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SMOOTH COMPACTNESS FOR SPACES OF ASYMPTOTICALLY CONICAL

SELF-EXPANDERS OF MEAN CURVATURE FLOW

JACOB BERNSTEIN AND LU WANG

ABSTRACT. We show compactness in the locally smooth topology for certain natural fam-

ilies of asymptotically conical self-expanding solutions of mean curvature flow. Specifi-

cally, we show such compactness for the set of all two-dimensional self-expanders of a

fixed topological type and, in all dimensions, for the set of self-expanders of low entropy

and for the set of mean convex self-expanders with strictly mean convex asymptotic cones.

From this we deduce that the natural projection map from the space of parameterizations of

asymptotically conical self-expanders to the space of parameterizations of the asymptotic

cones is proper for these classes.

1. INTRODUCTION

A hypersurface, i.e., a properly embedded codimension-one submanifold, Σ ⊂ R
n+1,

is a self-expander if

(1.1) HΣ − x⊥

2
= 0.

Here

HΣ = ∆Σx = −HΣnΣ = −divΣ(nΣ)nΣ

is the mean curvature vector, nΣ is the unit normal, and x⊥ is the normal component of the

position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,

Σ is a self-expander if and only if the family of homothetic hypersurfaces

{Σt}t>0 =
{√

tΣ
}

t>0

is a mean curvature flow (MCF), that is, a solution to the flow
(

∂x

∂t

)⊥
= HΣt

.

Self-expanders are expected to model the behavior of a MCF as it emerges from a conical

singularity [1]. They are also expected to model the long time behavior of the flow [8].

Throughout the papern, k ≥ 2 are integers andα ∈ (0, 1). Let Γ be aCk,α
∗ -asymptotically

conical Ck,α-hypersurface in R
n+1 and let L(Γ) be the link of the asymptotic cone of Γ.

For instance, if limρ→0+ ρΓ = C in Ck,α
loc (R

n+1 \ {0}), where C is a cone, then Γ is

Ck,α
∗ -asymptotically conical with asymptotic cone C. For technical reasons, the actual def-

inition is slightly weaker – see Section 3 of [3] for the details. We denote the space of

Ck,α
∗ -asymptotically conical Ck,α-hypersurfaces in R

n+1 by ACHk,α
n .
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We now introduce the classes we will consider. First, for g ≥ 0 and e ≥ 1, let

Ek,α
top (g, e) =

{

Γ ∈ ACHk,α
2 : Γ satisfies (1.1) and Γ is of genus g with e ends

}

,

be the space of Ck,α
∗ -asymptotically conical self-expanders in R

3 with genus g and e ends.

Similarly, for any h0 > 0, let

Ek,α
n,mc(h0) =

{

Γ ∈ ACHk,α
n : Γ satisfies (1.1), HΓ > 0, HL(Γ) ≥ h0

}

,

be the space of Ck,α
∗ -asymptotically conical self-expanders in R

n+1 which are strictly

mean convex and have uniformly strictly mean convex asymptotic cones. Finally, for 1 <
Λ0 < 2, let

Ek,α
n,ent(Λ0) =

{

Γ ∈ ACHk,α
n : Γ satisfies (1.1) and λ[Γ] ≤ Λ0

}

,

be the space of Ck,α
∗ -asymptotically conical self-expanders in R

n+1 which have entropy

less than or equal to Λ0. See Section 3.2 for the definition of entropy.

We prove the following smooth compactness result for the spaces Ek,α
top (g, e), Ek,α

n,mc(h0)

and, under suitable hypotheses on Λ0, Ek,α
n,ent(Λ0).

Theorem 1.1. The following holds:

(1) If Σi ∈ Ek,α
top (g, e) and L(Σi) → σ in Ck,α(S2), then there is a Σ ∈ Ek,α(g, e)

with L(Σ) = σ so that, up to passing to a subsequence, Σi → Σ in C∞
loc(R

3).
(2) If Σi ∈ Ek,α

n,mc(h0) and L(Σi) → σ in Ck,α(Sn), then there is a Σ ∈ Ek,α
n,mc(h0)

with L(Σ) = σ so that, up to passing to a subsequence, Σi → Σ in C∞
loc(R

n+1).

(3) If Assumption (⋆n,Λ) of Section 3.2 holds, Σi ∈ Ek,α
n,ent(Λ0) for Λ0 < Λ < 2 and

L(Σi) → σ in Ck,α(Sn), then there is a Σ ∈ Ek,α
n,ent(Λ0) with L(Σ) = σ so that,

up to passing to a subsequence, Σi → Σ in C∞
loc(R

n+1).

In [3], the authors showed that the space ACEk,α
n (Γ) – see (2.1) below – of asymp-

totically conical parameterizations of self-expanders modeled on Γ (modulo reparameter-

izations fixing the parameterization of the asymptotic cone) possesses a natural Banach

manifold structure modeled on Ck,α(L(Γ);Rn+1). They further showed that the map

Π: ACEk,α
n (Γ) → Ck,α(L(Γ);Rn+1)

given by Π([f ]) = tr1∞[f ] is smooth and Fredholm of index 0. As such, by work of

Smale [24], as long as Π is proper it possesses a well-defined mod 2 degree. In fact as

shown in [2], when the map Π is proper it possesses an integer degree. These results are

all analogs of work of White [26] who proved such results for a large class of variational

problems for parameterizations from compact manifolds – see also [28].

In general, the map Π: ACEk,α
n (Γ) → Ck,α(L(Γ);Rn+1) is not proper. However,

using Theorem 1.1, we give several natural subsets of ACEk,α
n (Γ) on which the restriction

of Π is proper. This should be compared to [27]. As a first step, it is necessary to shrink

the range of Π. To that end, for any Γ ∈ ACHk,α
n , let

Vk,α
emb(Γ) =

{

ϕ ∈ Ck,α(L(Γ);Rn+1) : E H
1 [ϕ] is an embedding

}

,

be the space of parameterizations of embedded cones. Here E H
1 [ϕ] is the homogeneous

degree-one extension of ϕ. This is readily seen to be an open subset ofCk,α(L(Γ);Rn+1).

It also follows from the definition of ACEk,α
n (Γ) that Π: ACEk,α

n (Γ) → Vk,α
emb(Γ).

Theorem 1.2. For any Γ ∈ ACHk,α
2 , Π: ACEk,α

2 (Γ) → Vk,α
emb(Γ) is proper.
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Theorem 1.3. For Γ ∈ ACHk,α
n and Λ > 1, let

Vent(Γ,Λ) =
{

ϕ ∈ Vk,α
emb(Γ): λ[E

H
1 [ϕ](C(Γ))] < Λ

}

and

Uent(Γ,Λ) =
{

[f ] ∈ ACEk,α
n (Γ): λ[f(Γ)] < Λ

}

.

The following is true:

(1) Uent(Γ,Λ) is an open subset of ACEk,α
n (Γ).

(2) Vent(Γ,Λ) is an open subset of Ck,α(L(Γ);Rn+1).
(3) If (⋆n,Λ) holds for Λ < 2, then Π|Uent(Γ,Λ) : Uent(Γ,Λ) → Vent(Γ,Λ) is proper.

Theorem 1.4. For Γ ∈ ACHk,α
n , let

Vmc(Γ) =
{

ϕ ∈ Vk,α
emb(Γ): Hσ > 0 where σ = L[E H

1 [ϕ](C(Γ))]
}

and

Umc(Γ) =
{

[f ] ∈ ACEk,α
n (Γ): Hf(Γ) > 0,Π([f ]) ∈ Vmc(Γ)

}

.

The following is true:

(1) Umc(Γ) is an open subset of ACEk,α
n (Γ).

(2) Vmc(Γ) is an open subset of Ck,α(L(Γ);Rn+1).
(3) Π|Umc(Γ) : Umc(Γ) → Vmc(Γ) is a local diffeomorphism.

