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SOLUTIONS TO SUBLINEAR ELLIPTIC EQUATIONS

WITH FINITE GENERALIZED ENERGY

ADISAK SEESANEA AND IGOR E. VERBITSKY

Abstract. We give necessary and sufficient conditions for the
existence of a positive solution with zero boundary values to the
elliptic equation

Lu = σuq + µ in Ω,

in the sublinear case 0 < q < 1, with finite generalized energy:
Eγ [u] :=

∫

Ω
|∇u|2uγ−1dx < ∞, for γ > 0. In this case u ∈

Lγ+q(Ω, σ) ∩ Lγ(Ω, µ), where γ = 1 corresponds to finite energy
solutions.

Here Lu := − div(A∇u) is a linear uniformly elliptic operator
with bounded measurable coefficients, and σ, µ are nonnegative
functions (or Radon measures), on an arbitrary domain Ω ⊆ R

n

which possesses a positive Green function associated with L.
When 0 < γ ≤ 1, this result yields sufficient conditions for the

existence of a positive solution to the above problem which belongs
to the Dirichlet space Ẇ

1,p

0 (Ω) for 1 < p ≤ 2.

1. Introduction

We consider the elliptic equation

(1.1) Lu = σuq + µ in Ω, u = 0 on ∂Ω,

in the sublinear case 0 < q < 1. Here Ω is an arbitrary domain (a
nonempty open connected set) in R

n, n ≥ 2, which possesses a positive
Green function, and σ, µ are nonnegative locally integrable functions,
or more generally, nonnegative Radon measures in Ω. This class of
(locally finite) measures is denoted by M+(Ω).
The operator Lu := − div (A∇u) with bounded measurable coeffi-

cients is assumed to be uniformly elliptic, i.e., A : Ω → R
n×n is a
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real symmetric matrix-valued function on Ω, and there exist positive
constants m ≤ M such that

(1.2) m|ξ|2 ≤ A(x)ξ · ξ ≤ M |ξ|2,

for almost every x ∈ Ω and every ξ ∈ R
n.

Both homogeneous (µ ≡ 0) and inhomogeneous equations (µ 6≡ 0)
will be studied simultaneously. The latter case involves a nontrivial
question regarding interaction between σ and µ (see Lemma 4.3 below).

We denote by Ẇ
1,p
0 (Ω) (1 ≤ p < ∞) the homogeneous Sobolev (or

Dirichlet) space defined as the closure of C∞
0 (Ω) with respect to the

seminorm ‖u‖
Ẇ

1,p
0 (Ω) := ‖∇u‖Lp(Ω).

An indispensable tool in our study is the notion of the generalized
energy. Suppose u is a positive Green potential, i.e., u = Gω for
ω ∈ M+(Ω) with ω 6≡ 0,

Gω(x) :=

∫

Ω

G(x, y) dω(y), x ∈ Ω,

where G is a positive Green function associated with L (see [11]).
As we will show below (see Theorem 3.1), the condition

(1.3) Eγ [u] :=

∫

Ω

|∇u|2uγ−1 dx < +∞, γ > 0

is equivalent to the generalized Green energy Eγ[ω] being finite,

(1.4) Eγ[ω] :=

∫

Ω

(Gω)γ dω =

∫

Ω

uγ dω < +∞,

which is also equivalent to u
γ+1
2 ∈ Ẇ

1,2
0 (Ω). In this case, we have

(1.5)

∫

Ω

uγ dω = γ

∫

Ω

(A∇u · ∇u)uγ−1 dx.

This is well-known in the case γ = 1 for the Laplacian L = −∆,
see [14, 17]. Analogous integration by parts formulas with γ > 0 for
functions u in certain Sobolev spaces with various extra restrictions on
Ω and ω can be found in [16].
Two other key ingredients in our approach are weighted norm in-

equalities for Green potentials of the type G : Lr(Ω, dω) → Ls(Ω, dω)
for arbitrary ω ∈ M+(Ω), in the non-classical case 0 < s < r and r > 1
(Theorem 2.4), along with iterated pointwise estimates for Green po-
tentials (Theorem 2.3) discussed below.
Employing these tools, we establish necessary and sufficient condi-

tions on σ and µ, in terms of their generalized Green energy (1.4), for
the existence of a positive A-superharmonic solution u ∈ L

q
loc(Ω, dσ)

(see Definition 4.1) to (1.1) that satisfies (1.3).



SOLUTIONS TO SUBLINEAR ELLIPTIC EQUATIONS 3

In the case γ = 1, we also show that such a solution u ∈ Ẇ
1,2
0 (Ω) (the

so-called finite energy solution) is unique. Notice that when L = −∆,
both the existence and uniqueness of a finite energy solution to (1.1)
was obtained by the authors in [19] (see also [6] for Ω = R

n).
When 0 < γ < 1, our result gives sufficient conditions for the exis-

tence of a positive solution u ∈ Ẇ
1,p
0 (Ω) to (1.1) where 1 < p < 2.

Existence and uniqueness of bounded solutions to (1.1) on Ω = R
n

(with µ = 0) was established by Brezis and Kamin in [3].
We state our main result and its consequences as follows.

Theorem 1.1. Let 0 < q < 1 and γ > 0. Suppose G is a positive Green
function associated with L in Ω ⊆ R

n (n ≥ 2). Let σ, µ ∈ M+(Ω) so
that σ 6≡ 0. Then there exists a positive solution u ∈ L

q
loc(Ω, dσ) to

(1.1) which satisfies (1.3), or equivalently u
γ+1
2 ∈ Ẇ

1,2
0 (Ω), if and only

if the following conditions hold:

(1.6) Gσ ∈ L
γ+q
1−q (Ω, dσ)

and

(1.7) Gµ ∈ Lγ(Ω, dµ).

When γ = 1, such a solution is unique in Ẇ
1,2
0 (Ω).

Corollary 1.2. Under the assumptions of Theorem 1.1, suppose that
n

n−1
< p ≤ 2, where n ≥ 3. If both conditions (1.6) and (1.7) hold with

γ := p(n−1)−n

n−p
∈ (0, 1], i.e.,

(1.8) Gσ ∈ Lr(Ω, dσ) and Gµ ∈ Ls(Ω, dµ),

where r := p(n−2)
(1−q)(n−p)

− 1 and s := p(n−1)−n

n−p
, then there exists a positive

solution u ∈ L
q
loc(Ω, dσ) ∩ Ẇ

1,p
0 (Ω) to (1.1).

A sufficient condition for (1.8) is given by

(1.9) σ ∈ Lr1(Ω) and µ ∈ Ls1(Ω),

where r1 :=
n(γ+1)

n(1−q)+2(γ+q)
and s1 :=

n(γ+1)
n+2γ

(see Proposition 4.8 below).

Thus, in light of Corollary 1.2, we have the following result.

Corollary 1.3. Under the assumptions of Corollary 1.2, if

(1.10) σ ∈ Lr2(Ω) and µ ∈ Ls2(Ω),

where r2 := np

(n−p)(1−q)+2p
and s2 := np

n+p
, then there exists a positive

solution u ∈ L
q
loc(Ω, dσ) ∩ Ẇ

1,p
0 (Ω) to (1.1).
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We observe that Corollary 1.3 in the case µ ≡ 0 (for bounded do-
mains Ω) is due to Boccardo and Orsina [4], with a different proof.
We sketch our method of proof of Theorem 1.1 in the inhomogeneous

case µ 6≡ 0. (The homogeneous case µ ≡ 0 is simpler since possible
interaction between the nonlinear term involving σ and µ is omitted.)
We start with the corresponding integral equation

(1.11) ũ = G(ũqdσ) +Gµ in Ω,

under some mild assumptions on the kernel G, which by the maximum
principle are automatically satisfied by Green functions associated with
elliptic operators (including L) in Ω.
We find a crucial relation between σ and µ, which follows from con-

ditions (1.6) and (1.7), and yields an important two-weight condition:

(1.12) Gµ ∈ Lγ+q(Ω, dσ).

