On the existence of superspecial nonhyperelliptic curves of genus 4

Momonari Kudo∗†

June 25, 2019

Abstract

A curve over a perfect field K of characteristic $p > 0$ is said to be *superspecial* if its Jacobian is isomorphic to a product of supersingular elliptic curves over the algebraic closure \overline{K} . In recent years, isomorphism classes of superspecial nonhyperelliptic curves of genus 4 over finite fields in small characteristic have been enumerated. In particular, the non-existence of superspecial curves of genus 4 in characteristic $p = 7$ was proved. In this note, we give an elementary proof of the existence of superspecial nonhyperelliptic curves of genus 4 for infinitely many primes p . Specifically, we prove that the variety $C_p : x^3 + y^3 + w^3 = 2yw + z^2 = 0$ in the projective 3-space with $p > 2$ is a superspecial curve of genus 4 if and only if $p \equiv 2 \pmod{3}$. Our computational results show that C_p with $p \equiv 2 \pmod{3}$ are maximal curves over \mathbb{F}_{p^2} for all $3 \leq p \leq 269$.

Key words— Nonhyperelliptic curves, Superspecial curves, Maximal curves

1 Introduction

Let p be a rational prime greater than 2, and let \mathbb{F}_q denote the finite field of q elements, where q is a power of prime. Let K be an arbitrary perfect field of characteristic p. We denote by \overline{K} the algebraic closure of K. By a curve, we mean a non-singular projective variety of dimension one. Let C be a curve of genus g over K. We say that C is *superspecial* if its Jacobian is isomorphic to the product of g supersingular elliptic curves over \overline{K} . The existence of a superspecial curve over an algebraically closed field in characteristic p implies that there exists a maximal or minimal curve over \mathbb{F}_{p^2} . Here a curve over \mathbb{F}_q is called a maximal (resp. minimal) curve if the number of its \mathbb{F}_q -rational points attains the Hasse-Weil upper (resp. lower) bound $q+1+2g\sqrt{q}$ (resp. $q+1-2g\sqrt{q}$). Conversely, any maximal or minimal curve over \mathbb{F}_{p^2} is superspecial. This work aims to find a lot of superspecial curves and maximal curves for a given genus. Note that for a fixed pair (g, q) , superspecial curves over $\overline{\mathbb{F}_q}$ of genus g are very rare: the number of such curves is finite, whereas the whole set of curves over $\overline{\mathbb{F}_q}$ of genus g has dimension 3g − 3. Thus, finding superspecial curves over \mathbb{F}_q of higher genus g is more difficult than finding those of lower genus g.

In the case of $g \leq 3$ and in the case of hyperelliptic curves, many results on the existence and enumeration of superspecial/maximal curves are known, see e.g., [\[2\]](#page-7-0), [\[17,](#page-8-0) Prop. 4.4] for $g = 1$, [\[7\]](#page-7-1), [\[9\]](#page-8-1), [\[13\]](#page-8-2) for $g = 2$, [\[6\]](#page-7-2), [\[8\]](#page-7-3) for $g = 3$, and [\[15\]](#page-8-3), [\[16\]](#page-8-4) for hyperelliptic curves. In particular, it is well-known that there exist supersingular (and thus superspecial) elliptic curves in characteristic p for infinitely many primes p (see, e.g., [\[14,](#page-8-5) Examples 4.4 and 4.5])). For example, the elliptic curve

[∗]Kobe City College of Technology.

[†] Institute of Mathematics for Industry, Kyushu University. E-mail: m-kudo@math.kyushu-u.ac.jp

 $E_p: y^2 = x^3 + 1$ with $p \ge 5$ is supersingular if and only if $p \equiv 2 \pmod{3}$. Moreover, the set of primes p for which E_p is supersingular has natural density $1/2$.

In the case of *nonhyperelliptic* curves of genus $g = 4$, Fuhrmann-Garcia-Torres proved in [\[4\]](#page-7-4) that there exists a maximal (and superspecial) curve C_0 of $g = 4$ over $K = \mathbb{F}_{5^2}$, and that it gives a unique K-isomorphism class. In [\[10\]](#page-8-6), [\[11\]](#page-8-7) and [\[12\]](#page-8-8), the isomorphism classes of superspecial nonhyperelliptic curves of genus 4 over finite fields are enumerated in characteristic $p \leq 11$. Results in [\[10\]](#page-8-6), [\[11\]](#page-8-7) and [\[12\]](#page-8-8) also show that there exist superspecial nonhyperelliptic curves of genus 4 in characteristic 5 and 11, whereas there does not exist such a curve in characteristic 7.