(4) Π|Umc(Γ) : Umc(Γ) → Vmc(Γ) is proper.

In particular, for each component V ′ of Vmc(Γ), there is an integer l′ ≥ 0 so U ′ =
Π−1(V ′) ∩ Umc(Γ) has l′ components and for each component U ′′ of U ′, Π|U ′′ : U ′′ → V ′

is a (finite) covering map.

Finally, as an application of Theorem 1.4 and a result of Huisken [13], we have the

following existence and uniqueness result for self-expanders of a given topological type

asymptotic to cones that satisfy a natural pinching condition.

Corollary 1.5. Let σ ⊂ S
n be a connected, strictly mean convex, Ck,α-hypersurface. In

addition, if n ≥ 3, suppose that σ satisfies

(1.2)











|Aσ|2 <
1

n− 2
H2

σ + 2, n ≥ 4;

|Aσ|2 <
3

4
H2

σ +
4

3
, n = 3.

There exists a smooth self-expander Σ ∈ ACHk,α
n with L(Σ) = σ, HΣ > 0 and so Σ is

diffeomorphic to R
n. Moreover, if π0(Diff+(Sn−1)) = 0, i.e., the group of orientation-

preserving diffeomorphisms of Sn−1 is path-connected, then Σ is the unique self-expander

with these properties.

Remark 1.6. Hypothesis (1.2) is required only so that classical mean curvature flow can be

used to show the space of admissible σ is path-connected.

Remark 1.7. By work of Cerf [4, 5] and Smale [22, 23] it is known, for n ∈ {2, 3, 4, 6},

that π0(Diff+(Sn−1)) = 0.

Remark 1.8. Using only the mean convexity condition, a variational argument due to Il-

manen that is sketched in [17] and carried out by Ding in [7] gives the existence of a

self-expanding solution with link σ. However, this method cannot directly say anything

about the topology of the constructed self-expanders.
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2. NOTATION AND BACKGROUND

In this section we fix notation and also recall the main definitions from [3] we need. The

interested reader should consult Sections 2 and 3 of [3] for specifics and further details.

2.1. Basic notions. Denote a (open) ball in R
n of radius R and center x by Bn

R(x) and

the closed ball by B̄n
R(x). We often omit the superscript n when its value is clear from

context. We also omit the center when it is the origin.

For an open set U ⊂ R
n+1, a hypersurface in U , Γ, is a smooth, properly embedded,

codimension-one submanifold of U . We also consider hypersurfaces of lower regularity

and given an integer k ≥ 2 andα ∈ (0, 1) we define aCk,α-hypersurface inU to be a prop-

erly embedded, codimension-one Ck,α submanifold of U . When needed, we distinguish

between a point p ∈ Γ and its position vector x(p).
Consider the hypersurface S

n ⊂ R
n+1, the unit n-sphere in R

n+1. A hypersurface

in S
n, σ, is a closed, embedded, codimension-one smooth submanifold of Sn and Ck,α-

hypersurfaces in S
n are defined likewise. Observe, that σ is a closed codimension-two

submanifold of Rn+1 and so we may associate to each point p ∈ σ its position vector

x(p). Clearly, |x(p)| = 1.

A cone is a set C ⊂ R
n+1 \ {0} that is dilation invariant around the origin. That is,

ρ C = C for all ρ > 0. The link of the cone is the set L[C] = C ∩ S
n. The cone is regular if

its link is a smooth hypersurface in S
n and Ck,α-regular if its link is a Ck,α-hypersurface

in S
n. For any hypersurface σ ⊂ S

n the cone over σ, C[σ], is the cone defined by

C[σ] = {ρp : p ∈ σ, ρ > 0} ⊂ R
n+1 \ {0}.

Clearly, L[C[σ]] = σ.

2.2. Function spaces. Let Γ be a properly embedded, Ck,α submanifold of an open set

U ⊂ R
n+1. There is a natural Riemannian metric, gΓ, on Γ of class Ck−1,α induced from

the Euclidean one. As we always take k ≥ 2, the Christoffel symbols of this metric, in

appropriate coordinates, are well-defined and of regularity Ck−2,α. Let ∇Γ be the covari-

ant derivative on Γ. Denote by dΓ the geodesic distance on Γ and by BΓ
R(p) the (open)

geodesic ball in Γ of radius R and center p ∈ Γ. For R small enough so that BΓ
R(p) is

strictly geodesically convex and q ∈ BΓ
R(p), denote by τΓp,q the parallel transport along the

unique minimizing geodesic in BΓ
R(p) from p to q.

Throughout the rest of this subsection, let Ω be a domain in Γ, l an integer in [0, k],
β ∈ (0, 1) and d ∈ R. Suppose l + β ≤ k + α. We first consider the following norm for

functions on Ω:

‖f‖l;Ω =
l
∑

i=0

sup
Ω

|∇i
Γf |.

We then let

Cl(Ω) =
{

f ∈ Cl
loc(Ω): ‖f‖l;Ω <∞

}

.

We next define the Hölder semi-norms for functions f and tensor fields T on Ω:

[f ]β;Ω = sup
p,q∈Ω

q∈BΓ
δ (p)\{p}

|f(p)− f(q)|
dΓ(p, q)β

and [T ]β;Ω = sup
p,q∈Ω

q∈BΓ
δ (p)\{p}

|T (p)− (τΓp,q)
∗T (q)|

dΓ(p, q)β
,

where δ = δ(Γ,Ω) > 0 so that for all p ∈ Ω, BΓ
δ (p) is strictly geodesically convex. We

further define the norm for functions on Ω:

‖f‖l,β;Ω = ‖f‖l;Ω + [∇l
Γf ]β;Ω,
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and let

Cl,β(Ω) =
{

f ∈ Cl,β
loc(Ω): ‖f‖l,β;Ω <∞

}

.

We also define the following weighted norms for functions on Ω:

‖f‖(d)l;Ω =

l
∑

i=0

sup
p∈Ω

(|x(p)| + 1)
−d+i |∇i

Γf(p)|.

We then let

Cl
d(Ω) =

{

f ∈ Cl
loc(Ω): ‖f‖(d)l;Ω <∞

}

.

We further define the following weighted Hölder semi-norms for functions f and tensor

fields T on Ω:

[f ]
(d)
β;Ω = sup

p,q∈Ω

q∈BΓ
δp

(p)\{p}

(

(|x(p)|+ 1)−d+β + (|x(q)| + 1)−d+β
) |f(p)− f(q)|

dΓ(p, q)β
, and,

[T ]
(d)
β;Ω = sup

p,q∈Ω

q∈BΓ
δp

(p)\{p}

(

(|x(p)|+ 1)−d+β + (|x(q)| + 1)−d+β
) |T (p)− (τΓp,q)

∗T (q)|
dΓ(p, q)β

,

where η = η(Ω,Γ) ∈ (0, 14 ) so that for any p ∈ Γ, letting δp = η(|x(p)| + 1), BΓ
δp
(p) is

strictly geodesically convex. Finally, we define the norm for functions on Ω:

‖f‖(d)l,β;Ω = ‖f‖(d)l;Ω + [∇l
Γf ]

(d−l)
β;Ω ,

and we let

Cl,β
d (Ω) =

{

f ∈ Cl,β
loc(Ω): ‖f‖

(d)
l,β;Ω <∞

}

.

We follow the convention that Cl,0
loc = Cl

loc, Cl,0 = Cl and Cl,0
d = Cl

d and that C0,β
loc =

Cβ
loc,C0,β = Cβ andC0,β

d = Cβ
d . The notation for the corresponding norms is abbreviated

in the same fashion.

