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Abstract

We study the Cauchy problem for the radial energy critical nonlinear wave equation in three
dimensions. Our main result proves almost sure scattering for radial initial data below the
energy space. In order to preserve the spherical symmetry of the initial data, we construct a
radial randomization that is based on annular Fourier multipliers. We then use a refined radial
Strichartz estimate to prove probabilistic Strichartz estimates for the random linear evolution.
The main new ingredient in the analysis of the nonlinear evolution is an interaction flux estimate
between the linear and nonlinear components of the solution. We then control the energy of the
nonlinear component by a triple bootstrap argument involving the energy, the Morawetz term,
and the interaction flux estimate.
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1 Introduction

We consider the defocusing nonlinear wave equation (NLW) in three dimensions

—Opu + Au =’ , (t,z) e R x R3
w(0,z) = f(z) € H(R®), oru(0,z) = g(z) € Hy H(R3).

The flow of nonlinear wave equation ([Il) conserves the energy

u(t, z)|? ot ) u(t,x)®
Elu](t) = ng Vet ol 1ot ol by, (2)

Since the scaling-symmetry u(t, z) — uy(t,x) = )\_%u(t/x\, x/\) of (Il leaves the energy invariant,
we call (Il) energy critical. Using Sobolev embedding, it follows that the energy of the initial data
is finite if and only if (f,g) € H:(R®) x L2(R3). Therefore, we refer to H}(R3) x L2(R?) as the
energy space.

If the initial data has finite energy, the nonlinear wave equation ([Il) is now well-understood. In a
series of seminal papers by several authors |1, 122, 123, 135, 136, 137, |41, |42, |44], it was proven that
solutions to ([l exist globally, obey global spacetime bounds, and scatter as ¢ — +00. In contrast,
the equation is ill-posed if the initial data only lies in H3(R3) x HS~}(R3) for some 0 < s < 1. For
instance, it has been shown in [14] that solutions to (II) exhibit norm-inflation with respect to the
H: x H: l-norm. Consequently, this shows that we cannot construct local solutions of () with
initial data in H x HS~! by a contraction mapping argument.

In recent years, there has been much interest in determining whether bad behaviour such as norm
inflation is generic or only occurs for exceptional initial data. To answer this questions, multiple
authors have studied solutions to dispersive equations with randomized initial data. In the following
discussion, we will focus on the Wiener randomization, and we refer the reader to the introduction
of [34] as well as |7, &, 110, 11, 131, 45] for related works.

Let us first recall the definition of the Wiener randomization from [4, 28]. We denote by @ =

[—1,1)? the unit cube centered at the origin. The family of translates {Q — k}eza forms a partition



of R (see. Figll). By convolving the indicator function X@ with a smooth and compactly supported
kernel, we can construct a function 1) € C%(R%) s.t.

Yl =1 Ylga_1ye=0, and > Y —k)=1.

keZd

L
=

Then, any function f € L2(R?) can be decomposed in frequency space as

F&) = Dl vEe-RFe) .

kezZd

If {gk}reza is a family of independent standard complex-valued Gaussians, the Wiener randomiza-
tion fyj, of f defined as

~

F& (€)== g€ — k) F(©) .
kezd

Thus, f;; is a random linear combination of functions whose Fourier transform is supported in unit-
scale cubes. The Wiener randomization has been used to prove almost sure local and global well-
posedness of nonlinear wave equations below the scaling-critical regularity. In [28, 29], Liihrmann
and Mendelson proved the almost sure global well-posedness of energy subcritical nonlinear wave
equations in R3. The first probabilistic result on the energy critical NLW was obtained by Pocovnicu
in [34], which treated the dimensions d = 4,5. This method was extended by Oh and Pocovnicu [33]
to the three-dimensional case. In addition to nonlinear wave equations, the Wiener randomization
has also been applied to nonlinear Schrédinger equations (NLS). Bényi, Oh, and Pocovnicu [3, 4, 5]
proved the almost sure local well-posedness of the cubic NLS in R?. This method was then extended
by Brereton [J] to the quintic NLS in R%. In [6], the authors proved the almost sure global well-
posedness of the energy critical NLS in dimensions d = 5,6. However, the global well-posedness
results above do not give any information on the asymptotic behaviour of the solutions.
In contrast, Dodson, Lithrmann, and Mendelson [19, 20] proved almost sure scattering for the
energy critical NLW. Their result holds in dimension d = 4 and requires that the original initial
data (before the randomization) is spherically symmetric. The main idea is to control the energy-
increment of the nonlinear component of w by a bootstrap argument involving both the energy
and a Morawetz term. The spherical symmetry is needed since the Morawetz estimate is centered
around the origin. However, the Wiener randomization breaks the spherical symmetry, so that fj,
is no longer radial. This method was subsequently extended to the energy critical NLS in dimension
d =4 by [20, 25).
In this work, we introduce a radial randomization that preserves the spherical symmetry of the
initial data. To this end, let us first define a family of annular Fourier multipliers.

Definition 1.1 (Annular Multiplier).
Let f e L2(R%), a > 0, and § € (0,1). Then, we define the operator Ag s by setting

—_

AusF(€) = Xfa,118)a) (1€]2) F(E) - (3)



In the left image, we display a partition of R? into unit-scale cubes, which forms the basis of the Wiener
randomization. In the right image, we display a partition of R? into annuli, which forms the basis of the
radial randomization.

