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Abstract

A curve over a perfect field K of characteristic p > 0 is said to be superspecial if its Jacobian
is isomorphic to a product of supersingular elliptic curves over the algebraic closure K. In recent
years, isomorphism classes of superspecial nonhyperelliptic curves of genus 4 over finite fields
in small characteristic have been enumerated. In particular, the non-existence of superspecial
curves of genus 4 in characteristic p = 7 was proved. In this note, we give an elementary proof
of the existence of superspecial nonhyperelliptic curves of genus 4 for infinitely many primes p.
Specifically, we prove that the variety C,, : 23 +y3 + w3 = 2yw + 2% = 0 in the projective 3-space
with p > 2 is a superspecial curve of genus 4 if and only if p = 2 (mod 3). Our computational
results show that C}, with p =2 (mod 3) are mazimal curves over Fp2 for all 3 < p < 269.
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1 Introduction

Let p be a rational prime greater than 2, and let IF, denote the finite field of ¢ elements, where ¢ is a
power of prime. Let K be an arbitrary perfect field of characteristic p. We denote by K the algebraic
closure of K. By a curve, we mean a non-singular projective variety of dimension one. Let C be a
curve of genus g over K. We say that C' is superspecial if its Jacobian is isomorphic to the product
of g supersingular elliptic curves over K. The existence of a superspecial curve over an algebraically
closed field in characteristic p implies that there exists a maximal or minimal curve over [F,.. Here
a curve over F, is called a maximal (resp. minimal) curve if the number of its F,-rational points
attains the Hasse-Weil upper (resp. lower) bound ¢ + 1 + 2¢,/q (resp. ¢ + 1 — 2g,/q). Conversely,
any maximal or minimal curve over I, is superspecial. This work aims to find a lot of superspecial
curves and maximal curves for a given genus. Note that for a fixed pair (g, q), superspecial curves
over F_q of genus ¢ are very rare: the number of such curves is finite, whereas the whole set of curves
over F_q of genus g has dimension 3g — 3. Thus, finding superspecial curves over F, of higher genus
g is more difficult than finding those of lower genus g.

In the case of g < 3 and in the case of hyperelliptic curves, many results on the existence and
enumeration of superspecial/maximal curves are known, see e.g., [2], [I7, Prop. 4.4] for g = 1, [1],
[@, [13] for g = 2, [6], [§] for ¢ = 3, and [I5], [I6] for hyperelliptic curves. In particular, it is
well-known that there exist supersingular (and thus superspecial) elliptic curves in characteristic p
for infinitely many primes p (see, e.g., [14, Examples 4.4 and 4.5])). For example, the elliptic curve
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E, : y* = 23 + 1 with p > 5 is supersingular if and only if p = 2 (mod 3). Moreover, the set of
primes p for which E, is supersingular has natural density 1/2.

In the case of nonhyperelliptic curves of genus g = 4, Fuhrmann-Garcia-Torres proved in [4] that
there exists a maximal (and superspecial) curve Cy of g = 4 over K = Fx2, and that it gives a unique
K-isomorphism class. In [I0], [I1] and [12], the isomorphism classes of superspecial nonhyperelliptic
curves of genus 4 over finite fields are enumerated in characteristic p < 11. Results in [10], [1I] and
[12] also show that there exist superspecial nonhyperelliptic curves of genus 4 in characteristic 5
and 11, whereas there does not exist such a curve in characteristic 7.

The objective of this note is to investigate whether a superspecial nonhyperelliptic curve of
genus g = 4 exists or not for p > 13. In contrast to the rarity of superspecial curves of higher genus,
our main results (Theorem [B1] and Corollary below) show the existence of superspecial curves
of genus g = 4 in characteristic p for half of the primes as well as the case of g = 1.

Theorem 3.1. Put Q :=2yw + 22 and P := 23+ y3 +wd. Let C, = V(Q, P) denote the projective
zero-locus in P3 = Proj(K[z,y,z,w]) defined by Q@ = 0 and P = 0. Then C, is a superspecial
nonhyperelliptic curve of genus 4 if and only if p =2 (mod 3).

