SMOOTH COMPACTNESS FOR SPACES OF ASYMPTOTICALLY CONICAL SELF-EXPANDERS OF MEAN CURVATURE FLOW

JACOB BERNSTEIN AND LU WANG

ABSTRACT. We show compactness in the locally smooth topology for certain natural families of asymptotically conical self-expanding solutions of mean curvature flow. Specifically, we show such compactness for the set of all two-dimensional self-expanders of a fixed topological type and, in all dimensions, for the set of self-expanders of low entropy and for the set of mean convex self-expanders with strictly mean convex asymptotic cones. From this we deduce that the natural projection map from the space of parameterizations of asymptotically conical self-expanders to the space of parameterizations of the asymptotic cones is proper for these classes.

1. INTRODUCTION

A *hypersurface*, i.e., a properly embedded codimension-one submanifold, $\Sigma \subset \mathbb{R}^{n+1}$, is a *self-expander* if

(1.1)
$$
\mathbf{H}_{\Sigma} - \frac{\mathbf{x}^{\perp}}{2} = \mathbf{0}.
$$

Here

$$
\mathbf{H}_{\Sigma} = \Delta_{\Sigma} \mathbf{x} = -H_{\Sigma} \mathbf{n}_{\Sigma} = -\text{div}_{\Sigma}(\mathbf{n}_{\Sigma}) \mathbf{n}_{\Sigma}
$$

is the mean curvature vector, \mathbf{n}_{Σ} is the unit normal, and \mathbf{x}^{\perp} is the normal component of the position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed, Σ is a self-expander if and only if the family of homothetic hypersurfaces

$$
\left\{\Sigma_t\right\}_{t>0} = \left\{\sqrt{t}\,\Sigma\right\}_{t>0}
$$

is a *mean curvature flow* (MCF), that is, a solution to the flow

$$
\left(\frac{\partial \mathbf{x}}{\partial t}\right)^{\perp} = \mathbf{H}_{\Sigma_t}.
$$

Self-expanders are expected to model the behavior of a MCF as it emerges from a conical singularity [\[1\]](#page-17-0). They are also expected to model the long time behavior of the flow [\[8\]](#page-17-1).

Throughout the paper $n, k \geq 2$ are integers and $\alpha \in (0, 1)$. Let Γ be a $C^{k, \alpha}_*$ -asymptotically conical $C^{k,\alpha}$ -hypersurface in \mathbb{R}^{n+1} and let $\mathcal{L}(\Gamma)$ be the link of the asymptotic cone of Γ . For instance, if $\lim_{\rho \to 0^+} \rho \Gamma = C$ in $C_{loc}^{k,\alpha}(\mathbb{R}^{n+1} \setminus \{0\})$, where C is a cone, then Γ is $C^{k,\alpha}_*$ -asymptotically conical with asymptotic cone C. For technical reasons, the actual definition is slightly weaker – see Section 3 of [\[3\]](#page-17-2) for the details. We denote the space of $C^{k,\alpha}_*$ -asymptotically conical $C^{k,\alpha}$ -hypersurfaces in \mathbb{R}^{n+1} by $\mathcal{ACH}_n^{k,\alpha}$.

The first author was partially supported by the NSF Grant DMS-1609340. The second author was partially supported by the NSF Grants DMS-1406240 and DMS-1834824, an Alfred P. Sloan Research Fellowship, the office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation and a Vilas Early Investigator Award.

2 JACOB BERNSTEIN AND LU WANG

We now introduce the classes we will consider. First, for $g \ge 0$ and $e \ge 1$, let

$$
\mathcal{E}_{\text{top}}^{k,\alpha}(g,e) = \left\{ \Gamma \in \mathcal{ACH}_2^{k,\alpha} \colon \Gamma \text{ satisfies (1.1) and } \Gamma \text{ is of genus } g \text{ with } e \text{ ends} \right\},\
$$

be the space of $C^{k,\alpha}_{*}$ -asymptotically conical self-expanders in \mathbb{R}^{3} with genus g and e ends. Similarly, for any $h_0 > 0$, let

$$
\mathcal{E}_{n,\text{mc}}^{k,\alpha}(h_0) = \left\{ \Gamma \in \mathcal{ACH}_n^{k,\alpha} \colon \Gamma \text{ satisfies (1.1), } H_{\Gamma} > 0, H_{\mathcal{L}(\Gamma)} \ge h_0 \right\},\
$$

be the space of $C^{k,\alpha}_{*}$ -asymptotically conical self-expanders in \mathbb{R}^{n+1} which are strictly mean convex and have uniformly strictly mean convex asymptotic cones. Finally, for 1 < $\Lambda_0 < 2$, let

$$
\mathcal{E}_{n,\text{ent}}^{k,\alpha}(\Lambda_0) = \left\{ \Gamma \in \mathcal{ACH}_n^{k,\alpha} \colon \Gamma \text{ satisfies (1.1) and } \lambda[\Gamma] \leq \Lambda_0 \right\},\
$$

be the space of $C^{k,\alpha}_*$ -asymptotically conical self-expanders in \mathbb{R}^{n+1} which have entropy less than or equal to Λ_0 . See Section [3.2](#page-8-0) for the definition of entropy.

We prove the following smooth compactness result for the spaces $\mathcal{E}_{\text{top}}^{k,\alpha}(g,e)$, $\mathcal{E}_{n,\text{mc}}^{k,\alpha}(h_0)$ and, under suitable hypotheses on Λ_0 , $\mathcal{E}_{n,\text{ent}}^{k,\alpha}(\Lambda_0)$.

Theorem 1.1. *The following holds:*

- *(1) If* $\Sigma_i \in \mathcal{E}_{\text{top}}^{k,\alpha}(g,e)$ *and* $\mathcal{L}(\Sigma_i) \to \sigma$ *in* $C^{k,\alpha}(\mathbb{S}^2)$ *, then there is a* $\Sigma \in \mathcal{E}^{k,\alpha}(g,e)$ *with* $\mathcal{L}(\Sigma) = \sigma$ *so that, up to passing to a subsequence,* $\Sigma_i \to \Sigma$ *in* $C_{loc}^{\infty}(\mathbb{R}^3)$ *.*
- (2) If $\Sigma_i \in \mathcal{E}_{n,\text{mc}}^{k,\alpha}(h_0)$ and $\mathcal{L}(\Sigma_i) \to \sigma$ in $C^{k,\alpha}(\mathbb{S}^n)$, then there is a $\Sigma \in \mathcal{E}_{n,\text{mc}}^{k,\alpha}(h_0)$ *with* $\mathcal{L}(\Sigma) = \sigma$ *so that, up to passing to a subsequence,* $\Sigma_i \to \Sigma$ *in* $C_{loc}^{\infty}(\mathbb{R}^{n+1})$ *.*
- *(3) If Assumption* $(*_{n,\Lambda})$ $(*_{n,\Lambda})$ $(*_{n,\Lambda})$ *of Section* [3.2](#page-8-0) *holds*, $\Sigma_i \in \mathcal{E}_{n,\text{ent}}^{k,\alpha}(\Lambda_0)$ *for* $\Lambda_0 < \Lambda < 2$ *and* $\mathcal{L}(\Sigma_i) \to \sigma$ in $C^{k,\alpha}(\mathbb{S}^n)$, then there is $a \Sigma \in \mathcal{E}_{n,\text{ent}}^{k,\alpha}(\Lambda_0)$ with $\mathcal{L}(\Sigma) = \sigma$ so that, *up to passing to a subsequence,* $\Sigma_i \to \Sigma$ *in* $C_{loc}^{\infty}(\mathbb{R}^{n+1})$ *.*

In [\[3\]](#page-17-2), the authors showed that the space $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$ – see [\(2.1\)](#page-6-0) below – of asymptotically conical parameterizations of self-expanders modeled on Γ (modulo reparameterizations fixing the parameterization of the asymptotic cone) possesses a natural Banach manifold structure modeled on $C^{k,\alpha}(\mathcal{L}(\Gamma);\mathbb{R}^{n+1})$. They further showed that the map

$$
\Pi: \mathcal{ACE}_n^{k,\alpha}(\Gamma) \to C^{k,\alpha}(\mathcal{L}(\Gamma); \mathbb{R}^{n+1})
$$

given by $\Pi([f]) = \text{tr}^1_{\infty}[f]$ is smooth and Fredholm of index 0. As such, by work of Smale [\[24\]](#page-18-0), as long as Π is proper it possesses a well-defined mod 2 degree. In fact as shown in [\[2\]](#page-17-3), when the map Π is proper it possesses an integer degree. These results are all analogs of work of White [\[26\]](#page-18-1) who proved such results for a large class of variational problems for parameterizations from compact manifolds – see also [\[28\]](#page-18-2).

In general, the map $\Pi: \mathcal{ACE}_n^{k,\alpha}(\Gamma) \to C^{k,\alpha}(\mathcal{L}(\Gamma); \mathbb{R}^{n+1})$ is not proper. However, using Theorem [1.1,](#page-1-0) we give several natural subsets of $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$ on which the restriction of Π is proper. This should be compared to [\[27\]](#page-18-3). As a first step, it is necessary to shrink the range of Π . To that end, for any $\Gamma \in \mathcal{ACH}_{n}^{k,\alpha}$, let

$$
\mathcal{V}_{\text{emb}}^{k,\alpha}(\Gamma) = \left\{ \varphi \in C^{k,\alpha}(\mathcal{L}(\Gamma); \mathbb{R}^{n+1}) \colon \mathscr{E}_1^{\text{H}}[\varphi] \text{ is an embedding} \right\},\
$$

be the space of parameterizations of embedded cones. Here $\mathscr{E}_1^H[\varphi]$ is the homogeneous degree-one extension of φ . This is readily seen to be an open subset of $C^{k,\alpha}(\mathcal{L}(\Gamma);\mathbb{R}^{n+1})$. It also follows from the definition of $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$ that $\Pi\colon \mathcal{ACE}_n^{k,\alpha}(\Gamma) \to \mathcal{V}_{\text{emb}}^{k,\alpha}(\Gamma)$.

Theorem 1.2. *For any* $\Gamma \in \mathcal{ACH}_{2}^{k,\alpha}$, $\Pi \colon \mathcal{ACE}_{2}^{k,\alpha}(\Gamma) \to \mathcal{V}_{emb}^{k,\alpha}(\Gamma)$ *is proper.*

Theorem 1.3. *For* $\Gamma \in \mathcal{ACH}_n^{k,\alpha}$ *and* $\Lambda > 1$ *, let*

$$
\mathcal{V}_{ent}(\Gamma,\Lambda) = \left\{ \varphi \in \mathcal{V}_{emb}^{k,\alpha}(\Gamma) \colon \lambda[\mathscr{E}_1^H[\varphi](\mathcal{C}(\Gamma))] < \Lambda \right\}
$$

and

$$
\mathcal{U}_{\mathrm{ent}}(\Gamma,\Lambda)=\left\{[f]\in\mathcal{ACE}_n^{k,\alpha}(\Gamma)\colon \lambda[f(\Gamma)]<\Lambda\right\}.
$$

The following is true:

(1) $\mathcal{U}_{ent}(\Gamma, \Lambda)$ *is an open subset of* $\mathcal{ACE}_n^{k, \alpha}(\Gamma)$ *.*

(2) $\mathcal{V}_{ent}(\Gamma, \Lambda)$ *is an open subset of* $C^{k,\alpha}(\mathcal{L}(\Gamma); \mathbb{R}^{n+1})$ *.*

(3) If $(\star_{n,\Lambda})$ *holds for* $\Lambda < 2$ *, then* $\Pi|_{\mathcal{U}_{\text{ent}}(\Gamma,\Lambda)}$: $\mathcal{U}_{\text{ent}}(\Gamma,\Lambda) \to \mathcal{V}_{\text{ent}}(\Gamma,\Lambda)$ *is proper.*

Theorem 1.4. *For* $\Gamma \in \mathcal{ACH}_n^{k,\alpha}$, *let*

$$
\mathcal{V}_{\rm mc}(\Gamma) = \left\{ \varphi \in \mathcal{V}_{\rm emb}^{k,\alpha}(\Gamma) \colon H_{\sigma} > 0 \text{ where } \sigma = \mathcal{L}[\mathscr{E}_1^{\rm H}[\varphi](\mathcal{C}(\Gamma))] \right\}
$$

and

$$
\mathcal{U}_{\text{mc}}(\Gamma) = \left\{ [\mathbf{f}] \in \mathcal{ACE}_n^{k,\alpha}(\Gamma) \colon H_{\mathbf{f}(\Gamma)} > 0, \Pi([\mathbf{f}]) \in \mathcal{V}_{\text{mc}}(\Gamma) \right\}.
$$

The following is true:

(1) $\mathcal{U}_{\text{mc}}(\Gamma)$ *is an open subset of* $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$ *.* (2) $\mathcal{V}_{\rm mc}(\Gamma)$ *is an open subset of* $C^{k,\alpha}(\mathcal{L}(\Gamma); \mathbb{R}^{n+1})$ *. (3)* $\Pi|_{\mathcal{U}_{\text{mc}}(\Gamma)}$: $\mathcal{U}_{\text{mc}}(\Gamma) \to \mathcal{V}_{\text{mc}}(\Gamma)$ *is a local diffeomorphism. (4)* $\Pi|_{\mathcal{U}_{\text{mc}}(\Gamma)}$: $\mathcal{U}_{\text{mc}}(\Gamma) \rightarrow \mathcal{V}_{\text{mc}}(\Gamma)$ *is proper.*

In particular, for each component V' *of* $V_{\text{mc}}(\Gamma)$ *, there is an integer* $l' \geq 0$ *so* $U' =$ $\Pi^{-1}({\cal V}')\cap{\cal U}_{\rm mc}(\Gamma)$ has l' components and for each component ${\cal U}''$ of ${\cal U}',\,\Pi|_{{\cal U}''}: {\cal U}''\to{\cal V}'$ *is a (finite) covering map.*

Finally, as an application of Theorem [1.4](#page-2-0) and a result of Huisken [\[13\]](#page-18-4), we have the following existence and uniqueness result for self-expanders of a given topological type asymptotic to cones that satisfy a natural pinching condition.