2.3. Homogeneous functions and homogeneity at infinity. Fix a Ck,α-regular cone C
with its link L. By our definition C is a Ck,α-hypersurface in R

n+1 \ {0}. For R > 0 let

CR = C \ B̄R. There is an η = η(L, R) > 0 so that for any p ∈ CR, BC
δp
(p) is strictly

geodesically convex, where δp = η(|x(p)| + 1). We also fix an integer l ∈ [0, k] and

β ∈ [0, 1) with l + β ≤ k + α.

A map f ∈ Cl,β
loc(C;RM ) is homogeneous of degree d if f(ρp) = ρdf(p) for all p ∈ C

and ρ > 0. Given a map ϕ ∈ Cl,β(L;RM ) the homogeneous extension of degree d of ϕ is

the map E
H
d [ϕ] ∈ Cl,β

loc(C;RM ) defined by

E
H
d [ϕ](p) = |x(p)|dϕ(|x(p)|−1p).

Conversely, given a homogeneous R
M -valued map of degree d, f ∈ Cl,β

loc(C;RM ), let

ϕ = tr[f ] ∈ Cl,β(L;RM ), the trace of f , be the restriction of f to L. Clearly, f is the

homogeneous extension of degree d of ϕ.

A map g ∈ Cl,β
loc(CR;RM ) is asymptotically homogeneous of degree d if

lim
ρ→0+

ρdg(ρ−1p) = f(p) in Cl,β
loc(C;RM )
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for some f ∈ Cl,β
loc(C;RM ) that is homogeneous of degree d. For such a g we define the

trace at infinity of g by trd∞[g] = tr[f ]. We define

Cl,β
d,H(CR;RM ) =

{

g ∈ Cl,β
d (CR;RM ) : g is asymptotically homogeneous of degree d

}

.

It is straightforward to verify that Cl,β
d,H(CR;RM ) is a closed subspace of Cl,β

d (CR;RM )
and that

trd∞ : Cl,β
d,H(CR;RM ) → Cl,β(L;RM )

is a bounded linear map. Finally, x|CR
∈ Ck,α

1,H(CR;Rn+1) and tr1∞[x|CR
] = x|L.

2.4. Asymptotically conical hypersurfaces. A Ck,α-hypersurface, Γ ⊂ R
n+1, is Ck,α

∗ -

asymptotically conical if there is a Ck,α-regular cone, C ⊂ R
n+1, and a homogeneous

transverse section, v, on C such that Γ, outside some compact set, is given by the v-graph

of a function inCk,α
1 ∩Ck

1,0(CR) for someR > 1. Here a transverse section is a regularized

version of the unit normal – see Section 2.4 of [3] for the precise definition. Observe, that

by the Arzelà-Ascoli theorem one has that, for every β ∈ [0, α),

lim
ρ→0+

ρΓ = C in Ck,β
loc (R

n+1 \ {0}).

Clearly, the asymptotic cone, C, is uniquely determined by Γ and so we denote it by C(Γ).
Let L(Γ) denote the link of C(Γ) and, for R > 0, let CR(Γ) = C(Γ) \ B̄R. Denote the

space of Ck,α
∗ -asymptotically conical Ck,α-hypersurfaces in R

n+1 by ACHk,α
n .

Finally, let K be a compact set of Γ and denote by Γ′ = Γ \ K . By definition, we

may choose K large enough so πv – the projection of a neighborhood of C(Γ) along v –

restricts to a Ck,α diffeomorphism of Γ′ onto CR(Γ). Denote its inverse by θv;Γ′ .

2.5. Traces at infinity. Fix an element Γ ∈ ACHk,α
n . Let l be an integer in [0, k] and

β ∈ [0, 1) such that l+β < k+α. A map f ∈ Cl,β
loc(Γ;R

M ) is asymptotically homogeneous

of degree d if f ◦ θv;Γ′ ∈ Cl,β
d,H(CR(Γ);RM ) where v is a homogeneous transverse section

on C(Γ) and Γ′, θv;Γ′ are introduced in the previous subsection. The trace at infinity of f

is then

trd∞[f ] = trd∞[f ◦ θv;Γ′ ] ∈ Cl,β(L(Γ);RM ).

Whether f is asymptotically homogeneous of degree d and the definition of trd∞ are in-

dependent of the choice of homogeneous transverse sections on C(Γ). Clearly, x|Γ is

asymptotically homogeneous of degree 1 and tr1∞[x|Γ] = x|L(Γ).

We next define the space

Cl,β
d,H(Γ;R

M ) =
{

f ∈ Cl,β
d (Γ;RM ) : f is asymptotically homogeneous of degree d

}

.

One can check that Cl,β
d,H(Γ;R

M ) is a closed subspace of Cl,β
d (Γ;RM ), and the map

trd∞ : Cl,β
d,H(Γ;R

M ) → Cl,β(L(Γ);RM )

is a bounded linear map. We further define the set Cl,β
d,0(Γ;R

M ) ⊂ Cl,β
d,H(Γ;R

M ) to be the

kernel of trd∞.
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2.6. Asymptotically conical embeddings. Fix an element Γ ∈ ACHk,α
n . We define the

space of Ck,α
∗ -asymptotically conical embeddings of Γ into R

n+1 to be

ACHk,α
n (Γ) =

{

f ∈ Ck,α
1 ∩ Ck

1,H(Γ;R
n+1) : f and E H

1 ◦ tr1∞[f ] are embeddings
}

.

Clearly, ACHk,α
n (Γ) is an open set of the Banach space Ck,α

1 ∩ Ck
1,H(Γ;R

n+1) with the

‖ · ‖(1)k,α norm. The hypotheses on f , tr1∞[f ] ∈ Ck,α(L(Γ);Rn+1) ensure

C[f ] = E
H
1 ◦ tr1∞[f ] : C(Γ) → R

n+1 \ {0}
is a Ck,α embedding. As this map is homogeneous of degree one, it parameterizes the

Ck,α-regular cone C(f(Γ)) – see [3, Proposition 3.3].

Finally, we introduce a natural equivalence relation on ACHk,α
n (Γ). First, say a Ck,α

diffeomorphism φ : Γ → Γ fixes infinity if x|Γ ◦ φ ∈ ACHk,α
n (Γ) and

tr1∞[x|Γ ◦ φ] = x|L(Γ).

Two elements f ,g ∈ ACHk,α
n (Γ) are equivalent, written f ∼ g, provided there is a Ck,α

diffeomorphism φ : Γ → Γ that fixes infinity so that f ◦ φ = g. Given f ∈ ACHk,α
n (Γ) let

[f ] be the equivalence class of f . Following [3] we define the space

(2.1) ACEk,α
n (Γ) =

{

[f ] : f ∈ ACHk,α
n (Γ) and f(Γ) satisfies (1.1)

}

.

3. SMOOTH COMPACTNESS

In this section we prove Theorem 1.1. We first prove compactness in the asymptotic

region and then treat the three special cases separately.

3.1. Asymptotic regularity of self-expanders. Fix a unit vector e, a point x0 ∈ R
n+1

and r, h > 0. Let

Ce(x0, r, h) =
{

x ∈ R
n+1 : |(x− x0) · e| < h, |x− x0|2 < r2 + |(x − x0) · e|2

}

be the solid open cylinder with axis e centered at x0 and of radius r and height 2h.

Definition 3.1. Suppose that l ≥ 0 is an integer and β ∈ [0, 1). A hypersurface Σ ⊂ R
n+1

is a Cl,β e-graph of size δ on scale r at x0 if there is a function f : Bn
r ⊂ Pe → R with

l
∑

j=0

r−1+j‖∇jf‖0 + r−1+l+β [∇lf ]β < δ,

where Pe is the n-dimensional subspace of Rn+1 normal to e and the last term on the left

hand side will be dropped if β = 0, so that

Σ ∩ Ce(x0, r, δr) = {x0 + x(x) + f(x)e : x ∈ Bn
r } .