Figure 1: Partions of R?

In addition, for any 0 < a1 < ag <, we also define the operator A by setting

a1,a2)

Ay e F(E) = Xqar.am (1€]2) £ (€) -

Instead of partitioning R into unit-scale cubes, the idea of the radial randomization is to decompose
R< into thin annuli (see Fig. ).

Definition 1.2 (Radial Randomization).
Fix a parameter v > 0 and let {g;}}~_, be a sequence of independent standard real-valued Gaussians.

For any f € Lfad(Rd), we define its radial symmetrization by

f“(x) = Z gk(w)A[kv,(kH)v)f(x) . (4)
k=0

There exist two natural choices of v: Choosing v = 1 leads to annuli of unit width, whereas choosing
v = 1/d leads to annuli of approximately unit volume.

We now make a few remarks on the properties of f“. First, since the Fourier transform of f“ is
radial, it follows that f“ is radial. Using the same argument as for the Wiener randomization [32,
Lemma 43], it is easy to see that the radial randomization does not improve the regularity of f.
More precisely, if s € R is such that f ¢ HS(RY), then f* ¢ H:(RY) almost surely. In light of
the unboundedness of the ball-multiplier (cf. , 121]), it is much harder to prove LP-improving
properties for the radial randomization than for the Wiener randomization. The probabilistic
Strichartz estimates for the random linear evolution exp(+it|V|)f“ will be derived from a refined
(deterministic) radial Strichartz estimate. In contrast to the Wiener randomization, the radial



randomization does not lead to a probabilistic gain of integrability in every non-sharp admissible
Strichartz space. Thus, we see a relationship between the geometric structure of the linear evolution
and the effects of the randomization, which was also discussed in [13].

Let us now formulate the main result of this work. In the following, we restrict the discussion to
the dimension d = 3. Let (f,g) € H? 4(R3) x H:'(R3) be the given (deterministic) initial data.
For technical reasons, we split the randomized initial data (f“,¢*) into low- and high-frequency

components. For the high-frequency component, we let

sin(t|V|)

F?(t,x) = cos(t|V])Psos f*(z) + T

P.ysg”(x) (5)

be the random and rough linear evolution. Next, we decompose the solution u of the energy critical

NLW into the linear component F“ and a nonlinear component v, i.e., u = F* + v. Then, the

nonlinear component solves the initial value problem
—0pv + Av = (U—FFW)E’ , (6)
v(0,7) = Pegs ¥, 0(0,z) = Pegsg” .

Note that the initial data in (6]) almost surely lies in the energy-space H L(R3) x L2(R3). The above
decomposition into a linear and nonlinear part is often called the Da Prato-Debussche trick [16]. In
the following, we analyze the solution v of the forced equation (@). Since u = F“ +wv, any statement
about v can easily be translated into a statement about wu.

Theorem 1.3 (Almost sure scattering).
Let (f,9) € HS4(R?) x H:'(R3), let 0 < v < 1, and let max(1 — %,0) < s < 1. Then, almost
surely there exists a global solution v of (@) such that

ve COHMR xR¥ N LPLR xR,  dwe CPLE(R x R?) .

Furthermore, there exist scattering states (vy,vy) € H(R3) x L2(R?) such that, if wk(¢) are the
solutions to the linear wave equation with initial data (voi,fuz—r), we have

H(U(t) — wi (t), 5t1)(t) — atu)i <t))HH;(R3)><L%(R3) —-0 as t— t+o0.

We remark that the restriction on s and the range for v are not optimal, see e.g. Lemma [.3] and
Remark For any (ug,u1) € Hrlad (R3) x L2 (R3), we can also replace the initial data in (€) by
(up + Peos f¥,u1 + Pcgeg®) . This implies the stability of the scattering mechanism of (IJ) under
random radial pertubations.

By using the deterministic theory and a perturbation theorem, the proof of Theorem [[.3] reduces
to an a priori energy bound on v, see |3, 19, 134]. We will discuss this reduction in Section [5l For

now, let us simply state the a priori energy bound as a separate theorem.



Theorem 1.4 (A priori energy bound).
Let (f,g) € HS (R%) x HS HR?), let 0 < v < 1, and let max(1 — 1%ﬁ/,O) < s < 1. Assume that
almost surely there exists a solution v of () with some maximal time interval of existence I. Then,
we have that almost surely
sup E[v](t) < oo . (7)
tel
We now sketch the idea behind the proof of the a priori energy bound, which relies on a bootstrap
argument. Let us fix a time interval I = [a,b] € R. We want to bound the energy increment

E[v](b) — E[v](a) by the maximal energy € of v on I. We will see that the main error term in the

energy increment is given by
f f Fevtoudadt (8)
1 JRs

In the following discussion, we argue heuristically and ignore all other error terms. Using a
Littlewood-Paley decomposition, we may assume that the linear evolution F“ is localized to fre-
quency ~ N. In dimension d = 4, Dodson, Lithrmann and Mendelson [19] used the Morawetz
estimate to control the energy increment. Following their idea, we may assume under a bootstrap
hypothesis that

