
PREPROJECTIVE ANALOGUE OF THE CONE CONSTRUCTION

BENJAMIN COOPER AND JOSHUA SUSSAN

Abstract. We formulate a relative, representation theoretic, notion of the algebraic cone
construction. This motivates a generalization of the cone corresponding to a preprojective
algebra.

1. Introduction

We give a a relative, representation theoretic, reformulation of the algebraic cone con-
struction. While variations have appeared in the literature before [7, 17, 18] the version
introduced here is used to motivate a generalization of the cone construction obtained by
replacing the type A quiver with its associated preprojective algebra. This corresponds
to the passage of a cone corresponding to a moduli space of representations to one corre-
sponding to a certain canonical bundle over the moduli space, which is of importance in
geometric representation theory [16, Thm. C].

If f : X Ñ Y is a chain map then the algebraic cone of f is the chain complex
Cpfq “ Xr1s ‘ Y given by the direct sum of X with Y and differential

dCpfq “

ˆ

´dX 0
f dY

˙

.

This familiar gadget is central to many important concepts in mathematics. In their study of
differential graded algebras, Bondal and Kapranov formulated the requirement that a map
contain a cone in terms of the completeness of the Yoneda embedding [3]. In creating the
foundations of A8 -categories, Kontsevich and Seidel found certain A8 -categories ∆ which
corepresent distinguished triangles, in particular these categories characterize algebraic
cones up to homotopy [7, 17]. In this paper, we introduce a generalization of the criterion
that a category contains cones and distinguished triangles by combining these two ideas.

The remainder of the paper investigates this definition when the A2 -quiver appearing
in the Kontsevich-Seidel category ∆ (see §3.8) is replaced by the preprojective algebra
ΠQ of the A2 -quiver. From a certain perspective, the preprojective algebra ΠQ is the
simplest non-trivial replacement for a quiver Q . In part, this is because Q naturally
embeds in ΠQ , and as Q-module, ΠQ decomposes as a direct sum of preprojective Q-
modules. The moduli space of ΠQ finite dimensional representations naturally fibers over
the corresponding moduli space of Q representations and this relationship has important
consequences in representation theory. For more details see [16].

In order to understand the preprojective cone, in Thm. 4.9 we use homotopy perturbation
theory to compute the minimal model Π of the dg enhancement of the Ext-algebra of
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indecomposable objects in the category ΠA2 -mod where
Π “ Ext˚ΠA2pI, Iq I “

à

M

and the direct sum is over all indecomposable ΠA2 -modules (up to isomorphism). This
results in a complete description of the A8 -structure on a tetrahedron with vertices la-
beled by indecomposable ΠA2 -modules. This A8 -structure allows us to study the derived
mapping spaces RHompΠ,Dq as D ranges over other A8 -categories. Since preprojective
distinguished triangles are homotopy classes of such functors rF̃ s P ObpH0pRHompΠ,Dqqq ,
we are able to formulate conclusions about them from the minimal model for Π .

In short, a preprojective map is a pair of cycles
f : A Ô B : g

and the preprojective distinguished triangle is constructed from the algebraic cones Cpfq
and Cpgq together with canonical maps between them

p12q : Cpfq Ô Cpgq : p21q.
In addition to the ordinary distinguished triangles which are determined individually by f

and g , the preprojective distinguished triangle contains families of Postnikov systems of
arbitrary length. The sense in which this data is precisely encoded by the A8 -structure
computed in Thm. 4.9 is discussed in Rmk. 4.18.

Finally, these observations are related to Fukaya categories of surfaces. In Proposition
4.23, we conclude by constructing a strict A8 -functor from the wrapped Fukaya category
of a pair of paints WpP q to a slight modification of the preprojective category Π .

This paper is part of an ongoing study of the relativization of structures in homological
algebra and relationships to the categorification program in low dimensional topology. It has
been made into a separate paper because it contains an explicit and lengthy computation
of a certain A8 -structure.

Acknowledgments. B.C. was supported by the University of Iowa Old Gold fellowship.
J.S. was supported by NSF grant DMS-1407394, PSC-CUNY Award 67144-0045, and
Simons Foundation Collaboration Grant 516673.

2. The language of A8 -categories

An A8 -category is a category in which the associativity of composition holds only up to
coherent homotopy. The purpose of this section is to explain how the homotopy transfer
theorem [13] implies that every differential graded category C uniquely determines an A8 -
category H0pCq and how homotopy classes of maps between dg categories can be computed
from this A8 -category [6].
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2.1. A8 -categories and A8 -functors.

Definition 2.2. An A8 -category C consists of a collection of objects ObpCq and a Z-
graded k -module of morphisms HompX,Y q “

À

iPZHom
ipX,Y q for each pair of objects

X,Y P ObpCq together with maps
md : HompXd´1, Xdq b ¨ ¨ ¨ bHompX0, X1q Ñ HompX0, Xdqr2´ ds, d ě 1

which satisfy the relations
d
ÿ

l“0

d´l
ÿ

n“0
p´1q;nmd´l`1pfd, . . . , fn`l`1,mlpfn`l, . . . , fn`1q, fn, . . . , f1q “ 0 (2.1)

where ;n “ |fn|` ¨ ¨ ¨ ` |f1|´ n and d ě 1 .
An A8 -category C is said to be strictly unital when there is a unique degree zero

morphism 1X P Hom0pX,Xq for each X P ObpCq which satisfies

m2pf, 1Xq “ f, p´1q|g|m2p1X , gq “ g (2.2)
and mdp. . . , 1X , . . .q “ 0 when d ‰ 2,

for any maps f : X Ñ A or g : B Ñ X and any object X P ObpCq .

Example 2.3. Additive k -linear categories and differential graded categories are examples
of A8 -categories in which all of the higher multiplications md , for d ą 2 , vanish. Any
A8 -category C determines a dg category τą2C which is obtained by forgetting the maps
md for d ą 2 . Non-trivial examples of A8 -categories appear in Section 4.

In an A8 -category C , there is a degree 1 map, m1 : HompX0, X1q Ñ HompX0, X1q , for
each pair of objects X0, X1 P ObpCq , which satisfies m1 ˝m1 “ 0 ; the simplest A8 -relation
above. Taking homology everywhere with respect to these maps produces the homotopy
category defined below.

Definition 2.4. The homotopy category H0pCq of an A8 -category C is the k -linear cat-
egory with the same objects as C and morphisms given by homology classes of maps
rf s P H˚pHompX,Y q,m1q for each X,Y P ObpCq . The composition is defined by

rf2s ˝ rf1s “ p´1q|f1|rm2pf2, f1qs.

Example 2.5. Suppose that R is ring and M is an R-module. If P is a projective
resolution of M

P “ r¨ ¨ ¨ Ñ Pi
di
ÝÑ Pi`1 Ñ ¨ ¨ ¨ Ñ P´1 Ñ P0s ÑM Ñ 0

then the endomorphisms End˚pP q of P form a differential graded category with one object.
In more detail, set EndnpP q “

ś

iPZHompPi, Pi`nq . If f “ tfi : Pi Ñ Pi`nu and
g “ tgi : Pi Ñ Pi`mu are maps of degree n and m respectively then the composite
g ˝ f “ tgn`i ˝ fi : Pi Ñ Pi`n`mu is an endomorphism of degree n`m . This composition
determines a multiplication µ . If f “ tfi : Pi Ñ Pi`nu then df “ tpdfqi : Pi Ñ Pi`n`1u

where
pdfqi “ di`n ˝ fi ´ p´1qnfi`1di : Pi Ñ Pi`n`1.
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The homotopy category H0pEnd˚pP qq of End˚pP q is the Ext-algebra of M
H0pEnd˚pP qq – Ext˚RpMq.

Definition 2.6. An A8 -functor F : C Ñ D between A8 -categories consists of a map
F : ObpCq Ñ ObpDq and multilinear maps

F d : HomCpXd´1, Xdq b ¨ ¨ ¨ bHomCpX0, X1q Ñ HomDpF pX0q, F pXdqqr1´ ds
for d ě 1 , which satisfy the equations

ÿ

rě1

ÿ

s1,...,sr

mD
r pF

srpfd, . . . , fd´sr`1q, . . . , F
s1pfs1 , . . . , f1qq “

ÿ

l,n

p´1q;nF d´l`1pfd, . . . , fn`l`1,m
C
l pfn`l, . . . , fn`1q, fn, . . . , f1q.