The objective of this note is to investigate whether a superspecial nonhyperelliptic curve of genus $g = 4$ exists or not for $p \ge 13$. In contrast to the rarity of superspecial curves of higher genus, our main results (Theorem [3.1](#page-6-0) and Corollary [3.2](#page-6-1) below) show the existence of superspecial curves of genus $g = 4$ in characteristic p for half of the primes as well as the case of $g = 1$.

Theorem 3.1. Put $Q := 2yw + z^2$ and $P := x^3 + y^3 + w^3$. Let $C_p = V(Q, P)$ denote the projective zero-locus in $\mathbf{P}^3 = \text{Proj}(\overline{K}[x, y, z, w])$ defined by $Q = 0$ and $P = 0$. Then C_p is a superspecial nonhyperelliptic curve of genus 4 if and only if $p \equiv 2 \pmod{3}$.

We prove Theorem [3.1](#page-6-0) by simple computations in linear and fundamental commutative algebra and in combinatorics together with results in $[10]$, $[11]$ and $[12]$ (so this note also complements results in these three previous papers). As a corollary of this theorem, we have the following:

Corollary 3.2. There exist superspecial nonhyperelliptic curves of genus 4 in characteristic p for infinitely many primes p. The set of primes p for which C_p is superspecial has natural density $1/2$.

Theorem [3.1](#page-6-0) and Corollary [3.2](#page-6-1) also give a partial answer to the genus 4 case of the problem proposed by Ekedahl in 1987, see p. 173 of [\[3\]](#page-7-5). In Section [4,](#page-6-2) we give a table of the number of \mathbb{F}_{p^2} rational points on C_p for $3 \leq p \leq 269$ obtained by using a computer algebra system Magma [\[1\]](#page-7-6). As computational results, we found maximal nonhyperelliptic curves of genus 4 over \mathbb{F}_{p^2} . Specifically, we have that for all $3 \le p \le 269$ with $p \equiv 2 \pmod{3}$, the curves C_p are maximal over \mathbb{F}_{p^2} .

Acknowledgments

The author thanks Shushi Harashita for his comments to the preliminary version of this note. He gave the author information on the existence of superspecial curves of genus g over \mathbb{F}_q in the case of $g \leq 3$, in the case of $(g, q) = (4, 13)$, and in the hyperelliptic case. He also pointed out that computing the rational points of our curves is reduced into solving a diagonal equation.

2 Superspecialty of curves $x^3 + y^3 + w^3 = 2yw + z^2 = 0$

As in the previous section, let K be a perfect field of characteristic $p > 2$. Let $K[x, y, z, w]$ denote the polynomial ring of the four variables x, y, z and w over K. As examples of superspecial curves of genus $g = 4$ in characteristic $p = 5$ and 11, we have the projective varieties in the projective 3-space $\mathbf{P}^3 = \text{Proj}(\overline{K}[x, y, z, w])$ defined by the same systems of equations: $x^3 + y^3 + w^3 = 0$ and $2yw + z^2 = 0$, see [\[10,](#page-8-6) Exmaple 6.2.1] and [\[11,](#page-8-7) Proposition 4.4.4].

In this section, we shall prove that the variety $x^3 + y^3 + w^3 = 2yw + z^2 = 0$ over K is (resp. not) a superspecial curve of genus 4 if $p \equiv 2 \pmod{3}$ (resp. $p \equiv 1 \pmod{3}$). Throughout this section, we set $Q := 2yw + z^2$ and $P := x^3 + y^3 + w^3$. Let C_p denote the projective variety $V(Q, P)$ in \mathbf{P}^3

defined by $P = Q = 0$ in characteristic p. First, we prove that the variety C_p is non-singular (resp. singular) if $p > 3$ (resp. $p = 3$).