Corollary 1.5. Let $\sigma \subset \mathbb{S}^n$ be a connected, strictly mean convex, $C^{k,\alpha}$ -hypersurface. In *addition, if* $n \geq 3$ *, suppose that* σ *satisfies*

(1.2)
$$
\begin{cases} |A_{\sigma}|^{2} < \frac{1}{n-2} H_{\sigma}^{2} + 2, & n \ge 4; \\ |A_{\sigma}|^{2} < \frac{3}{4} H_{\sigma}^{2} + \frac{4}{3}, & n = 3. \end{cases}
$$

There exists a smooth self-expander $\Sigma \in \mathcal{ACH}_n^{k,\alpha}$ *with* $\mathcal{L}(\Sigma) = \sigma$, $H_{\Sigma} > 0$ *and so* Σ *is* $diffeomorphic to \mathbb{R}^n . Moreover, if $\pi_0(\text{Diff}^+(\mathbb{S}^{n-1})) = 0$, i.e., the group of orientation$ *preserving diffeomorphisms of* S n−1 *is path-connected, then* Σ *is the unique self-expander with these properties.*

Remark 1.6*.* Hypothesis [\(1.2\)](#page-2-1) is required only so that classical mean curvature flow can be used to show the space of admissible σ is path-connected.

Remark 1.7*.* By work of Cerf [\[4,](#page-17-4) [5\]](#page-17-5) and Smale [\[22,](#page-18-5) [23\]](#page-18-6) it is known, for $n \in \{2, 3, 4, 6\}$, that $\pi_0(\text{Diff}^+(\mathbb{S}^{n-1})) = 0.$

Remark 1.8*.* Using only the mean convexity condition, a variational argument due to Ilmanen that is sketched in [\[17\]](#page-18-7) and carried out by Ding in [\[7\]](#page-17-6) gives the existence of a self-expanding solution with link σ . However, this method cannot directly say anything about the topology of the constructed self-expanders.

4 JACOB BERNSTEIN AND LU WANG

2. NOTATION AND BACKGROUND

In this section we fix notation and also recall the main definitions from [\[3\]](#page-17-2) we need. The interested reader should consult Sections 2 and 3 of [\[3\]](#page-17-2) for specifics and further details.

2.1. Basic notions. Denote a (open) ball in \mathbb{R}^n of radius R and center x by $B_R^n(x)$ and the closed ball by $\bar{B}_R^n(x)$. We often omit the superscript n when its value is clear from context. We also omit the center when it is the origin.

For an open set $U \subset \mathbb{R}^{n+1}$, a *hypersurface in* U , Γ , is a smooth, properly embedded, codimension-one submanifold of U. We also consider hypersurfaces of lower regularity and given an integer $k \geq 2$ and $\alpha \in (0, 1)$ we define a $C^{k, \alpha}$ -hypersurface in U to be a properly embedded, codimension-one $C^{k,\alpha}$ submanifold of U. When needed, we distinguish between a point $p \in \Gamma$ and its *position vector* $\mathbf{x}(p)$.

Consider the hypersurface $\mathbb{S}^n \subset \mathbb{R}^{n+1}$, the unit *n*-sphere in \mathbb{R}^{n+1} . A *hypersurface in* \mathbb{S}^n , σ , is a closed, embedded, codimension-one smooth submanifold of \mathbb{S}^n and $C^{k,\alpha}$ *hypersurfaces in* \mathbb{S}^n are defined likewise. Observe, that σ is a closed codimension-two submanifold of \mathbb{R}^{n+1} and so we may associate to each point $p \in \sigma$ its position vector $\mathbf{x}(p)$. Clearly, $|\mathbf{x}(p)| = 1$.

A *cone* is a set $C \subset \mathbb{R}^{n+1} \setminus \{0\}$ that is dilation invariant around the origin. That is, $\rho \mathcal{C} = \mathcal{C}$ for all $\rho > 0$. The *link* of the cone is the set $\mathcal{L}[\mathcal{C}] = \mathcal{C} \cap \mathbb{S}^n$. The cone is *regular* if its link is a smooth hypersurface in \mathbb{S}^n and $C^{k,\alpha}$ -regular if its link is a $C^{k,\alpha}$ -hypersurface in \mathbb{S}^n . For any hypersurface $\sigma \subset \mathbb{S}^n$ the *cone over* σ , $\mathcal{C}[\sigma]$, is the cone defined by

$$
\mathcal{C}[\sigma] = \{ \rho p \colon p \in \sigma, \rho > 0 \} \subset \mathbb{R}^{n+1} \setminus \{0\}.
$$

Clearly, $\mathcal{L}[\mathcal{C}[\sigma]] = \sigma$.

2.2. Function spaces. Let Γ be a properly embedded, $C^{k,\alpha}$ submanifold of an open set $U \subset \mathbb{R}^{n+1}$. There is a natural Riemannian metric, g_{Γ} , on Γ of class $C^{k-1,\alpha}$ induced from the Euclidean one. As we always take $k \geq 2$, the Christoffel symbols of this metric, in appropriate coordinates, are well-defined and of regularity $C^{k-2,\alpha}$. Let ∇_{Γ} be the covariant derivative on Γ. Denote by d_{Γ} the geodesic distance on Γ and by $B_{R}^{\Gamma}(p)$ the (open) geodesic ball in Γ of radius R and center $p \in \Gamma$. For R small enough so that $B_R^{\Gamma}(p)$ is strictly geodesically convex and $q \in B_R^{\Gamma}(p)$, denote by $\tau_{p,q}^{\Gamma}$ the parallel transport along the unique minimizing geodesic in $B_R^{\Gamma}(p)$ from p to q.

Throughout the rest of this subsection, let Ω be a domain in Γ, l an integer in [0, k], $\beta \in (0,1)$ and $d \in \mathbb{R}$. Suppose $l + \beta \leq k + \alpha$. We first consider the following norm for functions on Ω :

$$
||f||_{l;\Omega} = \sum_{i=0}^{l} \sup_{\Omega} |\nabla_{\Gamma}^{i} f|.
$$

We then let

$$
C^l(\Omega) = \left\{ f \in C^l_{loc}(\Omega) : ||f||_{l;\Omega} < \infty \right\}.
$$

We next define the Hölder semi-norms for functions f and tensor fields T on Ω :

$$
[f]_{\beta;\Omega} = \sup_{\substack{p,q \in \Omega \\ q \in B_\delta^{\Gamma}(p) \setminus \{p\}}} \frac{|f(p) - f(q)|}{d_{\Gamma}(p,q)^{\beta}} \text{ and } [T]_{\beta;\Omega} = \sup_{\substack{p,q \in \Omega \\ q \in B_\delta^{\Gamma}(p) \setminus \{p\}}} \frac{|T(p) - (\tau_{p,q}^{\Gamma})^* T(q)|}{d_{\Gamma}(p,q)^{\beta}},
$$

where $\delta = \delta(\Gamma, \Omega) > 0$ so that for all $p \in \Omega$, $B_{\delta}^{\Gamma}(p)$ is strictly geodesically convex. We further define the norm for functions on Ω :

$$
||f||_{l,\beta;\Omega} = ||f||_{l;\Omega} + [\nabla_{\Gamma}^l f]_{\beta;\Omega},
$$

and let

$$
C^{l,\beta}(\Omega) = \left\{ f \in C_{loc}^{l,\beta}(\Omega) \colon ||f||_{l,\beta;\Omega} < \infty \right\}.
$$

We also define the following weighted norms for functions on Ω :

$$
||f||_{l,\Omega}^{(d)} = \sum_{i=0}^{l} \sup_{p \in \Omega} (|\mathbf{x}(p)| + 1)^{-d+i} |\nabla_{\Gamma}^{i} f(p)|.
$$

We then let

$$
C_d^l(\Omega) = \left\{ f \in C_{loc}^l(\Omega) : ||f||_{l,\Omega}^{(d)} < \infty \right\}.
$$

We further define the following weighted Hölder semi-norms for functions f and tensor fields T on Ω :

$$
[f]_{\beta;\Omega}^{(d)} = \sup_{\substack{p,q\in\Omega\\q\in B_{\delta_p}^{\Gamma}(\mathcal{D})\backslash\{p\}}} ((|\mathbf{x}(p)|+1)^{-d+\beta} + (|\mathbf{x}(q)|+1)^{-d+\beta}) \frac{|f(p)-f(q)|}{d_{\Gamma}(p,q)^{\beta}}, \text{ and,}
$$

$$
[T]_{\beta;\Omega}^{(d)} = \sup_{\substack{p,q\in\Omega\\q\in B_{\delta_p}^{\Gamma}(\mathcal{D})\backslash\{p\}}} ((|\mathbf{x}(p)|+1)^{-d+\beta} + (|\mathbf{x}(q)|+1)^{-d+\beta}) \frac{|T(p)-(\tau_{p,q}^{\Gamma})^*T(q)|}{d_{\Gamma}(p,q)^{\beta}},
$$

where $\eta = \eta(\Omega, \Gamma) \in (0, \frac{1}{4})$ so that for any $p \in \Gamma$, letting $\delta_p = \eta(|\mathbf{x}(p)| + 1)$, $B_{\delta_p}^{\Gamma}(p)$ is strictly geodesically convex. Finally, we define the norm for functions on Ω :

$$
||f||_{l,\beta;\Omega}^{(d)} = ||f||_{l;\Omega}^{(d)} + [\nabla_{\Gamma}^l f]_{\beta;\Omega}^{(d-l)},
$$

and we let

$$
C_d^{l,\beta}(\Omega)=\left\{f\in C_{loc}^{l,\beta}(\Omega)\colon \|f\|^{(d)}_{l,\beta;\Omega}<\infty\right\}.
$$

We follow the convention that $C_{loc}^{l,0} = C_{loc}^l$, $C^{l,0} = C^l$ and $C_d^{l,0} = C_d^l$ and that $C_{loc}^{0,\beta} = C_{loc}^l$ C_{loc}^{β} , $C^{0,\beta} = C^{\beta}$ and $C_d^{0,\beta} = C_d^{\beta}$. The notation for the corresponding norms is abbreviated in the same fashion.

2.3. Homogeneous functions and homogeneity at infinity. Fix a $C^{k,\alpha}$ -regular cone C with its link L. By our definition C is a $C^{\overline{k},\alpha}$ -hypersurface in $\mathbb{R}^{n+1} \setminus \{0\}$. For $R > 0$ let $\mathcal{C}_R = \mathcal{C} \setminus \bar{B}_R$. There is an $\eta = \eta(\mathcal{L}, R) > 0$ so that for any $p \in \mathcal{C}_R$, $\bar{B}^{\mathcal{C}}_{\delta_p}(p)$ is strictly geodesically convex, where $\delta_p = \eta(|\mathbf{x}(p)| + 1)$. We also fix an integer $l \in [0, k]$ and $\beta \in [0, 1)$ with $l + \beta \leq k + \alpha$.

A map $\mathbf{f} \in C_{loc}^{l,\beta}(\mathcal{C};\mathbb{R}^M)$ is *homogeneous of degree* d if $\mathbf{f}(\rho p) = \rho^d \mathbf{f}(p)$ for all $p \in \mathcal{C}$ and $\rho > 0$. Given a map $\varphi \in C^{l,\beta}(\mathcal{L};\mathbb{R}^M)$ the *homogeneous extension of degree* d of φ is the map $\mathscr{E}_{d}^{\mathrm{H}}[\varphi]\in C_{loc}^{l,\beta}(\mathcal{C};\mathbb{R}^{M})$ defined by

$$
\mathscr{E}_d^{\mathcal{H}}[\varphi](p) = |\mathbf{x}(p)|^d \varphi(|\mathbf{x}(p)|^{-1}p).
$$

Conversely, given a homogeneous \mathbb{R}^M -valued map of degree d, $f \in C^{l,\beta}_{loc}(\mathcal{C};\mathbb{R}^M)$, let $\varphi = \text{tr}[f] \in C^{l,\beta}(\mathcal{L};\mathbb{R}^M)$, the *trace* of f, be the restriction of f to \mathcal{L} . Clearly, f is the homogeneous extension of degree d of φ .