The sign ;n is as in Definition 2.2 and the first sum is over all partitions: s1 ` ¨ ¨ ¨ ` sr “ d .
The collection tF du is also required to behave well with respect to units

F 1p1Xq “ 1F pXq and F dp. . . , 1X , . . .q “ 0 for d ě 2.

Any such A8 -functor F : C Ñ D induces a map H0pF q : H0pCq Ñ H0pDq between the
associated homotopy categories. An A8 -functor is a quasi-isomorphism or A8 -equivalence
when H0pF q is an equivalence of categories.

If F : C Ñ D is an A8 -functor then there is a dg functor τą2pF q : τą2C Ñ τą2D
determined by the map F 1 between the truncations of C and D , see Example 2.3.

Two A8 -functors F : C Ñ D and G : D Ñ E can be composed to produce an A8 -functor
G ˝ F : C Ñ E , the dth component of which is given by the equation

pG ˝ F qdpfd, . . . , f1q “
ÿ

r

ÿ

s1,...,sr

GrpF srpfd, . . . , fd´sr`1q, . . . , F
s1pfs1 , . . . , f1qq.

Definition 2.7. Let A8pC,Dq denote the A8 -category of A8 -functors from C to D . If
F,G : C Ñ D are two objects in this category, then a morphism (pre-natural transformation)
T P HomgpF,Gq of degree g from F to G is a sequence T “ pT 0, T 1, . . .q where

T d : HomCpXd´1, Xdq b ¨ ¨ ¨ bHomCpX0, X1q Ñ HomDpF pX0q, GpXdqqrg ´ ds,

for all sequences of objects pX0, . . . , Xdq in C . There is an A8 -structure on the collection
of pre-natural transformations. For more details see [17, §(1d)].

2.8. Homotopy perturbation theory. Since an A8 -category is a category in which the
composition is associative only up to coherent homotopy, deforming an A8 -category by a
homotopy yields an A8 -equivalent A8 -category. The purpose of the homotopy transfer
theorem is to make this precise, see [17, Prop. 1.12] or [13] for detailed arguments and signs.

If C and D are dg categories with the same set of objects, then we say that D is a
perturbation of C when there are dg functors f : C Ñ D and g : D Ñ C so that f and g are
identity maps on objects, 1D “ fg , and for each pair of objects x, y P C there is a homotopy
hx,y : HomCpx, yq Ñ HomCpx, yq of degree ´1 which satisfies dhx,y´hx,yd “ 1´ gf where
gf is the map induced by g and f between Hom-spaces.
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Theorem 2.9. Suppose that C is an A8 -category, τą2C is the dg category determined
by forgetting the higher mn -maps when n ě 3 and D is a perturbation of τą2C with dg
functors

f : τą2C Ñ D and g : D Ñ τą2C.
Then there is an A8 -category pD1, tmD1

n uną3q and there are A8 -functors
f 1 : C Ñ D1 and g1 : D1 Ñ C

which determine an A8 -equivalence C » D1 and restrict to the initial data: τą2D1 “ D ,
τą2pf

1q “ f and τą2pg
1q “ g .

Since mD
1 “ mD1

1 and mD
2 “ mD1

2 , one can view D1 as an extension of the dg structure
on D .

An important special case of this theorem shows that every A8 -category C is A8 -
equivalent to its own homotopy category H0pCq , [17, Rmk 1.13]. Following Example 2.5,
when P is a projective resolution of an R-module M , there is an A8 -structure on the Ext-
algebra Ext˚pMq making it A8 -equivalent to the dg algebra End˚pP q (with differential
d and multiplication µ)

End˚pP q – Ext˚pMq.

For this special case, following [10, Theorem 3.2], the equivalence of Theorem 2.9 may
be expressed using maps

End˚pP q Ext˚pMq
p

i
H

(2.3)
where i and p are morphisms of degree zero and H is a homogeneous map of degree ´1
such that

pi “ 1, 1´ ip “ dpHq, H2 “ 0.
Then the A8 -structure on Ext˚pMq is given by

mn “
ÿ

T

mT
n

where T ranges over planar rooted binary trees with n leaves and mT
n is given by composing

the tree-shaped diagram obtained by labeling each leaf by i , each branch point by µ , each
internal edge by H and the root by p .
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For example, the two trees determining m3 are pictured below.

i i i

µ

µ

p

H

i i i

µ

µ

p

H

(2.4)

2.10. Homotopy classes of functors. The category of differential graded categories
dgcatk over k can be given the structure of a model category Hqe. A weak equivalence in
this homotopy theory is a dg functor f : CÑ D which satisfies two properties

(1) H0pfq : H0pCq Ñ H0pDq is essentially surjective
(2) fx,y : HomCpx, yq Ñ HomDpfpxq, fpyqq is a quasi-isomorphism for all x, y P ObpCq .

The homotopy category Hopdgcatkq of dg categories is the category obtained by formally
inverting the weak equivalences above. Toën [19] proved that category Hopdgcatkq is closed
and monoidal. In particular, there are dg categories C bL D and RHompD, Eq together
with natural isomorphisms

HompC bL D, Eq „ÝÑ HompC,RHompD, Eqq.
Unfortunately, Toën’s description of the dg category RHompD,Eq is somewhat complicated.
The purpose of this section is to discuss an alternative way to compute the derived space
of mappings using A8 -categories. G. Faonte proved the theorem below [6, Thm. 1.7]; the
statement is sometimes attributed to Kontsevich.

Theorem 2.11. If D and E are dg categories over a field of characteristic 0, then the
derived mapping category RHompD, Eq is naturally isomorphic to the dg category of A8 -
functors from D to E

RHompD, Eq „ÝÑ A8pD, Eq.

3. Algebraic cones

If f : X Ñ Y is a continuous map between topological spaces X and Y then the cone
Cpfq of f is given by the pushout

Cpfq “ CX \f Y where CX “ X ˆ r0, 1s{X ˆ t1u.
This topological cone acts as a stand in for the quotient Y {impfq in the long exact sequence
of homology groups associated to the quotient

¨ ¨ ¨ Ñ HnpXq
f˚
ÝÑ HnpY q Ñ HnpCpfqq Ñ Hn´1pXq Ñ ¨ ¨ ¨
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because HnpCpfqq – HnpY {impfqq for n ą 0 . After passing from topological spaces to
cochain complexes, the cone Cpfq of a map f : pX, dXq Ñ pY, dY q is the cochain complex
formed by

Cpfq “ pXr1s ‘ Y, dCpfqq where dCpfq “

ˆ

´dX 0
f dY

˙

. (3.1)

In analogy with the relationship between the homology of quotient space and the topological
cone, when f : X Ñ Y is a map in an abelian category A , the algebraic cone is isomorphic
to the quotient in the derived category DbpAq , Cpfq – Y {impfq . This is why the existence
of objects equivalent to algebraic cones is a principal component of the definition of a
triangulated category. For a similar discussion of cones see [1, §3.1]. In the remainder of
this section we will reformulate the requirement that an algebraic cone exists in a manner
which admits generalizations.

When an A8 -category C is pretriangulated each cycle f P HomCpX,Y q , has a cone
Cpfq P ObpCq . Roughly speaking, a cone is said to exist in C when there is an object
Cpfq P ObpCq representing the cone of f in the image of the Yoneda embedding. Let us
explain precisely what we mean. For any A8 -category C , the category of modules C -mod “
A8pC, Chkq consists of A8 -functors from C to the dg category of cochain complexes Chk .
There is a Yoneda embedding of C into its associated category of modules C -mod

Y : C Ñ C -mod, X ÞÑ YX where YXpY q “ HomCpX,Y q.

This is an embedding in the sense that the associated functor H0pYq : H0pCq Ñ H0pC -modq
between homotopy categories is full and faithful.

Definition 3.1. If f P HomCpY0, Y1q is a cycle, (so m1pfq “ 0), then the cone Cpfq P

ObpC -modq of f is the C -module determined by the assignment
CpfqpXq “ HompX,Y0qr1s ‘HompX,Y1q

and structure maps

m
Cpfq
d ppb0, b1q, ad´1, . . . , a1q “ pmdpb0, ad´1, . . . , a1q,

mdpb1, ad´1, . . . , a1q `md`1pf, b0, ad´1, . . . , a1qq

Remark 3.2. The definition stems from the observation that for any A8 -category C , the
homotopy category of modules H0pC -modq is triangulated in the sense of Verdier and
Cpfq – CpYpfqq where Ypfq : YY0 Ñ YY1 .

