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On the existence of superspecial nonhyperelliptic curves of genus 4
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Abstract

A curve over a perfect field K of characteristic p > 0 is said to be superspecial if its Jacobian
is isomorphic to a product of supersingular elliptic curves over the algebraic closure K. In recent
years, isomorphism classes of superspecial nonhyperelliptic curves of genus 4 over finite fields
in small characteristic have been enumerated. In particular, the non-existence of superspecial
curves of genus 4 in characteristic p = 7 was proved. In this note, we give an elementary proof
of the existence of superspecial nonhyperelliptic curves of genus 4 for infinitely many primes p.
Specifically, we prove that the variety Cp : x3+ y3+w3 = 2yw+ z2 = 0 in the projective 3-space
with p > 2 is a superspecial curve of genus 4 if and only if p ≡ 2 (mod 3). Our computational
results show that Cp with p ≡ 2 (mod 3) are maximal curves over Fp2 for all 3 ≤ p ≤ 269.

Key words— Nonhyperelliptic curves, Superspecial curves, Maximal curves

1 Introduction

Let p be a rational prime greater than 2, and let Fq denote the finite field of q elements, where q is a
power of prime. LetK be an arbitrary perfect field of characteristic p. We denote byK the algebraic
closure of K. By a curve, we mean a non-singular projective variety of dimension one. Let C be a
curve of genus g over K. We say that C is superspecial if its Jacobian is isomorphic to the product
of g supersingular elliptic curves over K. The existence of a superspecial curve over an algebraically
closed field in characteristic p implies that there exists a maximal or minimal curve over Fp2. Here
a curve over Fq is called a maximal (resp. minimal) curve if the number of its Fq-rational points
attains the Hasse-Weil upper (resp. lower) bound q + 1 + 2g

√
q (resp. q + 1 − 2g

√
q). Conversely,

any maximal or minimal curve over Fp2 is superspecial. This work aims to find a lot of superspecial
curves and maximal curves for a given genus. Note that for a fixed pair (g, q), superspecial curves
over Fq of genus g are very rare: the number of such curves is finite, whereas the whole set of curves
over Fq of genus g has dimension 3g − 3. Thus, finding superspecial curves over Fq of higher genus
g is more difficult than finding those of lower genus g.

In the case of g ≤ 3 and in the case of hyperelliptic curves, many results on the existence and
enumeration of superspecial/maximal curves are known, see e.g., [2], [17, Prop. 4.4] for g = 1, [7],
[9], [13] for g = 2, [6], [8] for g = 3, and [15], [16] for hyperelliptic curves. In particular, it is
well-known that there exist supersingular (and thus superspecial) elliptic curves in characteristic p
for infinitely many primes p (see, e.g., [14, Examples 4.4 and 4.5])). For example, the elliptic curve
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Ep : y2 = x3 + 1 with p ≥ 5 is supersingular if and only if p ≡ 2 (mod 3). Moreover, the set of
primes p for which Ep is supersingular has natural density 1/2.

In the case of nonhyperelliptic curves of genus g = 4, Fuhrmann-Garcia-Torres proved in [4] that
there exists a maximal (and superspecial) curve C0 of g = 4 over K = F52 , and that it gives a unique
K-isomorphism class. In [10], [11] and [12], the isomorphism classes of superspecial nonhyperelliptic
curves of genus 4 over finite fields are enumerated in characteristic p ≤ 11. Results in [10], [11] and
[12] also show that there exist superspecial nonhyperelliptic curves of genus 4 in characteristic 5
and 11, whereas there does not exist such a curve in characteristic 7.

The objective of this note is to investigate whether a superspecial nonhyperelliptic curve of
genus g = 4 exists or not for p ≥ 13. In contrast to the rarity of superspecial curves of higher genus,
our main results (Theorem 3.1 and Corollary 3.2 below) show the existence of superspecial curves
of genus g = 4 in characteristic p for half of the primes as well as the case of g = 1.