We prove Theorem [B.1] by simple computations in linear and fundamental commutative algebra
and in combinatorics together with results in [I0], [I1] and [12] (so this note also complements
results in these three previous papers). As a corollary of this theorem, we have the following:

Corollary 3.2. There exist superspecial nonhyperelliptic curves of genus 4 in characteristic p for
infinitely many primes p. The set of primes p for which Cy, is superspecial has natural density 1/2.

Theorem B.1] and Corollary also give a partial answer to the genus 4 case of the problem
proposed by Ekedahl in 1987, see p. 173 of [3]. In Section [, we give a table of the number of F -
rational points on C), for 3 < p < 269 obtained by using a computer algebra system Magma [1]. As
computational results, we found maximal nonhyperelliptic curves of genus 4 over 2. Specifically,
we have that for all 3 < p <269 with p =2 (mod 3), the curves €}, are maximal over [F..
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2 Superspecialty of curves 23 + % + w? = 2yw + 22 = 0

As in the previous section, let K be a perfect field of characteristic p > 2. Let K[z, y, z, w| denote
the polynomial ring of the four variables x, ¢, z and w over K. As examples of superspecial curves
of genus g = 4 in characteristic p = 5 and 11, we have the projective varieties in the projective
3-space P? = Proj(K|[z,vy, z,w]) defined by the same systems of equations: x3 + y3 + w3 = 0 and
2yw + 2% = 0, see [10, Exmaple 6.2.1] and [T, Proposition 4.4.4].

In this section, we shall prove that the variety 3+ y3 +w? = 2yw + 22 = 0 over K is (resp. not)
a superspecial curve of genus 4 if p = 2 (mod 3) (resp. p = 1 (mod 3)). Throughout this section,
we set @ := 2yw + 2% and P := 23 + y3 + w3. Let C, denote the projective variety V(Q, P) in P3



defined by P = () = 0 in characteristic p. First, we prove that the variety C), is non-singular (resp.
singular) if p > 3 (resp. p = 3).

Lemma 2.1. Ifp > 3 (resp. p = 3), then the variety C, = V(Q, P) is non-singular (resp. singular).

Proof. Let J(P,Q) denote the set of all the minors of degree 2 of the Jacobian matrix
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Assume p > 3. It suffices to show that z, y, z and w belong to the radical of the ideal generated by
P, Q and J(P,Q). By straightforward computations, we have

2?P — (671 fs — (67w fi = 2P,
yP — (67 2) f5 — (67'y) f5

(—2yzw + Z3)Q +(2- 3_1w2)f4 z5,

wP — (67'2)fi — (67 w)fs = 2w’

Il
DO
<

which belong to the ideal (P, Q, J(P,Q)) in K[x,y, z,w]. Thus, x, y, z and w belong to its radical.
If p = 3, then J(P,Q) = {0}, and hence all the points on V(Q, P) are singular points. O

In the following, we suppose p > 3. It is shown in [I0] that we can decide whether C), is
superspecial or not by computing the coefficients of certain monomials in (QP)P~1.

Proposition 2.2 ([I0], Corollary 3.1.6). With notation as above, the curve C), is superspecial if
and only if the coefficients of all the following 16 monomials of degree 5(p —1) in (QP)P~' are zero:

(x2yzw)p_1, x2p—1yp—22p—1wp—17 x2p—1yp—12p—2wp—17 x2p—1yp—lzp—1,wp—27
$p—2y2p—lzp—lwp—1, (xy2zw)p_1, :Ep—1y2p—1zp—2,wp—l’ $p—1y2p—lzp—lwp—2’
xp—2yp—122p—1,wp—17 xp—lyp—222p—1wp—17 (xyz2,w)p—17 xp—lyp—122p—1,wp—27
$p—2yp—1zp—1,w2p—1, xp—lyp—2zp—1w2p—l, $p—1yp—lzp—2w2p—l’ (:Eyz,w2)p—l‘



To prove Theorem B:I:I stated in Section [I] (and in Section []), we compute the 16 coefficients
given in Proposition 22 Note that we have QP = 2322 4 1222 4 223yw + 2y*w + 22w? + 2yw?*, and