_1
llal =60l (rus) S €

After directly applying the Morawetz estimate to (8], the best possible bound is ~ (F %)4E 5 ~ 5.
However, this cannot prevent the finite-time blowup of the energy. Following [33], we move the
time derivative onto the linear evolution Fy. First, we write 0y F = IV|F %, where F % is a different
solution to the linear wave equation. After neglecting boundary terms, we heuristically rewrite the
main error term as

ff (0, F%) 5dxdt—ff (IVIF%) 5dxdt~ff (IV[2F%) v* (|V|2v)dadt. (9)
R3 R3

By using the Morawetz term and the energy, we estimate

1~ 1 3. 1~ 1 2 1
| [ ot (91 e)dode] < el 19135 gz el =0l IV00 10k
3 1~
< W2 VIZFR | e (rxrs) € -

In this bound, the power of £ allows us to use a Gronwall type argument. However, even for smooth
and localized initial data, the linear evolution |V| 2 N only decays like (1 + [¢])~! and is morally
supported near the light cone |z| = |t|. Thus, the norm H\x|4 V| 2FNHL§L%O(I><R3) diverges logarith-
mically as the time interval I increases. Since the energy yields better decay for Vv than for v itself,
the logarithmic divergence cannot be avoided by placing fewer derivatives on v. Consequently, this
argument does not yield global bounds on the energy of v.

To overcome the logarithmic divergence, we introduce two additional ingredients. First, since



the radlal randomization preserves the spherical symmetry of the initial data, the linear evolu-
tion |V|2F v is spherically symmetric. Using this, we can decompose the linear evolution into an
incoming and outgoing wave, i.e.,

1~ 1 1~ 1~
VIEFR = o (Wll V12 E21E + lal) + WoulIVIZER)(e = Ja]))

Second, we use a flux estimate to control the integral of the potential v5 on shifted hght cones by
the energy. We now combine both of these tools by integrating the profiles \VVm[|V\ 2 F¥]12(r) and

|W0ut[|V|2F,‘f]| (1) against the flux estimate on t &+ |z| = 7. Under a bootstrap hypothesis, we
obtain the interaction flux estimate

1 W 1 Tw 1 W
| [ I PP otand < (IWlVE Y ey + Wan V13 F0) ey €
SR aR12
H

z XHg

1 £
2
We have not seen this estimate in the previous literature. It is reminiscent of the interaction
Morawetz estimate for the NLS [15], but it controls an interaction between the linear and nonlinear
evolution rather than the interaction of the nonlinear evolution with itself. We believe that similar

interaction estimates may be of interest beyond this work. Using the interaction flux estimate, we
bound

\V|2FN 4 (|V|z0)dzdt

= 1 1 ~
< = —Fw 3 5 5 w
~H|33‘8‘V|2 NHLEL;O(Ing)H|x‘3(|V‘2 N)3UHL6 (IxR3) (kg GUHLﬁ (IxR3) HVUHLOOLQ(IXRS)
EIN RS, i
< =[5V EFR? 16527%0] NERRNETCR
L3 L®(IxR3) HE xHy

- .5 L1
From the probabilistic Strichartz estimates, we will see that the semi-norm of F*“ scales like H, x Hj
and has a probabilistic gain of %—derivatives. Thus, we expect the regularity restriction

2 (5 1 1.1 _ 41 1
S>§'<z—§>+§'§—1 7y -

Outline.

In Section 2] we review basic facts from harmonic analysis. In Sections [Bland @ we study solutions
to the radial linear wave equation. First, we prove a refined radial Strichartz estimate which is based
on [40]. As a consequence, we obtain probabilistic Strichartz estimates for the radial randomization.
Then, we discuss the in/out decomposition mentioned above in detail. In Sections[Hland [6 we study
solutions to the forced nonlinear wave equation (6). We prove an almost energy conservation law
and an approximate Morawetz estimate. Here, we also introduce the novel interaction flux estimate
between the linear and nonlinear evolution. In Sections[7land 8 we set up a bootstrap argument to
bound the energy and estimate the error terms. Finally, we prove the main theorem in Section [0l
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2 Notation and preliminaries

In this section, we introduce the notation that will be used throughout the rest of this paper. We
also recall some basic results from harmonic analysis and prove certain auxiliary lemmas.

If A and B are two nonnegative quantities, we write A < B if there exists an absolute constant
C > 0 such that A < CB. We write A ~ Bif A < B and B < A. For a vector z € Rd, we write
|| := (Z?:l 3:22)% We define the Fourier transform of a Schwartz function f by setting

f(&) = — JRd exp(—iz€) f(z)dz .

T on?

We denote by J,(z) the Bessel functions of the first kind. Recall that for a spherically symmetric
function f we have

fle) = |£I%f0 Jd%g(|g|r)f(r)r%dr :

With a slight abuse of notation, we identify a spherically symmetric function f: R* — R with a
function f: R.g — R.

2.1 Littlewood-Paley theory and Sobolev embeddings

We start this section by defining the Littlewood-Paley operators Pr. Let ¢ € C%(R?) be a nonneg-

ative radial bump function such that ¢|p,1) =1 and ¢ga\ g 2) = 0. We set ¥1(§) = ¢(§) and, for
a dyadic L > 1, we set ¥ (§) = gb(%) - (b(%) Then, we define the Littlewood-Paley operators Pr,
by

~

Prf(€) = Ur()F () .

To simplify the notation, we also write fr, := Prf.