This supplementary fact allows us to construct a positive solution
ũ ∈ Lγ+q(Ω, dσ) ∩ Lγ(Ω, dµ) to (1.11) by using an iterative procedure,
under assumptions (1.6) and (1.7).
In this procedure, we employ the fact established recently in [21]

that condition (1.6) is equivalent to the weighted norm inequality for
Green potentials,

(1.13)
∥

∥G(fdσ)
∥

∥

Lγ+q(Ω, dσ)
≤ C‖f‖

L
γ+q
q (Ω, dσ)

, ∀f ∈ L
γ+q
q (Ω, dσ),

where C is a positive constant independent of f . Therefore, either (1.6)
or (1.13), together with (1.7), turns out to be necessary and sufficient
for the existence of a positive solution to (1.1) satisfying (1.3).
When G is a positive Green function associated with L on Ω, the

integral equation (1.11) is equivalent to problem (1.1). Appealing to
our characterization of the generalized Green energy, (1.3) ⇐⇒ (1.4)
with ω := σuq + µ, we deduce that (1.6) and (1.7) are necessary and
sufficient for the existence of a positive solution u ∈ L

q
loc(Ω, dσ) to (1.1)

which satisfies (1.3).
This paper is organized as follows. In Sect. 2, we recall some back-

ground facts in potential theory and PDE, and collect useful results
which are repeatedly referred to throughout this study. Sect. 3 is de-
voted to a characterization of the generalized Green energy. Our main
result and its consequences are demonstrated in Sect. 4.

2. Preliminaries

Let Ω ⊆ R
n be a domain, and Lu := −div (A∇u), where A : Ω →

R
n×n satisfies the uniform ellipticity condition (1.2).
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2.1. Function spaces. Denote by C∞
0 (Ω) the set of all smooth com-

pactly supported functions on Ω. For 0 < p < ∞ and ω ∈ M+(Ω),
we denote by Lp(Ω, dω) the usual Lebesgue space of all real-valued
measurable functions u on Ω such that

‖u‖Lp(Ω, dω) :=

(
∫

Ω

|u|p dω

)
1
p

< +∞.

The corresponding local space is denoted by L
p
loc(Ω, dω).

For 1 ≤ p < ∞, the Sobolev space W 1,p(Ω) consists of all functions
u ∈ Lp(Ω) such that |∇u| ∈ Lp(Ω), where ∇u is the vector of distribu-
tional partial derivatives of u of order 1, equipped with the norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

The corresponding local space is denoted by W
1,p
loc (Ω). The Sobolev

space W
1,p
0 (Ω) is defined as the closure of C∞

0 (Ω) in W 1,p(Ω). It is
easy to see that W

1,p
0 (Rn) = W 1,p(Rn). The homogeneous version of

W
1,p
0 (Ω), called the homogeneous Sobolev space (or Dirichlet space),

denoted by Ẇ
1,p
0 (Ω), is defined as the closure of C∞

0 (Ω) with respect
to the seminorm

‖u‖Ẇ 1,p
0 (Ω) := ‖∇u‖Lp(Ω).

That is, Ẇ
1,p
0 (Ω) is the set of all functions u ∈ W

1,p
loc (Ω) such that

|∇u| ∈ Lp(Ω) for which there exists a sequence {ϕj}
∞
j=1 ⊂ C∞

0 (Ω) such
that ‖∇u − ∇ϕj‖Lp(Ω) → 0 as j → ∞. When 1 < p < n, the dual

space to Ẇ
1,p
0 (Ω) denoted by Ẇ−1,p′(Ω), is the space of distributions

ω ∈ D′(Ω) such that

‖ω‖Ẇ−1,p′(Ω) := sup
|〈ω, u〉|

‖u‖
Ẇ

1,p
0 (Ω)

< +∞

where the supremum is taken over all nontrivial functions u ∈ C∞
0 (Ω).

Here p′ := p

p−1
is the Hölder conjugate of p.

2.2. A-superharmonic functions. A function u ∈ W
1,2
loc (Ω) is said

to be A-harmonic if u satisfies the equation

(2.1) Lu = 0 in Ω

in the distributional sense, i.e.,
∫

Ω

A∇u · ∇ϕ dx = 0, ∀ϕ ∈ C∞
0 (Ω).

Every A-harmonic function u has a continuous representative which
coincides with u a.e. (see [9, Theorem 3.70]). We denote by HA(Ω) the
set of all continuous A-harmonic functions in Ω.
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A function u : Ω → (−∞,+∞] is A-superharmonic if u is lower
semicontinuous in Ω, u 6≡ +∞ in each component of Ω, and whenever
D is a relatively compact open subset of Ω and h ∈ C(D) ∩ HA(D),
the inequality h ≤ u on ∂D yields h ≤ u on D. A function u in Ω is
called A-subharmonic if −u is A-superharmonic.
Every A-superharmonic function u in Ω is quasicontinuous in Ω [9,

Theorem 10.9], which means that for every ǫ > 0, there is an open set
G ⊂ Ω such that cap(G) < ǫ and the restriction u|Ω\G is continuous on
Ω \G.
Here the capacity of an open set G ⊂ Ω is defined by

cap(G) := sup{cap(K) : K ⊂ Ω compact},

where the capacity of a compact set K ⊂ Ω is given by

cap(K) := inf
{

‖∇u‖2L2(Ω) : u ≥ 1 on K, u ∈ C∞
0 (Ω)

}

.

For an arbitrary set E ⊂ Ω,

cap(E) := inf{cap(G) : E ⊆ G ⊂ Ω, G open}.

A statement is said to hold quasi-everywhere (q.e.) in Ω if it holds
everywhere except for a set of capacity zero in Ω.
Denote by M+

0 (Ω) the class of all measures ω ∈ M+(Ω) which are
absolutely continuous with respect to capacity, that is, ω(K) = 0
whenever cap(K) = 0 for every compact subset K in Ω. It follows
by Poincaré’s inequality [17, Corollary 1.57] that Lebesgue measure is
absolutely continuous with respect to the capacity.
Let u be an A-superharmonic function in Ω. Then u ∈ Lr

loc(Ω) and
|∇u| ∈ Ls

loc(Ω) whenever 0 < r < n
n−2

and 0 < s < n
n−1

. In particular,

u ∈ W
1,p
loc (Ω) whenever 1 ≤ p < n

n−1
. Moreover, there exists a unique

measure ω ∈ M+(Ω) such that

(2.2) Lu = ω in Ω

in the distributional sense, i.e.,
∫

Ω

A∇u · ∇ϕ dx =

∫

Ω

ϕ dω, ∀ϕ ∈ C∞
0 (Ω).

The measure ω is called the Riesz measure associated with u, often
denoted by ω[u] (see [9, Theorem 7.46, Theorem 21.2]).
For a positive A-superharmonic function u in Ω, we shall later use

the fact that each truncation uk := min(u, k), where k ∈ N, is a positive
A-superharmonic function of the class L∞(Ω)∩ Ẇ

1,2
loc (Ω), and its Riesz

measure ω[uk] is locally in the dual ofW 1,2(Ω). Moreover, ω[uk] → ω[u]
weakly in Ω as k → ∞, see [9, 12].
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2.3. Kernels and potentials. Let G : Ω × Ω → (0,∞] be a positive
lower semicontinuous kernel. For ω ∈ M+(Ω), the potential of ω is
defined by

Gω(x) :=

∫

Ω

G(x, y) dω(y), x ∈ Ω.