Theorem 3.1. Put Q := 2yw+ z2 and P := x3 + y3 +w3. Let Cp = V (Q,P ) denote the projective

zero-locus in P3 = Proj(K[x, y, z, w]) defined by Q = 0 and P = 0. Then Cp is a superspecial

nonhyperelliptic curve of genus 4 if and only if p ≡ 2 (mod 3).

We prove Theorem 3.1 by simple computations in linear and fundamental commutative algebra
and in combinatorics together with results in [10], [11] and [12] (so this note also complements
results in these three previous papers). As a corollary of this theorem, we have the following:

Corollary 3.2. There exist superspecial nonhyperelliptic curves of genus 4 in characteristic p for

infinitely many primes p. The set of primes p for which Cp is superspecial has natural density 1/2.

Theorem 3.1 and Corollary 3.2 also give a partial answer to the genus 4 case of the problem
proposed by Ekedahl in 1987, see p. 173 of [3]. In Section 4, we give a table of the number of Fp2-
rational points on Cp for 3 ≤ p ≤ 269 obtained by using a computer algebra system Magma [1]. As
computational results, we found maximal nonhyperelliptic curves of genus 4 over Fp2 . Specifically,
we have that for all 3 ≤ p ≤ 269 with p ≡ 2 (mod 3), the curves Cp are maximal over Fp2.

Acknowledgments

The author thanks Shushi Harashita for his comments to the preliminary version of this note. He
gave the author information on the existence of superspecial curves of genus g over Fq in the case
of g ≤ 3, in the case of (g, q) = (4, 13), and in the hyperelliptic case. He also pointed out that
computing the rational points of our curves is reduced into solving a diagonal equation.

2 Superspecialty of curves x3 + y3 + w3 = 2yw + z2 = 0

As in the previous section, let K be a perfect field of characteristic p > 2. Let K[x, y, z, w] denote
the polynomial ring of the four variables x, y, z and w over K. As examples of superspecial curves
of genus g = 4 in characteristic p = 5 and 11, we have the projective varieties in the projective
3-space P3 = Proj(K[x, y, z, w]) defined by the same systems of equations: x3 + y3 + w3 = 0 and
2yw + z2 = 0, see [10, Exmaple 6.2.1] and [11, Proposition 4.4.4].

In this section, we shall prove that the variety x3+ y3+w3 = 2yw+ z2 = 0 over K is (resp. not)
a superspecial curve of genus 4 if p ≡ 2 (mod 3) (resp. p ≡ 1 (mod 3)). Throughout this section,
we set Q := 2yw + z2 and P := x3 + y3 + w3. Let Cp denote the projective variety V (Q,P ) in P3
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defined by P = Q = 0 in characteristic p. First, we prove that the variety Cp is non-singular (resp.
singular) if p > 3 (resp. p = 3).

Lemma 2.1. If p > 3 (resp. p = 3), then the variety Cp = V (Q,P ) is non-singular (resp. singular).

Proof. Let J(P,Q) denote the set of all the minors of degree 2 of the Jacobian matrix

(

∂P
∂x

∂P
∂y

∂P
∂z

∂P
∂w

∂Q
∂x

∂Q
∂y

∂Q
∂z

∂Q
∂w

)

=

(

3x2 3y2 0 3w2

0 2w 2z 2y

)

.

Namely, the set J(P,Q) consists of the following 6 elements:

f1 :=
∂P

∂x
· ∂Q
∂y

− ∂P

∂y
· ∂Q
∂x

= 6x2w,

f2 :=
∂P

∂x
· ∂Q
∂z

− ∂P

∂z
· ∂Q
∂x

= 6x2z,

f3 :=
∂P

∂x
· ∂Q
∂w

− ∂P

∂w
· ∂Q
∂x

= 6x2y,

f4 :=
∂P

∂y
· ∂Q
∂z

− ∂P

∂z
· ∂Q
∂y

= 6y2z,

f5 :=
∂P

∂y
· ∂Q
∂w

− ∂P

∂w
· ∂Q
∂y

= 6y3 − 6w3,

f6 :=
∂P

∂z
· ∂Q
∂w

− ∂P

∂w
· ∂Q
∂z

= −6zw2.