A map $\mathbf{g} \in C^{l,\beta}_{loc}(\mathcal{C}_R;\mathbb{R}^M)$ is *asymptotically homogeneous of degree* d if

$$
\lim_{\rho \to 0^+} \rho^d \mathbf{g}(\rho^{-1} p) = \mathbf{f}(p) \text{ in } C_{loc}^{l,\beta}(\mathcal{C}; \mathbb{R}^M)
$$

for some $f \in C^{l,\beta}_{loc}(\mathcal{C};\mathbb{R}^M)$ that is homogeneous of degree d. For such a g we define the *trace at infinity* of **g** by $\text{tr}_{\infty}^d[\mathbf{g}] = \text{tr}[\mathbf{f}].$ We define

$$
C_{d,\mathcal{H}}^{l,\beta}(\mathcal{C}_R;\mathbb{R}^M)=\left\{\mathbf{g}\in C_d^{l,\beta}(\mathcal{C}_R;\mathbb{R}^M)\colon \mathbf{g}\text{ is asymptotically homogeneous of degree }d\right\}.
$$

It is straightforward to verify that $C_{d,H}^{l,\beta}(\mathcal{C}_R;\mathbb{R}^M)$ is a closed subspace of $C_d^{l,\beta}(\mathcal{C}_R;\mathbb{R}^M)$ and that

$$
\mathrm{tr}^d_{\infty} \colon C^{l,\beta}_{d,\mathrm{H}}(\mathcal{C}_R;\mathbb{R}^M) \to C^{l,\beta}(\mathcal{L};\mathbb{R}^M)
$$

is a bounded linear map. Finally, $\mathbf{x}|_{\mathcal{C}_R} \in C^{k,\alpha}_{1,\mathrm{H}}(\mathcal{C}_R;\mathbb{R}^{n+1})$ and $\mathrm{tr}^1_{\infty}[\mathbf{x}|_{\mathcal{C}_R}] = \mathbf{x}|_{\mathcal{L}}$.

2.4. **Asymptotically conical hypersurfaces.** A $C^{k,\alpha}$ -hypersurface, $\Gamma \subset \mathbb{R}^{n+1}$, is $C^{k,\alpha}_*$ *asymptotically conical* if there is a $C^{k,\alpha}$ -regular cone, $C \subset \mathbb{R}^{n+1}$, and a homogeneous transverse section, v, on C such that Γ , outside some compact set, is given by the v-graph of a function in $C_1^{k,\alpha} \cap C_{1,0}^k(\mathcal{C}_R)$ for some $R > 1$. Here a transverse section is a regularized version of the unit normal – see Section 2.4 of [\[3\]](#page-17-2) for the precise definition. Observe, that by the Arzelà-Ascoli theorem one has that, for every $\beta \in [0, \alpha)$,

$$
\lim_{\rho \to 0^+} \rho \Gamma = \mathcal{C} \text{ in } C_{loc}^{k,\beta}(\mathbb{R}^{n+1} \setminus \{0\}).
$$

Clearly, the asymptotic cone, C, is uniquely determined by Γ and so we denote it by $\mathcal{C}(\Gamma)$. Let $\mathcal{L}(\Gamma)$ denote the link of $\mathcal{C}(\Gamma)$ and, for $R > 0$, let $\mathcal{C}_R(\Gamma) = \mathcal{C}(\Gamma) \setminus \overline{B}_R$. Denote the space of $C^{k,\alpha}_{*}$ -asymptotically conical $C^{k,\alpha}$ -hypersurfaces in \mathbb{R}^{n+1} by $\mathcal{ACH}^{k,\alpha}_{n}$.

Finally, let K be a compact set of Γ and denote by $\Gamma' = \Gamma \setminus K$. By definition, we may choose K large enough so $\pi_{\mathbf{v}}$ – the projection of a neighborhood of $\mathcal{C}(\Gamma)$ along \mathbf{v} – restricts to a $C^{k,\alpha}$ diffeomorphism of Γ' onto $C_R(\Gamma)$. Denote its inverse by $\theta_{\mathbf{v};\Gamma'}$.

2.5. **Traces at infinity.** Fix an element $\Gamma \in \mathcal{ACH}_n^{k,\alpha}$. Let l be an integer in $[0,k]$ and $\beta \in [0,1)$ such that $l + \beta < k + \alpha$. A map $\mathbf{f} \in C^{l,\beta}_{loc}(\Gamma;\mathbb{R}^M)$ is *asymptotically homogeneous of degree d* if $f \circ \theta_{\mathbf{v};\Gamma'} \in C_{d,H}^{l,\beta}(\mathcal{C}_R(\Gamma);\mathbb{R}^M)$ where v is a homogeneous transverse section on $C(\Gamma)$ and $\Gamma', \theta_{\mathbf{v};\Gamma'}$ are introduced in the previous subsection. The *trace at infinity* of f is then

$$
\mathrm{tr}_{\infty}^d[\mathbf{f}] = \mathrm{tr}_{\infty}^d[\mathbf{f} \circ \theta_{\mathbf{v};\Gamma'}] \in C^{l,\beta}(\mathcal{L}(\Gamma); \mathbb{R}^M).
$$

Whether **f** is asymptotically homogeneous of degree d and the definition of tr^d_{∞} are independent of the choice of homogeneous transverse sections on $C(\Gamma)$. Clearly, $\mathbf{x}|_{\Gamma}$ is asymptotically homogeneous of degree 1 and $\text{tr}^1_{\infty}[\mathbf{x}|_{\Gamma}] = \mathbf{x}|_{\mathcal{L}(\Gamma)}$.

We next define the space

$$
C_{d,\mathrm{H}}^{l,\beta}(\Gamma;\mathbb{R}^M)=\left\{\mathbf{f}\in C_d^{l,\beta}(\Gamma;\mathbb{R}^M)\colon \mathbf{f} \text{ is asymptotically homogeneous of degree } d\right\}.
$$

One can check that $C_{d,H}^{l,\beta}(\Gamma;\mathbb{R}^M)$ is a closed subspace of $C_d^{l,\beta}(\Gamma;\mathbb{R}^M)$, and the map

$$
\operatorname{tr}_{\infty}^{d} : C_{d,\mathrm{H}}^{l,\beta}(\Gamma; \mathbb{R}^{M}) \to C^{l,\beta}(\mathcal{L}(\Gamma); \mathbb{R}^{M})
$$

is a bounded linear map. We further define the set $C_{d,0}^{l,\beta}(\Gamma;\mathbb{R}^M) \subset C_{d,H}^{l,\beta}(\Gamma;\mathbb{R}^M)$ to be the kernel of tr^d_{∞} .

2.6. Asymptotically conical embeddings. Fix an element $\Gamma \in \mathcal{ACH}_n^{k,\alpha}$. We define the space of $C^{k,\alpha}_*$ -asymptotically conical embeddings of Γ into \mathbb{R}^{n+1} to be

$$
\mathcal{ACH}_n^{k,\alpha}(\Gamma) = \left\{ \mathbf{f} \in C_1^{k,\alpha} \cap C_{1,H}^k(\Gamma;\mathbb{R}^{n+1}) : \mathbf{f} \text{ and } \mathscr{E}_1^H \circ \operatorname{tr}_{\infty}^1[\mathbf{f}] \text{ are embeddings} \right\}.
$$

Clearly, $ACH_n^{k,\alpha}(\Gamma)$ is an open set of the Banach space $C_1^{k,\alpha} \cap C_{1,H}^k(\Gamma;\mathbb{R}^{n+1})$ with the $\|\cdot\|_{k,\alpha}^{(1)}$ norm. The hypotheses on f , $\mathrm{tr}_{\infty}^1[f] \in C^{k,\alpha}(\mathcal{L}(\Gamma); \mathbb{R}^{n+1})$ ensure

$$
\mathcal{C}[\mathbf{f}] = \mathscr{E}_1^{\mathrm{H}} \circ \mathrm{tr}_{\infty}^1[\mathbf{f}]: \mathcal{C}(\Gamma) \to \mathbb{R}^{n+1} \setminus \{\mathbf{0}\}
$$

is a $C^{k,\alpha}$ embedding. As this map is homogeneous of degree one, it parameterizes the $C^{k,\alpha}$ -regular cone $C(f(\Gamma))$ – see [\[3,](#page-17-2) Proposition 3.3].

Finally, we introduce a natural equivalence relation on $\mathcal{ACH}_n^{k,\alpha}(\Gamma)$. First, say a $C^{k,\alpha}$ diffeomorphism $\phi \colon \Gamma \to \Gamma$ *fixes infinity* if $\mathbf{x}|_{\Gamma} \circ \phi \in \mathcal{ACH}_n^{k,\alpha}(\Gamma)$ and

$$
\mathrm{tr}^1_{\infty}[\mathbf{x}|_{\Gamma}\circ\phi]=\mathbf{x}|_{\mathcal{L}(\Gamma)}.
$$

Two elements $f, g \in \mathcal{ACH}_n^{k, \alpha}(\Gamma)$ are equivalent, written $f \sim g$, provided there is a $C^{k, \alpha}$ diffeomorphism $\phi \colon \Gamma \to \Gamma$ that fixes infinity so that $f \circ \phi = g$. Given $f \in \mathcal{ACH}_n^{k,\alpha}(\Gamma)$ let [f] be the equivalence class of f. Following [\[3\]](#page-17-2) we define the space

(2.1)
$$
\mathcal{ACE}_n^{k,\alpha}(\Gamma) = \left\{ [\mathbf{f}] : \mathbf{f} \in \mathcal{ACH}_n^{k,\alpha}(\Gamma) \text{ and } \mathbf{f}(\Gamma) \text{ satisfies (1.1)} \right\}.
$$

3. SMOOTH COMPACTNESS

In this section we prove Theorem [1.1.](#page-1-0) We first prove compactness in the asymptotic region and then treat the three special cases separately.

3.1. Asymptotic regularity of self-expanders. Fix a unit vector e, a point $x_0 \in \mathbb{R}^{n+1}$ and $r, h > 0$. Let

$$
C_{\mathbf{e}}(\mathbf{x}_0,r,h) = \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \colon |(\mathbf{x}-\mathbf{x}_0) \cdot \mathbf{e}| < h, |\mathbf{x}-\mathbf{x}_0|^2 < r^2 + |(\mathbf{x}-\mathbf{x}_0) \cdot \mathbf{e}|^2 \right\}
$$

be the solid open cylinder with axis e centered at x_0 and of radius r and height $2h$.

Definition 3.1. Suppose that $l \geq 0$ is an integer and $\beta \in [0, 1)$. A hypersurface $\Sigma \subset \mathbb{R}^{n+1}$ is a $C^{l,\beta}$ e-graph of size δ on scale r at x_0 if there is a function $f: B_r^n \subset P_e \to \mathbb{R}$ with

$$
\sum_{j=0}^l r^{-1+j} \|\nabla^j f\|_0 + r^{-1+l+\beta} [\nabla^l f]_{\beta} < \delta,
$$

where P_e is the *n*-dimensional subspace of \mathbb{R}^{n+1} normal to e and the last term on the left hand side will be dropped if $\beta = 0$, so that

$$
\Sigma \cap C_{\mathbf{e}}(\mathbf{x}_0, r, \delta r) = \{ \mathbf{x}_0 + \mathbf{x}(x) + f(x) \mathbf{e} : x \in B_r^n \}.
$$

Moreover, a hypersurface $\sigma \subset \mathbb{S}^n$ is a $C^{l,\beta}$ e-graph of size δ on scale r at \mathbf{x}_0 if $\mathcal{C}[\sigma]$ is so. We omit $C^{l,\beta}$ in the above definitions when the hypersurface is of $C^{l,\beta}$ class or when it is clear from context.

Let us summarize some elementary properties of this concept.

Proposition 3.2. *Let* $l > 2$ *be an integer and* $\beta \in [0, 1)$ *. The following is true:*

- *(1)* If Σ *is a* $C^{l,\beta}$ -hypersurface in \mathbb{R}^{n+1} , then for every $\delta > 0$ and $p \in \Sigma$, there is an $r = r(\Sigma, p, \delta) > 0$ *so that* Σ *is an* $\mathbf{n}_{\Sigma}(p)$ *-graph of size* δ *on scale* r *at* p *.*
- *(2)* If $\sigma \subset \mathbb{S}^n$ *is an* e-graph of size δ *on scale* r *at* \mathbf{x}_0 *and* $\rho > 0$ *, then* $\mathcal{C}[\sigma]$ *is an* e-graph of size δ *on scale or at* ρ **x**₀*.*

8 JACOB BERNSTEIN AND LU WANG

- (3) Given a $C^{l,\beta}$ -hypersurface $\sigma \subset \mathbb{S}^n$ and $\delta > 0$, there is an $r = r(\sigma, \delta) > 0$ so that σ *is an* $\mathbf{n}_{\mathcal{C}[\sigma]}(p)$ -graph of size δ *on scale* r *at every* $p \in \sigma$ *.*
- *(4)* Suppose $\sigma_i \subset \mathbb{S}^n$ converges in $C^{l,\beta}(\mathbb{S}^n)$ to σ . If $p_i \in \sigma_i \to p \in \sigma$ and σ is an $\mathbf{n}_{C[\sigma]}(p)$ -graph of size δ *on scale* $2r$ *at* p *, then there is an* i_0 *so that for* $i \geq i_0$ *,* σ_i *is an* $\mathbf{n}_{\mathcal{C}[\sigma_i]}(p_i)$ -graph of size 2δ on scale r at p_i .