Observe that Gω(x) is lower semi-continuous on Ω×M+(Ω) if G(x, y)
is lower semi-continuous on Ω× Ω, see [5].
A positive kernel G on Ω × Ω is said to satisfy the weak maximum

principle (WMP) with constant h ≥ 1 if for any ω ∈ M+(Ω),

(2.3) sup{Gω(x) : x ∈ supp(ω)} ≤ 1 =⇒ sup{Gω(x) : x ∈ Ω} ≤ h.

Here we use the notation supp(ω) for the support of ω.
When h = 1 in (2.3), the kernel G is said to satisfy the strong

maximum principle. It holds for Green functions associated with the
classical Laplacian −∆, or more generally the linear uniformly ellip-
tic operator in divergence form L, as well as the fractional Laplacian
(−∆)α in the case 0 < α ≤ 1, in every domain Ω ⊂ R

n which possesses
a Green function.
The WMP holds for Riesz kernels on R

n associated with (−∆)α in the
full range 0 < α < n

2
, and more generally for all radially nonincreasing

kernels on R
n, see [2].

We say that a positive kernel G on Ω×Ω is quasi-symmetric if there
exists a constant a ≥ 1 such that

(2.4) a−1G(y, x) ≤ G(x, y) ≤ aG(y, x), x, y ∈ Ω.

When a = 1 in (2.4), the kernel G is said to be symmetric. There
are many kernels associated with elliptic operators that are quasi-
symmetric and satisfy the WMP, see [1].
We summarize that the Green function G associated with L on Ω

is a positive lower semicontinuous symmetric kernel, which satisfies
the strong maximum principle [11, 15]. Further, for ω ∈ M+(Ω), the
Green potential Gω is either A-superharmonic or identically +∞, in
each component of Ω, see [7].

2.4. Some known results. We shall need the following weak conti-
nuity result established in [20].

Theorem 2.1 ([20]). Suppose {uj}
∞
j=1 is a sequence of positive A-

superharmonic functions in Ω such that uj → u a.e. as j → ∞, where
u is an A-superharmonic function in Ω. Then ω[uj] converges weakly
to ω[u], that is,

lim
j→∞

∫

Ω

ϕ dω[uj] =

∫

Ω

ϕ dω[u], ∀ϕ ∈ C∞
0 (Ω).



8 ADISAK SEESANEA AND IGOR E. VERBITSKY

The following theorem provides pointwise estimates for supersolu-
tions to sublinear elliptic equations, see [8, Theorem 1.3].

Theorem 2.2 ([8]). Let 0 < q < 1, ω ∈ M+(Ω), and let G be a positive
lower semicontinuous kernel on Ω × Ω, which satisfies the WMP with
constant h ≥ 1. If u ∈ L

q
loc(Ω, dω) is a positive solution to the integral

inequality

(2.5) u ≥ G(uqdω) in Ω,

then

(2.6) u(x) ≥ (1− q)
1

1−qh
−q
1−q [Gω(x)]

1
1−q , ∀x ∈ Ω.

The following pair of iterated pointwise inequalities plays an impor-
tant role in this paper (see [8, Lemma 2.5]).

Theorem 2.3 ([8]). Let ω ∈ M+(Ω), and let G be a positive lower
semicontinuous kernel on Ω×Ω, which satisfies the WMP with constant
h ≥ 1. Then the following estimates hold:

(i) If s ≥ 1, then

(2.7) (Gω)s(x) ≤ shs−1G
(

(Gω)s−1dω
)

(x), ∀x ∈ Ω.

(ii) If 0 < s ≤ 1, then

(2.8) (Gω)s(x) ≥ shs−1G
(

(Gω)s−1dω
)

(x), ∀x ∈ Ω.

Our argument also relies on the following result established in [21,
Theorem 1.1], which explicitly characterizes (p, r)-weighted norm in-
equalities

(2.9)
∥

∥G(fdω)
∥

∥

Lr(Ω, dω)
≤ C‖f‖Lp(Ω, dω), ∀f ∈ Lp(Ω, dω),

where C is a positive constant independent of f , in the case 0 < r < p

and 1 < p < ∞, for arbitrary ω ∈ M+(Ω), under certain assumptions
on the kernel G.

Theorem 2.4 ([21]). Let ω ∈ M+(Ω) with ω 6≡ 0, and let G be a
positive quasi-symmetric lower semicontinuous kernel on Ω×Ω, which
satisfies the WMP.

(i) If 1 < p < ∞ and 0 < r < p, then the (p, r)-weighted norm
inequality (2.9) holds if and only if

(2.10) Gω ∈ L
pr
p−r (Ω, dω).

(ii) If 0 < q < 1 and q < r < ∞, then there exists a positive solution
u ∈ Lr(Ω, dω) to the integral inequality (2.5) if and only if the
weighted norm inequality (2.9) holds with p = r

q
, that is,

(2.11)
∥

∥G(fdω)
∥

∥

Lr(Ω, dω)
≤ C‖f‖

L
r
q (Ω, dω)

, ∀f ∈ L
r
q (Ω, dω),
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where C is a positive constant independent of f ; or equivalently,

(2.12) Gω ∈ L
r

1−q (Ω, dω).

The following inequalities are often used in the theory of Schrödinger
operators and potential theory. They can be found, for example, in
[9, Theorem 7.48] and [10, Proposition 1.5], respectively.

Theorem 2.5 ([9, 10]). Let ω ∈ M+(Ω) with ω 6≡ 0, and let G be a
positive Green function associated with L on Ω. Suppose u := Gω so
that u 6≡ +∞. Then there exists a positive constant C which depends
only on the ellipticity constants m,M such that

(2.13)

∫

Ω

|ϕ|2
|∇u|2

u2
dx ≤ C

∫

Ω

|∇ϕ|2 dx

and

(2.14)

∫

Ω

|ϕ|2
dω

u
≤ C

∫

Ω

|∇ϕ|2 dx,

for all (quasicontinuous representatives of) ϕ ∈ Ẇ
1,2
0 (Ω).

3. Generalized energy of measures

Let γ > 0 and ω ∈ M+(Ω), and let G be a positive lower semicon-
tinuous kernel on Ω× Ω. Define the γ-energy of ω by

(3.1) Eγ[ω] :=

∫

Ω

(Gω)γ dω.

In the case γ = 1, we use the notation E [ω] := E1[ω]. Observe that
Eγ[ω] is well-defined, even though it may be infinite.
When G is a quasi-symmetric kernel on Ω × Ω which satisfies the

WMP, by the definition of Eγ[ω] and Theorem 2.4 with r := γ(1+γ)
1+γ+γ2

and q := γ2

1+γ+γ2 , the following statements are equivalent:

(a) Eγ[ω] < +∞.
(b) Gω ∈ Lγ(Ω, dω).
(c) The weighted norm inequality (2.11) is valid.
(d) There exists a positive solution u ∈ Lr(Ω, dω) to (2.5).

There is also a similar characterization of Eγ[ω], in terms of weak-
type and strong-type inequalities, for nondegenerate kernels G ≥ 0, see
[18].
We now consider Eγ[ω] in the case where G is a positive Green func-

tion associated with L on Ω.
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Theorem 3.1. Let γ > 0 and ω ∈ M+(Ω) with ω 6≡ 0, and let G be
a positive Green function associated with L on Ω. If u := Gω then the
condition

(3.2)

∫

Ω

(A∇u · ∇u)uγ−1 dx < +∞

is equivalent to u
γ+1
2 ∈ Ẇ

1,2
0 (Ω) as well as (a), (b), (c) and (d) above.