Moreover, a hypersurface σ ⊂ S
n is a Cl,β e-graph of size δ on scale r at x0 if C[σ] is so.

We omit Cl,β in the above definitions when the hypersurface is of Cl,β class or when it is

clear from context.

Let us summarize some elementary properties of this concept.

Proposition 3.2. Let l ≥ 2 be an integer and β ∈ [0, 1). The following is true:

(1) If Σ is a Cl,β-hypersurface in R
n+1, then for every δ > 0 and p ∈ Σ, there is an

r = r(Σ, p, δ) > 0 so that Σ is an nΣ(p)-graph of size δ on scale r at p.

(2) If σ ⊂ S
n is an e-graph of size δ on scale r at x0 and ρ > 0, then C[σ] is an

e-graph of size δ on scale ρr at ρx0.
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(3) Given a Cl,β -hypersurface σ ⊂ S
n and δ > 0, there is an r = r(σ, δ) > 0 so that

σ is an nC[σ](p)-graph of size δ on scale r at every p ∈ σ.

(4) Suppose σi ⊂ S
n converges in Cl,β(Sn) to σ. If pi ∈ σi → p ∈ σ and σ is an

nC[σ](p)-graph of size δ on scale 2r at p, then there is an i0 so that for i ≥ i0, σi
is an nC[σi](pi)-graph of size 2δ on scale r at pi.

The pseudo-locality property of mean curvature flow gives certain asymptotic regularity

for self-expanders that are weakly asymptotic to a cone.

Proposition 3.3. Let l ≥ 2 be an integer and β ∈ [0, 1). For each δ > 0 and r > 0
there exist constants R,M, γ, η > 0, depending only n, l, β, δ and r, so that if Σ is a

self-expander in R
n+1 with

lim
ρ→0+

Hn⌊(ρΣ) = Hn⌊C[σ]

for σ a Cl,β-hypersurface in S
n, and σ is an nC[σ](p)-graph of size δ on scale r at every

p ∈ σ, then

(1) Σ is a Cl,β nC[σ](p)-graph of size γ on scale η|x(p)| at every p ∈ C[σ] \ B̄R.

(2) There is a function f : C(Σ) \ B̄R → R satisfying

|f(p)|+ |∇C[σ]f(p)| ≤M |x(p)|−1

and so

Σ \ B̄2R =
{

x(p) + f(p)nC[σ](p) : p ∈ C[σ] \ B̄R
}

\ B̄2R.

Proof. For simplicity, we set C = C[σ]. Consider the mean curvature flow (thought of as a

space-time track)

S =
⋃

t>0

(√
tΣ
)

× {t}.

Let S̄ = S ∪ (C × {0}) so, by our hypothesis, S̄ is an integer Brakke flow (cf. [16, §2]

and [15, §6]). Denote by S̄t the time t slice of S̄. For Item (1), it is sufficient to prove that

there are constants τ, γ, η > 0, depending only on n, l, β, δ and r, so that for all t ∈ [0, τ ],
S̄t is a Cl,β nC(p)-graph of size γ on scale η at every p ∈ σ.

By the pseudo-locality property for mean curvature flow (cf. [18, Theorem 1.5 and

Remarks 1.6]) there is an ǫ ∈ (0, 1), depending on n, δ and r, so that for every t ∈ [0, 16ǫ2)
and p ∈ σ, S̄t ∩ CnC(p)(p, 4ǫ, 4ǫ) is the graph of a function ψp(t, x) over TpC with

(4ǫ)−1‖ψp(t, ·)‖0 + ‖Dxψp(t, ·)‖0 ≤ 1.

Moreover, as ψp(t, x) satisfies

∂ψp

∂t
=
√

1 + |Dxψp|2 div
(

Dxψp
√

1 + |Dxψp|2

)

,

it follows from the Hölder estimate for quasi-parabolic equations (cf. [19, Theorem 1.1 of

Chapter 6]) that for every α′ ∈ (0, 1),

sup
t∈[0,4ǫ2]

[Dxψp(t, ·)]α′;Bn
2ǫ
+ sup

x∈Bn
2ǫ

[Dxψp(·, x)]α′

2
;[0,4ǫ2] ≤ C(n, α′, ǫ).

Furthermore, we appeal to the estimates of fundamental solutions and the Schauder theory

(cf. [19, (13.1) and Theorem 5.1]) to get that

(3.1) sup
t∈[0,ǫ2]

‖ψp(t, ·)‖l,β;Bn
ǫ
≤ C′(n, l, β, ǫ).
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Using the equation of ψp and the fact that ψp(0, 0) = |Dxψp(0, 0)| = 0, it follows from

(3.1) that

(3.2) |ψp(t, x)| ≤ C̃
(

|x|2 + t
)

and |Dxψp(t, x)| ≤ C̃
(

|x|+
√
t
)

,

where C̃ = C̃(n,C,C′) > C′. In particular, for ρ ∈ (0, 1) and for every t ∈ [0, ρ2ǫ2],

(ρǫ)−1‖ψp(t, ·)‖0;Bn
ρǫ
+ ‖Dxψp(t, ·)‖0;Bn

ρǫ
≤ 4C̃ρǫ.

This together with (3.1) further gives

l
∑

j=0

(ρǫ)j−1‖Dj
xψp(t, ·)‖0;Bn

ρǫ
+ (ρǫ)l+β−1[Dl

xψp(t, ·)]β;Bn
ρǫ

≤ 5C̃ρǫ.

Now we choose ρ = (5C̃ǫ)−1/2 so 5C̃ρǫ < 4ρ−1. Hence, for each t ∈ [0, ρ2ǫ2], S̄t is a

Cl,β nC(p)-graph of size 4ρ−1 on scale ρǫ at every p ∈ σ. The claim follows immediately

with τ = ρ2ǫ2, γ = 4ρ−1 and η = ρǫ.
As S̄ is a mean curvature flow away from (0, 0), by comparing with shrinking spheres,

one observes that

Σ \ B̄2R ⊂
⋃

p∈C\B̄R

CnC(p)(p, η|x(p)|, γη|x(p)|)

for some R > τ−1/2 depending on n, l, β, δ and r. Thus, invoking estimate (3.2) gives

that for every q ∈ Σ \ B̄2R,

|x(q)− x(π(q))| + |nΣ(q) − nC(π(q))| ≤ Ĉ(n, C̃)|x(q)|−1.

Here π is the nearest point projection from Σ \ B̄2R onto C. Hence, Item (2) follows easily

from this estimate and the implicit function theorem. �

Corollary 3.4. If Σi ∈ ACHk,α
n are self-expanders and there is a Ck,α-hypersurface in

S
n, σ, so L(Σi) → σ in C2(Sn), then there is an R′ = R′(n, k, α, σ) > 0 and a Ck,α

∗ -

asymptotically conical self-expanding end Σ in R
n+1 \ B̄R′ with L(Σ) = σ so that, up to

passing to a subsequence,

Σi → Σ in C∞
loc(R

n+1 \ B̄R′).

Proof. By Items (3) and (4) of Proposition 3.2, there are δ, r > 0 and i0 so that for i ≥ i0
each L(Σi) is an nC[σ](p)-graph of size δ on scale r for all p ∈ L(Σi). In particular,

we may apply Item (2) of Proposition 3.3 using these constants to obtain an R so that

one has uniform graphical estimates for the Σi in R
n+1 \ B̄R. It then follows from the

Arzelà-Ascoli theorem and standard elliptic estimates (see [11, Theorems 6.17 and 8.24])

that there is a self-expanding end, Σ, in R
n+1 \ B̄R so that up to passing to a subsequence

Σi → Σ in C∞
loc(R

n+1 \ B̄R). In fact, by Item (2) of Proposition 3.3 applied to the Σi

together with the Arzelà-Ascoli theorem, Σ is C0,1
∗ -asymptotic to C[σ]. Combining this

fact with Item (1) of Proposition 3.3 applied to Σ gives that Σ is actually Ck,α
∗ -asymptotic

to C[σ] which completes the proof. �

3.2. Entropy and smooth compactness of Ek,α
n,ent(Λ0). We recall the notion of entropy

introduced by Colding and Minicozzi [6] and use it to prove Item (3) of Theorem 1.1 as

well as introduce several auxiliary results needed in other parts of the article.

