

rate R2 than that for the SRM policy. On the other hand, the

number of transmission slots for Tx1 are increased in MRM

policy, hence Tx1 harvests less energy and transmits with a

lower power. This results in a smaller achievable rate than

that for the SRM policy.

In Fig. 8, observe that as α increases, in the SRM (MRM)

policy, the number of transmission slots allocated to Tx1



12

decreases (increases) and the number of transmission slots

allocated to Tx2 increases (decreases). Also Fig. 9 shows

that the transmit power of Tx1 increases (decreases) and

the transmit power of Tx2 decreases (increases) in the SRM

(MRM) policy. This results in reduced achievable rates for

both transmitters in both the policies.
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Fig. 10. Average achievable rate per transmitter versus the number of
transmitter (K) with the perfect CSI, M = 4.
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Fig. 11. Average achievable sum-rates versus slot length (τ ) under the SRM
and MRM policies.

3) Effect of number of transmitters (K): Fig. 10 shows the

effect of number of transmitters on the average achievable

rate per transmitter for M = 4 slots for the SRM and MRM

policies. It is assumed that the kth transmitter is located at

distance Dk from the receiver such that Dk = DK

K
× k, ∀k,

where DK = 10 m. The energy available for all transmitters

in all the slots is assumed to be the same (E
k,i
H = 3 mJ,

∀k, i). The path loss exponent α is fixed to 2. For K = 1,

the performance of both policies is the same. For the SRM

policy, observe that the achievable rate per transmitter initially

increases with the number of transmitters and then decreases.
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Fig. 12. Average total transmit power versus slot length (τ ) under the SRM
and MRM policies.

0.2 0.4 0.6 0.8 1
Slot length (τ)

1.5

2

2.5

3

A
ve
ra
ge

n
u
m
b
er

of
tr
an

sm
is
si
on

sl
ot
s Tx1 (SRM)

Tx2 (SRM)
Tx1 (MRM)
Tx2 (MRM)

Fig. 13. Average number of transmission slots versus slot length (τ ) under
the SRM and MRM policies.

This is because initially all slots may not be utilized efficiently.

As the number of transmitters increases, the achievable rate

per transmitter increases as the number of slots are sufficient

to schedule them optimally, and even the weakest transmitter

gets a chance to transmit. However, if we further increase the

number of transmitters, the network becomes overcrowded,

and weaker transmitters may not get scheduled at all (as they

have poor channel due to large path loss). Hence the achievable

rate per transmitter reduces.

An increase in the number of transmitters has a negative

effect for the MRM policy. This is because as the number of

transmitter increases, the farther transmitters also get sched-

uled as the scheduler aims to maximize the minimum-rate in

the network. Therefore, some of the harvesting/transmission

slots allocated to transmitters closer to the receiver are reduced

and assigned to farther transmitters in order to satisfy their

target rate. Due to this reassignment, the rates of closer

transmitters reduce, and since the farther transmitters have
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poor channel conditions due to large path loss, their maxi-

mum achievable rate reduces. Hence the achievable rate per

transmitter reduces significantly as we increase the number of

transmitters.

4) Effect of slot length (τ ): Fig. 11 shows the effects of slot

length τ on the average achievable rate for both the policies. In

Fig. 11, observe that, as the τ increases, the average achievable

sum-rate in both policies increases due to the relation Rsum =
∑M

i=1

∑K
k=1 τ log2

(

1 +
|gk,i|

2E
k,i

C

τσ2
n

)

, where E
k,i
C is the energy

consumed by the kth transmitter in ith slot. Also as Fig. 12

shows, the total transmit power of the transmitters decreases

with slot length. This is because the energy availability at all

transmitters is the same for each τ , and as τ increases the

transmit power decreases due to the relation P = E
τ

. Fig. 13

shows that the average number of transmission slots for Tx1

(Tx2) decreases (increases) for the SRM problem with the

increase in τ . Similarly the number of transmission slots for

Tx1 (Tx2) increases (decreases) for the MRM problem with

the increase in τ .

B. Suboptimal Policy with Perfect CSI
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Fig. 14. Comparison of optimal and low-complexity suboptimal SRM and
MRM policies.

Fig. 14 shows the performance of the optimal and the low-

complexity suboptimal algorithms for two users under the

assumption of perfect CSI. Although the suboptimal algorithm

does not perform well as compared to the optimal policy, its

complexity is much less as it only solves a convex optimization

problem twice.

Fig. 10 shows the effect of number of transmitters on the

average achievable rate per transmitter for the suboptimal

policies. As we increase the number of transmitters (K), the

average achievable rate per transmitter first increases and then

reduces rapidly as in optimal policies. The reason of this rapid

decay is that, as we increase K beyond 2, the optimal solution

of the relaxed problem results in wrel
k,i < 0.5 for most (k, i).

In this case, rounding off these wrel
k,i results in wround

k,i = 0,

which makes the transmitters harvest energy in most of the

slots and reduces the average achievable rate per transmitter.

Also, in some slots it may happen that none of the transmitters

transmit and all of them harvest energy.

C. Optimal Policy with Imperfect CSI

In this subsection we present simulation results for both

the optimal policies with imperfect CSI at the receiver. We

obtained the results for the worst-case scenario. We assume

the estimated channel gain ĝk,i ∼ N (0, 1).