In this case, we have

(3.3) Eγ[ω] = γ

∫

Ω

(A∇u · ∇u)uγ−1 dx.

Remark 3.2. By uniform ellipticity condition (1.2), we see that (3.2)
is equivalent to (1.3). Therefore, by our discussion above, it suffices to
show that

(3.4) Eγ[ω] < +∞ ⇐⇒ Eγ [u] < +∞ ⇐⇒ u
γ+1
2 ∈ Ẇ

1,2
0 (Ω),

and also establish formula (3.3) whenever Eγ[ω] < +∞.

We first prove an auxiliary fact which will be used in the proof of
(3.4) when 0 < γ < 1.

Lemma 3.3. Let 0 < γ < 1 and ω ∈ M+(Ω), and let G be a positive
Green function associated with −L on Ω. Suppose u := Gω 6≡ ∞.
Then v := uγ is a positive A-superharmonic function on Ω, and v =
Gµ, where µ ∈ M+(Ω) is the Riesz measure of v. Moreover,

(3.5) Eγ[ω] < +∞ ⇐⇒ E [µ] < +∞.

In this case, we have

(3.6)
γ + 1

2
Eγ[ω] ≤ E [µ] ≤

γ + 1

2γ
Eγ[ω].

Proof. Notice that u := Gω is a positive A-superharmonic function on
Ω since Gω 6≡ +∞, see [7]. Since 0 < γ < 1, the map x 7−→ xγ , for
x ≥ 0, is concave and increasing; it follows that v := uγ is a positive
A-superharmonic function on Ω [9, Theorem 7.5]. In light of the Riesz
decomposition theorem, v = Gµ + h where µ ∈ M+(Ω) is the Riesz
measure of v, and h is the unique positive A-harmonic function on Ω.

Observe that g := h
1
γ is a positiveA-subharmonic function on Ω since

h is positive A-harmonic and the map x 7−→ x
1
γ for x ≥ 0, is convex

[9, Theorem 7.5]. Therefore −g is an A-superharmonic function on Ω,

and thus −g = Gν + h̃, where ν ∈ M+(Ω) is the Riesz measure of −g,

and h̃ is the unique A-harmonic function on Ω. Since

Gω = u = v
1
γ = (Gµ+ h)

1
γ ≥ h

1
γ = g = −Gν − h̃,
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we deduce G(ω+ ν) = u+Gν ≥ −h̃. In other words, −h̃ is a positive

A-harmonic minorant of the potential G(ω+ν). Consequently, −h̃ = 0
and thus g = −Gν ≤ 0. This yields h = gγ = 0. We have shown that
v = Gµ is a potential.

Suppose that Eγ[ω] < +∞, and let w := u
γ+1
2 . Since γ+1

2
∈ (0, 1), by

a similar argument as above, w is a positive A-superharmonic function
on Ω, and w = Gµ, where µ ∈ M+(Ω) is the Riesz measure of w. For

each k ∈ N, let uk := min(u, k) and wk := min(w, k
γ+1
2 ). Using the

same argument as above, we see that both uk and wk are potentials
with the corresponding Riesz measures ωk = ω[uk] and µk = µ[wk],
respectively. Clearly, supp(µk) ⊂ {u ≤ k}, thus both uk and wk are
uniformly bounded (by k) dµk-a.e. Using Fubini’s theorem and the
iterated inequality (2.8) with ω := µk, s :=

2γ
γ+1

and h := 1, we estimate
∫

Ω

Gµk dµ =

∫

Ω

Gµ dµk =

∫

Ω

Gω (Gµ)
γ−1
γ+1dµk ≤

∫

Ω

Gω (Gµk)
γ−1
γ+1dµk

=

∫

Ω

G
(

(Gµk)
γ−1
γ+1dµk

)

dω ≤
γ + 1

2γ

∫

Ω

(Gµk)
2γ
γ+1dω

≤
γ + 1

2γ

∫

Ω

(Gω)γdω =
γ + 1

2γ
Eγ[ω].

Passing to the limit k → ∞ and using the monotone convergence the-
orem, we deduce

E [µ] =

∫

Ω

Gµ dµ ≤
γ + 1

2γ
Eγ[ω] < +∞

since wk = Gµk ↑ w = Gµ in Ω.
Conversely, suppose E [µ] < +∞. By using the same notation and

argument as above, we estimate

E [µ] =

∫

Ω

Gµ dµ =

∫

Ω

(Gω)
γ+1
2 dµ ≥

∫

Ω

(Gωk)
γ+1
2 dµ

≥
γ + 1

2

∫

Ω

G
(

(Gωk)
γ−1
2 dωk

)

dµ ≥
γ + 1

2

∫

Ω

G
(

(Gω)
γ−1
2 dωk

)

dµ.

In the above estimate, we have u := Gω ≤ k and w = Gµ ≤ k dωk-a.e.
Applying Fubini’s theorem yields

∫

Ω

G
(

(Gω)
γ−1
2 dωk

)

dµ =

∫

Ω

(Gω)
γ−1
2 Gµ dωk

=

∫

Ω

(Gω)γ dωk.

Since γ ∈ (0, 1), we have uγ := (Gω)γ is a potential, that is, uγ = Gν,
where ν ∈ M+(Ω) is the Riesz measure of uγ. Applying Fubini’s
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theorem and the monotone convergence theorem, we have
∫

Ω

(Gω)γ dωk =

∫

Ω

Gν dωk =

∫

Ω

Gωk dν ↑

∫

Ω

Gω dν

since Gωk = uk ↑ u = Gω in Ω as k → ∞. Hence,

γ + 1

2
Eγ[ω] =

γ + 1

2

∫

Ω

Gν dω =
γ + 1

2

∫

Ω

Gω dν ≤ E [µ] < +∞.

This completes the proof of the lemma. �

We now establish (3.4), which yields the first part of Theorem 3.1.

Lemma 3.4. Let γ > 0 and ω ∈ M+(Ω) with ω 6≡ 0, and let G be a
positive Green function associated with L on Ω. If u := Gω then (3.4)
holds. In this case, there exists a positive constant C which depends
only on m, M and γ such that

(3.7) C−1Eγ[ω] ≤ Eγ [u] ≤ C Eγ[ω].

Proof. Without loss of generality, we may assume that u 6≡ +∞. It
follows that u is a positive A-superharmonic function in Ω. Moreover,
u ∈ W

1,p
loc (Ω) whenever 1 ≤ p < n

n−1
, see [9]. Consider three cases as

follows:
• Case γ = 1. This is completely analogous to the classical result

shown in, for example, [14, Theorem 1.20], due to uniform ellipticity
assumption (1.2). In this case we further have formula (3.3) using an
approximation argument demonstrated below in Lemma 3.5.

• Case 0 < γ < 1. In light of Lemma 3.3, we have v := u
γ+1
2 is

a positive A-superharmonic function in Ω, and v = Gµ where µ ∈
M+(Ω) is the Riesz measure of v. Moreover,

Eγ[ω] < +∞ ⇐⇒ E [µ] < +∞ ⇐⇒ v ∈ Ẇ
1,2
0 (Ω).

In this case, we have

γ + 1

2
Eγ[ω] ≤ E [µ] ≤

γ + 1

2γ
Eγ[ω].

On the other hand, notice that ∇v = γ+1
2
u

γ−1
2 ∇u a.e. in Ω. Appealing

to the previous case, we deduce

E [µ] =

∫

Ω

A∇v · ∇v dx ≤ M
(γ + 1

2

)2
∫

Ω

|∇u|2uγ−1 dx

and similarly

E [µ] =

∫

Ω

A∇v · ∇v dx ≥ m
(γ + 1

2

)2
∫

Ω

|∇u|2uγ−1 dx.