Lemma 2.1 (Bernstein Estimate).
For any 1 < p; < ps < w0 and s > 0, we have the Bernstein inequalities

d4_a
VL >1: I fLlppe may < LPr P2 | fill o1 ay
VL >1: IV frl e ey ~ Lol @ey
VL > 1: IV fLll oy gay ~ LIfL] 21 (e

Lemma 2.2 (Square-Function Estimate, see [30, Theorem 8.3]).
Let 1 < p < c0. Then, we have for all f € LL(R?) that

HfHLg;(Rd) ~dp HfLHLy%(RdwN) : (10)

8



For notational convenience, we use a different function to define a dyadic decomposition in physical
space. As before, we let x € C*(R?) be a nonnegative, radial bump function such that y| BO,1) =1
and X\Rd\ B(0,2) = 0. We also assume that x is radially non-increasing. We set x1 := x, and for any
dyadic J > 1, we set x.j(z) := x(%) — x(2). Thus, the family {x} s> defines a partition of unity
adapted to dyadic annuli. Furthermore, we let X be a slightly fattened version of x .

Lemma 2.3 (Mismatch Estimate).
Let L, J, K € 2Yo. Furthermore, we assume that the separation condition % + % > 25 holds. Then,
we have for all 1 < r < oo that

IXSPLXE | Ly () (rty Sar (LJK)™™ forall M >0 . (11)

We follow the argument in |20, Lemma 5.10], which treats the case L = 1.

Proof. Let f € L"(R?) be arbitrary. Let ¢ be a suitable bump function on the annulus |z| ~ 1.
Using the separation condition, it holds that

XsPrxK f(x) = xs(z)L? fRd U(L(z —y)xx ) f(y)dy

@I | (e = ) plmax(LK) (@ = ) () )y

From Young’s inequality, it follows that
IxsPrxe oy may < L0 (La)o(max(J, K) ™ )| 1 gay | f | g ey -
Next, we estimate
| L0 (La)p(max(J, K) )| 1y

=4 fRd 0 (Lz)|p(max(J, K) " z)da

= fRd 10 (2)|o(L " max(J, K) ™ 'z)dz

-| ()]
|z|~L max(J,K)
<wm (Lmax(J, K))™ .
O
Lemma 2.4 (Bernstein-type estimate).
Let Le2Y 1 < p < oo, and a > 0. Then, we have that
[<) ™ P fl1pmay S L7HKE) ™Vl pay + L7HKE) ™ flp ey - (12)

9



By iterating this inequality, we could further decrease the weight in the term [{z)=*"! f[ ».

Proof. The proof is based on a dyadic decomposition, the localized kernel estimate (II]), and the
standard Bernstein estimate. We have that

[<z)™* PLS | 7p gy S Z TP s PLf e gy
J=1

['s} p
Z T PIxsPLXTfp gy + > Jap( > XJPLXKng(Rd)> - (13)

J=1 J=1 K: KxJ
We now estimate the first summand in (I3]). Using the Bernstein estimate, we have that

0
Z J_apHXJPLS(TJf”IEg(Rd)
J=1

0
< 2 T NP g
J=1

a0
< 2 I PLPIVRIN ey
J=1

Z T PRIV 1 gy + Z T PLP IV (XD e gy

J=1 J=1
Z T PLPIV ey + Z TP L £
J=1 J=1

< L)V o gay + LK) f I gy

Thus, it remains to estimate the second summand in (I3]). Using (II]) and choosing M > 0 large,
we have that

. p
Zj—ap< 3 XJPLfoLg(Rd)>

J=1 K:KxJ
0 p

< zjap< > <JKL><M+a“>u>a’<fuL;(Rd>>
J=1 K:KxJ

0
< L™ (M+a+1)p Z J (M+2a+1)p (Z K~ ) ||<l‘> a— lfHLP(Rd

J=>1 K>1
< LKy 1 p -

10



In Section B2, we will use a Littlewood-Paley decomposition in an error term coming from the
Morawetz estimate. To control this error, we will need the following estimate for the Morawetz
weight x/|x|.

Lemma 2.5.
Let L > 1 and let d > 2. Then, we have that

()<

Proof. Let j =1,...,d. It holds that

P ()| = 1

J
]

f E;(Ly)wdy‘
Rd |z -yl

[ b (222 2)a)
Rd lz—yl |zl

<Ldj |CI/’(Ly)| !Ej(|l‘|—|$—y|)—yj|l‘|
Rd [z — yl|z|

_

dy

b4 Y
<Ldf B (Ly) Yy
R4 |1L"—y|

X, |y
< \VJ —dy .
fd| (?J)||[ | Yy

Using the rapid decay of \Tf, the estimate then follows by splitting the integral into the regions
L
[yl < %5, Iyl ~ Lle|, and |y| > 2Lle].
O

In addition to the standard Sobolev embedding, we will also rely on the following weighted Sobolev
embedding for radial functions.

Proposition 2.6 (Radial Sobolev Embedding, see [17, Remark 2.1] and |18]).

Letd>1,0<s<d,1<p<oo,a<l%,6>—§,a—ﬁ>(d—l)(%—%),and%:%—ka*g*s If
p < g < o0, then the inequality

lel? fllzg < Wl=*1V P £l e (15)
holds for all radially symmetric f. If ¢ = 00, the result holds provided that a — 8 > (d — 1)( % - %)

2.2 Calderén-Zygmund theory

In order to use weighted estimates, we introduce some basic Calderén-Zygmund theory.