Assume p > 3. It suffices to show that x, y, z and w belong to the radical of the ideal generated by
P , Q and J(P,Q). By straightforward computations, we have

x2P − (6−1y2)f3 − (6−1w2)f1 = x5,

yP − (6−1x)f3 − (6−1y)f5 = 2y4,

(−2yzw + z3)Q+ (2 · 3−1w2)f4 = z5,

wP − (6−1x)f1 − (6−1w)f5 = 2w4,

which belong to the ideal 〈P,Q, J(P,Q)〉 in K[x, y, z, w]. Thus, x, y, z and w belong to its radical.
If p = 3, then J(P,Q) = {0}, and hence all the points on V (Q,P ) are singular points. �

In the following, we suppose p > 3. It is shown in [10] that we can decide whether Cp is
superspecial or not by computing the coefficients of certain monomials in (QP )p−1.

Proposition 2.2 ([10], Corollary 3.1.6). With notation as above, the curve Cp is superspecial if

and only if the coefficients of all the following 16 monomials of degree 5(p−1) in (QP )p−1 are zero:

(x2yzw)p−1, x2p−1yp−2zp−1wp−1, x2p−1yp−1zp−2wp−1, x2p−1yp−1zp−1wp−2,
xp−2y2p−1zp−1wp−1, (xy2zw)p−1, xp−1y2p−1zp−2wp−1, xp−1y2p−1zp−1wp−2,
xp−2yp−1z2p−1wp−1, xp−1yp−2z2p−1wp−1, (xyz2w)p−1, xp−1yp−1z2p−1wp−2,
xp−2yp−1zp−1w2p−1, xp−1yp−2zp−1w2p−1, xp−1yp−1zp−2w2p−1, (xyzw2)p−1.
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To prove Theorem 3.1 stated in Section 1 (and in Section 3), we compute the 16 coefficients
given in Proposition 2.2. Note that we have QP = x3z2+ y3z2 +2x3yw+2y4w+ z2w3 +2yw4, and

(QP )p−1 =
∑

a+b+c+d+e+f=p−1

(

p− 1

a, b, c, d, e, f

)

(x3z2)a(y3z2)b(2x3yw)c(2y4w)d(z2w3)e(2yw4)f

=
∑

a+b+c+d+e+f=p−1

(

p− 1

a, b, c, d, e, f

)

(x3az2a)(y3bz2b)(2cx3cycwc)(2dy4dwd)(z2ew3e)(2fyfw4f )

=
∑

a+b+c+d+e+f=p−1

2c+d+f ·
(

p− 1

a, b, c, d, e, f

)

x3a+3cy3b+c+4d+fz2a+2b+2ewc+d+3e+4f (2.1)

by the multinomial theorem. To express (QP )p−1 as a sum of the form

(QP )p−1 =
∑

(i,j,k,ℓ)∈(Z≥0)
⊕4

ci,j,k,ℓx
iyjzkwℓ,

we consider the linear system























a+ b+ c+ d+ e+ f = p− 1,
3a+ 3c = i,
3b+ c+ 4d+ f = j,
2a+ 2b+ 2e = k,
c+ d+ 3e+ 4f = ℓ,

(2.2)

and put

S(i, j, k, ℓ) := {(a, b, c, d, e, f) ∈ [0, p − 1]⊕6 : (a, b, c, d, e, f) satisfies (2.2)} (2.3)

for each (i, j, k, ℓ) ∈ (Z≥0)
⊕4. Using the notation S(i, j, k, ℓ), we have

(QP )p−1 =
∑

(i,j,k,ℓ)∈(Z≥0)
⊕4





∑

(a,b,c,d,e,f)∈S(i,j,k,ℓ)

2c+d+f ·
(

p− 1

a, b, c, d, e, f

)



xiyjzkwℓ. (2.4)

Lemma 2.3. With notation as above, the coefficients of the monomials xiyjzp−2wℓ and xiyjz2p−1wℓ

in (QP )p−1 are zero for all (i, j, ℓ) ∈ (Z≥0)
⊕3

.