This proves both assertions (3.4) and (3.7), respectively.
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• Case γ > 1. Suppose that v := u
γ+1
2 ∈ Ẇ

1,2
0 (Ω). Therefore,

Eγ[u] < +∞. For each k ∈ N, let uk = min(u, k), which is a positive

A-superharmonic function of the class L∞(Ω) ∩W
1,2
loc (Ω). Denote the

corresponding Riesz measure of each uk by ωk := ω[uk]. Without loss of
generality, we may suppose v is quasicontinuous. Applying inequality
(2.14) with φ := v and ω := ωk, we obtain

∫

Ω

uγdωk ≤

∫

Ω

v2
dωk

Gωk

≤ C

∫

Ω

|∇v|2 dx

= C
(γ + 1

2

)2
∫

Ω

|∇u|2uγ−1dx.

On the other hand, by Fubini’s theorem and iterated estimate (2.7)
with ω := ωk and s := γ, we have

∫

Ω

uγ dωk =

∫

Ω

(Gω)γ−1Gω dωk =

∫

Ω

G
(

(Gω)γ−1dωk

)

dω

≥

∫

Ω

G
(

(Gωk)
γ−1dωk

)

dω ≥
1

γ

∫

Ω

(Gωk)
γdω.

Therefore,

1

γ

∫

Ω

(Gωk)
γ dω ≤ C

(γ + 1

2

)2
∫

Ω

|∇u|2uγ−1 dx.

Passing to the limit k → ∞ and using the monotone convergence the-
orem, we obtain

Eγ[ω] =

∫

Ω

uγ dω ≤ Cγ
(γ + 1

2

)2
∫

Ω

|∇u|2uγ−1dx < +∞

since uk = Gωk ↑ u = Gω in Ω.
Conversely, suppose Eγ[ω] < +∞. Write γ = 1+q

1−q
where 0 < q < 1,

and consider the corresponding sublinear elliptic equation

(3.8) Lw = ω wq in Ω.

Using a similar argument as in the proof of [19, Lemma 5.5], there
exists a positive finite energy solution w ∈ Ẇ

1,2
0 (Ω) to (3.8), satisfying

(3.9) ||w||Ẇ 1,2
0 (Ω) ≤ c

(

∫

Ω

(Gω)
1+q
1−q dω

)
1
2

,

where c = c(m,M, q) > 0. As usual, we may assume w is quasicontin-
uous. By Theorem 2.2, w obeys the lower bound

w ≥ (1− q)
1

1−q (Gω)
1

1−q in Ω.

Therefore,

(3.10) v := u
γ+1
2 = (Gω)

γ+1
2 ≤ (1− q)−

1
1−qw in Ω.
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From this, we deduce
∫

Ω

|∇u|2uγ−1 dx =

∫

Ω

v2
|∇u|2

u2
dx

≤ (1− q)−
2

1−q

∫

Ω

w2 |∇u|2

u2
dx.

(3.11)

Using inequality (2.13) with φ := w, along with (3.9), we estimate
∫

Ω

w2 |∇u|2

u2
dx ≤ C ||w||2

Ẇ 1,2(Ω)
≤ Cc2 Eγ[ω].(3.12)

Hence, by (3.11) and (3.12), we arrive at
∫

Ω

|∇u|2uγ−1 dx ≤ Cc2(1− q)−
2

1−q Eγ[ω] < +∞.

Moreover, for r = 2n
n−2

if n ≥ 3, and any r < ∞ if n = 2, we have

that v ∈ Lr(Ω), since the same is true for w ∈ Ẇ
1,2
0 (Ω). Recall that Ω

is assumed to be a Green domain in the case n = 2. In other words,
v ∈ Ẇ 1,2(Ω), the corresponding Sobolev space equipped with the norm

||v||Ẇ 1,2(Ω) = ||∇v||L2(Ω) + ||v||Lr(Ω). The fact that v ∈ Ẇ
1,2
0 (Ω) follows

from the Deny-Lions theorem (see [2, Sec. 9.12] and the references
cited there). Notice that, for z ∈ ∂Ω, the quasi-limit limx→z v(x) = 0
q.e. by (3.10), since the same is true for w ∈ Ẇ

1,2
0 (Ω) by [13], Corollary

to Theorem 1. This finishes the proof of lemma. �

We now complete the proof of Theorem 3.1 by establishing formula
(3.3) whenever Eγ[ω] < +∞, using an approximation procedure.

Lemma 3.5. Let γ > 0 and ω ∈ M+(Ω) with ω 6≡ 0, and let G be
a positive Green function associated with L on Ω. If u := Gω then
formula (3.3) is valid whenever Eγ[ω] < +∞.

Proof. Suppose Eγ[ω] < +∞. Therefore both (3.2) and (1.3) holds, in
views of Lemma 3.4 and uniform ellipticity condition (1.2).
For each k ∈ N, we set uk = min(u, k). Notice that uk is a positive

A-superharmonic function of the class L∞(Ω) ∩W
1,2
loc (Ω). Denote the

corresponding Riesz measure of uk by ωk := ω[uk].

Let {u
(j)
k }j≥k be a sequence of mollified uk, defined on Ωj := {x ∈

Ω : dist(x, ∂Ω) > 1
j
}. Denote ω

(j)
k := Lu

(j)
k . In addition, for j ≥ k,

select ϕj ∈ C∞
0 (Ω) so that

0 ≤ ϕj ≤ 1, suppϕj ⊂ Ωj , ϕj ↑ χΩ as j → ∞,
∫

Ω

|∇ϕj|
2 dx ≤

1

j2γ+2
.
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Using integration by parts, we obtain

γ

∫

Ω

(A∇u
(j)
k · ∇u

(j)
k )(u

(j)
k )γ−1ϕj dx =

∫

Ω

∇
(

(u
(j)
k )γ

)

· A∇u
(j)
k ϕj dx

=

∫

Ω

(u
(j)
k )γϕj dω

(j)
k −

∫

Ω

(u
(j)
k )γ(A∇u

(j)
k · ∇ϕj) dx.

Letting first j → ∞, and then k → ∞, we see that

γ

∫

Ω

|∇u
(j)
k |2(u

(j)
k )γ−1ϕj dx −→ γ

∫

Ω

|∇u|2uγ−1 dx

and
∫

Ω

(u
(j)
k )γϕj dω

(j)
k −→

∫

Ω

uγ dω

by means of mollification, the Lebesgue dominated convergence theo-
rem, and weak continuity of L (Theorem 2.1). Moreover, by Schwarz’s
inequality, the construction of ϕj , and uniform ellipticity condition
(1.2), we deduce

∣

∣

∣

∣

∫

Ω

(u
(j)
k )γ(A∇u

(j)
k · ∇ϕj) dx

∣

∣

∣

∣

≤ M
1
2

(
∫

Ω

|∇ϕj|
2 dx

)
1
2

×

(
∫

Ω

|∇u
(j)
k |2(u

(j)
k )2γ dx

)
1
2

≤
M

1
2

jγ+1

(
∫

Ω

|∇u
(j)
k |2(u

(j)
k )γ−1(u

(j)
k )γ+1 dx

)
1
2

≤
M

1
2k

γ+1
2

kγ+1

(
∫

Ω

|∇u|2uγ−1 dx

)
1
2

=
M

1
2

k
γ+1
2

(
∫

Ω

|∇u|2uγ−1 dx

)
1
2

,

which converges to zero as k → ∞. This proves (3.3). �

The following lemma shows, in particular, that if Eγ[ω] < +∞ for
some γ > 0, then ω ∈ M+

0 (Ω).