11



Definition 2.7 (|39, Section V]).
Let w e L{ .(R%) be nonnegative. For 1 < p < o0, we say that w satisfies the A,-condition if

loc
1 1 CON\Y
_b P
sup —j wdy) (—j w de> <. 16
B_Br<m><|B| 5 B ), (16)

The following well-known criterion for power weights can be proven by a simple computation.

Lemma 2.8 (|39, Section V.6]).
Let w = |z|* and let 1 < p < 0. Then w satisfies the A,-condition if and only if

—d<a<dp-1).

The following proposition is a consequence of [30, Theorem 7.21] and the proof of [30, Theorem
8.2]. We also refer the reader to [39, p.205].

Proposition 2.9 (Mikhlin-multiplier theorem).
Let m: R¥\{0} — C be a smooth function. Assume that m satisfies for any multiindex y of length
Iy <d+2

[@m(€)] < Ble[7 .

Let m(V/i) be the associated Fourier multiplier and let 1 < p < co. For any A,-weight w, there
exists a constant C' depending only on d, p, and the supremum in ([I6]), such that

MV /i) fl o wdzy < CB|flrowar) V€ SRT).

Remark 2.10.
We will apply Proposition 2.9] to the Riesz multipliers m;(§) = & and to the Littlewood-Paley

H
multipliers U (&).

3 Probabilistic Strichartz estimates

In this section, we derive probabilistic Strichartz estimates for the radial randomization. For the
Wiener randomization, there exist two different methods for proving probabilistic Strichartz esti-
mates.

The first method relies on Bernstein-type inequalities for the multipliers f — (V/i — k)f. Af-
ter using Khintchine’s inequality to decouple the individual atoms of the randomization, the L%-
improving properties of the multiplier are used to move from a space L{LE" into a space LiLEe.
Then, one applies the usual Strichartz estimate to control the evolution in L{L%"°, which depends
more favorably on the regularity of the initial data. For example, this method has been used in
13, 4, 15, 6, 25, [28].

12



Q

We display the radial Strichartz estimate from Proposition Bl The true endpoint estimates correspond to
either green spheres or black lines, whereas the false endpoint estimates correspond to either red spheres or
red lines. The black sphere at (1/2,1/2,0) serves as a visual aid.

Figure 2: Weighted Radial Strichartz Estimate in d = 3.

The second method relies on refined Strichartz inequalities. Here, the frequency localization is used
explicitly to derive improved Strichartz estimates. To mention one example, the refined Strichartz
estimate in [27] is based on a new L. — L®-dispersive decay estimate. In the probabilistic context,
this approach was first used in |19].

For the radial randomization, the multipliers are of the form f — A,sf. In a celebrated paper
[21], Fefferman proved that the annular Fourier multipliers in dimension d > 2 are bounded on L?
if and only if p = 2. However, if we restrict to radial functions, then the annular Fourier multipliers
are bounded on LP for all 2d/(d + 1) < p < 2d/(d — 1), see [12]. Using Young’s inequality, it is also
possible to prove L. — L% bounds for p > 2d/(d + 1). From interpolation and duality, one can then
obtain the strong-type diagram for the annular Fourier-multipliers on radial functions. However,
the dependence of the operator norm on the normalized width § is rather complicated, and the
resulting Strichartz estimates are non-optimal. Instead of using the Bernstein-based method, we
therefore prove a new refined Strichartz estimate for radial initial data. As in previous works, we
can then use Khintchine’s inequality to obtain probabilistic Strichartz estimates.

Proposition 3.1 (Refined Radial Strichartz Estimate).

Let f € L2 ((RY). Let 0 < § < 1 and assume that there exists an interval I [%,2] such that

13



1| < 6 and supp f < {&: |€]2 € I}. Then, we have that

11
[l2|* exp(£it| V) fllLore mxray Saqp 62 =@ | f] 12 ra) (17)
as long as
d 1 1 1
—<a<(d-1)|=z—=-]—- if 2<¢g,p< 18
p ( ) <2 p) q (18)
d 1 1
——<a<(d—1)<———> if g=0,2<p<w (19)
p 2 p
d—1 1
0<a<T—— if 2<¢g<oo,p=w (20)
q
d—1
0<O¢<T it g=p=o. (21)

The estimates of Proposition 3.1l can be visualized using a “Strichartz game room”, see Figure
2l Proposition 3.1] is a refinement of [24, Theorem 1.5] and [40, Proposition 1.2], and we follow
their argument closely. We remark that the corresponding Strichartz estimate for non-frequency
localized functions |24, Theorem 1.5] may fail for some of the endpoints above.