The pseudo-locality property of mean curvature flow gives certain asymptotic regularity for self-expanders that are weakly asymptotic to a cone.

Proposition 3.3. *Let* $l \geq 2$ *be an integer and* $\beta \in [0,1)$ *. For each* $\delta > 0$ *and* $r > 0$ *there exist constants* $\mathcal{R}, M, \gamma, \eta > 0$, depending only n, l, β, δ and r, so that if Σ *is a self-expander in* R ⁿ+1 *with*

$$
\lim_{\rho \to 0^+} \mathcal{H}^n \lfloor (\rho \Sigma) = \mathcal{H}^n \lfloor \mathcal{C}[\sigma]
$$

for σ *a* $C^{l, \beta}$ -hypersurface in \mathbb{S}^n , and σ is an $\mathbf{n}_{\mathcal{C}[\sigma]}(p)$ -graph of size δ on scale r at every $p \in \sigma$ *, then*

 (1) Σ *is a* $C^{l,\beta}$ $\mathbf{n}_{\mathcal{C}[\sigma]}(p)$ *-graph of size* γ *on scale* $\eta|\mathbf{x}(p)|$ *at every* $p \in C[\sigma] \setminus \overline{B}_{\mathcal{R}}$ *.*

(2) There is a function $f : C(\Sigma) \setminus \overline{B}_R \to \mathbb{R}$ *satisfying*

$$
|f(p)| + |\nabla_{\mathcal{C}[\sigma]} f(p)| \le M |\mathbf{x}(p)|^{-1}
$$

and so

$$
\Sigma \setminus \bar{B}_{2\mathcal{R}} = \left\{ \mathbf{x}(p) + f(p)\mathbf{n}_{\mathcal{C}[\sigma]}(p) \colon p \in \mathcal{C}[\sigma] \setminus \bar{B}_{\mathcal{R}} \right\} \setminus \bar{B}_{2\mathcal{R}}.
$$

Proof. For simplicity, we set $\mathcal{C} = \mathcal{C}[\sigma]$. Consider the mean curvature flow (thought of as a space-time track)

$$
\mathcal{S} = \bigcup_{t>0} \left(\sqrt{t}\,\Sigma\right) \times \{t\}.
$$

Let $\bar{S} = S \cup (C \times \{0\})$ so, by our hypothesis, \bar{S} is an integer Brakke flow (cf. [\[16,](#page-18-8) §2] and [\[15,](#page-18-9) §6]). Denote by \bar{S}_t the time t slice of \bar{S} . For Item [\(1\)](#page-7-0), it is sufficient to prove that there are constants $\tau, \gamma, \eta > 0$, depending only on n, l, β, δ and r , so that for all $t \in [0, \tau]$, \bar{S}_t is a $C^{l,\beta}$ n_C(p)-graph of size γ on scale η at every $p \in \sigma$.

By the pseudo-locality property for mean curvature flow (cf. [\[18,](#page-18-10) Theorem 1.5 and Remarks 1.6]) there is an $\epsilon \in (0, 1)$, depending on n, δ and r , so that for every $t \in [0, 16\epsilon^2)$ and $p \in \sigma$, $\bar{S}_t \cap C_{\mathbf{n}_c(p)}(p, 4\epsilon, 4\epsilon)$ is the graph of a function $\psi_p(t, x)$ over $T_p \mathcal{C}$ with

$$
(4\epsilon)^{-1} \|\psi_p(t,\cdot)\|_0 + \|D_x \psi_p(t,\cdot)\|_0 \le 1.
$$

Moreover, as $\psi_p(t, x)$ satisfies

$$
\frac{\partial \psi_p}{\partial t} = \sqrt{1 + |D_x \psi_p|^2} \operatorname{div} \left(\frac{D_x \psi_p}{\sqrt{1 + |D_x \psi_p|^2}} \right),
$$

it follows from the Hölder estimate for quasi-parabolic equations (cf. [\[19,](#page-18-11) Theorem 1.1 of Chapter 6]) that for every $\alpha' \in (0,1)$,

$$
\sup_{t\in[0,4\epsilon^2]}[D_x\psi_p(t,\cdot)]_{\alpha';B^n_{2\epsilon}}+\sup_{x\in B^n_{2\epsilon}}[D_x\psi_p(\cdot,x)]_{\frac{\alpha'}{2};[0,4\epsilon^2]}\leq C(n,\alpha',\epsilon).
$$

Furthermore, we appeal to the estimates of fundamental solutions and the Schauder theory $(cf. [19, (13.1) and Theorem 5.1])$ $(cf. [19, (13.1) and Theorem 5.1])$ $(cf. [19, (13.1) and Theorem 5.1])$ to get that

(3.1)
$$
\sup_{t\in[0,\epsilon^2]} \|\psi_p(t,\cdot)\|_{l,\beta;B_{\epsilon}^n} \leq C'(n,l,\beta,\epsilon).
$$

Using the equation of ψ_p and the fact that $\psi_p(0, 0) = |D_x \psi_p(0, 0)| = 0$, it follows from [\(3.1\)](#page-7-1) that

(3.2)
$$
|\psi_p(t,x)| \leq \tilde{C} \left(|x|^2 + t \right) \text{ and } |D_x \psi_p(t,x)| \leq \tilde{C} \left(|x| + \sqrt{t} \right),
$$

where $\tilde{C} = \tilde{C}(n, C, C') > C'$. In particular, for $\rho \in (0, 1)$ and for every $t \in [0, \rho^2 \epsilon^2]$,

$$
(\rho\epsilon)^{-1} \|\psi_p(t,\cdot)\|_{0;B^n_{\rho\epsilon}} + \|D_x \psi_p(t,\cdot)\|_{0;B^n_{\rho\epsilon}} \leq 4\tilde{C}\rho\epsilon.
$$

This together with [\(3.1\)](#page-7-1) further gives

$$
\sum_{j=0}^l (\rho \epsilon)^{j-1} \| D_x^j \psi_p(t, \cdot) \|_{0; B^n_{\rho \epsilon}} + (\rho \epsilon)^{l+\beta-1} [D_x^l \psi_p(t, \cdot)]_{\beta; B^n_{\rho \epsilon}} \leq 5 \tilde{C} \rho \epsilon.
$$

Now we choose $\rho = (5\tilde{C}\epsilon)^{-1/2}$ so $5\tilde{C}\rho\epsilon < 4\rho^{-1}$. Hence, for each $t \in [0, \rho^2\epsilon^2]$, \bar{S}_t is a $C^{l,\beta}$ n_C(p)-graph of size $4\rho^{-1}$ on scale $\rho \in \alpha$ at every $p \in \sigma$. The claim follows immediately with $\tau = \rho^2 \epsilon^2$, $\gamma = 4\rho^{-1}$ and $\eta = \rho \epsilon$.

As \overline{S} is a mean curvature flow away from $(0, 0)$, by comparing with shrinking spheres, one observes that

$$
\Sigma \setminus \bar{B}_{2R} \subset \bigcup_{p \in \mathcal{C} \setminus \bar{B}_R} C_{\mathbf{n}_{\mathcal{C}}(p)}(p, \eta | \mathbf{x}(p)|, \gamma \eta | \mathbf{x}(p)|)
$$

for some $R > \tau^{-1/2}$ depending on n, l, β, δ and r. Thus, invoking estimate [\(3.2\)](#page-8-1) gives that for every $q \in \Sigma \setminus \overline{B}_{2R}$,

$$
|\mathbf{x}(q) - \mathbf{x}(\pi(q))| + |\mathbf{n}_{\Sigma}(q) - \mathbf{n}_{\mathcal{C}}(\pi(q))| \leq \hat{C}(n, \tilde{C}) |\mathbf{x}(q)|^{-1}.
$$

Here π is the nearest point projection from $\Sigma \setminus \bar{B}_{2R}$ onto \mathcal{C} . Hence, Item [\(2\)](#page-7-2) follows easily from this estimate and the implicit function theorem.

Corollary 3.4. If $\Sigma_i \in \mathcal{ACH}_n^{k,\alpha}$ are self-expanders and there is a $C^{k,\alpha}$ -hypersurface in \mathbb{S}^n , σ , so $\mathcal{L}(\Sigma_i) \to \sigma$ in $C^2(\mathbb{S}^n)$, then there is an $\mathcal{R}' = \mathcal{R}'(n, k, \alpha, \sigma) > 0$ and a $C^{k, \alpha}_*$. *asymptotically conical self-expanding end* Σ *in* $\mathbb{R}^{n+1} \setminus \overline{B}_{\mathcal{R}'}$ *with* $\mathcal{L}(\Sigma) = \sigma$ *so that, up to passing to a subsequence,*

$$
\Sigma_i \to \Sigma \text{ in } C_{loc}^{\infty}(\mathbb{R}^{n+1} \setminus \bar{B}_{\mathcal{R}'}).
$$

Proof. By Items [\(3\)](#page-7-3) and [\(4\)](#page-7-4) of Proposition [3.2,](#page-6-1) there are $\delta, r > 0$ and i_0 so that for $i \ge i_0$ each $\mathcal{L}(\Sigma_i)$ is an $\mathbf{n}_{\mathcal{C}[\sigma]}(p)$ -graph of size δ on scale r for all $p \in \mathcal{L}(\Sigma_i)$. In particular, we may apply Item [\(2\)](#page-7-2) of Proposition [3.3](#page-7-5) using these constants to obtain an R so that one has uniform graphical estimates for the Σ_i in $\mathbb{R}^{n+1} \setminus \overline{B}_{\mathcal{R}}$. It then follows from the Arzelà-Ascoli theorem and standard elliptic estimates (see [\[11,](#page-17-7) Theorems 6.17 and 8.24]) that there is a self-expanding end, Σ , in $\mathbb{R}^{n+1} \setminus \overline{B}_{\mathcal{R}}$ so that up to passing to a subsequence $\Sigma_i \to \Sigma$ in $C^{\infty}_{loc}(\mathbb{R}^{n+1} \setminus \overline{B}_\mathcal{R})$. In fact, by Item [\(2\)](#page-7-2) of Proposition [3.3](#page-7-5) applied to the Σ_i together with the Arzelà-Ascoli theorem, Σ is $C^{0,1}_*$ -asymptotic to $\mathcal{C}[\sigma]$. Combining this fact with Item [\(1\)](#page-7-0) of Proposition [3.3](#page-7-5) applied to Σ gives that Σ is actually $C^{k,\alpha}_*$ -asymptotic to $\mathcal{C}[\sigma]$ which completes the proof.

3.2. Entropy and smooth compactness of $\mathcal{E}_{n,\text{ent}}^{k,\alpha}(\Lambda_0)$. We recall the notion of entropy introduced by Colding and Minicozzi [\[6\]](#page-17-8) and use it to prove Item [\(3\)](#page-1-1) of Theorem [1.1](#page-1-0) as well as introduce several auxiliary results needed in other parts of the article.

First of all, for a hypersurface $\Sigma \subset \mathbb{R}^{n+1}$ the *Gaussian surface area* of Σ is

$$
F[\Sigma] = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} e^{-\frac{|\mathbf{x}|^2}{4}} d\mathcal{H}^n.
$$

Colding and Minicozzi [\[6\]](#page-17-8) introduced the following notion of *entropy of a hypersurface*:

$$
\lambda[\Sigma] = \sup_{\rho > 0, \mathbf{y} \in \mathbb{R}^{n+1}} F[\rho \Sigma + \mathbf{y}].
$$

By identifying Σ with $\mathcal{H}^n|\Sigma$, one extends F and λ in an obvious manner to Radon measures on \mathbb{R}^{n+1} . We first record a number of simple observations about the entropy of asymptotically conical self-expanders.