Remark 3.3. When C “ Chk , so md “ 0 for d ą 2 , the A8 -cone in Def. 3.1 above is
equivalent to the image of the algebraic cone in Eqn. (3.1) under the Yoneda map.

Cpfq – YCpfq.

This justifies the next definition.

Definition 3.4. Suppose that C is an A8 -category and f P HomCpY0, Y1q is a cycle,
so that m1pfq “ 0 , then an object X P ObpCq is a cone of f in C when there is an
isomorphism

YX – Cpfq

7



in the homotopy category H0pC -modq of C -modules. In particular, f has a cone Cpfq in
C when there is such a cone object X in C . Since the Yoneda embedding is full and faithful
up to homotopy, any two cones of a single f must be isomorphic in H0pCq .

Use of the Yoneda embedding to characterize the cone construction in dg and A8 -
categories appeared in [3, 18].

3.5. A relative perspective on triangles. In what follows we review a different perspec-
tive of triangulated categories often attributed to Kontsevich, see [7], [17, I, (3g)].

If f P HomCpX,Y q is a cycle of degree |f | “ 0 and Z P ObpCq is the cone on f , as
above, then there are cycles g : Y Ñ Z and h : Z Ñ X of degrees |g| “ 0 and |h| “ 1
respectively which is summarized by

X
f
ÝÑ Y

g
ÝÑ Z

h
ÝÑ Xr1s.

While any such collection of maps within an A8 -category C could be called a triangle, a
distinguished triangle must satisfy the additional properties below.

(1) In the homotopy category, composing any two adjacent maps is zero
m2pg, fq “ 0, m2ph, gq “ 0 and m2pf, hq “ 0. (3.2)

(2) The Massey product of three consecutive maps is identity
m3ph, g, fq “ 1X , m3pf, h, gq “ 1Y and m3pg, f, hq “ 1Z . (3.3)

It happens that these conditions suffice to distinguish distinguished triangles. In particular,
Z » Cpfq when conditions (1) and (2) hold. There is a category ∆ which packages the
information above in such a way that A8 -functors t : ∆ Ñ C from ∆ to C correspond to
distinguished triangles in C .

Definition 3.6. There is an A8 -category ∆ which encodes the constraints satisfied by a
distinguished triangle. The objects are given by the set Obp∆q “ tA,B,Cu and maps are
given by identity maps 1A ,1B and 1C together with maps α : A Ñ B , β : B Ñ C and
γ : C Ñ A of degrees |α| “ 0 , |β| “ 0 and |γ| “ 1 respectively.

A

B C

α

β

γ

The A8 -structure is determined by the requirements of strict unitality, as in Def. 2.2, and
Eqns (3.2) and (3.3) above. This is the partially wrapped Fukaya category of the disk with
three marked points on the boundary, see Def. 4.19 [5, 9, 14].

Theorem 3.7. A triangle X f
ÝÑ Y

g
ÝÑ Z

h
ÝÑ Xr1s in H0pCq is distinguished if and only if

there is an A8 -functor t : ∆ Ñ C such that

(1) tpAq “ X , tpBq “ Y and tpCq “ Z

8



(2) rtspαq “ f , rtspβq “ g and rtspγq “ h

where rts “ H0ptq : H0p∆q Ñ H0pCq.

Informally, the theorem above says that A8 -functors correspond to distinguished triangles
in a given A8 -category C . This theorem will be used to rephrase the condition that an
A8 -category C contains a cone object Cpfq for every cycle f P HomCpX,Y q .

3.8. A2 -representations as a subcategory. Since the third object Z in a distinguished
triangle is determined up to isomorphism by its realization as the cone on the map f : X Ñ Y

between the other two, the category ∆ is Morita equivalent to the subcategory consisting
of two objects and a map between them

A2 :“ rX f
ÝÑ Y s.

This is called the A2 -quiver. A module or representation M of A2 consists of two k -vector
spaces V and W assigned to the objects X and Y

MpXq “ V and MpY q “W

together with a linear map Mpfq : V ÑW . In other words, a functor A2 Ñ V ectk . A map
q : M Ñ N between two representations is a natural transformation. If M and N are two
representations then there is a sum M ‘N determined by the assignments pM ‘NqpXq “

MpXq ‘NpXq , pM ‘NqpY q “ MpY q ‘NpY q and pM ‘Nqpfq “ Mpfq ‘Npfq . If any
isomorphism of the form K –M ‘N implies that either M “ 0 or N “ 0 then the module
K is called indecomposable.

The representations of A2 form the objects of an abelian category A2 -mod containing
precisely three indecomposable objects: P , S1 and S2 determined by the table of functors
below.

(1) P pXq “ k , P pY q “ k and P pfq “ 1k .
(2) S1pXq “ k , S1pY q “ 0 and S1pfq “ 0 .
(3) S2pXq “ 0 , S2pY q “ k and S2pfq “ 0 .

These modules form a short exact sequence
0 Ñ S2 Ñ P Ñ S1 Ñ 0 (3.4)

which is universal in the sense that the structure of the category A2 -mod is determined
by (3.4) and the axioms of abelian categories. The space Ext1pS1, S2q is spanned by this
extension. All of the other Ext-groups vanish because S2 and P are projective. From
Eqn. (3.4), we see that the chain complex Q “ rS2 Ñ P s is a projective resolution of S1 .
Theorem 2.9 can be used compute the A8 -structure of the Ext-algebra:

End˚pQ‘ P ‘ S2q
„
ÝÑ Ext˚pS1 ‘ P ‘ S2q

as in Example 2.5. The A8 -structure on the righthand side of this equation is well-known,
see [12, App. B. 2], up to sign conventions, it is identical to the category ∆

∆ – Ext˚pS1 ‘ P ‘ S2q.
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It is in this way that the A8 -category ∆ , the principal datum of a triangulated category
and the definition of algebraic cone stem directly from the representation theory of the
A2 -quiver.

3.9. Cones as completions. The discussion above leads us to a generalization of the
requirement that an A8 -category have cones corresponding to each cycle.

Definition 3.10. Suppose that ι : A Ă Ā is a pair of A8 -categories. Then an A8 -
category C is ι-complete when the pullback functor: ι˚ : RHompĀ, Cq Ñ RHompA, Cq is
quasi-essentially surjective (i.e. H0pι˚q is essentially surjective).

If C is ι-complete then, up to homotopy, every functor F : AÑ C from A into C lifts
to a functor F̃ : ĀÑ C in such a way that the diagram below commutes.

A

Ā

C

ι

F

F̃

Example 3.11. Suppose that A is a diagram category consisting of a collection of disjoint
points and Ā “ CA is the cone category obtained by adding an initial object. Then a
category C containing A-limits will be ι-complete (where ι : AÑ CA).

In examples of most interest the functor ι˚ is a quasi-equivalence; both quasi-essentially
surjective and quasi-fully faithful.

The definition below introduces some terminology to clarify the generalization we are
making.

Definition 3.12. Suppose ι : AÑ Ā is a pair as in Def. 3.10 above. A functor F : AÑ C

is a morphism or ι-morphism. A lift F̃ : Ā Ñ C is a ι-distinguished triangle associated
F . For any morphism F , the additional information needed to define a lift F̃ is a cone or
ι-cone on F .

Example 3.13. Suppose B is a finite dimensional algebra over k and S is the collection
of finite dimensional simple B -modules S Ă B -mod . Set S “ ‘MPSM . Then there are
A8 -categories

AB “ End˚pSq and ĀB “ End˚pS ‘Bq.

In the second term, B is used to denote the algebra B viewed as a left B -module over itself.
After applying Thm. 2.9 to both sides, the inclusion AB ãÑ ĀB of dg algebras determines
an A8 -functor ι : AB Ñ ĀB . In this sense, there is a notion of ι-completeness associated
to every finite dimensional algebra B .

When B “ A2 , Thm. 3.7 combines with the discussion in Section 3.8 to show that an
A8 -category C contains a cone Cpfq for every cycle f P C if and only if C is ι-complete
as in the example above.