Proof. By time-reflection symmetry, it suffices to treat the operator exp(it|V]). Recall that we
denote by J, the Bessel functions of the first kind. For any radial function f € L2 ,(R%), we

rad
identify f with a function f: Rsg — R. Then, it holds that
. a2 [* . A L d
exp(it|V|)f(r) =7~ 2 . exp(itp)Ja_2(rp)f(p)pzdp (22)
Inserting the known asymptotics for Bessel functions (cf. [24]), we may estimate
_aa [T ) P
(1+7r) 2 . exp(i(t £ r)p)m(r; p)é(1 4y(p)f(p)dp - (23)

Here, qﬁ( 1y s a smooth cutoff-function that equals 1 on [1/2,2] and is supported on [1/4,4], and
47

m(r; p) is a smooth function that satisfies |0£m(7‘;,0)| <; 1 for all j > 0. Since supp f < [%,2], we
may write
R 1 [ .
flp) = Z cx exp(ikp), where ¢, = 2—] exp(—ikp)f(p)dp . (24)
T Jo
keZ
Inserting (24]) into (23]), we have to bound

a1 2m
S F e | explilt £ 1+ kip)m(ri oy (0)d (25)
keZ 0
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Integrating by parts 2M-times, we have that

27
" expite 7+ By (o] ar (1 e+ 1)

Therefore, we obtain that
e exp(it\Vl)fHLP(Rd
d—1
<A+ T T (Lt 4 k)2 Merl pa @ooxz)

—1

<IA+r) T T e+ b+ )M ekl Lz @aoxz) (26)
where we have used Holder’s inequality in the k-variable. Since o + % > —= 1f 2 < p< oo,
a = 0 if p = o0, we obtain for sufficiently large M that

d—1 4 d=1 a+7

[ +r) 2 e At e k) M@y S A+ [t+E)T Gt + k|
From the embedding Eznm(p D, Ei and Minkowski’s integral inequality, we obtain that
[|z[* exp(it|V]) fll La L2 (rxra)
SN+ [+ kD) + KT Ck”LqZp(RxZ)
I [t KT+ K 6l i g
S llewlpmine.o) ) - (27)
From Plancherell’s theorem and the support condition on f , we have that

1 2T .
2 _ 1 29 1rl2
ey = 3 | 1F a0 ~ 1513 e

Furthermore, since supp f is contained in an interval of size < d, we have that

1 P 1
lerlezey < 57 | 1FONdp < 8113

Then (I7) follows from (27)) and Hélder’s inequality. O

Remark 3.2.

We note that there is no é-gain for ¢ = 2. For instance, this follows from a non-stationary phase
argument by choosing f as the inverse Fourier transform of x[; 145 (|§]). As a consequence, we
obtain no probabilistic gain for Strichartz estimates with parameter ¢ = 2, see Lemma B4l This
indicates that the spherical symmetry imposes restrictions on the randomized linear evolutions. We
therefore view the radial randomization as a modest step towards probabilistic treatments of the
geometric equations discussed in [13].
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Corollary 3.3.
Let fe L2 (R%) and Ags as in @) with a ~ N. If o, p, and ¢ satisfy ([I8)-(21]), then

rad

d 1 i1
||]* exp(£it|V]) Aa,s fLare < N277a7p 527 mm0 |Agsf e - (28)

Proof. For any g € L2 4(RY), we have that

Aasg(x) = <A%,5 (9 (N))) (Nz) .

From scaling and (I7]), it then follows that
d 1 d 1 1
Iz]* exp(it[V|) Ags fll are < N2 052w | f] s
Finally, replacing f by A, sf above, we arrive at (28]). O

Lemma 3.4 (Probabilistic Strichartz Estimates).

Let f e HS ;(R?) with
d 1 d 1/1 1
>4 1 d_ . el )
2 q p 7\2 min(p,q)

where « is as in Definition [Tl Let o and 2 < p, ¢ < oo satisfy (I8)). Then, we have for all 1 < o < 0
that

[lz* exp(£it| V) f“ g Loz Spacs VO flls@s) - (30)

Proof. We prove (30) only for o > max(p,q). The general case then follows by Hélder in the w-
variable. From the square-function estimate (Lemma [2.2]), Minkowski’s integral inequality, Khint-
chine’s inequality, and Corollary B3] it follows that

[||* exp(£it|V]) f*] g pare

[|2|* exp(£it|V ) ¥l Lgroree,

< || exp(£it| V) [ ez, orz g

< Vel exp(£il V) A filia o1

< Volx|* exp(£it|V]) Ap fnllez 2 pare
\/E\\Ng_o‘_%_g (N_%> 2 AkaHefveng
< Vo|N*fnle ra

Vol fllag -

We remark that f7 is only localized to frequencies < 1, so that the inhomogeneous Sobolev norm
above is necessary. O

N

N
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Lemma 3.5 (Probabilistic L°-Strichartz Estimates).
Let fy € L2 4(R3) and let f% be its radial randomization. Then, we have that

rad

3 . 3_ 1
llalf exp(£it VI S51 s < VoNTE s

wt xT

1 . 1—-L
Il exp(£it| V) [N g rare S VoN—F [ fnlLz ,

Remark 3.6.
Since p = o0, we can no longer use the usual combination of Minkowski’s integral inequality and
Khintchine’s inequality. We resolve this by using a radial Sobolev embedding.

Proof. Let 1 < p < o0 be a sufficiently large exponent. Using Proposition and Lemma 3.4 , we
have for all p < o < oo that

3 . 3 . 3 3_ 1
4R exp(iztlv\)f%HLg 5 Sl exp(ilt\vl)lv\”fﬁHLngLg SVONT S| fnl 2.