First of all, for a hypersurface Σ ⊂ R
n+1 the Gaussian surface area of Σ is

F [Σ] = (4π)−
n
2

∫

Σ

e−
|x|2

4 dHn.
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Colding and Minicozzi [6] introduced the following notion of entropy of a hypersurface:

λ[Σ] = sup
ρ>0,y∈Rn+1

F [ρΣ+ y].

By identifying Σ with Hn⌊Σ, one extends F and λ in an obvious manner to Radon mea-

sures on R
n+1. We first record a number of simple observations about the entropy of

asymptotically conical self-expanders.

Lemma 3.5. If Σ ∈ ACHk,α
n is a self-expander, then

λ[Σ] = λ[C(Σ)].
Proof. On the one hand, for Σ ∈ ACHk,α

n ,

lim
ρ→0+

ρΣ = C(Σ) in Ck
loc(R

n+1 \ {0}).

In particular,

lim
ρ→0+

Hn⌊(ρΣ) = Hn⌊C(Σ).

By the lower semicontinuity and scaling invariance of entropy

λ[Σ] ≥ λ[C(Σ)].
On the other hand, we define M = {µt}t≥0 to be a family of Radon measures on R

n+1

given by

µt =

{

Hn⌊(
√
tΣ) if t > 0

Hn⌊C(Σ) if t = 0,

so M is an integer Brakke flow (see [16, §2] and [15, §6]). Thus, the Huisken monotonicity

formula [14] (see also [16, Lemma 7]) implies

λ[Σ] ≤ λ[C(Σ)],
which finishes the proof. �

Lemma 3.6. There is a constant M̃ = M̃(n) so that if Σ ∈ ACHk,α
n is a self-expander,

then, for any R > 0,

Hn(Σ ∩BR) ≤ M̃λ[C(Σ)]Rn.

Proof. One computes,

R−nHn(Σ ∩BR) = Hn
(

(R−1Σ) ∩B1

)

≤ M̃(n)F [R−1Σ] ≤ M̃(n)λ[Σ]

and so the claim follows from Lemma 3.5. �

Lemma 3.7. Fix any ǫ > 0. If C ⊂ R
n+1 is a C2-regular cone and L[C] is an nC(p)-graph

of size δ on scale r at every p ∈ L[C], then there is an R̃ = R̃(n, ǫ, δ, r) so that either

λ[C] ≤ 1 + ǫ or λ[C] = F [C + x0] for some x0 ∈ B̄R̃.

Proof. First observe, that as C is invariant by homotheties one has

λ[C] = sup
x∈Rn+1

F [C + x].

Next observe that an elementary covering argument gives an A = A(n, δ, r) so that

Hn−1(L[C]) ≤ A.

Hence, there is an A′ = A′(n, δ, r) > 0 so for all R > 0 and x ∈ R
n+1,

Hn(C ∩BR(x)) ≤ A′Rn.
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A consequence of this is that there is an R̃ = R̃(n, ǫ, δ, r) so that for all x /∈ B̄R̃,

F [C + x] ≤ 1 + ǫ.

The claim follows from this. �

Lemma 3.8. Let σi and σ be C2-hypersurfaces in S
n. If σi → σ in C2(Sn), then

λ[C[σi]] → λ[C[σ]].
Proof. As σi → σ in C2(Sn),

Hn⌊C[σi] → Hn⌊C[σ].
By the lower semicontinuity of entropy

lim inf
i→∞

λ[C[σi]] ≥ λ[C[σ]].

By Lemma 3.7, given ǫ > 0 there is an R = R(n, ǫ, σ) > 0 so that for i sufficiently

large, either λ[C[σi]] ≤ 1+ ǫ or λ[C[σi]] = F [C[σi]+xi] for some xi ∈ B̄R. Observe, that

there is an A = A(n, σ) so that for i sufficiently large and for every r > 0 and x ∈ R
n+1,

Hn(C[σi] ∩Br(x)) ≤ Arn.

Hence, we get

lim sup
i→∞

λ[C[σi]] ≤ max {1 + ǫ, λ[C[σ]]} .

Passing ǫ to 0, as λ[C[σ]] ≥ 1, it follows that

lim sup
i→∞

λ[C[σi]] ≤ λ[C[σ]],

completing the proof. �

We are now ready to prove that Ek,α
n,ent(Λ0) is compact. In order to do so we introduce

a necessary hypothesis about the entropy of minimal cones. Let RMCn denote the space

of regular minimal cones in R
n+1, that is C ∈ RMCn if and only if it is a proper subset

of Rn+1 and C \ {0} is a hypersurface in R
n+1 \ {0} that is invariant under dilation about

0 and with vanishing mean curvature. Let RMC∗
n denote the set of non-flat elements of

RMCn – i.e., cones with non-zero curvature somewhere. For any Λ > 0, let

RMCn(Λ) = {C ∈ RMCn : λ[C] < Λ} and RMC∗
n(Λ) = RMC∗

n ∩RMCn(Λ).

Now fix a dimension n ≥ 2 and a value Λ > 1. Consider the following hypothesis:

(⋆n,Λ) For all 2 ≤ l ≤ n, RMC∗
l (Λ) = ∅.

Observe that all regular minimal cones in R
2 consist of unions of rays and so RMC∗

1 =
∅. Likewise, as great circles are the only geodesics in S

2, RMC∗
2 = ∅ and so (⋆2,Λ)

always holds. As a consequence of Allard’s regularity theorem and a dimension reduction

argument, there is always some Λn > 1 so that (⋆n,Λn
) holds.

Proof of Item (3) of Theorem 1.1. First, by Corollary 3.4, there is an R > 0 so that, up to

passing to a subsequence, Σi \ B̄R converges in C∞
loc(R

n+1 \ B̄R) to some hypersurfaceΣ′

in R
n+1 \ B̄R. Moreover, Σ′ is a Ck,α

∗ -asymptotically conical self-expander in R
n+1 \ B̄R

and L(Σ′) = σ.

As λ[Σi] ≤ Λ0 < Λ, Lemma 3.6 and the standard compactness results, imply that, up

to passing to a further subsequence, Σi ∩B2R converges in the sense of measures to some

integral varifold, V , in B2R. As such, there is an integral varifold, Σ, in R
n+1 that agrees

with V in B2R and Σ′ outside B̄R. In particular, Σ is smooth and properly embedded in

R
n+1 \ B̄R. The lower semicontinuity of entropy gives λ[Σ] ≤ Λ0 < Λ, and so it follows
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from (⋆n,Λ), a dimension reduction theorem [29, Theorem 4] and Allard’s regularity theo-

rem (e.g., [21, Theorem 24.2]) that Σ is actually smooth and properly embedded in R
n+1.

That is, Σ ∈ Ek,α
n,ent(Λ0). Finally, a further consequence of Allard’s regularity theorem [30]

is that Σi → Σ in C∞
loc(R

n+1), finishing the proof. �

3.3. Smooth compactness of Ek,α
top (g, e). Combining the asymptotic compactness prop-

erty, the area estimates from Lemma 3.6 and a result of White [25, Theorem 3 (4)] we can

easily prove Item (1) of Theorem 1.1.