Lemma 3.6. Let γ > 0 and ω ∈ M+(Ω), and let G be a positive Green
function associated with L on Ω. Suppose that u := Gω ∈ L

γ
loc(Ω, dµ).

Then for every compact set K ⊂ Ω,

(3.13) ω(K) ≤ [cap(K)]
γ

1+γ

(
∫

K

uγ dω

)
1

1+γ

.

In particular, ω ∈ M+
0 (Ω).

Proof. Let K be a compact subset of Ω. By (2.14), we have

(3.14)

∫

K

dω

u
≤ cap(K).
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On the other hand, by Hölder’s inequality,

(3.15) ω(K) =

∫

K

u
−γ
1+γ u

γ
1+γ dω ≤

(
∫

K

u−1 dω

)
γ

1+γ
(
∫

K

uγ dω

)
1

1+γ

.

Thus, (3.13) follows from (3.14) and (3.15). �

4. Positive solutions to sublinear elliptic equations

In this section, we prove our main result stated in Theorem 1.1 using
the argument outlined earlier in Sec. 1. Its consequences are discussed
here as well.

Definition 4.1. Let q > 0 and σ, µ ∈ M+(Ω). Let G be a positive
Green function associated with L on Ω. A solution u to equation (1.1)
is understood in the sense that u is an A-superharmonic function on Ω
such that u ∈ L

q
loc(Ω, dσ) with u ≥ 0 dσ-a.e., and

(4.1) u = G(uqdσ) +Gµ in Ω.

If further u ∈ Ẇ
1,2
0 (Ω), it is called a finite energy solution to (1.1).

Our first theorem gives necessary and sufficient conditions for the
existence of a positive solution u ∈ Lγ+q(Ω, dσ) (γ > 0) to the integral
equation (4.1) in the sublinear case 0 < q < 1, under some mild as-
sumptions on kernel G satisfied by the Green function associated with
L on Ω.

Theorem 4.2. Let 0 < q < 1, γ > 0 and σ, µ ∈ M+(Ω) with σ 6≡ 0.
Suppose G is a positive quasi-symmetric lower semicontinuous kernel
on Ω × Ω, which satisfies the WMP. If (1.6) and (1.12) hold, then
there exists a positive solution u ∈ Lγ+q(Ω, dσ) to (4.1). The converse
statement is valid without the quasi-symmetry assumption on G.

Proof. Suppose (1.6) and (1.12) hold. In the homogeneous case µ ≡ 0,
we can construct a monotone increasing sequence of positive functions
{uj}

∞
j=0 ⊂ Lγ+q(Ω, dσ) by setting

u0 := κ (Gσ)
1

1−q and uj+1 := G(uq
jdσ), for j ∈ N0,

where κ > 0 is chosen to be sufficiently small. Then its pointwise limit
u := limj→∞ uj is a positive solution of the class Lγ+q(Ω, dσ) to (4.1),
by the monotone convergence theorem (see [21, Theorem 1.1 (ii)] for
more details).
In the inhomogeneous case µ 6≡ 0, we set

u0 := Gµ, uj+1 := G(uq
jdσ) +Gµ, for j ∈ N0.
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Observe that u0 > 0 since µ 6≡ 0, and

u1 = G(uq
0dσ) + u0 ≥ u0.

Suppose u0 ≤ u1 ≤ . . . ≤ uj for some j ∈ N. Then

uj+1 = G(uq
jdσ) +Gµ ≥ G(uq

j−1dσ) +Gµ = uj.

Hence, by induction, {uj}
∞
j=0 is an increasing sequence of positive func-

tions. Further, each uj ∈ Lγ+q(Ω, dσ). Notice that

u0 = Gµ ∈ Lγ+q(Ω, dσ),

by the assumption (1.12). Suppose u0, . . . , uj ∈ Lγ+q(Ω, dσ) for some
j ∈ N. Observe that

‖uj+1‖Lγ+q(Ω, dσ) =
∥

∥G(uq
jdσ) +Gµ

∥

∥

Lγ+q(Ω, dσ)

≤ c
∥

∥G(uq
jdσ)

∥

∥

Lγ+q(Ω, dσ)
+ c

∥

∥Gµ
∥

∥

Lγ+q(Ω, dσ)
,

(4.2)

where c = max(1, 2
1−γ−q
γ+q ). In view of Theorem 2.4, the assumption

(1.6) is equivalent to the weighted norm inequality (2.11) with ω = σ

and r = γ + q. Therefore, we can estimate the first term on the right-

hand side of (4.2) by applying (2.11) with f = u
q
j ∈ L

γ+q
q (Ω, dσ),

∥

∥G(uq
jdσ)

∥

∥

Lγ+q(Ω, dσ)
≤ C

(
∫

Ω

u
γ+q
j dσ

)
q

γ+q

≤ C

(
∫

Ω

u
γ+q
j+1 dσ

)
q

γ+q

= C‖uj+1‖
q

Lγ+q(Ω, dσ).

(4.3)

By (4.2) and (4.3), we have

(4.4) ‖uj+1‖Lγ+q(Ω, dσ) ≤ Cc‖uj+1‖
q

Lγ+q(Ω, dσ) + c
∥

∥Gµ
∥

∥

Lγ+q(Ω, dσ)
.

We estimate the first term on the right-hand side of (4.4) using Young’s
inequality,

(4.5) Cc‖uj+1‖
q

Lγ+q(Ω, dσ) ≤ q‖uj+1‖Lγ+q(Ω, dσ) + (1− q)(Cc)
1

1−q .

Hence, by (4.4) and (4.5), we obtain

(4.6) ‖uj+1‖Lγ+q(Ω, dσ) ≤ (Cc)
1

1−q +
c

1− q

∥

∥Gµ
∥

∥

Lγ+q(Ω, dσ)
< +∞.

By induction, we have shown that each uj ∈ Lγ+q(Ω, dσ). Finally,
applying the monotone convergence theorem to the sequence {uj}

∞
j=0,

we see that the pointwise limit u := limj→∞ uj exists so that u > 0,
u ∈ Lγ+q(Ω, dσ), and satisfies (4.1).
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Conversely, if there exists a positive solution u ∈ Lγ+q(Ω, dσ) to
(4.1), it is clear that (1.12) holds. Moreover, (1.6) follows from the
global pointwise lower bound (2.6):

u(x) ≥ c[Gσ(x)]
1

1−q , ∀x ∈ Ω,

which does not require quasi-symmetry of G (see [8]). �

An essential link between conditions (1.6), (1.7) and (1.12), will be
obtained in the next lemma. It is an extension of [19, Lemma 5.3] in
the case γ = 1; moreover, G does not need to be quasi-symmetric due
to Theorem 2.3.

Lemma 4.3. Let 0 < q < 1, γ > 0, and σ, µ ∈ M+(Ω). Suppose G

is a positive lower semicontinuous kernel on Ω×Ω, which satisfies the
WMP. Then conditions (1.6) and (1.7) imply (1.12).

Proof. Without loss of generality, we may assume σ, µ 6≡ 0. Consider
the following three cases:
• Case 1: γ + q > 1. Applying the iterated inequality (2.7) with

ω = µ and s = γ + q, together with Fubini’s theorem and Hölder’s
inequality with the exponents γ

γ+q−1
and γ

1−q
, we obtain

∫

Ω

(Gµ)γ+q dσ ≤ c

∫

Ω

G
(

(Gµ)γ+q−1 dµ
)

dσ

= c

∫

Ω

(Gµ)γ+q−1Gσ dµ

≤ c

[
∫

Ω

(Gµ)γ dµ

]
γ+q−1

γ
[
∫

Ω

(Gσ)
γ

1−q dµ

]
1−q
γ

.