Lemma 2.1. If $p > 3$ (resp. $p = 3$), then the variety $C_p = V(Q, P)$ is non-singular (resp. singular). *Proof.* Let $J(P,Q)$ denote the set of all the minors of degree 2 of the Jacobian matrix

$$
\begin{pmatrix}\n\frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} & \frac{\partial P}{\partial z} & \frac{\partial P}{\partial w} \\
\frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} & \frac{\partial Q}{\partial z} & \frac{\partial Q}{\partial w}\n\end{pmatrix} = \begin{pmatrix}\n3x^2 & 3y^2 & 0 & 3w^2 \\
0 & 2w & 2z & 2y\n\end{pmatrix}.
$$

Namely, the set $J(P,Q)$ consists of the following 6 elements:

$$
f_1 := \frac{\partial P}{\partial x} \cdot \frac{\partial Q}{\partial y} - \frac{\partial P}{\partial y} \cdot \frac{\partial Q}{\partial x} = 6x^2 w,
$$

\n
$$
f_2 := \frac{\partial P}{\partial x} \cdot \frac{\partial Q}{\partial z} - \frac{\partial P}{\partial z} \cdot \frac{\partial Q}{\partial x} = 6x^2 z,
$$

\n
$$
f_3 := \frac{\partial P}{\partial x} \cdot \frac{\partial Q}{\partial w} - \frac{\partial P}{\partial w} \cdot \frac{\partial Q}{\partial x} = 6x^2 y,
$$

\n
$$
f_4 := \frac{\partial P}{\partial y} \cdot \frac{\partial Q}{\partial z} - \frac{\partial P}{\partial z} \cdot \frac{\partial Q}{\partial y} = 6y^2 z,
$$

\n
$$
f_5 := \frac{\partial P}{\partial y} \cdot \frac{\partial Q}{\partial w} - \frac{\partial P}{\partial w} \cdot \frac{\partial Q}{\partial y} = 6y^3 - 6w^3
$$

\n
$$
f_6 := \frac{\partial P}{\partial z} \cdot \frac{\partial Q}{\partial w} - \frac{\partial P}{\partial w} \cdot \frac{\partial Q}{\partial z} = -6zw^2.
$$

,

Assume $p > 3$. It suffices to show that x, y, z and w belong to the radical of the ideal generated by P, Q and $J(P, Q)$. By straightforward computations, we have

$$
x^{2}P - (6^{-1}y^{2})f_{3} - (6^{-1}w^{2})f_{1} = x^{5},
$$

\n
$$
yP - (6^{-1}x)f_{3} - (6^{-1}y)f_{5} = 2y^{4},
$$

\n
$$
(-2yzw + z^{3})Q + (2 \cdot 3^{-1}w^{2})f_{4} = z^{5},
$$

\n
$$
wP - (6^{-1}x)f_{1} - (6^{-1}w)f_{5} = 2w^{4},
$$

which belong to the ideal $\langle P, Q, J(P, Q) \rangle$ in $K[x, y, z, w]$. Thus, x, y, z and w belong to its radical.
If $p = 3$, then $J(P, Q) = \{0\}$, and hence all the points on $V(Q, P)$ are singular points. If $p = 3$, then $J(P, Q) = \{0\}$, and hence all the points on $V(Q, P)$ are singular points.

In the following, we suppose $p > 3$. It is shown in [\[10\]](#page-8-6) that we can decide whether C_p is superspecial or not by computing the coefficients of certain monomials in $(QP)^{p-1}$.

Proposition 2.2 ([\[10\]](#page-8-6), Corollary 3.1.6). With notation as above, the curve C_p is superspecial if and only if the coefficients of all the following 16 monomials of degree $5(p-1)$ in $(QP)^{p-1}$ are zero:

$$
\begin{array}{ccc}(x^2yzw)^{p-1}, & x^{2p-1}y^{p-2}z^{p-1}w^{p-1}, & x^{2p-1}y^{p-1}z^{p-2}w^{p-1}, & x^{2p-1}y^{p-1}z^{p-1}w^{p-2},\\ x^{p-2}y^{2p-1}z^{p-1}w^{p-1}, & (xy^2zw)^{p-1}, & x^{p-1}y^{2p-1}z^{p-2}w^{p-1}, & x^{p-1}y^{2p-1}z^{p-1}w^{p-2},\\ x^{p-2}y^{p-1}z^{2p-1}w^{p-1}, & x^{p-1}y^{p-2}z^{2p-1}w^{p-1}, & (xyz^2w)^{p-1}, & x^{p-1}y^{p-1}z^{2p-1}w^{p-2},\\ x^{p-2}y^{p-1}z^{p-1}w^{2p-1}, & x^{p-1}y^{p-2}z^{p-1}w^{2p-1}, & x^{p-1}y^{p-1}z^{p-2}w^{2p-1}. & (xyz^w)^{p-1}.\end{array}
$$