@rr = 2 <a b,c,d,e f>( 222 (y%2*)" (22 yw) (25 w) (2w (2yw™)
a+b+ctdtetf=p—1 > 77777
p—1
= Z <a b d e f> (x?»az2a)(y3bz2b)(2c$3c c C)(Zdy4d d)(z wSe)(2fyfw4f)
a+b+ctd+e+ f=p—1 [ttt e/
- Z getd+] <a bpc—dle f>x3a+3cy3b+c+4d+f J2a+2b42e, c+d+Ser4f 2.1)

atb+ctdtet f=p—1
by the multinomial theorem. To express (QP)P~! as a sum of the form
QPP = > Ci ke’ y’ 2w,
(i7j7k7z)€(220)®4
we consider the linear system

a+b+c+d+e+f=p—1,

Ja + 3¢ =1,

3b+c+4d+ f =7, (2.2)
2a +2b+ 2e =k,

c+d+3e+4f =1,

and put
S(i,j, k,0) :=={(a,b,c,d,e, f) € [0,p — 1]@6 (a,b,c,d, e, f) satisfies (Z2))} (2.3)

for each (i,7,k,0) € (ZZO)GM. Using the notation S(i, 7, k, ¢), we have

(QP)p_l — Z Z 2C+d+f . <a7 bf)cj_d;l& f> 7 y kaf (24)

(1,7, k,0)€(Z50)®* \(@:bcdie, fIES (ir k)

Lemma 2.3. With notation as above, the coefficients of the monomials x'vy7 2P~ 2w’ and x'y’ 22P~ 1w’

in (QP)P~1 are zero for all (i,],0) € (Zso)®>.

Proof. Recall from (2] that the z-exponent of each monomial in (QP)P~! is 2a + 2b+ 2e, which is
an even number. On the other hand, the z-exponents of the monomials 'y’ 2P~2w’ and z'y? 2P~ 1w’
are odd numbers, and thus their coefficients in (QP)P~! are all zero. O

Let M be the set of the 16 monomials given in Proposition 2.2 and set
E(M) :={(i,j,k,0) € (ZZO)eB : 2’y ZFw® = m for some m € M},
which is the set of the exponent vectors of the monomials in M.

Lemma 2.4. Assume p =2 (mod 3). Then we have S(i,j, k. £) =0 for any (i,j,k, ) € E(M).



Proof. Note that for each (i,7,k,¢) € E(M), we have i + j + k + ¢ = 5(p — 1), see Proposition 2.2
Using matrices, we write the system (22]) as

111111 Z p—1
303 000 . i
0 3 1401 a4 | = j , (2.5)
2200 20 . k
001 1 3 4 14
f
whose extended coefficient matrix is transformed as follows:
111111 p-—1 1111 1 1 p—1
303 000 i 0314 0 1 i
03 1401 3j — | 00 1 1 -3 =2 i+j—3(p—-1)
2200 2 0 k 0000 6 6 (—(Gi+j—3p-—-1)
0011 3 4 14 0000 O O 0
Considering modulo 3, we have the following linear system over Fs:
CL/
1 1 1 111 b p—1
0 01 1 01 o j
001 101 7 | = 1+ ,
000 O0O0O O o C—(i+7)
000 O0O0O O 7 0
which is equivalent to
a/
111111 ¥ p—1
001101 o j
000 O0O0TO O 7 1= i (2.6)
000 O0O0OTP O o/ C—(i+37)
000 O0O0O O 7

Note that the system (2.6]) over F3 has a solution if and only if i = 0 (mod 3) and ¢ = j (mod 3).
We claim that if p = 2 (mod 3), the original system (Z3) over Z has no solution in [0,p — 1]¥6
for any (i,j,k,¢) € E(M). Indeed, if p = 2 (mod 3) and if the system (2.5) has a solution in
[0,p — 1]¥5 for some (i, ], k,¢) € E(M), the system (Z6) has a solution. By Lemma 23] we may
assume k Zp—2and k #2p—1,ie, k=2p—2or k=p—1. Since i =0 (mod 3) and since p = 2
(mod 3), the integer i is equal to 2p — 1 or p — 2, and thus (4,5,k,0) = (2p — L,p—2,p— 1,p — 1),
2p—1,p—1,p—1,p—2),(p—2,2p—1,p—1,p—1)or (p—2,p—1,p—1,2p —1). However, any of
the above four candidates for (i, j, k, ¢) does not satisfy £ = j (mod 3), which is a contradiction. [J

Proposition 2.5. Assume p =2 (mod 3). Then the curve Cp = V(Q, P) is superspecial.