L7 LE t

Note that, due to scaling, the parameter p does not appear in the final estimate. Similarly, we have
that

1 . 1 . 3 1—-L
llz]% exp(£it| V) [l g rare < Ilels exp(£itl VIV [l g rare < VN 2| fnlrz -

O
Lemma 3.7 (Probabilistic L{°-Strichartz Estimates).
Let f e L2 ;(R?) and let § > 0. Then, we have for all 1 < ¢ < 0 and all N € 2Z that
4
|exp(it| V) ¥l grere S VON' 7 | fwlez (31)
1 ) -1
]2 exp(+it|V|) fif | Lgrre <o VON'" = [ fnllzz - (32)
Remark 3.8.

Since ¢ = 00, we can no longer use the same combination of Minkowski’s integral inequality and
Khintchine’s inequality as in the proof of Lemma B4l The same problem was encountered in
previous works using the Wiener randomization. In [33, Proposition 3.3|, a chaining-type method
was used to bound L-norms on compact time intervals. In |25, Proposition 2.10], the authors
obtain global control on an L{-norm via the fundamental theorem of calculus. Here we present a
slight modification of their argument. An alternative approach consists of using a fractional Sobolev
embedding in time [20)].
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Proof. Let 1 < g < o be sufficiently large and assume that o > ¢q. We fix tg,t; € R. By the
fundamental theorem of calculus, it holds that

| exp(ita V) filLs < |exp(ito| VI) ¥ s +j |0t (exp(it|V 1) F§) | g dt

[to,t1]

< [l exp(ito| V) f§ ] s + N j[ eV g
to,t1

1 ] »
< |lexp(ito| V) fRllLe + N(t1 — to) 7 || exp(it|V]) fRll Lo rs mxrs) -

By taking the g-th power of this inequality and integrating over tq € [t; — N !, ¢; + N~1], we obtain
that
Jexp(its (V1) /517 < N explHVI L gz -

Taking the supremum in #; and using Lemma [B.4] it follows that

. 1 . 1—L
XPL=L NlLgL®Ls = X NILgLIL8(RxR3) = VO NlL2 -
| exp(£it| V) ¥l grers S Nl exp(t|V) g rors@xrs) S VoN 5| fn]

Using the radial Sobolev embedding (Prop. 2.6)), Proposition 2.9] and the same argument as before,
we obtain that

1 . 1 . 3
[l2> exp(£it V) [¥ | gLz < l2]> exp(£it| V)V Rl pg e r

1030001 :
< Nata[a]2 exp(Lit|V]) ¥l g rors

=5 (3-3)
S VoN' f g

This completes the proof of the second estimate. O

4 An in/out decomposition

In this section, we describe a decomposition of solutions to the linear wave equation into incom-
ing and outgoing components (see Figure [3)). This decomposition relies heavily on the spherical
symmetry of the initial data. The in/out-decomposition can be derived in physical space by us-
ing spherical means, see e.g. [38]. However, for our purposes it is more convenient to derive the
decomposition in frequency space. A similar method has been used for the mass-critical NLS in
[26].

Let f € L2 ;(R3) be spherically symmetric. Using the explicit expression .J 1 (x) = \/% sin(z) (cf.

[2]), it follows that
cos(t|V[) f(r)

18
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in out in /@c
\

?

r

We display the in/out-decomposition for radial solutions of the linear wave equation in d = 3. The blue lines
correspond to incoming waves and the red lines correspond to outgoing waves. The incoming wave will be
reflected at the origin and transformed into an outgoing wave.

Figure 3: In/out-decomposition

=t [ costta)y (o) Fo)rip

\ﬁ —f cos(tp) sin(rp) f(p)pdp

- — ;jo (sin((t + )p) — sin((t — )0)) F(p)pdp

Jun

By defining

Wi[h](T) sin(7p)h(p)pdp , (33)

- 7= ), o
it follows that

cos(t|V])f = —< JAIE ) = Wl F1(E =) -

Next, let us derive the corresponding decomposition for the operator sin(t|V|)/|V|. Let g € H; '(R?)
be spherically symmetric. Then,

sin(t|V])

gy = [ sty 00 ap

- \f f sin(tp) sin(rp)g(p)dp

_ E? L (cos((t — r)p) — cos((t + )p))a(p)dp

19



By defining
WLlh](r) = # fo cos(rp)h(p)pdp |

it follows that
sin(t|V|)

v 97 T (=Welp gl 4+ ) + We[p gt — 1))

(R?) x H-L(R3) is

Thus, the solution F of the linear wave equation with initial data (f,g) € L? rad

rad
given by

F(t,x) = 3 (Wl A1 + ) = Welp ™91t + 1) = WLl It = 1) + Welp ™31t 7))

Definition 4.1 (In/out-decomposition).
Let (f,g) e L2 (R®)x H r_a(li (R3) and let F be the corresponding solution to the linear wave equation.

rad

Then, we define

WinlF1(1) = W[ f](r) = Welp™'5](7)
Wout[F](1) = =WL[f1(r) + We[p~'3](7) .