To prove Theorem [3.1](#page-6-0) stated in Section [1](#page-0-0) (and in Section [3\)](#page-6-3), we compute the 16 coefficients given in Proposition [2.2.](#page-2-0) Note that we have $QP = x^3z^2 + y^3z^2 + 2x^3yw + 2y^4w + z^2w^3 + 2yw^4$, and

$$
(QP)^{p-1} = \sum_{a+b+c+d+e+f=p-1} {p-1 \choose a,b,c,d,e,f} (x^3z^2)^a (y^3z^2)^b (2x^3yw)^c (2y^4w)^d (z^2w^3)^e (2yw^4)^f
$$

$$
= \sum_{a+b+c+d+e+f=p-1} {p-1 \choose a,b,c,d,e,f} (x^{3a}z^{2a}) (y^{3b}z^{2b}) (2^cx^{3c}y^cw^c) (2^dy^{4d}w^d) (z^{2e}w^{3e}) (2^fy^f w^{4f})
$$

$$
= \sum_{a+b+c+d+e+f=p-1} 2^{c+d+f} \cdot {p-1 \choose a,b,c,d,e,f} x^{3a+3c} y^{3b+c+4d+f} z^{2a+2b+2e} w^{c+d+3e+4f}
$$
 (2.1)

by the multinomial theorem. To express $(QP)^{p-1}$ as a sum of the form

$$
(QP)^{p-1} = \sum_{(i,j,k,\ell) \in (\mathbb{Z}_{\ge 0})^{\oplus 4}} c_{i,j,k,\ell} x^i y^j z^k w^{\ell},
$$

we consider the linear system

$$
\begin{cases}\n a+b+c+d+e+f=p-1, \\
 3a+3c=i, \\
 3b+c+4d+f=j, \\
 2a+2b+2e=k, \\
 c+d+3e+4f=\ell,\n\end{cases}
$$
\n(2.2)

and put

$$
S(i, j, k, \ell) := \{(a, b, c, d, e, f) \in [0, p - 1]^{\oplus 6} : (a, b, c, d, e, f) \text{ satisfies (2.2)}\}\
$$
 (2.3)

for each $(i, j, k, \ell) \in (\mathbb{Z}_{\geq 0})^{\oplus 4}$. Using the notation $S(i, j, k, \ell)$, we have

$$
(QP)^{p-1} = \sum_{(i,j,k,\ell) \in \left(\mathbb{Z}_{\geq 0}\right)^{\oplus 4}} \left(\sum_{(a,b,c,d,e,f) \in S(i,j,k,\ell)} 2^{c+d+f} \cdot \binom{p-1}{a,b,c,d,e,f} \right) x^i y^j z^k w^\ell. \tag{2.4}
$$

Lemma 2.3. With notation as above, the coefficients of the monomials $x^i y^j z^{p-2} w^{\ell}$ and $x^i y^j z^{2p-1} w^{\ell}$ in $(QP)^{p-1}$ are zero for all $(i, j, \ell) \in (\mathbb{Z}_{\geq 0})^{\oplus 3}$.

Proof. Recall from [\(2.1\)](#page-3-1) that the z-exponent of each monomial in $(QP)^{p-1}$ is $2a + 2b + 2e$, which is an even number. On the other hand, the z-exponents of the monomials $x^i y^j z^{p-2} w^{\ell}$ and $x^i y^j z^{2p-1} w^{\ell}$ are odd numbers, and thus their coefficients in $(QP)^{p-1}$ are all zero.

Let M be the set of the 16 monomials given in Proposition [2.2,](#page-2-0) and set

$$
E(\mathcal{M}) := \{ (i, j, k, \ell) \in (\mathbb{Z}_{\geq 0})^{\oplus 4} : x^i y^j z^k w^\ell = m \text{ for some } m \in \mathcal{M} \},
$$

which is the set of the exponent vectors of the monomials in \mathcal{M} .

Lemma 2.4. Assume $p \equiv 2 \pmod{3}$. Then we have $S(i, j, k, \ell) = \emptyset$ for any $(i, j, k, \ell) \in E(\mathcal{M})$.