Proof. Recall from (2.1) that the z-exponent of each monomial in (QP )p−1 is 2a+2b+2e, which is
an even number. On the other hand, the z-exponents of the monomials xiyjzp−2wℓ and xiyjz2p−1wℓ

are odd numbers, and thus their coefficients in (QP )p−1 are all zero. �

Let M be the set of the 16 monomials given in Proposition 2.2, and set

E(M) := {(i, j, k, ℓ) ∈ (Z≥0)
⊕4 : xiyjzkwℓ = m for some m ∈ M},

which is the set of the exponent vectors of the monomials in M.

Lemma 2.4. Assume p ≡ 2 (mod 3). Then we have S(i, j, k, ℓ) = ∅ for any (i, j, k, ℓ) ∈ E(M).
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Proof. Note that for each (i, j, k, ℓ) ∈ E(M), we have i+ j + k + ℓ = 5(p − 1), see Proposition 2.2.
Using matrices, we write the system (2.2) as













1 1 1 1 1 1
3 0 3 0 0 0
0 3 1 4 0 1
2 2 0 0 2 0
0 0 1 1 3 4





























a
b
c
d
e
f

















=













p− 1
i
j
k
ℓ













, (2.5)

whose extended coefficient matrix is transformed as follows:












1 1 1 1 1 1 p− 1
3 0 3 0 0 0 i
0 3 1 4 0 1 j
2 2 0 0 2 0 k
0 0 1 1 3 4 ℓ













−→













1 1 1 1 1 1 p− 1
0 3 1 4 0 1 j
0 0 1 1 −3 −2 i+ j − 3(p − 1)
0 0 0 0 6 6 ℓ− (i+ j − 3(p− 1))
0 0 0 0 0 0 0













Considering modulo 3, we have the following linear system over F3:













1 1 1 1 1 1
0 0 1 1 0 1
0 0 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0





























a′

b′

c′

d′

e′

f ′

















=













p− 1
j

i+ j
ℓ− (i+ j)

0













,

which is equivalent to













1 1 1 1 1 1
0 0 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





























a′

b′

c′

d′

e′

f ′

















=













p− 1
j
i

ℓ− (i+ j)
0













. (2.6)

Note that the system (2.6) over F3 has a solution if and only if i ≡ 0 (mod 3) and ℓ ≡ j (mod 3).
We claim that if p ≡ 2 (mod 3), the original system (2.5) over Z has no solution in [0, p − 1]⊕6

for any (i, j, k, ℓ) ∈ E(M). Indeed, if p ≡ 2 (mod 3) and if the system (2.5) has a solution in
[0, p − 1]⊕6 for some (i, j, k, ℓ) ∈ E(M), the system (2.6) has a solution. By Lemma 2.3, we may
assume k 6= p− 2 and k 6= 2p− 1, i.e., k = 2p− 2 or k = p− 1. Since i ≡ 0 (mod 3) and since p ≡ 2
(mod 3), the integer i is equal to 2p − 1 or p − 2, and thus (i, j, k, ℓ) = (2p − 1, p − 2, p − 1, p − 1),
(2p− 1, p− 1, p− 1, p− 2), (p− 2, 2p− 1, p− 1, p− 1) or (p− 2, p− 1, p− 1, 2p− 1). However, any of
the above four candidates for (i, j, k, ℓ) does not satisfy ℓ ≡ j (mod 3), which is a contradiction. �

Proposition 2.5. Assume p ≡ 2 (mod 3). Then the curve Cp = V (Q,P ) is superspecial.

Proof. It follows from Lemma 2.4 that the coefficient of xiyjzkwℓ in (2.4) is zero for each (i, j, k, ℓ) ∈
E(M). By Proposition 2.2, the curve V (Q,P ) is superspecial. �
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It follows from the proof of Lemma 2.4 that (2.2) is equivalent to the following system:















a+ b+ c+ d+ e+ f = p− 1,
3b+ c+ 4d+ f = j,
c+ d− 3e− 2f = i+ j − 3(p − 1),
6e+ 6f = ℓ− (i+ j − 3(p − 1)).