2 4 6 8 10 12
Number of slots (M)

0

0.5

1

1.5

2

2.5

3

A
ve
ra
ge

ac
h
ie
va
b
le

su
m
-r
at
e
(b
it
s/
H
z) SRM (ǫ = 0)

SRM (ǫ = 0.1)
SRM (ǫ = 0.3)
MRM (ǫ = 0)
MRM (ǫ = 0.1)
MRM (ǫ = 0.3)

Fig. 15. Average achievable sum-rate versus the number of slots M for SRM
and MRM policies under the bounded channel estimation error.

1) Effect of Uncertainty Bound ǫ: Fig. 15 shows the average

achievable sum-rate versus the number of slots M for different

values of channel uncertainty bound ǫ under both the policies.

The effects of all other parameters except ǫ is the same as

in the case of perfect CSI. As ǫ increases, the worst-case

rate reduces, and hence the average achievable sum rate under

the SRM policy. However, when we solve the problem (33a)-

(33c), the feasible set becomes more stringent than that in

(18a)-(18c), which results in the reduced sum-rate for the

MRM policy.

D. Comparison with Myopic Policies of [9], [11]

Fig. 16 shows the comparison of achievable sum-rate under

the SRM and MRM problems for different policies. In Fig.

16, observe that both the proposed SRM and MRM policies

achieve higher sum-rate than that for myopic policies proposed

in [9] and [11]. This is because our proposed policies optimize

the scheduling over all time slots jointly, rather than optimizing

over each slot separately as in [9] and [11]. This allows a better

utilization of the energy given the channel gains.

In addition, in Fig. 17, observe that the proposed MRM

policy offers a significant amount of fairness among the

transmitters as compared to the MRM policy based on [11].

Although the MRM policy based on [9] gives the best fairness

by ensuring R1 = R2, it reduces the achievable sum-rate of

the network, which can be observed in Fig. 16. Our proposed

MRM policy gives a better sum-rate than the MRM policies of

[9] and [11]. As discussed for Fig. 5 that our proposed MRM
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Fig. 16. Comparison of sum-rates under the SRM and MRM policies.
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Fig. 17. Comparison of rates achieved by Tx1 and Tx2 under SRM and
MRM policies.

policy achieves the best fairness, i.e., R1 = R2 for sufficiently

high number of slots. Thus our MRM policy performs better

than the one in [9] in terms of fairness and sum-rate for higher

values of M .

Complexity of the proposed policy: The GBD algorithm

solves a convex optimization and an MILP problem in each

iteration. The MILPs can be solved using Branch and Bound

algorithms, which are NP-hard and have exponential complex-

ity [36]. The convex optimization problem on the other hand,

can be solved in polynomial time. The myopic policies in [9]

and [11] are convex optimization problems and can be solved

in polynomial time. In our proposed policies, we are gaining

in terms of achievable throughput at the cost of increased

complexity.

IX. FUTURE DIRECTIONS

We now discuss a few future directions of our work:

1) Effects of finite battery: In our system model, the energy

arrival is random, and in each slot, a transmitter decides

whether to store arriving energy in its battery or transmit

its data. If transmitters have finite capacity batteries and

the arrived energy is more than what they can store, the

excess energy would not be saved in the battery and

would get wasted. Moreover, if a transmitter is sending

its data, the arrived energy is not stored in the battery and

gets wasted. Hence the effects of finite capacity battery

on the achievable rates is worth investigating.

2) Energy wastage minimization: The finite battery ca-

pacity results in wastage of harvested energy due to

battery overflow. Thus it is interesting to investigate a

new problem where we wish to maximize the throughput

while keeping the energy wastage below an acceptable

threshold.

X. CONCLUSIONS

We considered an energy harvesting network where multiple

EH transmitters have random energy arrivals and communicate

with the common receiver in a time sharing basis. We assume a

slotted mode of operation. The transmitters employ a harvest-

or-transmit protocol, i.e., in each slot, a transmitter can either

harvest energy from the environment or transmits its data to

the receiver. Under these settings, we obtained an optimal slot

allocation and power control policy maximizing the sum-rate

of all transmitters using the GBD algorithm. We observed

that this policy results in an unfair rate allocation among

transmitters. To induce fairness, we considered a problem of

maximizing the minimum rate in the network. This policy

improves the fairness by assigning energy harvesting slots of

strong transmitters to weak transmitters and thereby increasing

their transmit power. However, this results in the reduced

sum-rate due the large path loss for farther transmitters. We

observed that both transmission policies are greatly affected

by the path loss exponent. We also compared the proposed

policies with myopic policies proposed in the literature and

showed that the proposed policies outperform myopic policies

in terms of achievable rates.

We also considered the case of the imperfect CSI at the

receiver and obtained the robust SRM and MRM policies. We

investigated the effects of the radius of uncertainty region ǫ on

the optimal policies, and it is observed that as ǫ increases, the

achievable rates decrease. We also proposed a low-complexity

suboptimal algorithm for both the SRM and MRM problems.

Although both the suboptimal policies underperform, their

computational complexities are much smaller than that of the

optimal policies.
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