Proof. Note that for each $(i, j, k, \ell) \in E(\mathcal{M})$, we have $i + j + k + \ell = 5(p - 1)$, see Proposition [2.2.](#page-2-0) Using matrices, we write the system (2.2) as

$$
\begin{pmatrix}\n1 & 1 & 1 & 1 & 1 & 1 \\
3 & 0 & 3 & 0 & 0 & 0 \\
0 & 3 & 1 & 4 & 0 & 1 \\
2 & 2 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 3 & 4\n\end{pmatrix}\n\begin{pmatrix}\na \\
b \\
c \\
d \\
e \\
f\n\end{pmatrix} =\n\begin{pmatrix}\np-1 \\
i \\
j \\
k \\
\ell\n\end{pmatrix},
$$
\n(2.5)

whose extended coefficient matrix is transformed as follows:

$$
\left(\begin{array}{ccccccc}\n1 & 1 & 1 & 1 & 1 & p-1 \\
3 & 0 & 3 & 0 & 0 & 0 & i \\
0 & 3 & 1 & 4 & 0 & 1 & j \\
2 & 2 & 0 & 0 & 2 & 0 & k \\
0 & 0 & 1 & 1 & 3 & 4 & \ell\n\end{array}\right) \longrightarrow \left(\begin{array}{ccccccc}\n1 & 1 & 1 & 1 & 1 & 1 & p-1 \\
0 & 3 & 1 & 4 & 0 & 1 & j \\
0 & 0 & 1 & 1 & -3 & -2 & i+j-3(p-1) \\
0 & 0 & 0 & 0 & 6 & 6 & \ell - (i+j-3(p-1)) \\
0 & 0 & 0 & 0 & 0 & 0 & 0\n\end{array}\right)
$$

Considering modulo 3, we have the following linear system over \mathbb{F}_3 :

$$
\begin{pmatrix}\n1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}\n\begin{pmatrix}\na' \\
b' \\
c' \\
d' \\
e' \\
f'\n\end{pmatrix} =\n\begin{pmatrix}\np-1 \\
j \\
i+j \\
\ell-(i+j) \\
0\n\end{pmatrix},
$$

which is equivalent to

$$
\begin{pmatrix}\n1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}\n\begin{pmatrix}\na' \\
b' \\
c' \\
d' \\
e' \\
f'\n\end{pmatrix} =\n\begin{pmatrix}\np-1 \\
j \\
i \\
i \\
\ell - (i+j) \\
0\n\end{pmatrix}.
$$
\n(2.6)

Note that the system [\(2.6\)](#page-4-0) over \mathbb{F}_3 has a solution if and only if $i \equiv 0 \pmod{3}$ and $\ell \equiv j \pmod{3}$. We claim that if $p \equiv 2 \pmod{3}$, the original system (2.5) over \mathbb{Z} has no solution in $[0, p-1]$ ^{⊕6} for any $(i, j, k, \ell) \in E(\mathcal{M})$. Indeed, if $p \equiv 2 \pmod{3}$ and if the system (2.5) has a solution in $[0, p - 1]$ ^{⊕6} for some $(i, j, k, l) \in E(\mathcal{M})$, the system [\(2.6\)](#page-4-0) has a solution. By Lemma [2.3,](#page-3-2) we may assume $k \neq p-2$ and $k \neq 2p-1$, i.e., $k = 2p-2$ or $k = p-1$. Since $i \equiv 0 \pmod{3}$ and since $p \equiv 2$ (mod 3), the integer i is equal to $2p - 1$ or $p - 2$, and thus $(i, j, k, \ell) = (2p - 1, p - 2, p - 1, p - 1)$, $(2p-1, p-1, p-1, p-2), (p-2, 2p-1, p-1, p-1)$ or $(p-2, p-1, p-1, 2p-1)$. However, any of the above four candidates for (i, j, k, ℓ) does not satisfy $\ell \equiv j \pmod{3}$, which is a contradiction. \Box

Proposition 2.5. Assume $p \equiv 2 \pmod{3}$. Then the curve $C_p = V(Q, P)$ is superspecial.

Proof. It follows from Lemma [2.4](#page-3-3) that the coefficient of $x^i y^j z^k w^{\ell}$ in [\(2.4\)](#page-3-4) is zero for each $(i, j, k, \ell) \in$ $E(\mathcal{M})$. By Proposition [2.2,](#page-2-0) the curve $V(Q, P)$ is superspecial. It follows from the proof of Lemma [2.4](#page-3-3) that (2.2) is equivalent to the following system:

$$
\begin{cases}\n a+b+c+d+e+f=p-1, \\
 3b+c+4d+f=j, \\
 c+d-3e-2f=i+j-3(p-1), \\
 6e+6f=\ell-(i+j-3(p-1)).\n\end{cases}
$$
\n(2.7)

Next, we consider the case of $p \equiv 1 \pmod{3}$.