Lemma 3.5. *If* $\Sigma \in \mathcal{ACH}_n^{k,\alpha}$ is a self-expander, then

 $\lambda[\Sigma] = \lambda[\mathcal{C}(\Sigma)].$

Proof. On the one hand, for $\Sigma \in \mathcal{ACH}_n^{k,\alpha}$,

$$
\lim_{\rho \to 0^+} \rho \Sigma = \mathcal{C}(\Sigma) \text{ in } C^k_{loc}(\mathbb{R}^{n+1} \setminus \{0\}).
$$

In particular,

$$
\lim_{\rho \to 0^+} \mathcal{H}^n \lfloor (\rho \Sigma) = \mathcal{H}^n \lfloor \mathcal{C}(\Sigma).
$$

By the lower semicontinuity and scaling invariance of entropy

$$
\lambda[\Sigma] \geq \lambda[\mathcal{C}(\Sigma)].
$$

On the other hand, we define $\mathcal{M} = {\mu_t}_{t \geq 0}$ to be a family of Radon measures on \mathbb{R}^{n+1} given by

$$
\mu_t = \begin{cases} \mathcal{H}^n \lfloor (\sqrt{t} \, \Sigma) & \text{if } t > 0 \\ \mathcal{H}^n \lfloor \mathcal{C}(\Sigma) & \text{if } t = 0, \end{cases}
$$

so M is an integer Brakke flow (see [\[16,](#page-18-8) $\S2$] and [\[15,](#page-18-9) $\S6$]). Thus, the Huisken monotonicity formula [\[14\]](#page-18-12) (see also [\[16,](#page-18-8) Lemma 7]) implies

$$
\lambda[\Sigma] \leq \lambda[\mathcal{C}(\Sigma)],
$$

which finishes the proof. \Box

Lemma 3.6. *There is a constant* $\tilde{M} = \tilde{M}(n)$ *so that if* $\Sigma \in \mathcal{ACH}_n^{k,\alpha}$ *is a self-expander, then, for any* $R > 0$ *,*

$$
\mathcal{H}^n(\Sigma \cap B_R) \leq \tilde{M} \lambda [\mathcal{C}(\Sigma)] R^n.
$$

Proof. One computes,

$$
R^{-n}\mathcal{H}^{n}(\Sigma \cap B_{R}) = \mathcal{H}^{n}\left((R^{-1}\Sigma) \cap B_{1}\right) \leq \tilde{M}(n)F[R^{-1}\Sigma] \leq \tilde{M}(n)\lambda[\Sigma]
$$

and so the claim follows from Lemma [3.5.](#page-9-0)

Lemma 3.7. *Fix any* $\epsilon > 0$. *If* $C \subset \mathbb{R}^{n+1}$ *is a* C^2 -regular cone and $\mathcal{L}[\mathcal{C}]$ *is an* $\mathbf{n}_\mathcal{C}(p)$ -graph *of size* δ *on scale* r *at every* $p \in \mathcal{L}[\mathcal{C}]$ *, then there is an* $\tilde{\mathcal{R}} = \tilde{\mathcal{R}}(n, \epsilon, \delta, r)$ *so that either* $\lambda[\mathcal{C}] \leq 1 + \epsilon \text{ or } \lambda[\mathcal{C}] = F[\mathcal{C} + \mathbf{x}_0] \text{ for some } \mathbf{x}_0 \in \bar{B}_{\tilde{\mathcal{R}}}$.

Proof. First observe, that as C is invariant by homotheties one has

$$
\lambda[\mathcal{C}] = \sup_{\mathbf{x} \in \mathbb{R}^{n+1}} F[\mathcal{C} + \mathbf{x}].
$$

Next observe that an elementary covering argument gives an $A = A(n, \delta, r)$ so that

$$
\mathcal{H}^{n-1}(\mathcal{L}[\mathcal{C}]) \leq A.
$$

Hence, there is an $A' = A'(n, \delta, r) > 0$ so for all $R > 0$ and $\mathbf{x} \in \mathbb{R}^{n+1}$,

$$
\mathcal{H}^n(\mathcal{C} \cap B_R(\mathbf{x})) \leq A'R^n.
$$

$$
\overline{}
$$

A consequence of this is that there is an $\tilde{\mathcal{R}} = \tilde{\mathcal{R}}(n, \epsilon, \delta, r)$ so that for all $\mathbf{x} \notin \bar{B}_{\tilde{\mathcal{R}}}$,

 $F[\mathcal{C} + \mathbf{x}] \leq 1 + \epsilon.$

The claim follows from this. \Box

Lemma 3.8. Let σ_i and σ be C^2 -hypersurfaces in \mathbb{S}^n . If $\sigma_i \to \sigma$ in $C^2(\mathbb{S}^n)$, then

 $\lambda[\mathcal{C}[\sigma_i]] \rightarrow \lambda[\mathcal{C}[\sigma]].$

Proof. As $\sigma_i \to \sigma$ in $C^2(\mathbb{S}^n)$,

$$
\mathcal{H}^n \lfloor \mathcal{C}[\sigma_i] \to \mathcal{H}^n \lfloor \mathcal{C}[\sigma].
$$

By the lower semicontinuity of entropy

$$
\liminf_{i \to \infty} \lambda[\mathcal{C}[\sigma_i]] \geq \lambda[\mathcal{C}[\sigma]].
$$

By Lemma [3.7,](#page-9-1) given $\epsilon > 0$ there is an $R = R(n, \epsilon, \sigma) > 0$ so that for i sufficiently large, either $\lambda[\mathcal{C}[\sigma_i]] \leq 1 + \epsilon$ or $\lambda[\mathcal{C}[\sigma_i]] = F[\mathcal{C}[\sigma_i] + \mathbf{x}_i]$ for some $\mathbf{x}_i \in \bar{B}_R$. Observe, that there is an $A = A(n, \sigma)$ so that for i sufficiently large and for every $r > 0$ and $\mathbf{x} \in \mathbb{R}^{n+1}$,

$$
\mathcal{H}^n(\mathcal{C}[\sigma_i] \cap B_r(\mathbf{x})) \leq Ar^n
$$

.

Hence, we get

$$
\limsup_{i\to\infty}\lambda[\mathcal{C}[\sigma_i]] \leq \max\left\{1+\epsilon,\lambda[\mathcal{C}[\sigma]]\right\}.
$$

Passing ϵ to 0, as $\lambda[\mathcal{C}[\sigma]] \geq 1$, it follows that

$$
\limsup_{i \to \infty} \lambda[\mathcal{C}[\sigma_i]] \leq \lambda[\mathcal{C}[\sigma]],
$$

completing the proof. \Box

We are now ready to prove that $\mathcal{E}_{n,ent}^{k,\alpha}(\Lambda_0)$ is compact. In order to do so we introduce a necessary hypothesis about the entropy of minimal cones. Let \mathcal{RMC}_n denote the space of *regular minimal cones* in \mathbb{R}^{n+1} , that is $C \in \mathcal{RMC}_n$ if and only if it is a proper subset of \mathbb{R}^{n+1} and $C \setminus \{0\}$ is a hypersurface in $\mathbb{R}^{n+1} \setminus \{0\}$ that is invariant under dilation about 0 and with vanishing mean curvature. Let \mathcal{RMC}_n^* denote the set of non-flat elements of \mathcal{RMC}_n – i.e., cones with non-zero curvature somewhere. For any $\Lambda > 0$, let

$$
\mathcal{RMC}_n(\Lambda) = \{ \mathcal{C} \in \mathcal{RMC}_n \colon \lambda[\mathcal{C}] < \Lambda \} \text{ and } \mathcal{RMC}_n^*(\Lambda) = \mathcal{RMC}_n^* \cap \mathcal{RMC}_n(\Lambda).
$$

Now fix a dimension $n \geq 2$ and a value $\Lambda > 1$. Consider the following hypothesis:

$$
(\star_{n,\Lambda}) \qquad \qquad \text{For all } 2 \leq l \leq n, \, \mathcal{RMC}_l^*(\Lambda) = \emptyset.
$$

Observe that all regular minimal cones in \mathbb{R}^2 consist of unions of rays and so $\mathcal{RMC}_1^* =$ \emptyset . Likewise, as great circles are the only geodesics in \mathbb{S}^2 , $\mathcal{RMC}_2^* = \emptyset$ and so $(\star_{2,\Lambda})$ always holds. As a consequence of Allard's regularity theorem and a dimension reduction argument, there is always some $\Lambda_n > 1$ so that (\star_{n,Λ_n}) holds.

Proof of Item [\(3\)](#page-1-1) *of Theorem [1.1.](#page-1-0)* First, by Corollary [3.4,](#page-8-2) there is an R > 0 so that, up to passing to a subsequence, $\Sigma_i \setminus \bar{B}_R$ converges in $C^{\infty}_{loc}(\mathbb{R}^{n+1} \setminus \bar{B}_R)$ to some hypersurface Σ' in $\mathbb{R}^{n+1} \setminus \bar{B}_R$. Moreover, Σ' is a $C^{k,\alpha}_*$ -asymptotically conical self-expander in $\mathbb{R}^{n+1} \setminus \bar{B}_R$ and $\mathcal{L}(\Sigma') = \sigma$.

As $\lambda[\Sigma_i] \leq \Lambda_0 < \Lambda$, Lemma [3.6](#page-9-2) and the standard compactness results, imply that, up to passing to a further subsequence, $\Sigma_i \cap B_{2R}$ converges in the sense of measures to some integral varifold, V, in B_{2R} . As such, there is an integral varifold, Σ , in \mathbb{R}^{n+1} that agrees with V in B_{2R} and Σ' outside \bar{B}_R . In particular, Σ is smooth and properly embedded in $\mathbb{R}^{n+1} \setminus \overline{B}_R$. The lower semicontinuity of entropy gives $\lambda[\Sigma] \leq \Lambda_0 < \Lambda$, and so it follows

from $(\star_{n,\Lambda})$ $(\star_{n,\Lambda})$ $(\star_{n,\Lambda})$, a dimension reduction theorem [\[29,](#page-18-13) Theorem 4] and Allard's regularity theo-rem (e.g., [\[21,](#page-18-14) Theorem 24.2]) that Σ is actually smooth and properly embedded in \mathbb{R}^{n+1} . That is, $\Sigma \in \mathcal{E}_{n,ent}^{k,\alpha}(\Lambda_0)$. Finally, a further consequence of Allard's regularity theorem [\[30\]](#page-18-15) is that $\Sigma_i \to \Sigma$ in $C_{loc}^{\infty}(\mathbb{R}^{n+1})$, finishing the proof.

3.3. Smooth compactness of $\mathcal{E}_{\text{top}}^{k,\alpha}(g,e)$. Combining the asymptotic compactness property, the area estimates from Lemma [3.6](#page-9-2) and a result of White [\[25,](#page-18-16) Theorem 3 (4)] we can easily prove Item [\(1\)](#page-1-2) of Theorem [1.1.](#page-1-0)

Proof of Item [\(1\)](#page-1-2) *of Theorem [1.1.](#page-1-0)* By Corollary [3.4](#page-8-2) there is an $R > 0$ so that, up to passing to a subsequence,

$$
\Sigma_i \setminus \bar{B}_R \to \Sigma' \text{ in } C_{loc}^{\infty}(\mathbb{R}^3 \setminus \bar{B}_R),
$$

where Σ' is a $C^{k,\alpha}_*$ -asymptotically conical self-expander in $\mathbb{R}^3 \setminus \bar{B}_R$, Σ' consists of e annuli and $\mathcal{L}(\Sigma') = \sigma$. In particular, for $r > R$ sufficiently large, ∂B_r meets Σ transversally and also meets each Σ_i transversally. As such, $\Sigma_i \cap B_r$ has genus g and $\Sigma_i \cap \partial B_r$ has e components. Thus, it follows that there is a constant $C = C(g, e)$ so

$$
\int_{\partial B_r \cap \Sigma_i} \kappa < C
$$

where κ denotes the geodesic curvature of the boundary curve. Moreover, by Lemma [3.8,](#page-10-1) for *i* sufficiently large, λ [$\mathcal{C}(\Sigma_i)$] $\leq \lambda$ [$\mathcal{C}[\sigma]$] + 1 and so, by Lemma [3.6,](#page-9-2) there is a C' so

$$
\mathcal{H}^2(\Sigma_i \cap B_r) \le C'
$$

.

Hence, it follows from [\[25,](#page-18-16) Theorem 3 (4)] that, up to passing to a further subsequence,

$$
\Sigma_i \cap B_r \to \Sigma'' \text{ in } C_{loc}^{\infty}(B_r)
$$

where Σ'' is a self-expander in B_r and the convergence is with multiplicity one. It is clear that $\Sigma' = \Sigma''$ in $B_r \setminus \overline{B}_R$. Therefore the result follows with $\Sigma = \Sigma' \cup \Sigma''$.
. — П

3.4. **Smooth compactness of** $\mathcal{E}_{n,\text{mc}}^{k,\alpha}(h_0)$. We combine Lemma [3.6](#page-9-2) with a curvature estimate for mean convex self-expanders in order to prove Item [\(2\)](#page-1-3) of Theorem [1.1.](#page-1-0)

First we show a curvature estimate for strictly mean convex asympotitically conical self-expanders with strictly mean convex link. Our argument uses the maximum principle and is completely analogous to the one used in [\[6\]](#page-17-8) for mean convex self-shrinkers.