Proof of Item (1) of Theorem 1.1. By Corollary 3.4 there is anR > 0 so that, up to passing

to a subsequence,

Σi \ B̄R → Σ′ in C∞
loc(R

3 \ B̄R),

whereΣ′ is aCk,α
∗ -asymptotically conical self-expander in R

3\B̄R, Σ′ consists of e annuli

and L(Σ′) = σ. In particular, for r > R sufficiently large, ∂Br meets Σ transversally and

also meets each Σi transversally. As such, Σi ∩ Br has genus g and Σi ∩ ∂Br has e
components. Thus, it follows that there is a constant C = C(g, e) so

∫

∂Br∩Σi

κ < C

where κ denotes the geodesic curvature of the boundary curve. Moreover, by Lemma 3.8,

for i sufficiently large, λ[C(Σi)] ≤ λ[C[σ]] + 1 and so, by Lemma 3.6, there is a C′ so

H2(Σi ∩Br) ≤ C′.

Hence, it follows from [25, Theorem 3 (4)] that, up to passing to a further subsequence,

Σi ∩Br → Σ′′ in C∞
loc(Br)

where Σ′′ is a self-expander in Br and the convergence is with multiplicity one. It is clear

that Σ′ = Σ′′ in Br \ B̄R. Therefore the result follows with Σ = Σ′ ∪ Σ′′. �

3.4. Smooth compactness of Ek,α
n,mc(h0). We combine Lemma 3.6 with a curvature esti-

mate for mean convex self-expanders in order to prove Item (2) of Theorem 1.1.

First we show a curvature estimate for strictly mean convex asympotitically conical

self-expanders with strictly mean convex link. Our argument uses the maximum principle

and is completely analogous to the one used in [6] for mean convex self-shrinkers.

Lemma 3.9. Let Σ ⊂ R
n+1, be an asymptotically conical self-expander. If Σ is strictly

mean convex and whose asymptotic cone, C(Σ) is C2-regular and strictly mean convex,

then, for p ∈ Σ,

|AΣ(p)|2 ≤ K|x(p)|2
where

K =
1

4
sup
C(Σ)

|AC(Σ)|2
H2

C(Σ)

=
1

4
sup
L(Σ)

|AL(Σ)|2
H2

L(Σ)

<∞.

Proof. By definition of asymptotic cones and scaling invariance

lim
R→∞

sup
∂BR∩Σ

|AΣ|2
H2

Σ

= 4K.

Hence, for every ǫ > 0, there is an Rǫ so if R > Rǫ, then

sup
∂BR∩Σ

|AΣ|2
H2

Σ

≤ 4K + ǫ.
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Computing as in [6] one has

LΣHΣ =

(

∆Σ +
x

2
· ∇Σ + |AΣ|2 −

1

2

)

HΣ = −HΣ

which follows from a variant on Simons’ identity, for the rough drift Laplacian,

(LΣAΣ)ij = −(AΣ)ij .

For details see the computations in (10.10)-(10.12) and (5.7)-(5.8) of [6]. These are carried

out for self-shrinkers, however the formulas for self-expanders follow with a simple sign

change.

Now consider the new operator

LH2
Σ
= ∆Σ +

x

2
· ∇Σ + 2(∇Σ logHΣ) · ∇Σ

We compute that
(

LH2
Σ

AΣ

HΣ

)

ij

= 0

and so

LH2
Σ

|AΣ|2
H2

Σ

= 2

∣

∣

∣

∣

∇Σ
AΣ

HΣ

∣

∣

∣

∣

2

≥ 0.

Hence, by the maximum principle, for any R > Rǫ,

sup
BR∩Σ

|AΣ|2
H2

Σ

≤ 4K + ǫ.

Hence, letting ǫ→ 0, gives

sup
Σ

|AΣ|2
H2

Σ

≤ 4K.

That is, for any p ∈ Σ,

|AΣ(p)|2 ≤ 4KH2
Σ(p) ≤ K(x(p) · nΣ(p))

2 ≤ K|x(p)|2.
This proves the claim. �

We are now ready to complete the proof of Theorem 1.1.

Proof of Item (2) of Theorem 1.1. By Corollary 3.4 there is anR > 0 so that, up to passing

to a subsequence,

Σi \ B̄R → Σ′ in C∞
loc(R

n+1 \ B̄R),

where Σ′ is a Ck,α
∗ -asymptotically conical self-expander in R

n+1 \ B̄R and L(Σ′) = σ.

The nature of the convergence, ensures that Hσ ≥ h0. Moreover, by Lemma 3.8, for i
sufficiently large, λ[C(Σi)] ≤ λ[C[σ]] + 1. Thus, by Lemma 3.6, there is a uniform C′ so

Hn(Σi ∩Br) ≤ C′.

As σ is strictly mean convex, for i sufficiently large each L(Σi) is strictly mean convex.

Indeed, setting

K = sup
σ

|Aσ|2
H2

σ

∈ (0,∞)

one has, after possibly throwing out a finite sequence of the Σi, that

sup
L(Σi)

|AL(Σi)|2
H2

L(Σi)

≤ 4K.
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Hence, by Lemma 3.9,

|AΣi
(p)|2 ≤ K|x(p)|2.

That is,

sup
Σi∩B2R

|AΣi
|2 ≤ 4KR2.

Combining this with the area bound and the Arzelà-Ascoli theorem, gives that, up to pass-

ing to a subsequence, the Σi converge, possibly with multiplicities, in C∞
loc(B2R) to a limit

Σ′′. As Σ′′ is a smooth solution to (1.1) and there are no closed self-expanders, each

component of Σ′′ meets Σ′. In particular, as the Σi converge with multiplicity one to Σ′ in

B2R\B̄R, the Σi converge to Σ′′ with multiplicity one inB2R. Hence, setting Σ = Σ′∪Σ′′

one obtains a smooth asymptotically conical self-expander with Σi → Σ in C∞
loc(R

n+1).
As each Σi has positive mean curvature, Σ has non-negative mean curvature. However, as

σ = L(Σ) has HL(Σ) ≥ h0 > 0 and LΣHΣ = −HΣ ≤ 0, the strong maximum principle

implies Σ has positive mean curvature completing the proof. �

4. PROPERNESS OF MAP Π

Before proving Theorems 1.2, 1.3 and 1.4 we need the following auxiliary proposition

that relates sequential compactness in ACEk,α
n (Γ) to locally smooth compactness in R

n+1.

Proposition 4.1. For Γ ∈ ACHk,α
n , if ϕ ∈ Vk,α

emb(Γ), and [fi] ∈ ACEk,α
n (Γ) satisfy:

(1) tr1∞[fi] = ϕi → ϕ in Ck,α(L(Γ);Rn+1);
(2) fi(Γ) = Σi → Σ in C∞

loc(R
n+1) for some hypersurface Σ,

then Σ ∈ ACHk,α
n and is a self-expander. Moreover, there is a parameterization f : Γ →

Σ ⊂ R
n+1 so that

(1) [f ] ∈ ACEk,α
n (Γ);

(2) tr1∞[f ] = ϕ; and;

(3) [fi] → [f ] in the topology of ACEk,α
n (Γ).

Proof. First observe that as each Σi satisfies (1.1), the nature of the convergence ensures

that Σ does as well. Let

Ci = E
H
1 [ϕi](C(Γ)) = C(Σi) and C = E

H
1 [ϕ](C(Γ)).

Then Ci and C are Ck,α-regular cones. By our hypothesis (1),

Ci → C in Ck,α
loc (R

n+1 \ {0}),
which further implies

L(Σi) → L[C] in Ck,α(Sn).

Thus, by Corollary 3.4 and our hypothesis (2), we have Σ ∈ ACHk,α
n with C(Σ) = C.

As ϕ ∈ Vk,α
emb(Γ), the hypothesis (1) ensures that

E
H
1 [ϕi] ◦ E

H
1 [ϕ]−1 → x|C in Ck,α

loc (C;Rn+1).

Observe, that E H
1 [ϕi]◦E H

1 [ϕ]−1 are homogeneous of degree one, so we denote their traces

at infinity by ϕ̃i. Thus, letting L be the link of C,

ϕ̃i → x|L in Ck,α(L;Rn+1).