Lemma 2.6. Assume $p \equiv 1 \pmod{3}$. Then we have $\#S(p-1, p-1, 2p-2, p-1) = 1$. In other words, the system (2.7) with $(i, j, k, \ell) = (p-1, p-1, 2p-2, p-1)$ has a unique solution in $[0, p-1]^{\oplus 6}$. The solution is given by

$$
(a, b, c, d, e, f) = ((p-1)/3, (p-1)/3, 0, 0, (p-1)/3, 0).
$$
 (2.8)

Proof. The system to be solved with $(i, j, k, \ell) = (p - 1, p - 1, 2p - 2, p - 1)$ is given by

$$
(2.9)
$$

$$
3b + c + 4d + f = p - 1,
$$
\n(2.10)

$$
c + d - 3e - 2f = -(p - 1),
$$
\n(2.11)

$$
\begin{cases}\n e + a & \text{or } 2j = (p - 1), \\
 6e + 6f = 2(p - 1)\n\end{cases}
$$
\n(2.11)

with $(a, b, c, d, e, f) \in [0, p - 1]^{ $\oplus 6}$. Since $c + d - 3e - 2f = c + d + f - (3e + 3f)$, it follows from$ [\(2.11\)](#page-5-1) and [\(2.12\)](#page-5-1) that $c + d + f = 0$, and thus $c = d = f = 0$. By [\(2.10\)](#page-5-1) and (2.12), we have $b = e = (p-1)/3$. From [\(2.9\)](#page-5-1), we also have $a = (p-1)/3$.

Lemma 2.7. Assume $p \equiv 1 \pmod{3}$. Then the coefficient of the monomial $x^{p-1}y^{p-1}z^{2p-2}w^{p-1}$ in $(QP)^{p-1}$ is not zero.

Proof. Let $c_{p-1,p-1,2p-2,p-1}$ be the coefficient of $x^{p-1}y^{p-1}z^{2p-2}w^{p-1}$ in $(QP)^{p-1}$. Recall from [\(2.4\)](#page-3-4) that $c_{p-1,p-1,2p-2,p-1}$ is given by

$$
\sum_{(a,b,c,d,e,f)\in S(p-1,p-1,2p-2,p-1)} 2^{c+d+f} \cdot {p-1 \choose a,b,c,d,e,f},
$$

where $S(p-1, p-1, 2p-2, p-1)$ is defined in [\(2.3\)](#page-3-5). By Lemma [2.6,](#page-5-2) the set $S(p-1, p-1, 2p-2, p-1)$ consists of only the element given by [\(2.8\)](#page-5-1), and hence

$$
c_{p-1,p-1,2p-2,p-1} = \frac{(p-1)!}{\left(\frac{p-1}{3}\right)! \left(\frac{p-1}{3}\right)! \left(\frac{p-1}{3}\right)!},
$$

which is not divisible by p. \square

Proposition 2.8. Assume $p \equiv 1 \pmod{3}$. Then the curve $C_p = V(Q, P)$ is not superspecial.

Proof. It follows from Lemma [2.7](#page-5-3) that the coefficient of $x^{p-1}y^{p-1}z^{2p-2}w^{p-1}$ in $(QP)^{p-1}$ is not zero. By Proposition [2.2,](#page-2-0) the curve $V(Q, P)$ is not superspecial.

3 Proofs of main results and some further problems

As in the previous section, let K be a perfect field of characteristic $p > 2$. Here, we re-state Theorem [3.1](#page-6-0) and Corollary [3.2](#page-6-1) in Section [1](#page-0-0) and prove them:

Theorem 3.1. Put $Q := 2yw + z^2$ and $P := x^3 + y^3 + w^3$. Let $C_p = V(Q, P)$ denote the projective zero-locus in $\mathbf{P}^3 = \text{Proj}(\overline{K}[x, y, z, w])$ defined by $Q = 0$ and $P = 0$. Then C_p is a superspecial nonhyperelliptic curve of genus 4 if and only if $p \equiv 2 \pmod{3}$.

Proof. Recall from Lemma [2.1](#page-2-1) that C_p is singular if $p = 3$, and non-singular if $p > 3$. We may assume $p > 3$. Since C_p is the set of the zeros of the quadratic form Q and the cubic form P over K, it is a nonhyperelliptic curve of genus 4 over K, see [\[10,](#page-8-6) Section 2]. It follows from Propositions [2.5](#page-4-2) and [2.8](#page-5-4) that the non-singular curve C_p is superspecial if and only if $p \equiv 2 \pmod{3}$.