10



Since there are many choices of ι , it is important to limit investigation to interesting
choices. In the next section we will investigate this condition for the preprojective algebra
of the A2 -quiver. For this category, it might make sense to call the ι-distingished triangles,
distinguished pyramids.

4. Preprojective cones

In this section we introduce the preprojective algebras ΠQ and compute the A8 -category
Π associated to the derived endomorphisms of indecomposable modules over ΠA2 . The
category Π constitutes our generalization of the category ∆ which was seen to describe
distinguished triangles in Theorem 3.7.

A quiver is a finite directed graph Q “ pQ0, Q1q consisting of vertices Q0 and edges Q1 .
Each edge f P Q1 has a start spfq P Q0 and a tail tpfq P Q0 . For example, A2 in Section
3.8 is a quiver of the form A2 “ ptX,Y u, tX

f
ÝÑ Y uq , tpfq “ Y and spfq “ X .

Associated to any quiver Q , is a path algebra kQ consisting of k -linear combinations of
paths between the vertices in Q . Any two such paths a, b P kQ multiply by concatenation
ab when the vertex at which a ends agrees with the vertex at which b begins; the product
is defined to be zero otherwise. The category of left modules over the path algebra kQ is
equivalent to the category of functors Q -mod “ HompQ,V ectkq appearing in Section 3.8

kQ -mod – Q -mod .

The preprojective algebra ΠQ is a different algebra associated to the quiver Q . Given
such a quiver Q , there is another quiver Q which is obtained by adding a formal inverse
f˚ : tpfq Ñ spfq to each arrow f : spfq Ñ tpfq . If the set of these arrows is denoted by Q˚1
then Q “ pQ0, Q1 YQ

˚
1q . Let ρ be the element of the path algebra kQ given by the sum

ρ “
ÿ

fPQ1

pff˚ ´ f˚fq.

The preprojective algebra is the quotient of the path algebra by the ideal generated by ρ

ΠQ “ kQ{pρq.

Remark 4.1. The category ΠQ -mod is a kind of next-simplest most-interesting replacement
for the category Q -mod , see [4] or [16, Thm. C].

Example 4.2. When Q “ An is the graph consisting of n vertices t1, . . . , nu with one
directed edge pi, i` 1q : iÑ i` 1 for 1 ď i ă n . Then the graph An is formed by adding
the inverses pi, i` 1q˚ “ pi` 1, iq : i` 1 Ñ i pictured below.

1 ¨ ¨ ¨ i´ 1 i i` 1 ¨ ¨ ¨ n

11



Quotienting the path algebra kAn by the ideal pρq , described above, implies the relations
of the preprojective algebra

pi, i´ 1qpi´ 1, iq “ pi, i` 1qpi` 1, iq for i “ 2, . . . , n´ 1,
p1, 2qp2, 1q “ 0 and pn, n´ 1qpn´ 1, nq “ 0.

These preprojective algebras are closely related to the algebras studied by Khovanov-
Seidel: if A!

n denotes the Koszul dual of the Khovanov-Seidel algebra then the preprojective
algebra is obtained by adding one relation

ΠAn “ A!
n{xpn, n´ 1qpn´ 1, nqy

see [11] and [15, §4].

4.3. The algebra ΠA2 . In this section we will discuss the algebra ΠA2 and its represen-
tation theory in more detail.

Definition 4.4. The algebra ΠA2 may be thought of as a category with two objects
ObpΠA2q “ t1, 2u , each with its own identity map 11 or 12 , and two maps p12q : 1 Ñ 2
and p21q : 2 Ñ 1 which satisfy two relations:

p12qp21q “ 0 and p21qp12q “ 0.
The quiver underlying this construction is pictured below.

1 2

p12q

p21q

The representation theory of this algebra is well-known. The abelian category ΠA2 -mod
of finitely generated representations has four indecomposable modules: S1 , S2 , P1 and P2
[8, §8]. The first two modules S1 and S2 are 1-dimensional simple modules associated to
the vertices 1 and 2 ,

S1 “ kp1q and S2 “ kp2q
where piq acts as the identity on Si and all other basis elements of ΠA2 act trivially. The
second two modules are projective modules spanned by the set of paths which begin at their
respective vertices

P1 “ ΠA2p1q and P2 “ ΠA2p2q.
While there are no maps of degree zero between simple modules, the arrows p12q and p21q
in the definition above induce maps p12q : P1 Ñ P2 and p21q : P2 Ñ P1 between projective
modules. Each of the two maps, indicated by bold arrows in the diagram below, has a

12



kernel and image, which give the two maps between projectives and simples also pictured
in the diagrams below.

S1 – imp12q kerp12q – S2

P2

P1

j2

p1 j1

S1 – kerp21q imp21q – S2

P2

P1

j2 p2

j1

There is an obvious symmetry implicit in the discussion above which we next record.

Proposition 4.5. There is an involution κ : ΠA2 -mod Ñ ΠA2 -mod induced by exchanging
the indecomposable modules

P1 Ø P2 and S1 Ø S2

The two short exact sequences

0 Ñ S1
j2
ÝÑ P2

p2
ÝÑ S2 Ñ 0 and 0 Ñ S2

j1
ÝÑ P1

p1
ÝÑ S1 Ñ 0 (4.1)

correspond to two maps α : S2 Ñ S1 and β : S1 Ñ S2 which span the groups Ext1pS2, S1q
and Ext1pS1, S2q respectively.

There are projective resolutions Qi of simple modules Si by the projective modules P1
and P2

Qi “ r¨ ¨ ¨ Ñ P1
p12q
ÝÝÑ P2

p21q
ÝÝÑ P1 Ñ ¨ ¨ ¨ Ñ Pis

pi
ÝÑ Si Ñ 0

The structure exhibited among the indecomposables of ΠA2 is a kind of double of
the structure discussed in Section 3.8. In this paper we seek to understand what the ΠA2
analogue of ∆ corepresents: a preprojective analogue of distinguished triangles and algebraic
cones. In order to answer this question we construct an A8 -category analogue Π of ∆ .

In more detail, we wish to understand the Ext-algebra of M “ S1‘P1‘P2‘S2 . After
replacing each simple Si with the projective resolution Qi , and setting M̃ “ Q1‘P1‘P2‘

Q2 , Theorem 2.9, allows us to compute an A8 -structure on the Ext-algebra Ext˚pMq so
that the dg category End˚pM̃q and Ext˚pMq are A8 -equivalent.

End˚pM̃q
„
ÝÑ Ext˚pMq

The A8 -category Π “ Ext˚pMq will serve as our replacement for ∆ in what follows.

13



4.6. The category Π. As an A8 -category Π has m1 “ 0 . The generating maps of the
category Π are pictured below:

S1 S2

P2

P1

j2 p2

j1p1

p21q

p12q

α

β

where |α| “ 1 , |β| “ 1 and all other maps have degree 0 .

Remark 4.7. All of the tables in this section are written so that the left column is equivalent
to κ of the right column; κ is defined in Proposition 4.5.

Let u1 :“ αβ and u2 :“ βα denote the degree 2 endomorphisms of S1 and S2 respectively.
Then the composition

m2 : HompX1, X2q bHompX0, X1q Ñ HompX0, X2q, f b g ÞÑ f ˝ g

is determined by the requirements of the identity maps and the table below.
m2pj1, p2q “ p21q m2pj2, p1q “ p12q
m2pu

n
1 , u

m
1 q “ un`m1 m2pu

n
2 , u

m
2 q “ un`m2

m2pβu
m
1 , u

n
1 q “ βun`m1 m2pαu

m
2 , u

n
2 q “ αun`m2

m2pu
m
2 , βu

n
1 q “ βun`m1 m2pu

m
1 , αu

n
2 q “ αun`m2

m2pαu
m
2 , βu

n
1 q “ un`m`1

1 m2pβu
m
1 , αu

n
2 q “ un`m`1

2

In other words, all of the compositions are zero besides those involving identity maps,
j1p2 “ p21q , j2p1 “ p12q and the maps α and β which generate a free subalgebra. Together
with maps u1 “ αβ and u2 “ βα there are relations

u2β “ βu1 and u1α “ αu2.