Let hi ∈ Ck,α
1 ∩Ck

1,H(Σ;R
n+1) be chosen so that

LΣhi = ∆Σhi +
1

2
x · ∇Σhi −

1

2
hi = 0 and tr1∞[hi] = ϕ̃i − x|L.
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By [3, Corollary 5.8] there is a unique such hi and it satisfies the estimate

‖hi‖(1)k,α ≤ C′‖ϕ̃i − x|L‖k,α
for some constant C′ = C′(Σ, n, k, α). We let

gi = x|Σ + hi and Υi = gi(Σ).

It is clear that for i sufficiently large, gi ∈ ACHk,α
n (Σ) and tr1∞[gi] = ϕ̃i. Thus, by [3,

Proposition 3.3], Υi ∈ ACHk,α
n and C(Υi) = Ci.

Now pick a transverse section v on Σ that, outside a compact set, equals Ew[w] =
w ◦ πw|Σ for w a chosen homogeneous transverse section on C. For i sufficiently large,

vi = v ◦g−1
i is an asymptotically homogeneous, transverse section on Υi. By Proposition

3.3, for i large, Σi lies in a vi-regular neighborhood of Υi and is transverse to Evi
[vi] =

vi ◦ πvi
. In particular, πvi

|Σi
: Σi → Υi is an element of ACHk,α

n (Σi). Thus, for i large,

there is a unique ui ∈ Ck,α
1 ∩ Ck

1,0(Σ) so that Σi can be parametrized by the map

f̃i = (πvi
|Σi

)−1 ◦ gi = gi + uiv

which is an element of ACHk,α
n (Σ) by [3, Proposition 3.3]. Moreover, ‖ui‖(1)k,α is uni-

formly bounded and ‖ui‖(1)1 → 0.

Observe, that there is a δ > 0 (independent of i) so that for i sufficiently large

inf
p∈Σ

|v · (nΣi
◦ f̃i)| > δ.

As Σi is a self-expander, it follows from [3, Lemma 7.2] and direct calculations that

LΣui = − nΣi
◦ f̃i

v · (nΣi
◦ f̃i)

·
(

2∇Σui · ∇Σv + ui

(

LΣ +
1

2

)

v + (g−1

f̃i
− g−1

Σ )jl(∇2
Σ f̃i)jl

)

where gf̃i and gΣ are the pull-back metrics of Euclidean one by f̃i and x|Σ, respectively.

One further uses [3, Proposition 3.1] to see that, for i large, the right hand side are elements

of Ck−2,α
−1 (Σ) with uniformly bounded ‖ · ‖(−1)

k−2,α norm. Hence, by [3, Theorem 5.7 and

Corollary 5.8], ui ∈ Dk,α(Σ) and ‖ui‖∗k,α is uniformly bounded. Here

Dk,α(Σ) =
{

u ∈ Ck,α
1 ∩ Ck−1,α

0 ∩Ck−2,α
−1 (Σ): x · ∇Σu ∈ Ck−2,α

−1 (Σ)
}

is a Banach space with norm

‖u‖∗k,α = ‖u‖(−1)
k−2,α +

∑

k−1≤i≤k

‖∇i
Σu‖(1−k)

α + ‖x · ∇Σu‖(−1)
k−2,α.

As Dk,α(Σ) is compactly embedded in Ck−1,α
1 (Σ), we have ‖ui‖(1)k−1,α → 0. Thus it

follows from [3, Lemma 7.5] that ‖ui‖∗k,α → 0 and so ‖f̃i − x|Σ‖(1)k,α → 0.

We pick a large integer I so that f̃I is well-defined as above. Choose a representative fI
of [fI ]. We define f = f̃−1

I ◦ fI , and it is clear that f(Γ) = Σ. Moreover, by [3, Proposition

3.3], f ∈ ACHk,α(Γ) and

C[f ] = C[f̃I ]−1 ◦ C[fI ] = (E H
1 [ϕI ] ◦ E

H
1 [ϕ]−1)−1 ◦ E

H
1 [ϕI ] = E

H
1 [ϕ].

Thus, [f ] represents a class in ACEk,α
n (Γ) which has Π([f ]) = tr1∞[f ] = ϕ.
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Hence, to complete the proof it remains only to show that [fi] → [f ] in the topology

of ACEk,α
n (Γ). Observe that f̃i ◦ f(Γ) = Σi, and invoking [3, Proposition 3.3] again,

f̃i ◦ f ∈ ACHk,α
n (Γ) and

C[f̃i ◦ f ] = C[f̃i] ◦ C[f ] = (E H
1 [ϕi] ◦ E

H
1 [ϕ]−1) ◦ E

H
1 [ϕ] = E

H
1 [ϕi].

This gives that f̃i ◦ f is an element of [fi]. Moreover, by [3, Proposition 3.1], f̃i ◦ f → f in

Ck,α
1 (Γ;Rn+1). Therefore, [fi] → [f ] in the topology of ACEk,α

n (Γ). �

The proofs of properness of Π now follow easily.

Proof of Theorem 1.2. The result follows directly from Item (1) of Theorem 1.1, Proposi-

tion 4.1 and an elementary topology fact, Lemma A.1. �

Proof of Theorem 1.3. First, by Lemma 3.8, Vent(Γ,Λ) is open in Ck,α(L(Γ);Rn+1).
Next, by Lemma 3.5,

λ[f(Γ)] = λ[C[σ]] where σ = Π([f ])(L(Γ)).
Thus, the continuity of Π and Lemma 3.8 imply that Uent(Γ,Λ) is open in ACEk,α

n (Γ). If

Z ⊂ V(Γ,Λ) is compact, then it follows from Lemma 3.8 that there is a Λ0 < Λ so that

λ[E H
1 [ϕ](C(Γ))] ≤ Λ0

for all ϕ ∈ Z . Hence, if (⋆n,Λ) holds for some Λ < 2, then the last claim follows from

Item (3) of Theorem 1.1, Proposition 4.1 and Lemma A.1. �

Proof of Theorem 1.4. Items (1) and (2) are straightforward. For [f ] ∈ Umc(Γ) let Σ =
f(Γ). As HΣ > 0 and LΣHΣ = −HΣ < 0, LΣ has a positive super-solution. Hence,

it follows from the trick of Fischer-Colbrie and Schoen [10] that Σ is strictly stable. In

particular, Σ admits no non-trivial Jacobi fields and so Item (3) follows from [3, Theorem

1.1 (4)]. Furthermore, if Z ⊂ Vmc(Γ) is compact, then there is an h0 > 0 so Hσ ≥ h0,

where σ is the link of the cone E
H
1 [ϕ](C(Γ)), for all ϕ ∈ Z . As such, Item (4) follows

from Item (2) of Theorem 1.1, Proposition 4.1 and Lemma A.1. It remains only to show

the final remark. Observe, that by Item (4) and that Vmc(Γ) is a compactly generated

Hausdorff space, the map Π|Umc(Γ) is a closed map. Hence, following the arguments in [20,

Proposition 4.46], the final remark is an immediate consequence of Items (3) and (4). �

5. EXISTENCE OF MEAN CONVEX ASYMPTOTICALLY CONICAL SELF-EXPANDERS

We conclude by proving Corollary 1.5. We first show existence and uniqueness of mean

convex self-expanders asymptotic to rotationally symmetric cones. This result is not new

(see [1, 7]), but we include a proof for the sake of completeness.

Proposition 5.1. For n ≥ 2 let C ⊂ R
n+1 be a connected non-flat rotationally symmetric

cone. There is a unique smooth self-expander Σ that is smoothly asymptotic to C. More-

over, Σ satisfies HΣ > 0 and is an entire graph and so is diffeomorphic to R
n .