Lemma 3.9. *Let* $\Sigma \subset \mathbb{R}^{n+1}$ *, be an asymptotically conical self-expander. If* Σ *is strictly mean convex and whose asymptotic cone,* $C(\Sigma)$ *is* C^2 -regular and strictly mean convex, *then, for* $p \in \Sigma$ *,*

$$
|A_{\Sigma}(p)|^2 \le K|\mathbf{x}(p)|^2
$$

where

$$
K = \frac{1}{4} \sup_{\mathcal{C}(\Sigma)} \frac{|A_{\mathcal{C}(\Sigma)}|^2}{H_{\mathcal{C}(\Sigma)}^2} = \frac{1}{4} \sup_{\mathcal{L}(\Sigma)} \frac{|A_{\mathcal{L}(\Sigma)}|^2}{H_{\mathcal{L}(\Sigma)}^2} < \infty.
$$

Proof. By definition of asymptotic cones and scaling invariance

$$
\lim_{R \to \infty} \sup_{\partial B_R \cap \Sigma} \frac{|A_{\Sigma}|^2}{H_{\Sigma}^2} = 4K.
$$

Hence, for every $\epsilon > 0$, there is an R_{ϵ} so if $R > R_{\epsilon}$, then

$$
\sup_{\partial B_R \cap \Sigma} \frac{|A_{\Sigma}|^2}{H_{\Sigma}^2} \le 4K + \epsilon.
$$

Computing as in [\[6\]](#page-17-8) one has

$$
L_{\Sigma}H_{\Sigma} = \left(\Delta_{\Sigma} + \frac{\mathbf{x}}{2} \cdot \nabla_{\Sigma} + |A_{\Sigma}|^2 - \frac{1}{2}\right)H_{\Sigma} = -H_{\Sigma}
$$

which follows from a variant on Simons' identity, for the rough drift Laplacian,

$$
(L_{\Sigma}A_{\Sigma})_{ij} = -(A_{\Sigma})_{ij}.
$$

For details see the computations in $(10.10)-(10.12)$ and $(5.7)-(5.8)$ of [\[6\]](#page-17-8). These are carried out for self-shrinkers, however the formulas for self-expanders follow with a simple sign change.

Now consider the new operator

$$
\mathcal{L}_{H_{\Sigma}^2} = \Delta_{\Sigma} + \frac{\mathbf{x}}{2} \cdot \nabla_{\Sigma} + 2(\nabla_{\Sigma} \log H_{\Sigma}) \cdot \nabla_{\Sigma}
$$

We compute that

$$
\left(\mathscr{L}_{H_{\Sigma}^2}\frac{A_{\Sigma}}{H_{\Sigma}}\right)_{ij}=0
$$

and so

$$
\mathcal{L}_{H_{\Sigma}^{2}}\frac{|A_{\Sigma}|^{2}}{H_{\Sigma}^{2}}=2\left|\nabla_{\Sigma}\frac{A_{\Sigma}}{H_{\Sigma}}\right|^{2}\geq0.
$$

Hence, by the maximum principle, for any $R > R_{\epsilon}$,

$$
\sup_{B_R \cap \Sigma} \frac{|A_{\Sigma}|^2}{H_{\Sigma}^2} \le 4K + \epsilon.
$$

Hence, letting $\epsilon \to 0$, gives

$$
\sup_{\Sigma} \frac{|A_{\Sigma}|^2}{H_{\Sigma}^2} \le 4K.
$$

That is, for any $p \in \Sigma$,

$$
|A_{\Sigma}(p)|^2 \le 4KH_{\Sigma}^2(p) \le K(\mathbf{x}(p) \cdot \mathbf{n}_{\Sigma}(p))^2 \le K|\mathbf{x}(p)|^2
$$

.

This proves the claim. \Box

We are now ready to complete the proof of Theorem [1.1.](#page-1-0)

Proof of Item [\(2\)](#page-1-3) *of Theorem [1.1.](#page-1-0)* By Corollary [3.4](#page-8-2) there is an R > 0 so that, up to passing to a subsequence,

$$
\Sigma_i \setminus \bar{B}_R \to \Sigma' \text{ in } C_{loc}^{\infty}(\mathbb{R}^{n+1} \setminus \bar{B}_R),
$$

where Σ' is a $C^{k,\alpha}_*$ -asymptotically conical self-expander in $\mathbb{R}^{n+1} \setminus \bar{B}_R$ and $\mathcal{L}(\Sigma') = \sigma$. The nature of the convergence, ensures that $H_{\sigma} \geq h_0$. Moreover, by Lemma [3.8,](#page-10-1) for i sufficiently large, λ [$\mathcal{C}(\Sigma_i)$] $\leq \lambda$ [$\mathcal{C}[\sigma]$] + 1. Thus, by Lemma [3.6,](#page-9-2) there is a uniform C' so

$$
\mathcal{H}^n(\Sigma_i \cap B_r) \leq C'.
$$

As σ is strictly mean convex, for i sufficiently large each $\mathcal{L}(\Sigma_i)$ is strictly mean convex. Indeed, setting

$$
K = \sup_{\sigma} \frac{|A_{\sigma}|^2}{H_{\sigma}^2} \in (0, \infty)
$$

one has, after possibly throwing out a finite sequence of the Σ_i , that

$$
\sup_{\mathcal{L}(\Sigma_i)} \frac{|A_{\mathcal{L}(\Sigma_i)}|^2}{H_{\mathcal{L}(\Sigma_i)}^2} \le 4K.
$$

Hence, by Lemma [3.9,](#page-11-0)

$$
|A_{\Sigma_i}(p)|^2 \le K|\mathbf{x}(p)|^2.
$$

That is,

$$
\sup_{\Sigma_i \cap B_{2R}} |A_{\Sigma_i}|^2 \le 4KR^2.
$$

Combining this with the area bound and the Arzelà-Ascoli theorem, gives that, up to passing to a subsequence, the Σ_i converge, possibly with multiplicities, in $C_{loc}^{\infty}(B_{2R})$ to a limit Σ'' . As Σ'' is a smooth solution to [\(1.1\)](#page-0-0) and there are no closed self-expanders, each component of Σ'' meets Σ' . In particular, as the Σ_i converge with multiplicity one to Σ' in $B_{2R} \setminus \overline{B}_R$, the Σ_i converge to Σ'' with multiplicity one in B_{2R} . Hence, setting $\Sigma = \Sigma' \cup \Sigma''$ one obtains a smooth asymptotically conical self-expander with $\Sigma_i \to \Sigma$ in $C_{loc}^{\infty}(\mathbb{R}^{n+1})$. As each Σ_i has positive mean curvature, Σ has non-negative mean curvature. However, as $\sigma = \mathcal{L}(\Sigma)$ has $H_{\mathcal{L}(\Sigma)} \ge h_0 > 0$ and $L_{\Sigma}H_{\Sigma} = -H_{\Sigma} \le 0$, the strong maximum principle implies Σ has positive mean curvature completing the proof implies Σ has positive mean curvature completing the proof.

4. PROPERNESS OF MAP Π

Before proving Theorems [1.2,](#page-1-4) [1.3](#page-2-2) and [1.4](#page-2-0) we need the following auxiliary proposition that relates sequential compactness in $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$ to locally smooth compactness in \mathbb{R}^{n+1} .

Proposition 4.1. *For* $\Gamma \in \mathcal{ACH}_n^{k,\alpha}$, if $\varphi \in \mathcal{V}_{\text{emb}}^{k,\alpha}(\Gamma)$, and $[\mathbf{f}_i] \in \mathcal{ACE}_n^{k,\alpha}(\Gamma)$ satisfy: (1) $\text{tr}^1_{\infty}[\mathbf{f}_i] = \varphi_i \to \varphi \text{ in } C^{k,\alpha}(\mathcal{L}(\Gamma); \mathbb{R}^{n+1});$

(2) $f_i(\Gamma) = \Sigma_i \rightarrow \Sigma$ *in* $C^{\infty}_{loc}(\mathbb{R}^{n+1})$ *for some hypersurface* Σ *,*

then $\Sigma \in \mathcal{ACH}_n^{k,\alpha}$ and is a self-expander. Moreover, there is a parameterization $f: \Gamma \to$ $\Sigma \subset \mathbb{R}^{n+1}$ *so that*

\n- (1)
$$
[f] \in \mathcal{ACE}_n^{k,\alpha}(\Gamma);
$$
\n- (2) $\text{tr}^1_{\infty}[f] = \varphi$; and;
\n- (3) $[f_i] \to [f]$ in the topology of $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$.
\n

Proof. First observe that as each Σ_i satisfies [\(1.1\)](#page-0-0), the nature of the convergence ensures that Σ does as well. Let

$$
\mathcal{C}_i = \mathscr{E}_1^{\mathrm{H}}[\varphi_i](\mathcal{C}(\Gamma)) = \mathcal{C}(\Sigma_i) \text{ and } \mathcal{C} = \mathscr{E}_1^{\mathrm{H}}[\varphi](\mathcal{C}(\Gamma)).
$$

Then C_i and C are $C^{k,\alpha}$ -regular cones. By our hypothesis [\(1\)](#page-13-0),

$$
\mathcal{C}_i \to \mathcal{C} \text{ in } C_{loc}^{k,\alpha}(\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}),
$$

which further implies

$$
\mathcal{L}(\Sigma_i) \to \mathcal{L}[\mathcal{C}] \text{ in } C^{k,\alpha}(\mathbb{S}^n).
$$

Thus, by Corollary [3.4](#page-8-2) and our hypothesis [\(2\)](#page-13-1), we have $\Sigma \in \mathcal{ACH}_n^{k,\alpha}$ with $\mathcal{C}(\Sigma) = \mathcal{C}$.

As $\varphi \in \mathcal{V}_{\text{emb}}^{k,\alpha}(\Gamma)$, the hypothesis [\(1\)](#page-13-0) ensures that

$$
\mathscr{E}_1^{\mathrm{H}}[\varphi_i] \circ \mathscr{E}_1^{\mathrm{H}}[\varphi]^{-1} \to \mathbf{x}|_{\mathcal{C}} \text{ in } C_{loc}^{k,\alpha}(\mathcal{C}; \mathbb{R}^{n+1}).
$$

Observe, that $\mathscr{E}_1^H[\varphi] \circ \mathscr{E}_1^H[\varphi]^{-1}$ are homogeneous of degree one, so we denote their traces at infinity by $\tilde{\varphi}_i$. Thus, letting $\mathcal L$ be the link of $\mathcal C$,

$$
\tilde{\varphi}_i \to \mathbf{x}|_{\mathcal{L}} \text{ in } C^{k,\alpha}(\mathcal{L}; \mathbb{R}^{n+1}).
$$

Let $\mathbf{h}_i \in C_1^{k,\alpha} \cap C_{1,\mathrm{H}}^k(\Sigma; \mathbb{R}^{n+1})$ be chosen so that

$$
\mathscr{L}_{\Sigma}\mathbf{h}_{i} = \Delta_{\Sigma}\mathbf{h}_{i} + \frac{1}{2}\mathbf{x}\cdot\nabla_{\Sigma}\mathbf{h}_{i} - \frac{1}{2}\mathbf{h}_{i} = \mathbf{0} \text{ and } \mathrm{tr}_{\infty}^{1}[\mathbf{h}_{i}] = \tilde{\varphi}_{i} - \mathbf{x}|_{\mathcal{L}}.
$$

By [\[3,](#page-17-2) Corollary 5.8] there is a unique such h_i and it satisfies the estimate

$$
\|\mathbf{h}_i\|_{k,\alpha}^{(1)} \le C' \|\tilde{\varphi}_i - \mathbf{x}|_{\mathcal{L}}\|_{k,\alpha}
$$

for some constant $C' = C'(\Sigma, n, k, \alpha)$. We let

$$
\mathbf{g}_i = \mathbf{x}|_{\Sigma} + \mathbf{h}_i
$$
 and $\Upsilon_i = \mathbf{g}_i(\Sigma)$.

It is clear that for i sufficiently large, $g_i \in \mathcal{ACH}_n^{k,\alpha}(\Sigma)$ and $\mathrm{tr}^1_{\infty}[\mathbf{g}_i] = \tilde{\varphi}_i$. Thus, by [\[3,](#page-17-2) Proposition 3.3], $\Upsilon_i \in \mathcal{ACH}_n^{k,\alpha}$ and $\mathcal{C}(\Upsilon_i) = \mathcal{C}_i$.

Now pick a transverse section v on Σ that, outside a compact set, equals $\mathscr{E}_{w}[w] =$ $\mathbf{w} \circ \pi_{\mathbf{w}}|_{\Sigma}$ for w a chosen homogeneous transverse section on C. For *i* sufficiently large, $v_i = v \circ g_i^{-1}$ is an asymptotically homogeneous, transverse section on Υ_i . By Proposition [3.3,](#page-7-5) for *i* large, Σ_i lies in a v_i -regular neighborhood of Υ_i and is transverse to $\mathscr{E}_{v_i}[v_i] =$ $\mathbf{v}_i \circ \pi_{\mathbf{v}_i}$. In particular, $\pi_{\mathbf{v}_i} |_{\Sigma_i} : \Sigma_i \to \Upsilon_i$ is an element of $\mathcal{ACH}_n^{k,\alpha}(\Sigma_i)$. Thus, for i large, there is a unique $u_i \in C_1^{k,\alpha} \cap C_{1,0}^k(\Sigma)$ so that Σ_i can be parametrized by the map

$$
\tilde{\mathbf{f}}_i = (\pi_{\mathbf{v}_i}|_{\Sigma_i})^{-1} \circ \mathbf{g}_i = \mathbf{g}_i + u_i \mathbf{v}
$$

which is an element of $\mathcal{ACH}_n^{k,\alpha}(\Sigma)$ by [\[3,](#page-17-2) Proposition 3.3]. Moreover, $||u_i||_{k,\alpha}^{(1)}$ is uniformly bounded and $||u_i||_1^{(1)} \rightarrow 0$.