(2.7)

Next, we consider the case of p ≡ 1 (mod 3).

Lemma 2.6. Assume p ≡ 1 (mod 3). Then we have #S(p − 1, p − 1, 2p − 2, p − 1) = 1. In other

words, the system (2.7) with (i, j, k, ℓ) = (p−1, p−1, 2p−2, p−1) has a unique solution in [0, p−1]⊕6.

The solution is given by

(

a, b, c, d, e, f
)

=
(

(p− 1)/3, (p− 1)/3, 0, 0, (p− 1)/3, 0
)

. (2.8)

Proof. The system to be solved with (i, j, k, ℓ) = (p− 1, p − 1, 2p − 2, p − 1) is given by



















a+ b+ c+ d+ e+ f = p− 1, (2.9)

3b+ c+ 4d+ f = p− 1, (2.10)

c+ d− 3e− 2f = −(p− 1), (2.11)

6e+ 6f = 2(p− 1) (2.12)

with (a, b, c, d, e, f) ∈ [0, p − 1]⊕6. Since c + d − 3e − 2f = c + d + f − (3e + 3f), it follows from
(2.11) and (2.12) that c + d + f = 0, and thus c = d = f = 0. By (2.10) and (2.12), we have
b = e = (p − 1)/3. From (2.9), we also have a = (p − 1)/3. �

Lemma 2.7. Assume p ≡ 1 (mod 3). Then the coefficient of the monomial xp−1yp−1z2p−2wp−1 in

(QP )p−1 is not zero.

Proof. Let cp−1,p−1,2p−2,p−1 be the coefficient of xp−1yp−1z2p−2wp−1 in (QP )p−1. Recall from (2.4)
that cp−1,p−1,2p−2,p−1 is given by

∑

(a,b,c,d,e,f)∈S(p−1,p−1,2p−2,p−1)

2c+d+f ·
(

p− 1

a, b, c, d, e, f

)

,

where S(p−1, p−1, 2p−2, p−1) is defined in (2.3). By Lemma 2.6, the set S(p−1, p−1, 2p−2, p−1)
consists of only the element given by (2.8), and hence

cp−1,p−1,2p−2,p−1 =
(p− 1)!

(

p− 1

3

)

!

(

p− 1

3

)

!

(

p− 1

3

)

!

,

which is not divisible by p. �

Proposition 2.8. Assume p ≡ 1 (mod 3). Then the curve Cp = V (Q,P ) is not superspecial.

Proof. It follows from Lemma 2.7 that the coefficient of xp−1yp−1z2p−2wp−1 in (QP )p−1 is not zero.
By Proposition 2.2, the curve V (Q,P ) is not superspecial. �
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3 Proofs of main results and some further problems

As in the previous section, let K be a perfect field of characteristic p > 2. Here, we re-state Theorem
3.1 and Corollary 3.2 in Section 1 and prove them:

Theorem 3.1. Put Q := 2yw+ z2 and P := x3 + y3 +w3. Let Cp = V (Q,P ) denote the projective

zero-locus in P3 = Proj(K[x, y, z, w]) defined by Q = 0 and P = 0. Then Cp is a superspecial

nonhyperelliptic curve of genus 4 if and only if p ≡ 2 (mod 3).

Proof. Recall from Lemma 2.1 that Cp is singular if p = 3, and non-singular if p > 3. We may
assume p > 3. Since Cp is the set of the zeros of the quadratic form Q and the cubic form P over
K, it is a nonhyperelliptic curve of genus 4 over K, see [10, Section 2]. It follows from Propositions
2.5 and 2.8 that the non-singular curve Cp is superspecial if and only if p ≡ 2 (mod 3). �

Corollary 3.2. There exist superspecial nonhyperelliptic curves of genus 4 in characteristic p for

infinitely many primes p. The set of primes p for which Cp is superspecial has natural density 1/2.