(4.7)

The second integral on the right-hand side of (4.7) is estimated by a
similar argument as above. In fact, applying (2.7) again with ω = σ

and s = γ

1−q
, along with Fubini’s theorem and Hölder’s inequality with

the exponents γ+q

γ+q−1
and γ + q, we deduce

∫

Ω

(Gσ)
γ

1−q dµ ≤ c

∫

Ω

G
(

(Gσ)
γ

1−q
−1
dσ

)

dµ

= c

∫

Ω

(Gσ)
γ+q−1
1−q Gµ dσ

≤ c

[
∫

Ω

(Gσ)
γ+q
1−q dσ

]
γ+q−1
γ+q

[
∫

Ω

(Gµ)γ+q dσ

]
1

γ+q

.

(4.8)
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By (4.7) and (4.8), we have

[
∫

Ω

(Gµ)γ+q dσ

]1− 1−q
γ(γ+q)

≤ c

[
∫

Ω

(Gµ)γ dµ

]
γ+q−1

γ

×

[
∫

Ω

(Gσ)
γ+q
1−q dσ

]

(γ+q−1)(1−q)
γ(γ+q)

,

(4.9)

which is finite by (1.6) and (1.7), and hence (1.12) holds.
• Case 2: γ + q < 1. Write

∫

Ω

(Gµ)γ+q
dσ =

∫

Ω

(Gµ)γ+q
F a−1F 1−a dσ,

where 0 < a < 1 and F is a positive measurable function to be deter-
mined later. Applying Hölder’s inequality with the exponents 1

a
and

1
1−a

, we get

(4.10)

∫

Ω

(Gµ)γ+q
dσ ≤

(
∫

Ω

(Gµ)
γ+q
a F

a−1
a dσ

)a(∫

Ω

F dσ

)1−a

.

Setting F = (Gσ)
γ+q
1−q and a = γ + q in (4.10), we obtain

∫

Ω

(Gµ)γ+q
dσ ≤

(
∫

Ω

Gµ (Gσ)
γ+q−1
γ+q dσ

)γ+q

×

(
∫

Ω

(Gσ)
γ+q
1−q dσ

)1−γ−q

.

(4.11)

The first integral on the right-hand side of (4.11) is estimated by using
Fubini’s theorem, followed by inequality (2.8) with ω = σ and s = γ

1−q
,

∫

Ω

Gµ (Gσ)
γ+q−1
γ+q dσ =

∫

Ω

G
(

(Gσ)
γ+q−1
γ+q dσ

)

dµ

≤ c

∫

Ω

(Gσ)
γ

1−q dµ.

(4.12)

As above, we deduce

∫

Ω

(Gσ)
γ

1−q dµ ≤

(
∫

Ω

Gσ(Gµ)γ+q−1 dµ

)
γ

1−q
(
∫

Ω

(Gµ)γ dµ

)
1−γ−q
1−q

=

(
∫

Ω

G
(

(Gµ)γ+q−1dµ
)

dσ

)
γ

1−q
(
∫

Ω

(Gµ)γ dµ

)
1−γ−q
1−q

≤ c

(
∫

Ω

(Gµ)γ+q dσ

)
γ

1−q
(
∫

Ω

(Gµ)γ dµ

)
1−γ−q
1−q

.
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Combining the preceding estimates, we have
(
∫

Ω

(Gµ)γ+q
dσ

)1−
γ(γ+q)
1−q

≤ c

[
∫

Ω

(Gµ)γ dµ

]

(1−γ−q)(γ+q)
1−q

×

[
∫

Ω

(Gσ)
γ+q
1−q dσ

]1−γ−q

.

(4.13)

This proves (1.12), since both integrals on the right-hand side of (4.13)
are finite by (1.6) and (1.7).
• Case 3: γ + q = 1. Fix a positive number 1

2−q
< a < 1. Applying

Hölder’s inequality with the exponents 1
a
and 1

1−a
we have

∫

Ω

Gµ dσ =

∫

Ω

Gµ(Gσ)
a−1
1−q (Gσ)

1−a
1−q dσ

≤

(
∫

Ω

(Gµ)
1
a (Gσ)

a−1
a(1−q) dσ

)a(∫

Ω

(Gσ)
1

1−q dσ

)1−a

.

(4.14)

We estimate the first integral on the right-hand side of (4.14) using in-
equalities (2.7) and (2.8), together with Fubini’s theorem and Hölder’s

inequality with the exponents a(1−q)
1−a

and a(1−q)
a(2−q)−1

,
∫

Ω

(Gµ)
1
a (Gσ)

a−1
a(1−q) dσ ≤ c

∫

Ω

G[(Gµ)
1−a
a dµ](Gσ)

a−1
a(1−q) dσ

= c

∫

Ω

(Gµ)
1−a
a G

(

(Gσ)
a−1

a(1−q) dσ
)

dµ ≤ c

∫

Ω

(Gµ)
1−a
a (Gσ)

a−1
a(1−q)

+1
dµ

≤ c

(
∫

Ω

(Gµ)1−q dµ

)
1−a

a(1−q)
(
∫

Ω

Gσ dµ

)

a(2−q)−1
a(1−q)

= c

(
∫

Ω

(Gµ)1−q dµ

)
1−a

a(1−q)
(
∫

Ω

Gµ dσ

)

a(2−q)−1
a(1−q)

.

Combining the preceding estimates, we deduce
(
∫

Ω

Gµ dσ

)1−
a(2−q)−1

(1−q)

≤ c

(
∫

Ω

(Gµ)1−q dµ

)
1−a
(1−q)

×

(
∫

Ω

(Gσ)
1

1−q dσ

)1−a

,

(4.15)

which is finite by (1.6) and (1.7). Thus (1.12) holds. �

We are now prepared to show that conditions (1.6) and (1.7) are
necessary and sufficient for the existence of a positive solution u ∈
Lγ+q(Ω, dσ) ∩ Lγ(Ω, dµ) to integral equation (4.1), under the same re-
strictions on the kernel G as above.
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Theorem 4.4. Let 0 < q < 1, γ > 0, and let σ, µ ∈ M+(Ω) with
σ 6≡ 0. Suppose G is a positive, lower semicontinuous, quasi-symmetric
kernel on Ω×Ω, which satisfies the WMP. Suppose (1.6) and (1.7) hold.
Then there exists a positive solution u ∈ Lγ+q(Ω, dσ) ∩ Lγ(Ω, dµ) to
(4.1). The converse statement is also valid without the quasi-symmetry
assumption on G.

Proof. Suppose (1.6) and (1.7) hold. Then, by Lemma 4.3, we see that
(1.12) holds. Thus, in light of Theorem 4.2, there exists a positive
solution u ∈ Lγ+q(Ω, dσ) to (4.1). We will show that u ∈ Lγ(Ω, dµ) as
well. By (1.7), it suffices to establish

(4.16)

∫

Ω

[G(uqdσ)]γ dµ < +∞.

Without loss of generality, we may assume that G is symmetric, and
µ 6≡ 0. Consider the following two cases:
• Case 1: γ ≥ 1. Applying (2.8) with ω := σuq and s := γ, along with

Fubini’s theorem, and Hölder’s inequality with the exponents γ+q

γ+q−1
and

γ + q, we have
∫

Ω

[G(uqdσ)]γ dµ ≤ c

∫

Ω

G
(

(G(uqdσ))γ−1
uqdσ

)

dµ

= c

∫

Ω

(G(uqdσ))γ−1 (Gµ) uqdσ

≤ c

[
∫

Ω

(G(uqdσ))
(γ−1)(γ+q)

γ+q−1 u
q(γ+q)
γ+q−1 dσ

]
γ+q−1
γ+q

[
∫

Ω

(Gµ)γ+q dσ

]
1

γ+q

≤ c

[
∫

Ω

uγ+q dσ

]
γ+q−1
γ+q

[
∫

Ω

(Gµ)γ+q dσ

]
1

γ+q

≤ c

∫

Ω

uγ+q dσ < +∞.