Observe, that there is a $\delta > 0$ (independent of i) so that for i sufficiently large

$$
\inf_{p\in\Sigma} |\mathbf{v}\cdot(\mathbf{n}_{\Sigma_i}\circ\tilde{\mathbf{f}}_i)| > \delta.
$$

As Σ_i is a self-expander, it follows from [\[3,](#page-17-2) Lemma 7.2] and direct calculations that

$$
\mathscr{L}_{\Sigma} u_i = -\frac{\mathbf{n}_{\Sigma_i} \circ \tilde{\mathbf{f}}_i}{\mathbf{v} \cdot (\mathbf{n}_{\Sigma_i} \circ \tilde{\mathbf{f}}_i)} \cdot \left(2 \nabla_{\Sigma} u_i \cdot \nabla_{\Sigma} \mathbf{v} + u_i \left(\mathscr{L}_{\Sigma} + \frac{1}{2}\right) \mathbf{v} + (g_{\tilde{\mathbf{f}}_i}^{-1} - g_{\Sigma}^{-1})^{jl} (\nabla_{\Sigma}^2 \tilde{\mathbf{f}}_i)_{jl}\right)
$$

where $g_{\tilde{f}_i}$ and g_{Σ} are the pull-back metrics of Euclidean one by \tilde{f}_i and $x|_{\Sigma}$, respectively. One further uses [\[3,](#page-17-2) Proposition 3.1] to see that, for i large, the right hand side are elements of $C_{-1}^{k-2,\alpha}(\Sigma)$ with uniformly bounded $\|\cdot\|_{k-2,\alpha}^{(-1)}$ norm. Hence, by [\[3,](#page-17-2) Theorem 5.7 and Corollary 5.8], $u_i \in \mathcal{D}^{k,\alpha}(\Sigma)$ and $||u_i||^*_{k,\alpha}$ is uniformly bounded. Here

$$
\mathcal{D}^{k,\alpha}(\Sigma) = \left\{ u \in C_1^{k,\alpha} \cap C_0^{k-1,\alpha} \cap C_{-1}^{k-2,\alpha}(\Sigma) : \mathbf{x} \cdot \nabla_{\Sigma} u \in C_{-1}^{k-2,\alpha}(\Sigma) \right\}
$$

is a Banach space with norm

$$
||u||_{k,\alpha}^* = ||u||_{k-2,\alpha}^{(-1)} + \sum_{k-1 \leq i \leq k} ||\nabla_{\Sigma}^i u||_{\alpha}^{(1-k)} + ||\mathbf{x} \cdot \nabla_{\Sigma} u||_{k-2,\alpha}^{(-1)}.
$$

As $\mathcal{D}^{k,\alpha}(\Sigma)$ is compactly embedded in $C_1^{k-1,\alpha}(\Sigma)$, we have $||u_i||_{k-1,\alpha}^{(1)} \to 0$. Thus it follows from [\[3,](#page-17-2) Lemma 7.5] that $\|u_i\|_{k,\alpha}^*\to 0$ and so $\|\tilde{\mathbf{f}}_i-\mathbf{x}|_{\Sigma}\|_{k,\alpha}^{(1)}\to 0$.

We pick a large integer I so that \tilde{f}_I is well-defined as above. Choose a representative f_I of $[f_I]$. We define $\mathbf{f} = \tilde{f}_I^{-1} \circ f_I$, and it is clear that $\mathbf{f}(\Gamma) = \Sigma$. Moreover, by [\[3,](#page-17-2) Proposition 3.3], $f \in \mathcal{ACH}^{k,\alpha}(\Gamma)$ and

$$
\mathcal{C}[\mathbf{f}] = \mathcal{C}[\tilde{\mathbf{f}}_I]^{-1} \circ \mathcal{C}[\mathbf{f}_I] = (\mathscr{E}_1^{\mathrm{H}}[\varphi_I] \circ \mathscr{E}_1^{\mathrm{H}}[\varphi]^{-1})^{-1} \circ \mathscr{E}_1^{\mathrm{H}}[\varphi_I] = \mathscr{E}_1^{\mathrm{H}}[\varphi].
$$

Thus, [f] represents a class in $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$ which has $\Pi([\mathbf{f}]) = \text{tr}_{\infty}^1[\mathbf{f}] = \varphi$.

Hence, to complete the proof it remains only to show that $[f_i] \rightarrow [f]$ in the topology of $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$. Observe that $\tilde{f}_i \circ f(\Gamma) = \Sigma_i$, and invoking [\[3,](#page-17-2) Proposition 3.3] again, $\tilde{\mathbf{f}}_i \circ \mathbf{f} \in \mathcal{ACH}_n^{k,\alpha}(\Gamma)$ and

$$
\mathcal{C}[\tilde{\mathbf{f}}_i \circ \mathbf{f}] = \mathcal{C}[\tilde{\mathbf{f}}_i] \circ \mathcal{C}[\mathbf{f}] = (\mathscr{E}_1^{\mathrm{H}}[\varphi_i] \circ \mathscr{E}_1^{\mathrm{H}}[\varphi]^{-1}) \circ \mathscr{E}_1^{\mathrm{H}}[\varphi] = \mathscr{E}_1^{\mathrm{H}}[\varphi_i].
$$

This gives that $\tilde{f}_i \circ f$ is an element of $[f_i]$. Moreover, by [\[3,](#page-17-2) Proposition 3.1], $\tilde{f}_i \circ f \to f$ in $C_1^{k,\alpha}(\Gamma;\mathbb{R}^{n+1})$. Therefore, $[\mathbf{f}_i] \to [\mathbf{f}]$ in the topology of $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$.

The proofs of properness of Π now follow easily.

Proof of Theorem [1.2.](#page-1-4) The result follows directly from Item (1) of Theorem [1.1,](#page-1-0) Proposi-tion [4.1](#page-13-2) and an elementary topology fact, Lemma [A.1.](#page-17-9) \Box

Proof of Theorem [1.3.](#page-2-2) First, by Lemma [3.8,](#page-10-1) $V_{ent}(\Gamma, \Lambda)$ is open in $C^{k,\alpha}(\mathcal{L}(\Gamma); \mathbb{R}^{n+1})$. Next, by Lemma [3.5,](#page-9-0)

$$
\lambda[\mathbf{f}(\Gamma)] = \lambda[\mathcal{C}[\sigma]] \text{ where } \sigma = \Pi([\mathbf{f}])(\mathcal{L}(\Gamma)).
$$

Thus, the continuity of Π and Lemma [3.8](#page-10-1) imply that $\mathcal{U}_{ent}(\Gamma,\Lambda)$ is open in $\mathcal{ACE}_n^{k,\alpha}(\Gamma)$. If $\mathcal{Z} \subset \mathcal{V}(\Gamma, \Lambda)$ is compact, then it follows from Lemma [3.8](#page-10-1) that there is a $\Lambda_0 < \Lambda$ so that

$$
\lambda[\mathscr{E}_1^H[\varphi](\mathcal{C}(\Gamma))] \leq \Lambda_0
$$

for all $\varphi \in \mathcal{Z}$. Hence, if $(\star_{n,\Lambda})$ $(\star_{n,\Lambda})$ $(\star_{n,\Lambda})$ holds for some $\Lambda < 2$, then the last claim follows from Item (3) of Theorem 1.1. Proposition 4.1 and Lemma A.1. Item [\(3\)](#page-1-1) of Theorem [1.1,](#page-1-0) Proposition [4.1](#page-13-2) and Lemma [A.1.](#page-17-9)

Proof of Theorem [1.4.](#page-2-0) Items [\(1\)](#page-2-3) and [\(2\)](#page-2-4) are straightforward. For $|f| \in \mathcal{U}_{\text{mc}}(\Gamma)$ let $\Sigma =$ $f(\Gamma)$. As $H_{\Sigma} > 0$ and $L_{\Sigma} H_{\Sigma} = -H_{\Sigma} < 0$, L_{Σ} has a positive super-solution. Hence, it follows from the trick of Fischer-Colbrie and Schoen [\[10\]](#page-17-10) that Σ is strictly stable. In particular, Σ admits no non-trivial Jacobi fields and so Item [\(3\)](#page-2-5) follows from [\[3,](#page-17-2) Theorem 1.1 (4)]. Furthermore, if $\mathcal{Z} \subset \mathcal{V}_{\text{mc}}(\Gamma)$ is compact, then there is an $h_0 > 0$ so $H_{\sigma} \ge h_0$, where σ is the link of the cone $\mathscr{E}_1^H[\varphi](\mathcal{C}(\Gamma))$, for all $\varphi \in \mathcal{Z}$. As such, Item [\(4\)](#page-2-6) follows from Item [\(2\)](#page-1-3) of Theorem [1.1,](#page-1-0) Proposition [4.1](#page-13-2) and Lemma [A.1.](#page-17-9) It remains only to show the final remark. Observe, that by Item [\(4\)](#page-2-6) and that $\mathcal{V}_{\rm mc}(\Gamma)$ is a compactly generated Hausdorff space, the map $\Pi|_{\mathcal{U}_{\text{mc}}(\Gamma)}$ is a closed map. Hence, following the arguments in [\[20,](#page-18-17) Proposition 4.46], the final remark is an immediate consequence of Items [\(3\)](#page-2-5) and [\(4\)](#page-2-6). \Box

5. EXISTENCE OF MEAN CONVEX ASYMPTOTICALLY CONICAL SELF-EXPANDERS

We conclude by proving Corollary [1.5.](#page-2-7) We first show existence and uniqueness of mean convex self-expanders asymptotic to rotationally symmetric cones. This result is not new (see [\[1,](#page-17-0) [7\]](#page-17-6)), but we include a proof for the sake of completeness.

Proposition 5.1. *For* $n \geq 2$ *let* $C \subset \mathbb{R}^{n+1}$ *be a connected non-flat rotationally symmetric cone. There is a unique smooth self-expander* Σ *that is smoothly asymptotic to* C*. More-* $\overline{\text{over}}, \Sigma$ satisfies $H_{\Sigma} > 0$ and is an entire graph and so is diffeomorphic to \mathbb{R}^{n} .

Proof. Without loss of generality we assume that e_{n+1} is the axis of symmetry of C and C lies in the half-space $\{x_{n+1} \geq 0\}$. First, we show the existence of a strictly mean convex self-expanders asymptotic to C. Clearly, there is a $\tau > 0$ so C is the graph of a Lipschitz function $u_0: \mathbb{R}^n \to \mathbb{R}$ given by $u_0(x) = \tau |x|$. Let $u_0^i(x) = \tau \sqrt{i^{-1} + |x|^2}$ so $u_0^i: \mathbb{R}^n \to$ R is a sequence of smooth functions which are strictly convex, have Lipschitz constant at most τ and are asymptotic to u_0 . Moreover, the u_0^i converge to u_0 uniformly. Let $\Sigma^i \subset \mathbb{R}^{n+1}$ be the graphs of the u_0^i . These are smooth convex hypersurfaces that are asymptotic to C . Thus, Ecker-Huisken [\[8\]](#page-17-1) and the strong maximum principle applied to the evolution equation for mean curvature [\[9\]](#page-17-11) imply that there is a unique strictly mean convex, graphical solution, $\mathcal{M}^i = \left\{ \sum_{t=0}^i \right\}_{t=0}$ to mean curvature flow starting from Σ^i . Moreover, if we denote by $u^{i}(t, \cdot)$ the functions whose graphs are the Σ_{t}^{i} , then the $u^{i}(t, \cdot)$ have uniformly bounded Lipschitz constant.

Hence, by Brakke's compactness (cf. [\[15,](#page-18-9) $\S7$]), the \mathcal{M}^i converges as Brakke flows to $M = {\{\Sigma_t\}}_{t>0}$ with $\Sigma_0 = C$. Furthermore, the interior estimates for graphical mean curvature flow [\[9\]](#page-17-11) and the Arzelà-Ascoli theorem imply that for $t > 0$, Σ_t has nonnegative mean curvature and is given by the graph of a smooth function $u(t, \cdot)$ on \mathbb{R}^n with a uniform Lipschitz constant. Moreover, as $t \to 0^+, \Sigma_t \to C$ in $C^{\infty}_{loc}(\mathbb{R}^{n+1} \setminus \{0\})$. By the parabolic maximum principle, such a solution $u(t, \cdot)$ for $t > 0$ is unique in the class of functions with at most linear growth. A consequence of this is that $u(t, x) = \sqrt{t} u(1, \frac{|x|}{\sqrt{t}})$. As such, $\Sigma = \Sigma_1$ is a graphical self-expanding hypersurface of revolution that is smoothly asymptotic to C and has nonnegative mean curvature. Furthermore, as $L_{\Sigma}H_{\Sigma} = -H_{\Sigma} \leq 0$ and $H_{\mathcal{C}} > 0$, the strong maximum principle implies $H_{\Sigma} > 0$.