Proof. Tt follows from Lemma 24 that the coefficient of 2%y’ zFw? in (24 is zero for each (4,7, k, £) €
E(M). By Proposition 2] the curve V(Q, P) is superspecial. O



It follows from the proof of Lemma 4] that (2.2]) is equivalent to the following system:

a+b+c+d+e+f=p—1,
3b+c+4d+ f =7,
c+d—3e—2f=i+j—3(p—1),
be+6f=0—(i+j—3(p—1)).

Next, we consider the case of p =1 (mod 3).

Lemma 2.6. Assume p =1 (mod 3). Then we have #S(p — 1,p — 1,2p —2,p — 1) = 1. In other
words, the system @) with (i,j,k,£) = (p—1,p—1,2p—2,p—1) has a unique solution in [0,p—1]®6.
The solution is given by

(a, b, ¢, de f)=(@—-1)/3, (@—-1)/3, 0, 0, (p—1)/3, 0). (2.8)

Proof. The system to be solved with (i,7,k,¢) = (p—1,p—1,2p — 2,p — 1) is given by

a+b+c+d+e+f=p—1, (2.9)
3b+c+4d+ f=p—1, (2.10)
c+d—3e—2f=—(p—1), (2.11)
6e +6f =2(p — 1) (2.12)

with (a,b,c,d,e, f) € [0,p — 1]¥6. Since ¢ +d —3e —2f = c+d + f — (3e + 3f), it follows from

(ZII) and 2I2) that ¢ +d+ f = 0, and thus ¢ = d = f = 0. By ([2I0) and ([2I2]), we have
b=e=(p—1)/3. From (2.9), we also have a = (p — 1)/3. O

Lemma 2.7. Assume p =1 (mod 3). Then the coefficient of the monomial 2P~ yP~122P=2wP~1 in
(QP)P~1 is not zero.

Proof. Let c,—1 p—1,2p—2,p—1 be the coefficient of P~ lyp=1220=2yP=1 in (QP)P~!. Recall from (Z4)
that ¢,—1,p—1,2p—2,p—1 is given by

Z 20+d+f,< p—1 >
(a,b,c,d,e,f)GS(p—l,p—1,2p—2,p—1) a’ b’ c’ d’ 67 f

where S(p—1,p—1,2p—2,p—1) is defined in (23)). By Lemmal[26] the set S(p—1,p—1,2p—2,p—1)
consists of only the element given by (Z8]), and hence

(p—1)!

Cp—1,p—1,2p—2,p—1 = ;
p—1,p—1,2p—2p p—1\, (p-1Y, (r-1\,
3 ) 3 ) 3 )

which is not divisible by p. O

Proposition 2.8. Assume p=1 (mod 3). Then the curve Cp, = V(Q, P) is not superspecial.

Proof. It follows from Lemma 27 that the coefficient of xP~1yP~122P=2P~1 in (QP)P~! is not zero.
By Proposition 2] the curve V(Q, P) is not superspecial. O



3 Proofs of main results and some further problems

As in the previous section, let K be a perfect field of characteristic p > 2. Here, we re-state Theorem
B and Corollary in Section [[l and prove them:

Theorem 3.1. Put () = 2yw + 22 and P := 23 +y> +w?. Let Cp, = V(Q, P) denote the projective
zero-locus in P3 = Proj(K[z,y,z,w]) defined by Q@ = 0 and P = 0. Then C, is a superspecial
nonhyperelliptic curve of genus 4 if and only if p =2 (mod 3).

Proof. Recall from Lemma [Z1] that C, is singular if p = 3, and non-singular if p > 3. We may
assume p > 3. Since C), is the set of the zeros of the quadratic form ) and the cubic form P over
K, it is a nonhyperelliptic curve of genus 4 over K, see [10], Section 2]. It follows from Propositions
and [2.8 that the non-singular curve C), is superspecial if and only if p =2 (mod 3). O

Corollary 3.2. There exist superspecial nonhyperelliptic curves of genus 4 in characteristic p for
infinitely many primes p. The set of primes p for which C) is superspecial has natural density 1/2.