The generating set pictured above determines the basis for each Hom-space given below.
HompP1, S1q “ p1 HompP2, S2q “ p2
HompS1, P2q “ j2 HompS2, P1q “ j1
HompP1, P2q “ p12q HompP2, P1q “ p21q
HompP1, P1q “ 1P1 HompP2, P1q “ 1P2

HompS1, S1q “ un1 HompS2, S2q “ un2
HompS1, S2q “ βun1 HompS2, S1q “ αun2

where n ě 0 .
When d “ 3 , the A8 -multiplication map

m3 : HompX2, X3q bHompX1, X2q bHompX0, X1q Ñ HompX0, X3qr´1s
14



is determined by the constraints of strict unitality (see (2.2)) and the behavior of certain
triangles within the graph above under action of m2 . There are two basic triangles

pAq m3pα, p2, j2q “ 1S1 m3pβ, p1, j1q “ 1S2

pBq m3pp2, j2, αq “ 1S2 m3pp1, j1, βq “ 1S1

m3pj2, α, p2q “ 1P2 m3pj1, β, p1q “ 1P1

(4.2)

consisting of rotations of the upper and lower faces of the tetrahedron pictured above.
There is a trick to finding several other non-trivial m3 -products in Π . They are implied

by the A8 -relations and the basic triangles above. Ignoring signs for a moment, the first
A8 -relation, d “ 4 in Eqn. (2.1), to incorporate the m3 -operation is written in long form
as follows:

m3pm2ph, f3q, f2, f1q `m3ph,m2pf3, f2q, f1q `m3ph, f3,m2pf2, f1qq (4.3)
`m2pm3ph, f3, f2q, f1q `m2ph,m3pf3, f2, f1qq “ 0. (4.4)

So when all but the first and last terms in the sum vanish, each face m3pf3, f2, f1q “ g

of the tetrahedron above gives rise to a number of other m3 -operations. These can be
constructed by using non-trivial m2 -compositions on either the left

m3pm2ph, f3q, f2, f1q “ m2ph,m3pf3, f2, f1qq “ m2ph, gq,

or, by symmetry, on the right
m3pf3, f2,m2pf1, hqq “ m2pm3pf3, f2, f1q, hq “ m2pg, hq.

Using this trick, each case pAq and pBq above gives the three additional compositions
below.

pAq m3pα, p2, p12qq “ p1 m3pβ, p1, p21qq “ p2
m3pu

n
2 , p2, j2q “ βun´1

1 m3pu
n
1 , p1, j1q “ αun´1

2
m3pαu

n
2 , p2, j2q “ un1 m3pβu

n
1 , p1, j1q “ un2

pBq m3pp21q, j2, αq “ j1 m3pp12q, j1, βq “ j2
m3pp2, j2, u

n
1 q “ βun´1

1 m3pp1, j1, u
n
2 q “ αun´1

2
m3pp2, j2, αu

n
2 q “ un2 m3pp1, j1, βu

n
1 q “ un1

When d “ 4 , the A8 -multiplication map
m4 : HompX3, X4q bHompX2, X3q bHompX1, X2q bHompX0, X1q Ñ HompX0, X4qr´2s
is determined by the constraints of strict unitality (see Eqn. (2.2)) and the behavior of
certain triangles within the graph above under action of m2 . The two basic operations
below correspond to the left and right faces of the tetrahedron on the page pictured above.

pAq m4pp1, p21q, j2, u1q “ 1S1 m4pp2, p12q, j1, u2q “ 1S2

pBq m4pu1, p1, p21q, j2q “ 1S1 m4pu2, p2, p12q, j1q “ 1S2

m4pj2, u1, p1, p21qq “ 1P2 m4pj1, u2, p2, p12qq “ 1P1

m4pp21q, j2, u1, p1q “ 1P1 m4pp12q, j1, u2, p2q “ 1P2

(4.5)

As explained for the m3 -operations above, due to the vanishing of some terms in the A8 -
relation for the m4 -operation, we can act with the m2 -operation on either the left or the
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right of the basic triangles to obtain a few more m4 -operations. Each case, pAq and pBq ,
determines three more m4 -operations, these are listed below.

pAq m4pp1, p21q, j2, un`1
1 q “ un1 m4pp2, p12q, j1, un`1

2 q “ un2
m4pp1, p21q, j2, αun`1

2 q “ αun2 m4pp2, p12q, j1, βun`1
1 q “ βun1

m4pp12q, p21q, j2, u1q “ j2 m4pp21q, p12q, j1, u2q “ j1
pBq m4pu

n`1
1 , p1, p21q, j2q “ un1 m4pu

n`1
2 , p2, p12q, j1q “ un2

m4pu
n`1
2 β, p1, p21q, j2q “ un2β m4pu

n`1
1 α, p2, p12q, j1q “ un1α

m4pu1, p1, p21q, p12qq “ p1 m4pu2, p2, p12q, p21qq “ p2

In order to facilitate our description of the rest of the A8 -structure, we will use the
following notation

p212q “ p21q b p12q and p121q “ p12q b p21q.
For instance,

p212qn “ p21q b p12q b p21q b p12q b ¨ ¨ ¨ b p21q b p12q n-times.

The classification of higher homotopies (see (4.7) later on) shows that the only non-zero
higher operations must contain an expression of the form:

p2 b p121qn b j2 p1 b p212qn b j1
p2 b p121qn`1 p1 b p212qn`1

p2 b p121qn b p12q p1 b p212qn b p21q
p2 b p121qn b p12q b j1 p1 b p212qn b p21q b j2

Remark 4.8. Intuitively speaking, if we view the input of an A8 -operation mnpfn, . . . , f1q
as a path f1, . . . , fn in the graph featured at the beginning of §4.6 then the higher A8 -
operations that we find can been seen as extensions of the lower order operations discussed
above. Each of these extensions is formed by adding a loop of the form p121q or p212q to
the path while balancing the grading by adding a loop of the form u1 “ αβ or u2 “ βα .
The equations above list the ways in which the loops p121q or p212q can be added. See
Rmk. 4.10.

This classification result is accomplished by Thm. 4.9, which is a computation using
homotopy perturbation theory (Thm. 2.9). We need to introduce a few more preliminaries
before proceeding to the theorem.

Our goal in Thm. 4.9 is to compute all of the compositions of maps corresponding to the
decorated binary trees discussed in §2.8. The key is to construct homotopies "h-maps" for
compositions which are nullhomotopic, and study compositions of these homotopies. We
now define certain important maps in End˚pM̃q . In what follows below, i P Z{2 .

Below is the map h
pnq
SiSi

: Si Ñ Sir´2ns .

PiPi`1Pi¨ ¨ ¨

PiPi`1Pi¨ ¨ ¨

111

Pi`1 ¨ ¨ ¨ Pi`1 Pi
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Below is the map h
pnq
SiSi`1

: Si`1 Ñ Sir´2n´ 1s .

Pi`1PiPi`1¨ ¨ ¨

Pi`1PiPi`1¨ ¨ ¨

111

Pi ¨ ¨ ¨ Pi`1 Pi

Below is the map h
pnq
SiPi

: Pi Ñ Sir´2ns .

Pi¨ ¨ ¨PiPi`1PiPi`1¨ ¨ ¨

Pi

1

Below is the map h
pnq
SiPi`1

: Pi`1 Ñ Sir´2n´ 1s .

Pi¨ ¨ ¨Pi`1PiPi`1Pi¨ ¨ ¨

Pi`1

1

Below is the map h
pnq
PiSi

: Si Ñ Pir2ns .

¨ ¨ ¨ Pi Pi`1 Pi Pi`1 ¨ ¨ ¨ Pi

Pi

1

Below is the map h
pnq
Pi`1Si

: Si Ñ Pi`1r2n` 1s .

¨ ¨ ¨ Pi Pi`1 Pi Pi`1 ¨ ¨ ¨ Pi

Pi`1

1

The trees appearing in (2.4) propagate from leaves to root. The homotopies appear in
order determined by distance from the leaves. The initial homotopies H arise as follows.

Hpp1j1q “ h
p0q
S1S2

Hpp2j2q “ h
p0q
S2S1

(4.6)

Hpj1pβu
n
1 qq “ h

pnq
P1S1

Hpj2pαu
n
2 qq “ h

pnq
P2S2

Hpp1p21qq “ h
p0q
S1P2

Hpp2p12qq “ h
p0q
S2P1

Hpj2u
n
1 q “ h

pn´1q
P2S1

, n ą 0 Hpj1u
n
2 q “ h

pn´1q
P1S2

, n ą 0

17



"Higher" h-maps arise by applying H to these initial h maps as follows.