Corollary 3.2. There exist superspecial nonhyperelliptic curves of genus 4 in characteristic p for infinitely many primes p. The set of primes p for which C_p is superspecial has natural density $1/2$.

Proof. The first claim immediately follows from Theorem [3.1](#page-6-0) and Dirichlet's Theorem. The second claim is deduced from the fact that the natural density of primes equal to 2 modulo 3 is $1/\varphi(3) = 1/2$, where φ is Euler's totient function.

Problem 3.3. Does there exist a superspecial curve of genus 4 in characteristic p for any $p > 13$ with $p \equiv 1 \pmod{3}$? Cf. the non-existence for $p = 7$ is already shown in [\[10\]](#page-8-6), whereas the existence for $p = 13$ is shown, see e.g., [\[5\]](#page-7-7).

Problem 3.4. Find a different condition from $p \equiv 2 \pmod{3}$ such that there exists a nonhyperelliptic superspecial curve of genus 4 in characteristic p. Cf. in the case of $q = 1$, the elliptic curve $E: y^2 = x^3 + x$ is supersingular if $p \equiv 3 \pmod{4}$ and ordinary if $p \equiv 1 \pmod{4}$. (Also for hyperelliptic curves, such conditions are already found, see e.g., $[15]$ and $[16]$.)

4 Application: Finding maximal curves over $K = \mathbb{F}_{p^2}$ for large p

In the following, we set $K := \mathbb{F}_{p^2}$ with $p > 2$. It is known that any maximal or minimal curve over \mathbb{F}_{p^2} is supersepcial. Conversely, any superspecial curve over an algebraically closed field descends to a maximal or minimal curve over \mathbb{F}_{p^2} , see the proof of [\[10,](#page-8-6) Proposition 2.2.1]. Recall from Theorem [3.1](#page-6-0) that $C_p = V(Q, P)$ with $Q = 2yw + z^2$ and $P = x^3 + y^3 + w^3$ is a superspecial curve of genus 4 if and only if $p \equiv 2 \pmod{3}$. We computed the number of \mathbb{F}_{p^2} -rational points on C_p for $3 \leq p \leq 269$ using a computer algebra system Magma [\[1\]](#page-7-6). Table [1](#page-7-8) shows our computational results for $3 \le p \le 100$ $3 \le p \le 100$ $3 \le p \le 100$. We see from Table 1 that any superspecial C_p is maximal over \mathbb{F}_{p^2} for $3 \le p \le 100$ (also for $101 \le p \le 269$, but omit to write them in the table). From our computational results, let us give a conjecture on the existence of \mathbb{F}_{p^2} -maximal nonhyperelliptic curves of genus 4.

Conjecture 4.1. For any p with $p \equiv 2 \pmod{3}$, the curve C_p over \mathbb{F}_{p^2} is maximal.

Remark 4.2. We can reduce computing the number of \mathbb{F}_{p^2} -rational points on C_p into computing that of zeros of a *diagonal* equation. Specifically, by $2yw + z^2 = 0$ and $x^3 + y^3 + w^3 = 0$, we have $x^3 + y^3 + (-z^2/(2y)^{-1})^3 = 0$ and thus $8x^3y^3 + 8y^6 - z^6 = 0$ if $y \neq 0$. Putting $X = xy$, one has the diagonal equation $8X^3 + 8y^6 - z^6 = 0$. Hence, we may apply known methods to count the number of rational points of diagonal equations, see e.g., [\[18\]](#page-8-9) and [\[19\]](#page-8-10). At the time of this writing (as of April 24, 2018), however, we have not succeeded in applying any known method.