Proof. The first claim immediately follows from Theorem 3.1 and Dirichlet’s Theorem. The second
claim is deduced from the fact that the natural density of primes equal to 2 modulo 3 is 1/ϕ(3) = 1/2,
where ϕ is Euler’s totient function. �

Problem 3.3. Does there exist a superspecial curve of genus 4 in characteristic p for any p > 13
with p ≡ 1 (mod 3)? Cf. the non-existence for p = 7 is already shown in [10], whereas the existence

for p = 13 is shown, see e.g., [5].

Problem 3.4. Find a different condition from p ≡ 2 (mod 3) such that there exists a nonhyperel-

liptic superspecial curve of genus 4 in characteristic p. Cf. in the case of g = 1, the elliptic curve

E : y2 = x3 + x is supersingular if p ≡ 3 (mod 4) and ordinary if p ≡ 1 (mod 4). (Also for

hyperelliptic curves, such conditions are already found, see e.g., [15] and [16].)

4 Application: Finding maximal curves over K = Fp2 for large p

In the following, we set K := Fp2 with p > 2. It is known that any maximal or minimal curve over
Fp2 is supersepcial. Conversely, any superspecial curve over an algebraically closed field descends to
a maximal or minimal curve over Fp2 , see the proof of [10, Proposition 2.2.1]. Recall from Theorem
3.1 that Cp = V (Q,P ) with Q = 2yw + z2 and P = x3 + y3 + w3 is a superspecial curve of
genus 4 if and only if p ≡ 2 (mod 3). We computed the number of Fp2-rational points on Cp for
3 ≤ p ≤ 269 using a computer algebra system Magma [1]. Table 1 shows our computational results
for 3 ≤ p ≤ 100. We see from Table 1 that any superspecial Cp is maximal over Fp2 for 3 ≤ p ≤ 100
(also for 101 ≤ p ≤ 269, but omit to write them in the table). From our computational results, let
us give a conjecture on the existence of Fp2-maximal nonhyperelliptic curves of genus 4.

Conjecture 4.1. For any p with p ≡ 2 (mod 3), the curve Cp over Fp2 is maximal.

Remark 4.2. We can reduce computing the number of Fp2-rational points on Cp into computing
that of zeros of a diagonal equation. Specifically, by 2yw + z2 = 0 and x3 + y3 + w3 = 0, we have
x3 + y3 + (−z2/(2y)−1)3 = 0 and thus 8x3y3 + 8y6 − z6 = 0 if y 6= 0. Putting X = xy, one has the
diagonal equation 8X3 + 8y6 − z6 = 0. Hence, we may apply known methods to count the number
of rational points of diagonal equations, see e.g., [18] and [19]. At the time of this writing (as of
April 24, 2018), however, we have not succeeded in applying any known method.
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Table 1: The number of Fp2-rational points on Cp = V (Q,P ) for 3 ≤ p ≤ 100, where Q = 2yw+ z2

and P = x3 + y3 +w3. We denote by #Cp(Fp2) the number of Fp2-rational points on Cp for each p.

p p mod 3 S.sp. or not #Cp(Fp2) p p mod 3 S.sp. or not #Cp(Fp2)

3 0 Not S.sp. 10 43 1 Not S.sp. 1938

5 2 S.sp. 66 (Max.) 47 2 S.sp. 2586 (Max.)

7 1 Not S.sp. 48 53 2 S.sp. 3234 (Max.)

13 1 Not S.sp. 192 59 2 S.sp. 3954 (Max.)

11 2 S.sp. 210 (Max.) 61 1 Not S.sp. 3648

17 2 S.sp. 426 (Max.) 67 1 Not S.sp. 4368

19 1 Not S.sp. 336 71 2 S.sp. 5610 (Max.)

23 2 S.sp. 714 (Max.) 73 1 Not S.sp. 5376

29 2 S.sp. 1074 (Max.) 79 1 Not S.sp. 6384

31 1 Not S.sp. 1146 83 2 S.sp. 7554 (Max.)

37 1 S.sp. 1334 89 2 S.sp. 8634 (Max.)

41 2 S.sp. 2010 (Max.) 97 1 Not S.sp. 9408
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