Hph
pnq
S1P2

˝ j2q “ h
pn`1q
S1S1

, n ě 0 Hph
pnq
S2P1

˝ j1q “ h
pn`1q
S2S2

, n ě 0 (4.7)

Hph
pnq
S1P2

˝ p12qq “ h
pn`1q
S1P1

, n ě 0 Hph
pnq
S2P1

˝ p21qq “ h
pn`1q
S2P2

, n ě 0

Hph
pnq
S1P1

˝ j1q “ h
pnq
S1S2

, n ě 1 Hph
pnq
S2P2

˝ j2q “ h
pnq
S2S1

, n ě 1

Hph
pnq
S1P1

˝ p21qq “ h
pnq
S1P2

, n ě 1 Hph
pnq
S2P2

˝ p12qq “ h
pnq
S2P1

, n ě 1

Hpp12q ˝ hpnqP1S1
q “ h

pn´1q
P2S1

, n ě 1 Hpp21q ˝ hpnqP2S2
q “ h

pn´1q
P1S2

, n ě 1

Hpp21q ˝ hpnqP2S1
q “ h

pnq
P1S1

, n ě 0 Hpp12q ˝ hpnqP1S2
q “ h

pnq
P2S2

, n ě 0.
Compositions of h ’s with elements in the Ext-algebra and other h ’s produce the elements
in the Ext-algebra listed below. The map H is zero on any element f representing a cycle
in the Ext-algebra.

un1 ˝ h
pmq
S1S2

“ un´m´1
1 α un2 ˝ h

pmq
S2S1

“ un´m´1
2 β (4.8)

un2β ˝ h
pmq
S1S2

“ un´m2 un1α ˝ h
pmq
S2S1

“ un´m1

h
p0q
P1S1

˝ p1 “ 1P1 h
p0q
P2S2

˝ p2 “ 1P2

p12q ˝ hp0qP1S1
“ j2 p21q ˝ hp0qP2S2

“ j1

um2 β ˝ h
pnq
S1P2

“ δm,np2 um1 α ˝ h
pnq
S2P1

“ δm,np1

un1 ˝ h
pmq
S1S1

“ un´m1 un2 ˝ h
pmq
S2S2

“ un´m2

un1 ˝ h
pmq
S1P1

“ δn,mp1 un2 ˝ h
pmq
S2P2

“ δn,mp2

uk2β ˝ h
pnq
S1S1

“ uk´n2 β uk1α ˝ h
pnq
S2S2

“ uk´n1 α

h
pmq
P2S1

˝ h
pnq
S1P2

“ δm,n1P2 h
pmq
P1S2

˝ h
pnq
S2P1

“ δm,n1P1

h
pmq
P1S1

˝ h
pnq
S1P1

“ δm,n1P1 h
pmq
P2S2

˝ h
pnq
S2P2

“ δm,n1P2 .

We also have the following list of "partial" terminating operations. Let γ1 “ α and γ2 “ β

and let i P Z{2 . These compositions are not cycles, so the map H is defined to be zero on
them.

Below is the map h
pnq
SiSi

˝ uki .

PiPi`1Pi¨ ¨ ¨ ¨ ¨ ¨ Pi

PiPi`1Pi¨ ¨ ¨

111

Pi`1 ¨ ¨ ¨ Pi`1 Pi
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Below is the map h
pnq
SiSi

˝ uki γi .

PiPi`1Pi¨ ¨ ¨ ¨ ¨ ¨ Pi`1

PiPi`1Pi¨ ¨ ¨

111

Pi`1 ¨ ¨ ¨ Pi`1 Pi

Below is the map h
pnq
SiSi`1

˝ uki`1 .

Pi`1PiPi`1¨ ¨ ¨ ¨ ¨ ¨ Pi`1

Pi`1PiPi`1¨ ¨ ¨

111

Pi ¨ ¨ ¨ Pi`1 Pi

Below is the map h
pnq
SiSi`1

˝ uki`1γi`1 .

Pi`1PiPi`1¨ ¨ ¨ ¨ ¨ ¨ Pi

Pi`1PiPi`1¨ ¨ ¨

111

Pi ¨ ¨ ¨ Pi Pi

Below is the map h
pnq
SiPi`1

˝ h
pkq
Pi`1Si

.

Pi`1PiPi`1¨ ¨ ¨ ¨ ¨ ¨ Pi

Pi`1PiPi`1¨ ¨ ¨

1

Pi ¨ ¨ ¨ Pi`1 Pi

Below is the map h
pnq
SiPi

˝ h
pkq
PiSi

.

PiPi`1Pi¨ ¨ ¨ ¨ ¨ ¨ Pi

PiPi`1Pi¨ ¨ ¨

1

Pi`1 ¨ ¨ ¨ Pi`1 Pi

Below is the map pi ˝ h
pkq
PiSi

.

PiPi`1Pi¨ ¨ ¨ ¨ ¨ ¨ Pi

PiPi`1Pi¨ ¨ ¨

1
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Below is the map h
pnq
Si`1Pi`1

˝ h
pkq
Pi`1Si

.

Pi`1PiPi`1¨ ¨ ¨ ¨ ¨ ¨ Pi

Pi`1PiPi`1¨ ¨ ¨

1

Pi ¨ ¨ ¨ Pi Pi`1

Below is the map pi`1 ˝ h
pkq
Pi`1Si

.

Pi`1PiPi`1¨ ¨ ¨ ¨ ¨ ¨ Pi

Pi`1PiPi`1¨ ¨ ¨

1

Below is the map h
pnq
SiPi`1

˝ h
pkq
Pi`1Si`1

.

Pi`1PiPi`1¨ ¨ ¨ ¨ ¨ ¨ Pi`1

Pi`1PiPi`1¨ ¨ ¨

1

Pi`1 ¨ ¨ ¨ Pi`1 Pi

Theorem 4.9. All of the non-trivial operations for Π are given below along with their
counterparts from the symmetry κ coming from exchanging the nodes 1 and 2 in the
underlying quiver.

This list contains the m2 operations.
m2pj1, p2q “ p21q
m2pu

n
1 , u

m
1 q “ un`m1

m2pβu
m
1 , u

n
1 q “ βun`m1

m2pu
m
2 , βu

n
1 q “ βun`m1

m2pαu
m
2 , βu

n
1 q “ un`m`1

1
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This list contains the higher operations.
m2n`2k`5pp12q, p212qk, j1, βun`k`1

1 , p1, p212qn, p21qq “ 1P2

m2n`3pp12q, p212qn, j1, βun1 q “ j2
m2n`3pp212qk, j1, βun1 , p1, p212qn´kq “ 1P1

m2n`3pu
k
1, p1, p212qn, j1q “ uk´n´1

1 α

m2n`3pu
k
2β, p1, p212qn, j1q “ uk´n2

m2n`4pu
k
1, p1, p212qn, p21q, j2q “ uk´n´1

1
m2n`4pp1, p212qn, p21q, j2, uk1q “ uk´n´1

1
m2n`4pu

k
2β, p1, p212qn, p21q, j2q “ uk´n´1

2 β

m2n`3pu
n
2β, p1, p212qn, p21qq “ p2

m2n`2pu
n
1 , p1, p212qnq “ p1

m2k`2n`4pp121qk, j2, un`k`1
1 , p1, p212qn, p21qq “ 1P2

m2n`4pp121qn`1, j2, u
n`1
1 q “ j2

m2n`4pp212qk, p21q, j2, un`1
1 , p1, p212qn´kq “ 1P1

m2m`3pp2, p121qm, j2, αun2 q “ un´m2
m2m`3pp2, p121qm, j2, un1 q “ βu

n´pm`1q
1

m2m`4pp1, p21q, p121qm, j2, αun`1
2 q “ αun´m2 .

Proof. The A8 -structure on Π is determined by the dg structure on End˚pM̃q and Theo-
rem 2.9. The dg category End˚pM̃q only has only non-trivial first and second multiplications
(the derivation and the natural algebra multiplication). See Example 2.5 for more details.