Next we show the uniqueness of self-expanders asymptotic to the given cone C . Suppose Σ' is another smooth self-expander smoothly asymptotic to C. Let

$$
s_0 = \inf \{ s > 0 : \Sigma' \cap (\Sigma + s\mathbf{e}_{n+1}) = \emptyset \} \ge 0.
$$

We claim $s_0 = 0$ and so Σ' lies below Σ . Suppose not, i.e., $s_0 > 0$. By Item [\(2\)](#page-7-2) of Proposition [3.3,](#page-7-5) $\Sigma + s_0 \mathbf{e}_{n+1}$ touches Σ' from above at some interior point. However, we observe that $H + \frac{1}{2}\mathbf{x} \cdot \mathbf{n} > 0$ on $\Sigma + s_0 \mathbf{e}_{n+1}$ where **n** is chosen to be upward. This leads to a contradiction with the strong maximum principle. By similar arguments, Σ' also lies above Σ . Thus $\Sigma' = \Sigma$ proving the uniqueness.

Proof of Corollary [1.5.](#page-2-7) Let $\{\sigma_t\}_{t\in[0,T)}$ be the solution of mean curvature flow in \mathbb{S}^n with $\sigma_0 = \sigma$ and T the maximal time of existence. Pick a parameterization $\varphi_0 : \sigma \to \sigma_0$ and choose $\varphi_t : \sigma \to \sigma_t$ a corresponding evolution of parameterizations. As σ_0 is mean convex, the maximum principle implies that σ_t is as well for all $t \in (0, T)$. When $n = 2$, results of Grayson [\[12\]](#page-17-12) and Zhu [\[31,](#page-18-18) Corollary 4.2] give that σ_t smoothly shrinks to a round point in finite time. When $n \geq 3$, by [\[13\]](#page-18-4), the condition [\(1.2\)](#page-2-1) is preserved, which, together with the mean convexity and connectedness, implies that $T < \infty$ and the flow disappears in a round point at time T .

Choose a rotationally symmetric hypersurface $\tilde{\sigma} \subset \mathbb{S}^n$ and a T_0 sufficiently close to T, so σ_{T_0} is a small normal graph over $\tilde{\sigma}$. Thus, there is a path of smooth, strictly mean convex embeddings, $\psi_t: \tilde{\sigma} \to \mathbb{S}^n$, $t \in [0, 1]$, so $\psi_0(\tilde{\sigma}) = \sigma_{T_0}$ and $\psi_1 = \mathbf{x} |_{\tilde{\sigma}}$. Thus, setting

$$
\tilde{\varphi}_t = \begin{cases} \varphi_t \circ \varphi_{T_0}^{-1} \circ \psi_0 & 0 \le t \le T_0 \\ \psi_{t-T_0} & T_0 \le t \le T_0 + 1 \end{cases}
$$

one obtains a path of strictly mean convex $C^{k,\alpha}$ -embeddings of $\tilde{\sigma}$ into \mathbb{S}^n connecting $\tilde{\varphi}_{T_0+1} = \mathbf{x}|\tilde{\sigma}$ to $\tilde{\varphi}_0: \tilde{\sigma} \to \sigma$. By Proposition [5.1](#page-15-0) there is a unique smooth self-expander Γ that is smoothly asymptotic to $C[\tilde{\sigma}]$ and $H_{\Gamma} > 0$. Hence, Theorem [1.4](#page-2-0) implies there is an $[f_0] \in \mathcal{U}_{\text{mc}}(\Gamma)$ with $\Pi([f_0]) = \tilde{\varphi}_0$ and so $\Sigma = f_0(\Gamma)$ is the desired element.

In what follows we restrict our discussions to those n such that $\pi_0(\text{Diff}^+(\mathbb{S}^{n-1})) = 0$. For $n \geq 3$ we let

$$
\mathcal{V} = \left\{ \varphi \in \mathcal{V}_{\rm mc}(\Gamma) \colon \mathcal{L}[\mathscr{E}_1^{\rm H}[\varphi](\mathcal{C}(\Gamma))] \text{ satisfies (1.2)} \right\},
$$

which is an open subset of $\mathcal{V}_{\text{mc}}(\Gamma)$; for $n = 2$ let $\mathcal{V} = \mathcal{V}_{\text{mc}}(\Gamma)$. By the previous discussions and the hypothesis that $\text{Diff}^+(\mathcal{L}(\Gamma)) \simeq \text{Diff}^+(\mathbb{S}^{n-1})$ is path-connected, we observe $\mathcal V$ has exactly two components. Let V_+ be the component of V that contains $x|_{\mathcal{L}(\Gamma)}$ and let V_{-} be the component containing $x|_{\mathcal{L}(\Gamma)} \circ I$ where $I \in \text{Diff}(\mathcal{L}(\Gamma))$ is an orientationreversing involution. If $\mathcal{U}_{\pm} = \mathcal{U}_{\text{mc}}(\Gamma) \cap \Pi^{-1}(\mathcal{V}_{\pm})$, then it follows from Theorem [1.4](#page-2-0) and the uniqueness of Γ that $\Pi|_{\mathcal{U}_\pm} : \mathcal{U}_\pm \to \mathcal{V}_\pm$ is a diffeomorphism.

Now suppose $\varphi, \psi \in \mathcal{V}_+$ so that $\mathscr{E}_1^H[\varphi](\mathcal{C}(\Gamma)) = \mathscr{E}_1^H[\psi](\mathcal{C}(\Gamma))$. If $[\mathbf{f}], [\mathbf{g}] \in \mathcal{U}_+$ with $\Pi([f]) = \varphi$ and $\Pi([g]) = \psi$, then we will show $f(\Gamma) = g(\Gamma)$. Observe that there is a path of homogeneous $\Phi_t \in \text{Diff}^+(\mathcal{C}(\Gamma))$ with $\Phi_0 = \mathscr{E}_1^H[\varphi]^{-1} \circ \mathscr{E}_1^H[\psi]$ and $\Phi_1 = \mathbf{x}|_{\mathcal{C}(\Gamma)}$. Thus, Theorem [1.4](#page-2-0) and the uniqueness of Γ imply that there is a path of $[h_t] \in \mathcal{ACE}_n^{k,\alpha}(\Gamma)$ so that $\mathbf{h}_t(\Gamma) = \Gamma$ and $\Pi([\mathbf{h}_t]) = \operatorname{tr}_{\infty}^1[\Phi_t]$. In particular, $[\mathbf{f} \circ \mathbf{h}_0] \in \mathcal{U}_+$ and $\Pi([\mathbf{f} \circ \mathbf{h}_0]) = \psi$. As $\Pi|_{U_+}$ is a diffeomorphism, $[g] = [f \circ h_0]$ and so $g(\Gamma) = f(\Gamma)$. By symmetries, the same claim holds on \mathcal{V}_- . Finally, observe that as Γ is diffeomorphic to \mathbb{R}^n there is an orientation-reversing diffeomorphism $\tilde{I} \in \mathcal{ACH}_n^{k,\alpha}(\Gamma)$ so that $\text{tr}^1_{\infty}[\tilde{I}] = I$. Moreover, $[f] \in \mathcal{U}_+$ if and only if $[f \circ \tilde{I}] \in \mathcal{U}_-$. This concludes the proof of uniqueness.

APPENDIX A.

 \Box

Lemma A.1. *Let X be a topological space. Suppose X has a countable cover*, $\{A_i\}_{i \in \mathbb{N}}$, *of closed subsets so that each* Aⁱ *is metrizable. If* K *is a sequentially compact subspace of* X*, then it is compact.*

Proof. Let $\{U_{\alpha}\}\$ be an arbitrary collection of open sets of X that covers K. As K is sequentially compact, so is every $K \cap A_i$. Since A_i is metrizable, there is a finite subcollection of $\{U_{\alpha}\}\)$ that covers $K \cap A_i$. Thus, there is a countable subcollection ${U_{\alpha_i}}_{i\in\mathbb{N}}\subset{U_{\alpha}}$ that covers K. We show that there is a finite subcollection of ${U_{\alpha_i}}_{i\in\mathbb{N}}$ that covers K , implying the compactness of K . We argue by contradiction. Suppose not, then pick $x_j \in K \setminus (\bigcup_{i=1}^j U_{\alpha_i})$. Thus, up to passing to a subsequence, $x_j \to x \in K$. However, $x \in U_{\alpha_{i_0}}$ for some i_0 , so for j sufficiently large $x_j \in U_{\alpha_{i_0}}$, which leads to a contradiction.

REFERENCES

- [1] S. Angenent, T. Ilmanen and D. L. Chopp, *A computed example of non-uniqueness of mean curvature flow in* \mathbb{R}^3 , Commun. in Partial Differential Equations 20 (1995), no. 11-12, 1937–1958.
- [2] J. Bernstein and L. Wang, *An integer degree for the space of asymptotically conical self-expanders of mean curvature flow*, Preprint. Available at <https://arxiv.org/abs/1807.06494>.
- [3] J. Bernstein and L. Wang, *The space of asymptotically conical self-expanders of mean curvature flow*, Preprint. Available at <https://arxiv.org/abs/1712.04366>.
- [4] J. Cerf, Sur les difféomorphismes de la sphère de dimension trois, Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968.
- [5] J. Cerf, *La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie*, Inst. Hautes Etudes Sci. Publ. Math. No. 39 (1970), 5–173. ´
- [6] T.H. Colding and W.P. Minicozzi II, *Generic mean curvature flow I; generic singularities*, Ann. of Math. (2) 175 (2012), no. 2, 755–833.
- [7] Q. Ding, *Minimal cones and self-expanding solutions for mean curvature flows*, Preprint. Available at <http://arxiv.org/abs/1503.02612v2>.
- [8] K. Ecker and G. Huisken, *Mean curvature evolution of entire graphs*, Ann. of Math. (2) 130 (1989), no. 3, 453–471.
- [9] K. Ecker and G. Huisken, *Interior estimates for hypersurfaces moving by mean curvature*, Invent. Math. 105 (1991), 547–569.
- [10] D. Fischer-Colbrie and R. Schoen, *The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature*, Comm. Pure Appl. Math. 33 (1980), 199–211.
- [11] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 Edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
- [12] M.A. Grayson, *Shortening embedded curves*, Ann. of Math. (2) 129 (1989), no. 1, 71–111.
- [13] G. Huisken, *Deforming hypersurfaces of the sphere by their mean curvature*, Math. Z. 195 (1987), 205–219.
- [14] G. Huisken, *Asymptotic behavior for singularities of the mean curvature flow*, J. Differential Geom. 31 (1990), no. 1, 285–299.
- [15] T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108 (1994), no. 520.
- [16] T. Ilmanen, *Singularities of mean curvature flow of surfaces*, Preprint. Available at [https://people.math.ethz.ch/˜ilmanen/papers/sing.ps](https://people.math.ethz.ch/~ilmanen/papers/sing.ps).
- [17] T. Ilmanen, Lectures on mean curvature flow and related equations, Unpublished Notes. Available at [https://people.math.ethz.ch/˜ilmanen/papers/notes.ps](https://people.math.ethz.ch/~ilmanen/papers/notes.ps).
- [18] T. Ilmanen, A. Neves, and F. Schulze, *On short time existence for the planar network flow*, J. Differential Geom., to appear. Available at <https://arxiv.org/abs/1407.4756>.
- [19] O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Uralceva, Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I.
- [20] J.M. Lee, Introduction to smooth manifolds, Second Edition, Graduate Texts in Mathematics, 218, Springer, New York, 2013.
- [21] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University No. 3, Canberra, 1983.
- [22] S. Smale, *Diffeomorphisms of the* 2*-sphere*, Proc. Amer. Math. Soc. 10 (1959), no. 4, 621–626.
- [23] S. Smale, *Generalized Poincaré's conjecture in dimensions greater than four*, Ann. of Math. (2) 74 (1961), 391–406.
- [24] S. Smale, *An infinite dimensional version of Sard's theorem*, Amer. J. Math. 87 (1965), 861–866.
- [25] B. White, *Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals*, Invent. Math. 88 (1987), no. 2, 243–256.
- [26] B. White, *The space of* m*-dimensional surfaces that are stationary for a parametric elliptic functional*, Indiana Univ. Math. J., 36 (1987), no. 3, 567–602.
- [27] B. White, *New applications of mapping degrees to minimal surface theory*, J. Differential Geom. 29 (1989), no. 1, 143–162.
- [28] B. White, *The space of minimal submanifolds for varying Riemannian metrics*, Indiana Univ. Math. J. 40 (1991), no. 1, 161–200.
- [29] B. White, *Stratification of minimal surfaces, mean curvature flows, and harmonic maps*, J. Reine Angew. Math. 488 (1997), 1–35.
- [30] B. White, *A local regularity theorem for mean curvature flow*, Ann. of Math. (2) 161 (2005), no. 3, 1487– 1519.
- [31] X.-P. Zhu, *Asymptotic behavior of anisotropic curve flows*, J. Differential Geom. 48 (1998), no. 2, 225–274.

DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY, 3400 N. CHARLES STREET, BALTI-MORE, MD 21218

E-mail address: bernstein@math.jhu.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, 480 LINCOLN DRIVE, MADI-SON, WI 53706

E-mail address: luwang@math.wisc.edu