Proof. The first claim immediately follows from Theorem [B.I] and Dirichlet’s Theorem. The second
claim is deduced from the fact that the natural density of primes equal to 2 modulo 3is 1/¢(3) = 1/2,
where ¢ is Euler’s totient function. O

Problem 3.3. Does there exist a superspecial curve of genus 4 in characteristic p for any p > 13
with p =1 (mod 3)¢ Cf. the non-existence for p =7 is already shown in [10], whereas the existence
for p =13 is shown, see e.g., [5].

Problem 3.4. Find a different condition from p =2 (mod 3) such that there exists a nonhyperel-
liptic superspecial curve of genus 4 in characteristic p. Cf. in the case of g = 1, the elliptic curve
E : y? = 23 + 2 is supersingular if p = 3 (mod 4) and ordinary if p = 1 (mod 4). (Also for
hyperelliptic curves, such conditions are already found, see e.g., [15] and [16].)

4 Application: Finding maximal curves over K = [, for large p

In the following, we set K := 2 with p > 2. It is known that any maximal or minimal curve over
[F,» is supersepcial. Conversely, any superspecial curve over an algebraically closed field descends to
a maximal or minimal curve over F 2, see the proof of [10, Proposition 2.2.1]. Recall from Theorem
B that C, = V(Q,P) with Q = 2yw + 2% and P = 23 + y3 + w3 is a superspecial curve of
genus 4 if and only if p = 2 (mod 3). We computed the number of [F.-rational points on C) for
3 < p < 269 using a computer algebra system Magma [1]. Table [l shows our computational results
for 3 < p < 100. We see from Table [l that any superspecial C, is maximal over [F,» for 3 < p < 100
(also for 101 < p < 269, but omit to write them in the table). From our computational results, let
us give a conjecture on the existence of [F,.-maximal nonhyperelliptic curves of genus 4.

Conjecture 4.1. For any p with p =2 (mod 3), the curve C, over F 2 is mazimal.

Remark 4.2. We can reduce computing the number of [F.-rational points on C}, into computing
that of zeros of a diagonal equation. Specifically, by 2yw + 22 = 0 and 2% + y® + w3 = 0, we have
23+ %+ (=22/(2y) 1) = 0 and thus 823y® + 8y% — 26 = 0 if y # 0. Putting X = xy, one has the
diagonal equation 8X3 + 8y% — 26 = 0. Hence, we may apply known methods to count the number
of rational points of diagonal equations, see e.g., [I8] and [I9]. At the time of this writing (as of
April 24, 2018), however, we have not succeeded in applying any known method.



Table 1: The number of F2-rational points on C), = V(Q, P) for 3 < p < 100, where Q = 2yw + 22
and P = 2%+ y3 +w>. We denote by #Cp(F,2) the number of F2-rational points on C), for each p.

p || pmod3 | S.sp. or not | #Cp(F,2) p || pmod3 | S.sp. or not | #Cp(F,2)
3 0 Not S.sp. 10 43 1 Not S.sp. 1938
5 2 S.sp. 66 (Max.) || 47 2 S.sp. 2586 (Max.)
7 1 Not S.sp. 48 53 2 S.sp. 3234 (Max.)
13 1 Not S.sp. 192 59 2 S.sp. 3954 (Max.)
11 2 S.sp. 210 (Max.) || 61 1 Not S.sp. 3648
17 2 S.sp. 426 (Max.) || 67 1 Not S.sp. 4368
19 1 Not S.sp. 336 71 2 S.sp. 5610 (Max.)
23 2 S.sp. 714 (Max.) || 73 1 Not S.sp. 5376
29 2 S.sp. 1074 (Max.) || 79 1 Not S.sp. 6384
31 1 Not S.sp. 1146 83 2 S.sp. 7554 (Max.)
37 1 S.sp. 1334 89 2 S.sp. 8634 (Max.)
41 2 S.sp. 2010 (Max.) || 97 1 Not S.sp. 9408
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