			$P \leftarrow P$				
\boldsymbol{p}	$p \mod 3$	S.sp. or not	$\#C_p(\mathbb{F}_{p^2})$	\boldsymbol{p}	$p \mod{3}$	S.sp. or not	$\#C_p(\mathbb{F}_{p^2})$
3	$\overline{0}$	Not S.sp.	10	43	$\mathbf{1}$	Not S.sp.	1938
$\overline{5}$	$\overline{2}$	S.sp.	66 (Max.)	47	$\overline{2}$	S.sp.	$2586 \; (Max.)$
$\,7$	1	Not S.sp.	48	53	$\overline{2}$	S.sp.	3234 (Max.)
13	1	Not S.sp.	192	59	$\overline{2}$	S.sp.	3954 (Max.)
11	$\overline{2}$	S.sp.	$210 \ (Max.)$	61	$\mathbf{1}$	Not S.sp.	3648
17	$\overline{2}$	S.sp.	$426 \; (Max.)$	67	$\mathbf{1}$	Not S.sp.	4368
19	1	Not S.sp.	336	71	$\overline{2}$	S.sp.	5610 (Max.)
$23\,$	$\overline{2}$	S.sp.	$714 \; (Max.)$	73	$\mathbf{1}$	Not S.sp.	5376
$29\,$	$\overline{2}$	S.sp.	$1074 \; (Max.)$	79	$\mathbf{1}$	Not S.sp.	6384
31	1	Not S.sp.	1146	83	$\overline{2}$	S.sp.	$7554 \; (Max.)$
37	1	S.sp.	1334	89	$\overline{2}$	S.sp.	8634 (Max.)
$41\,$	$\overline{2}$	S.sp.	2010 (Max.)	$97\,$	1	Not S.sp.	9408

Table 1: The number of \mathbb{F}_{p^2} -rational points on $C_p = V(Q, P)$ for $3 \le p \le 100$, where $Q = 2yw + z^2$ and $P = x^3 + y^3 + w^3$. We denote by $\#C_p(\mathbb{F}_{p^2})$ the number of \mathbb{F}_{p^2} -rational points on C_p for each p.

References

- [1] Bosma, W., Cannon, J. and Playoust, C.: The Magma algebra system. I. The user language, Journal of Symbolic Computation 24, 235–265 (1997)
- [2] Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenk¨orper, Abh. Math. Sem. Univ. Hamburg 14 (1941), no. 1, 197–272.
- [3] Ekedahl, T.: On supersingular curves and abelian varieties, Math. Scand. 60 (1987), 151–178.
- [4] Fuhrmann R., Garcia, A., Torres, F.: On maximal curves, J. of Number Theory 67, 29–51, 1997
- [5] van der Geer, et al.: Tables of Curves with Many Points, 2009, http://www.manypoints.org, Retrieved at 20th April, 2018.
- [6] Hashimoto K.: Class numbers of positive definite ternary quaternion Hermitian forms, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 10, 490–493.
- [7] Hashimoto, K. and Ibukiyama, T.: On class numbers of positive definite binary quaternion Hermitian forms. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 695–699 (1982).
- [8] Ibukiyama, T.: On rational points of curves of genus 3 over finite fields, Tohoku Math. J. 45 (1993), 311-329.
- [9] Ibukiyama, T. and Katsura, T.: On the field of definition of superspecial polarized abelian varieties and type numbers, Compositio Math. 91 (1994), no. 1, 37–46.
- [10] Kudo, M. and Harashita, S.: Superspecial curves of genus 4 in small characteristic, Finite Fields and Their Applications, 45, 131–169, 2017.
- [11] Kudo, M. and Harashita, S.: Enumerating superspecial curves of genus 4 over prime fields, arXiv: 1702.05313 [math.AG], 2017.
- [12] Kudo, M. and Harashita, S.: Enumerating Superspecial Curves of Genus 4 over Prime Fields (abstract version of [\[11\]](#page-8-7)), In: Proceedings of The Tenth International Workshop on Coding and Cryptography 2017 (WCC2017), September 18-22, 2017, Saint-Petersburg, Russia, available at http://wcc2017.suai.ru/proceedings.html
- [13] Serre, J.-P.: Nombre des points des courbes algebrique sur \mathbb{F}_q , Sém. Théor. Nombres Bordeaux (2) 1982/83, 22 (1983).
- [14] Silverman, J. H.: The Arithmetic of Elliptic curves, GTM 106, Springer-Verlag New York, 2009.
- [15] Tafazolian, S.: A note on certain maximal hyperelliptic curves, Finite Fields and Their Applications, 18, 1013–1016, 2012.
- [16] Tafazolian, S. and Torres, F.: On the curve $y^n = x^m + x$ over finite fields, Journal of Number Theory, 145, 51–66, 2014.
- [17] Xue, J., Yang, T.-C. and Yu, C.-F.: On superspecial abelian surfaces over finite fields, Doc. Math. 21 (2016) 1607–1643.
- [18] Wan, D.: Zeros of Diagonal Equations over Finite Fields, Proceedings of the American Mathematical Society, Vol. 103, No. 4 (1988), pp. 1049-1052.
- [19] Weil, A.: Numbers of solutions of equations in finite fields, Bulletin of the American Mathematical Society, Vol. 55, No. 5 (1949), 497-508.