Since all of the higher multiplications in End˚pM̃q are trivial, in order to compute mn

we must determine all possible binary trees with n input edges satisfying certain properties.
Let fn, . . . , f1 P Π such that the composition fi`1 ˝fi makes sense for i “ 1, . . . , n´1 . The
input edges (read from left to right) are labeled fn, . . . , f1 . First one includes each fi P Π
into End˚pM̃q . The internal edges are labeled by H .

From a calculation we see that Hpfi`1 ˝ fiq for fi`1, fi P Π is non-zero only in the cases
listed in (4.6).

From a calculation we see that higher homotopy maps are produced only when H is
applied to a product of the form hf or fh where h is some higher homotopy map and f

is an element in Π “ Ext˚pMq . The possibilities are listed in (4.7). In particular, the only
non-zero way to grow a binary tree labeled as in §2.8 is illustrated in the remark below.

Finally, to produce an element in Π , one must apply the projection map p described in
(2.3) to certain products of two elements of End˚pM̃q listed in (4.8).

Any other composition that we need to consider produces a non-cycle and so H of it is
set to zero. These cases are enumerated above as partial terminating operations. �

Remark 4.10. The A8 -maps m2 are determined by the composition in the Ext-algebra.
The maps m3 and m4 can be done by hand. The only way to inductively evolve
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a binary tree to give non-zero higher operation is illustrated below, see Rmk. 4.8.
p1 p21qp12q

µ

µH

p1 p21qp12qp21q
µ

µ

µ

H

H

p1 p21qp12q j1
µ

µ

µ

H

H

p1 p21qp12qp21qp12q
µ

µ

µ

µ

H

H

H

p1 p21qp12qp21q j2
µ

µ

µ

µ

H

H

H

0

0. . .. . .

4.11. The preprojective cone. Recall from Def. 3.10 that our abstract cones are deter-
mined by a certain lifting problem. This section combines all of the bits and pieces from
previous sections and provides some explanation as to what we have computed.

Before proceeding, it is useful to observe the following remark.

Remark 4.12. If F : C Ñ D is an A8 -functor such that F d “ 0 for d ě 2 , then the
A8 -relation in Def. 2.6 becomes

mD
d pF

1pfdq, ¨ ¨ ¨ , F
1pf1qq “ F 1pmC

dpfd, ¨ ¨ ¨ , f1qq. (4.9)

The proposition below is a detailed version of the comments at the end of Ex. 3.13 in
the preprojective setting.

Proposition 4.13. The subcategory π associated to the two simple modules S1, S2 P
ΠA2 -mod

S1 S2

α

β
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is formal; the higher A8 -structure mπ
d “ 0 for d ą 2. The inclusion ι : π ãÑ Π is an A8 -

functor ι “ tιdu which is determined by the assignments: ιpSiq :“ Si on objects, ι1pαq :“ α ,
ι1pβq :“ β on maps and ιd :“ 0 for d ě 2.

Proof. The category π is formal by Theorem 4.9 since there are no non-trivial higher
operations in the list involving only entries of the form α and β . Since π is formal, we need
only check that ι satisfies Eqn. (4.9). This again follows from the observation that there
are no relations among α and β in Π and there are no higher A8 -relations, mΠ

d |π ” 0 for
d ą 2 , by Theorem 4.9. �

In the notation introduced by the proposition, the lifting problem in Def. 3.10 can be
restated by the commutative diagram below.

π

Π

D

ι

F

F̃

So the initial data is an A8 -functor F : π Ñ D and a cone on F is determined by a lift
along ι , i.e. an A8 -functor F̃ : Π Ñ D for which F̃ ˝ ι » F in the category A8pπ,Dq .

The theorem below shows that the upper and lower parts of the Π-diagram at the
beginning of §4.6 are triangles in the sense of Theorem 3.7. It follows that, up to homotopy,
the portions of the category in the completion, F̃ pP1q and F̃ pP2q , are classical cones on
the maps F 1pβq and F 1pαq respectively.

Theorem 4.14. If F : Π Ñ D is an A8 -functor from the preprojective category to an
A8 -category D then the objects associated to Pi in D are homotopy equivalent to cones
on the maps α and β . More precisely,

F pP1q » CpF 1pβqq and F pP2q » CpF 1pαqq. (4.10)

Proof. The category ∆ is pictured in Def. 3.6. There are three objects A ,B and C together
with maps α : A Ñ B , β : B Ñ C and γ : C Ñ A with degrees |α| “ 0 , |β| “ 0 and
|γ| “ 1 .

For i “ 1, 2 , there are assignments ιi : Obp∆q ãÑ ObpΠq and ι1i : Hom∆pX1, X0q Ñ

HomΠpιipX1q, ιipX0qq given by
A B C

ι1 S2 P1 S1
ι2 S1 P2 S2

and
α β γ

ι11 j1 p1 β

ι12 j2 p2 α

.

Set ιdi :“ 0 for d ě 2 . In order to see that the assignments ιi are A8 -functors, we must
check that the A8 -relation Eqn. (4.9) above is satisfied. The cases ι1 and ι2 are symmetric.
So consider ι1 , then Eqn. (4.9) holds because the only non-identity compositions are zero

j1 ˝ β “ 0 p1 ˝ j1 “ 0 β ˝ p1 “ 0
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and the only higher A8 -operation supported by the morphisms tp1, j1, βu in Π are given
by the m3 in Eqn. (4.2); these agree with Eqn. (3.3).

Thus the restrictions formed by the compositions F ˝ ιi : ∆ Ñ D are A8 -functors.
By Theorem 3.7, each of the two restrictions determines a triangle in D . In particular,
the image of each vertex of ∆ Ă Π must be homotopic to the cone on the morphism in
subcategory complementary to the vertex. A special case of this is Eqn. (4.10). �

Example 4.15. Suppose we have an A8 -functor F : π Ñ D . The structure maps
F : Obpπq Ñ ObpDq and F 1

X,Y : HomπpX,Y q Ñ HomDpF pXq, F pY qq determine two cycles

S11 S12

α1

β1

where S11 “ F pS1q , S12 “ F pS2q , α1 “ F 1pαq and β1 “ F 1pβq . If D is triangulated then
there are objects Cpα1q and Cpβ1q in D which are cones in the sense of Def. 3.4. By the
theorem above, a lift F̃ : Π Ñ D of F along ι must associate to P1 and P2 objects which
are homotopy equivalent to Cpβ1q and Cpα1q respectively. When D is a dg category of
complexes, this can be made very explicit. The diagram for Π at the beginning of §4.6
becomes the one below.

S11 S12

pS11 ‘ S2r1s1, dCpα1qq

pS1r1s1 ‘ S12, dCpβ1qq

p1, 0qt p0, 1q

p0, 1qtp1, 0q

α1

β1

Since p21q “ j1 ˝ p2 and p12q “ j2 ˝ p1 , the matrices associated to these maps are

p21q “
ˆ

1 0
0 0

˙

and p12q “
ˆ

0 0
0 1

˙

and we see directly the relations p12qp21q “ 0 and p21qp12q “ 0 .

4.16. Coda. The remainder of this paper establishes some context which pertains to future
work.

Remark 4.17. Just as Proposition 4.13 shows that the subcategory π determined by simples
embeds in Π , the quiver presentation for ΠA2 in Def. 4.4 embeds in Π by the Yoneda
embedding. So for Π , there are two notions of map which yield the same notion of an
ι-distinguished triangle. One comes from the α and β maps between simple modules, and
another comes from the p21q and p12q maps between projective modules. These two are
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dual in the sense that some of the data arising from an ι-distinguished triangle of one ι-cone
construction is the same as the initial data for the other. Since exchanging simples and
projectives results only in a rotation of the triangle in the construction of the A2 -cone, this
shows that the preprojective cones exhibit some new behavior.

Remark 4.18. The simplicity of Theorem 4.14 seems incongruous with the complexity of the
A8 -structure found in Theorem 4.9. The A8 -structure is complicated in part because of
the trick in Eqn. (4.3) and in part because it is recording higher Postnikov systems among
compositions of α and β maps. We will give an informal explanation of the first non-trivial
example.

Recall from §3.5 that functors ∆ Ñ D correspond to distinguished triangles in D and
that ∆ agrees with the partially wrapped Fukaya category F3 of the disk with three marked
points. There is an extension of these statements.