• Case 2: 0 < γ < 1. We write
∫

Ω

[G(uqdσ)]γ dµ =

∫

Ω

[G(uqdσ)]γ F a−1F 1−a dµ,

where 0 < a < 1 and F is a positive measurable function to be de-
termined later. Applying Hölder’s inequality with the conjugate expo-
nents 1

a
and 1

1−a
yields

∫

Ω

[G(uqdσ)]γ dµ ≤

[
∫

Ω

G(uqdσ)F
a−1
a dµ

]a [∫

Ω

F dµ

]1−a

.(4.17)



22 ADISAK SEESANEA AND IGOR E. VERBITSKY

Setting F := (Gµ)γ and a := γ in (4.17), we get
∫

Ω

[G(uqdσ)]γ dµ ≤

[
∫

Ω

G(uqdσ)(Gµ)γ−1 dµ

]γ

×

[
∫

Ω

(Gµ)γ dµ

]1−γ

.

(4.18)

We estimate the first integral on the right-hand side of (4.18) using
Fubini’s theorem, followed by inequality (2.8) with ω = µ and s = γ,

∫

Ω

G(uqdσ)(Gµ)γ−1 dµ =

∫

Ω

G
(

(Gµ)r−q−1dµ
)

uq dσ

≤ c

∫

Ω

(Gµ)γuq dσ ≤ c

∫

Ω

uγ+q dσ < +∞.

(4.19)

By (4.18) and (4.19), together with (1.7), this proves (4.16).
Conversely, since u ∈ Lγ(Ω, dµ), it is clear that (1.7) holds. Further,

by Theorem 4.2, condition (1.6) is valid since u ∈ Lγ+q(Ω, dσ). �

As an application of the preceding theorem, when G is a positive
Green function associated with L in Ω, we deduce the first part of
Theorem 1.1 by appealing to the characterization of the generalized
Green energy obtained in Sec. 3.

Theorem 4.5. Let 0 < q < 1, γ > 0, and let σ, µ ∈ M+(Ω) with
σ 6≡ 0. Let G be a positive Green function associated with L on Ω.
Then there exists a positive solution u ∈ L

q
loc(Ω, dσ) to (1.1) satisfying

(1.3) if and only if (1.6) and (1.7) hold.
In this case, u is a minimal solution in the sense that u ≤ v q.e. for

any positive solution v ∈ L
q
loc(Ω) to (1.1) which satisfies (1.3).

Proof. This follows from Theorem 3.1 with ω := uqdσ+µ, together with
Theorem 4.4. Moreover, arguing by induction, we see that minimality
of such a solution follows immediately from its construction in Theorem
4.2 (cf. [19, Lemma 5.5]). �

Remark 4.6. When γ = 1, uniqueness of such a solution in u ∈
Ẇ

1,2
0 (Ω), follows from a similar argument presented in [19, Sec. 6] (see

also [6]), using its minimality together with a convexity property of the
Dirichlet integral

∫

Ω
|∇u|2 dx, which is comparable to the expression

∫

Ω
A∇u · ∇u dx due to the uniform ellipticity condition (1.2).

Applying the next theorem with ω := uqdσ+ µ yields Corollary 1.2.

Theorem 4.7. Let n ≥ 3, and ω ∈ M+(Ω) with ω 6≡ 0. Let G

be a positive Green function associated with L on Ω. Suppose that
u := Gω satisfies (1.3) for some 0 < γ ≤ 1. Then u ∈ Ẇ

1,p
0 (Ω) where
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p = n(1+γ)
n+γ−1

. If, in addition, |Ω| < +∞, then the assertion is valid for

1 ≤ p ≤ n(1+γ)
n+γ−1

.

Proof. The classical case γ = 1 is known, so we can assume γ ∈ (0, 1).
Observe that u is a positiveA-superharmonic function with zero bound-

ary values, and p = n(1+γ)
n+γ−1

∈ ( n
n−1

, 2). For each k ∈ N, set uk =

min(u, k), which is a positive A-superharmonic function of the class
L∞(Ω) ∩W

1,2
loc (Ω). Let {Ωk}

∞
k=1 be an increasing sequence of relatively

compact open subsets of Ω such that Ω =
⋃∞

k=1Ωk. Applying Hölder’s
inequality with the exponents 2

p
and 2

2−p
, followed by Sobolev’s inequal-

ity [17, Theorem 1.56], we obtain

‖(∇uk)χΩk
‖p
Lp(Ω) =

∫

Ωk

|∇uk|
p dx

=

∫

Ωk

|∇uk|
pu

(γ−1)p
2

k u
(1−γ)p

2
k dx

≤

(
∫

Ωk

|∇uk|
2u

γ−1
k dx

)
p
2
(
∫

Ωk

u
(1−γ)p
2−p

k dx

)
2−p
2

≤

(
∫

Ω

|∇u|2uγ−1 dx

)
p
2

‖uk‖
(1−γ)p

2

L
(1−γ)p
2−p (Ωk)

≤ c

(
∫

Ω

|∇u|2uγ−1 dx

)
p
2

‖∇uk‖
(1−γ)p

2

Lp(Ωk)
,

that is,

(4.20) ‖(∇uk)χΩk
‖
p−

(1−γ)p
2

Lp(Ω) ≤ c

(
∫

Ω

|∇u|2uγ−1 dx

)
p
2

,

where c is a positive constant independent of k. Since p >
(1−γ)p

2
, letting

k → ∞ in (4.20) yields the assertion by the monotone convergence

theorem. This proves u ∈ Ẇ
1,p
0 (Ω), which is obviously true for all

1 ≤ p ≤ n(1+γ)
n+γ−1

when |Ω| < +∞. �

The next proposition shows in particular that a pair of conditions in
(1.9) is sufficient for both (1.6) and (1.7).

Proposition 4.8. Let G be a positive lower semicontinuous kernel on
Ω× Ω which satisfies

(4.21) G(x, y) ≤ c I2α(x− y), ∀x, y ∈ Ω,

where I2α(·) = | · |2α−n is the Riesz kernel of order 2α (0 < α < n
2
) on

R
n, and c is a positive constant. Let β > 0. If ω ∈ Ls(Ω) is a positive
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function, where s = n(β+1)
n+2αβ

, then

(4.22) Gω ∈ Lβ(Ω, dω).

Proof. Observe that s = n(β+1)
n+2αβ

>
n(β+1)
n+nβ

= 1. Then

(4.23)

∫

Ω

(Gω)β dω ≤

(
∫

Ω

(Gω)βs
′

dx

)
1
s′

‖ω‖Ls(Ω),

where s′ = s
s−1

is the Hölder conjugate of s. Denote ω̃ the zero exten-

sion of ω to R
n. By (4.21) and the Hardy-Littlewood-Sobolev inequal-

ity, there is a positive constant C ≥ c such that

(4.24) ‖Gω‖Lβs′(Ω) ≤ C‖I2αω̃‖Lβs′(Rn) ≤ C‖ω̃‖Ls(Rn) = C‖ω‖Ls(Ω).

Combining (4.23) and (4.24) yields (4.22). �

Proposition 4.8 shows that (1.10) implies (1.8). Hence, Corollary 1.3
follows from Corollary 1.2.
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[12] T. Kilpeläinen, T. Kuusi, and A. Tuhola-Kujanpää, Superhar-
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