Proof. Without loss of generality we assume that en+1 is the axis of symmetry of C and C
lies in the half-space {xn+1 ≥ 0}. First, we show the existence of a strictly mean convex

self-expanders asymptotic to C. Clearly, there is a τ > 0 so C is the graph of a Lipschitz

function u0 : R
n → R given by u0(x) = τ |x|. Let ui0(x) = τ

√

i−1 + |x|2 so ui0 : R
n →

R is a sequence of smooth functions which are strictly convex, have Lipschitz constant

at most τ and are asymptotic to u0. Moreover, the ui0 converge to u0 uniformly. Let

Σi ⊂ R
n+1 be the graphs of the ui0. These are smooth convex hypersurfaces that are

asymptotic to C. Thus, Ecker-Huisken [8] and the strong maximum principle applied to



SMOOTH COMPACTNESS FOR SELF-EXPANDERS 17

the evolution equation for mean curvature [9] imply that there is a unique strictly mean

convex, graphical solution, Mi =
{

Σi
t

}

t≥0
to mean curvature flow starting from Σi.

Moreover, if we denote by ui(t, ·) the functions whose graphs are the Σi
t, then the ui(t, ·)

have uniformly bounded Lipschitz constant.

Hence, by Brakke’s compactness (cf. [15, §7]), the Mi converges as Brakke flows to

M = {Σt}t≥0 with Σ0 = C. Furthermore, the interior estimates for graphical mean

curvature flow [9] and the Arzelà-Ascoli theorem imply that for t > 0, Σt has nonnegative

mean curvature and is given by the graph of a smooth function u(t, ·) on R
n with a uniform

Lipschitz constant. Moreover, as t → 0+, Σt → C in C∞
loc(R

n+1 \ {0}). By the parabolic

maximum principle, such a solution u(t, ·) for t > 0 is unique in the class of functions

with at most linear growth. A consequence of this is that u(t, x) =
√
t u(1, |x|√

t
). As

such, Σ = Σ1 is a graphical self-expanding hypersurface of revolution that is smoothly

asymptotic to C and has nonnegative mean curvature. Furthermore, as LΣHΣ = −HΣ ≤ 0
and HC > 0, the strong maximum principle implies HΣ > 0.

Next we show the uniqueness of self-expanders asymptotic to the given cone C. Suppose

Σ′ is another smooth self-expander smoothly asymptotic to C. Let

s0 = inf {s > 0: Σ′ ∩ (Σ + sen+1) = ∅} ≥ 0.

We claim s0 = 0 and so Σ′ lies below Σ. Suppose not, i.e., s0 > 0. By Item (2) of

Proposition 3.3, Σ + s0en+1 touches Σ′ from above at some interior point. However, we

observe that H + 1
2x · n > 0 on Σ + s0en+1 where n is chosen to be upward. This leads

to a contradiction with the strong maximum principle. By similar arguments, Σ′ also lies

above Σ. Thus Σ′ = Σ proving the uniqueness. �

Proof of Corollary 1.5. Let {σt}t∈[0,T ) be the solution of mean curvature flow in S
n with

σ0 = σ and T the maximal time of existence. Pick a parameterization ϕ0 : σ → σ0 and

chooseϕt : σ → σt a corresponding evolution of parameterizations. As σ0 is mean convex,

the maximum principle implies that σt is as well for all t ∈ (0, T ). When n = 2, results

of Grayson [12] and Zhu [31, Corollary 4.2] give that σt smoothly shrinks to a round point

in finite time. When n ≥ 3, by [13], the condition (1.2) is preserved, which, together with

the mean convexity and connectedness, implies that T < ∞ and the flow disappears in a

round point at time T .

Choose a rotationally symmetric hypersurface σ̃ ⊂ S
n and a T0 sufficiently close to

T , so σT0
is a small normal graph over σ̃. Thus, there is a path of smooth, strictly mean

convex embeddings, ψt : σ̃ → S
n, t ∈ [0, 1], so ψ0(σ̃) = σT0

and ψ1 = x|σ̃ . Thus, setting

ϕ̃t =

{

ϕt ◦ ϕ−1
T0

◦ ψ0 0 ≤ t ≤ T0
ψt−T0

T0 ≤ t ≤ T0 + 1

one obtains a path of strictly mean convex Ck,α-embeddings of σ̃ into S
n connecting

ϕ̃T0+1 = x|σ̃ to ϕ̃0 : σ̃ → σ. By Proposition 5.1 there is a unique smooth self-expander Γ
that is smoothly asymptotic to C[σ̃] and HΓ > 0. Hence, Theorem 1.4 implies there is an

[f0] ∈ Umc(Γ) with Π([f0]) = ϕ̃0 and so Σ = f0(Γ) is the desired element.

In what follows we restrict our discussions to those n such that π0(Diff+(Sn−1)) = 0.

For n ≥ 3 we let

V =
{

ϕ ∈ Vmc(Γ): L[E H
1 [ϕ](C(Γ))] satisfies (1.2)

}

,

which is an open subset of Vmc(Γ); for n = 2 let V = Vmc(Γ). By the previous discussions

and the hypothesis that Diff+(L(Γ)) ≃ Diff+(Sn−1) is path-connected, we observe V
has exactly two components. Let V+ be the component of V that contains x|L(Γ) and
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let V− be the component containing x|L(Γ) ◦ I where I ∈ Diff(L(Γ)) is an orientation-

reversing involution. If U± = Umc(Γ) ∩ Π−1(V±), then it follows from Theorem 1.4 and

the uniqueness of Γ that Π|U± : U± → V± is a diffeomorphism.

Now suppose ϕ, ψ ∈ V+ so that E H
1 [ϕ](C(Γ)) = E H

1 [ψ](C(Γ)). If [f ], [g] ∈ U+ with

Π([f ]) = ϕ and Π([g]) = ψ, then we will show f(Γ) = g(Γ). Observe that there is a path

of homogeneous Φt ∈ Diff+(C(Γ)) with Φ0 = E H
1 [ϕ]−1 ◦ E H

1 [ψ] and Φ1 = x|C(Γ). Thus,

Theorem 1.4 and the uniqueness of Γ imply that there is a path of [ht] ∈ ACEk,α
n (Γ) so

that ht(Γ) = Γ and Π([ht]) = tr1∞[Φt]. In particular, [f ◦ h0] ∈ U+ and Π([f ◦ h0]) = ψ.

As Π|U+
is a diffeomorphism, [g] = [f ◦ h0] and so g(Γ) = f(Γ). By symmetries, the

same claim holds on V−. Finally, observe that as Γ is diffeomorphic to R
n there is an

orientation-reversing diffeomorphism Ĩ ∈ ACHk,α
n (Γ) so that tr1∞[Ĩ] = I . Moreover,

[f ] ∈ U+ if and only if [f ◦ Ĩ] ∈ U−. This concludes the proof of uniqueness.

�

APPENDIX A.

Lemma A.1. Let X be a topological space. Suppose X has a countable cover, {Ai}i∈N
,

of closed subsets so that each Ai is metrizable. If K is a sequentially compact subspace of

X , then it is compact.

Proof. Let {Uα} be an arbitrary collection of open sets of X that covers K . As K
is sequentially compact, so is every K ∩ Ai. Since Ai is metrizable, there is a finite

subcollection of {Uα} that covers K ∩ Ai. Thus, there is a countable subcollection

{Uαi
}i∈N

⊂ {Uα} that coversK . We show that there is a finite subcollection of {Uαi
}i∈N

that covers K , implying the compactness of K . We argue by contradiction. Suppose not,

then pick xj ∈ K \ (
⋃j

i=1 Uαi
). Thus, up to passing to a subsequence, xj → x ∈ K .

However, x ∈ Uαi0
for some i0, so for j sufficiently large xj ∈ Uαi0

, which leads to a

contradiction. �
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