Definition 4.19. The partially wrapped Fukaya category Fn of the disk D2 with n marked
points along the boundary is the A8 -category with n-objects ObpFnq “ tXiuiPZ{n and
maps 1Xi : Xi Ñ Xi and fi : Xi Ñ Xi`1 . The gradings are chosen to satisfy the constraint
ř

i|fi| “ n ´ 2 . The only non-trivial A8 -operations are compositions with identity and
cyclic permutations of

mnpfn, . . . , f1q “ 1X1 .

See [9, above Eqn. (3.21)], [14, 5] or other references [17, I (3g) Rmk. 3.11]. For
n ě 3 , functors from the partially wrapped Fukaya category Fn Ñ D correspond to n-fold
extensions among objects in D . Since there is a Morita equivalence

Fn \i,j Fm
„
ÝÑ Fn`m´2

associated to the gluing of the ith boundary object in pD2, nq to the j th boundary object
in pD2,mq [9, §3.6], functors Fn Ñ D correspond to n-fold extensions among objects in
D since every disk with n marked points can be subdivided into a gluing of disks with 3
marked points. On the other hand, precisely the same logic as was used in Theorem 4.14 to
establish the existence of functors (for i “ 1, 2) ιi : ∆ Ñ Π for the triangles formed by the
maps tj1, p1, βu and tj2, p2, αu corresponding to A8 -operations in Eqn. (4.2) can be used
to establish the existence of A8 -functors κi : F4 Ñ Π for the quadrilaterals corresponding
to the maps tp1, p21q, j2, u1u and tp2, p12q, j1, u2u appearing in Eqn. (4.5). So in addition
to determining two distinguished triangles

¨ ¨ ¨ Ñ S11
β1
ÝÑ S12 Ñ Cpβ1q Ñ S11r1s Ñ ¨ ¨ ¨ and ¨ ¨ ¨ Ñ S12

α1
ÝÑ S11 Ñ Cpα1q Ñ S12r1s Ñ ¨ ¨ ¨

as in Thm. 4.14 earlier, an A8 -functor F̃ : Π Ñ D corresponding to a cone on F : π Ñ
D determines 4-fold Postnikov systems via restrictions F̃ κi : F4 Ñ D . For the maps
tp2, p12q, j1, u2u this corresponds to

¨ ¨ ¨ Ñ Cpβ1q
p12q1
ÝÝÝÑ Cpα1q

p12
ÝÑ S12

u12
ÝÑ S12r2s Ñ ¨ ¨ ¨

where p12q1 “ F̃ 1p12q , p12 “ F̃ 1pp2q and u12 “ F̃ 1pu2q . Topologically the quadrilateral
formed by the gluing of the two triangles below along the object S11 .
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ù

p12q1

j11 u12

p12
Cpα1q

S12

S12Cpβ1q

p12

j11

S11

Cpα1q

S12

S12Cpβ1q

p11

j12

α1

β1

We conclude with a connection between the A8 -category Π and an important category
coming from symplectic topology. The wrapped Fukaya category DπWpP q of the pair of
pants P “ S2ztD2

1, D
2
2, D

2
3u can be generated by three Lagrangians X0 , X1 and X2 . The

A8 -subcategory A determined by these objects was studied in relation to the homological
mirror symmetry conjecture [2]. Proposition 4.23 constructs a functor from this category
to a version of the preprojective category Π1 .

Definition 4.20. ([2]) The generating category A has objects ObpAq “ tX0, X1, X2u and
morphisms

HomApXi, Xjq “

$

’

’

&

’

’

%

krxi, yis{pxiyiq i “ j

krxi`1sui,i`1 “ ui,i`1kryis j “ i` 1
kryi´1svi,i´1 “ vi,i´1krxis j “ i´ 1
0 otherwise.

These maps compose according to
pxki ui´1,iq ˝ pvi,i´1x

l
iq “ xk`l`1

i and pvi,i´1x
l
iq ˝ px

k
i ui´1,iq “ yk`l`1

i´1 (4.11)
and are graded by setting |u0,1| “ 1 , |v1,0| “ 1 and |ui,i`1| “ 0 , |vi,i´1| “ 0 in all other
cases. This is pictured on the lefthand side of (4.13).

The higher A8 -operations are determined by
m3pu2,0, u1,2, u0,1q “ 1X0 m3pv1,0, v2,1, v0,2q “ 1X0

m3pu0,1, u2,0, u1,2q “ 1X1 m3pv2,1, v0,2, v1,0q “ 1X1

m3pu1,2, u0,1, u2,0q “ 1X2 m3pv0,2, v1,0, v2,1q “ 1X2

(4.12)

In order to make Π look like A in Def. 4.20, we need to combine the two projective
objects P1 and P2 into one by forming the direct sum P :“ P1‘P2 . The following definition
recalls how direct sums are formed. This is a special case of additivization [17, I (3k)].

Definition 4.21. If X,Y P ObpAq are objects in an A8 -category A then the direct sum
X ‘ Y P DπpAq , [17, I (4b)], satisfies

HompX ‘ Y, Zq “ HompX,Zq ‘HompY, Zq,

HompW,X ‘ Y q “ HompW,Xq ‘HompW,Y q,
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and the A8 -operations extend additively
mkpak, . . . , pai, a

1
iq, . . . , a1q “ mkpak, . . . , ai, . . . , a1q `mkpak, . . . , a

1
i, . . . , a1q.

This allows one to define an A8 -category MatpAq of direct sums of objects of A . The
new category Π1 is formed by combining the two projectives.

Definition 4.22. The category Π1 is the full A8 -subcategory of MatpΠq formed by the
objects tS1, S2, P u where P :“ P1 ‘ P2 . The A8 -structure of Π1 is determined by Thm.
4.9 and Def. 4.21 above. The objects and morphisms in Π1 are pictured on the righthand
side of (4.13).

X0 X1

X2

v1,0

u0,1

u1,2

v2,1v0,2

u2,0

S1 S2

P

α

β

j1

p2j2

p1

(4.13)

Proposition 4.23. There is a canonical A8 -functor G : AÑ Π1 .

Proof. The A8 -functor G “ tGdu is defined by mapping the lefthand side of the diagram
above to the righthand side of the diagram. In more detail, define G : ObpAq Ñ ObpΠ1q
by setting GpX0q :“ S1 , GpX1q :“ S2 and GpX2q :“ P . The map G1 : HomApXi, Xjq Ñ

HomΠ1pGpXiq, GpXjqq is determined by setting
G1pu0,1q :“ β G1pv1,0q :“ α

G1pu1,2q :“ j1 G1pv2,1q :“ p2
G1pu2,0q :“ p1 G1pv0,2q :“ j2

(4.14)

and the observation that Eqn. (4.11) implies that the maps ui,i`1 and vi,i´1 for i P Z{3
generate A .

Since the higher maps Gd :“ 0 vanish for d ě 2 then we need only check Eqn. (4.9).
The only non-trivial A8 -operations mn for n ą 2 in A are determined by Eqn. (4.12),
however Eqn. (4.14) can be used to translate back and forth between Eqn. (4.12) and Eqn.
(4.2). This shows that G satisfies Eqn. (4.9) for all of the A8 -operations mn for n ě 3 .

When n “ 2 , Eqn. (4.9) means that G1 is a homomorphism. The only relation in A is
xiyi “ 0 in EndpXiq for i “ 0, 1, 2 . Eqn. (4.11), shows that

xi “ ui´1,ivi,i´1 and yi “ vi`1,iui,i`1

in A . Combining this with Eqn. (4.14) gives
x0 “ u2,0v0,2 ÞÑ p1j2 “ 0 y0 “ v1,0u0,1 ÞÑ αβ “ u1
x1 “ u0,1v1,0 ÞÑ βα “ u2 y1 “ v2,1u1,2 ÞÑ p2j1 “ 0
x2 “ u1,2v2,1 ÞÑ j1p2 “ p21q y2 “ v0,2u2,0 ÞÑ j2p1 “ p12q.
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Finally, using this calculation we check that xiyi “ yixi “ 0 .
x0y0 ÞÑ 0u1 “ 0 y0x0 ÞÑ u10 “ 0
x1y1 ÞÑ u20 “ 0 y1x1 ÞÑ 0u2 “ 0
x2y2 ÞÑ p21qp12q “ 0 y2x2 ÞÑ p12qp21q “ 0.

�
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