As a consequence, we have that
1
B(t,z) = — (Wil F](t +7) + Wou[F](t = 7)) - (34)

Even though Wi, [F] equals —Wq,[F'] we introduced to different notations to serve as a visual aid.
This also allows us to savely leave out the arguments ¢ + r and ¢t — r in subsequent computations.
From Plancherell’s theorem, it follows that

IWs[h]() L2y + IWel Pl L2m) S lphl L2 -0 - (35)

As a consequence, we have that
IWin[F1(T)l 22 r) + IWous[F1(T) 22 ) < 1fL2re) + 190 171 (g3 - (36)

In the analysis of the Morawetz error term (see Section B2)), we will need to control an interaction
between VF' and the nonlinear part v. However, the individual components of VF' are not radial.
To overcome this technical problem, we write

O F(t, )
= %@,F(t,r)
= —x—é (Wout[F(t —7) + Win[F(t + 7)) + % (—(0-Wowt[F])(t — 1) + (6-Win[F])(t + 7))

T
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After a short calculation, we see that

oWl f1(7) = Welpf1(7) and 0 We[p~'3)(r) = —Wi[g](7) -

Then, we define

Win,v[F1(7) := Welpf](1) + Ws[g](7) , (37)
Wou v [F1(7) := W[pf](1) + Wi[4](7) . (38)

Using these definitions, it follows that
0a, F(t,2) = =P (t) + = (Wour 0 [F)(t = 1) + Wan g [F](t +7) - (39)

Using the same argument as above, we have that

[Wout v [F1(M)l 2®) + [Win v [F1(M)l 2y < 1f1 2 sy + l9lc2 sy -

Lemma 4.2. R
Let f € L2 4(R3) be such that supp(f) < {£: [¢] € [a, (1 + §)a]}. Then, we have for all 2 < ¢ < ©
that

WL s ey + IWelF ) ey S (a8)F 7] L2 s, - (40)

Proof. Using Holder’s inequality, we have that

(14+d)a

WA WA < [ 1o < (a)} (f |f<p>|2p2dp)§ — (a0)}] Floz -

a
This proves (40]) for ¢ = o0. Together with (30]), the general case follows by interpolation. O

Lemma is the analog of the square-function estimate [19, Lemma 2.2] for the Wiener random-
ization. However, since f is radial, it is much easier to prove.

Corollary 4.3 (Improved integrability for the in/out decomposition).
Let fe L2 (R3). Then, we have for all 2 < ¢ < oo that

rad

1 1

_ 1yl 1
IWS L1 g o + IWelFE1 (D 1o e < NO7ETD) vl gs) -

Proof. As in Section Bl we restrict to the case ¢ < ¢ < o0. Using a combination of Khintchine’s
inequality, Minkowski’s integral inequality, and Lemma [4.2] we have that

W% ()l g s
< [WelfX (D)l e rg
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< Vo | W[ Arfn](T) | Lag
< Vo |WilAefn](T)] 2 e

1_1

s NI A v e

The same argument also works for We[f%](7). O

Remark 4.4.
For v = 1, Corollary B3| shows that W[ f§](7) € Nycyeq L#(R) almost surely for all f € H (R3).

rad
This holds because the radial randomization is similar to a Wiener randomization of the function

flr)r.

5 Local well-posedness and conditional scattering

Recall that the forced nonlinear wave equation is given by

(41)

—0yv + Av = (v+ F)° | (t,z) e R x R3 .
v(to,z) = v € HA(R?),  du(to,z) = vy € L2(R3) .

In this section, it is not important that F' solves a linear wave equation. However, this will be
essential in Sections [GHIL

Lemma 5.1 (Local Well-Posedness).
Let (vo,v1) € HL(R?) x L2(R?) and assume that F € L} LI°(R x R3). Then, there exists a maximal
time interval of existence I and a corresponding unique solution v of (AIl) satisfying

(v, 0pv) € (CtOH;(I x R3) n LilocL:lco(I x R*)) x CYL2(I x R?Y) .

Moreover, if both the initial data (vg,v1) and the forcing term F' are radial, then v is also radial.

The proof consists of a standard application of Strichartz estimates, and we omit the details. We
refer the reader to [19, Lemma 3.1] and [34, Theorem 1.1] for related results. In [34] the stability
theory for energy critical equations was used to reduce to the proof of almost sure global well-
posedness to an a priori energy bound. Similar methods have also been used in [3, (19, 20, [25, 33].

Proposition 5.2 (|19, Theorem 1.3]).
Let (vo,v1) € HE(R?) x L2(R3) and F € L} LI1°(R x R3). Let v(t) be a solution (@I]) and let I be its
maximal time interval of existence. Furthermore, we assume that v satisfies the a priori bound

M :=sup E[v](t) < © . (42)
tel
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Then v is a global solution, it obeys the global space-time bound

HU”LgL;O(RxRB) < C(M,||F| LfL;O(RxRB)) <0,

and it scatters as t — +o0.

Theorem 1.3 in |19] is stated for the energy critical NLW in d = 4. However, the same argument
also yields Proposition We point out that the proof crucially relies on the deterministic theory
for the energy critical NLW [1, |44].

6 Almost energy conservation and decay estimates
In this section, we prove new estimates for the solution to the forced NLW

{—attwmz (w+F)5, (tz)eRxR3. )

v(to,z) = vg € HA(R?),  Qu(to, ) = vy € L2(R3) .

In contrast to Section [, we now assume that F' is a solution to the linear wave equation. Recall
that the stress-energy tensor of the energy critical NLW is given by

7% .= % ((60)? + |Vo]?) + %vﬁ ;
79 = —dw Ox;V

ik djk 2y, ik 6
T := 0p,v Opyv — T(—att + A)(v7) + ?” :

In the above tensor, we have that j,k = 1,2,3. If v solves the energy critical NLW (), then the
stress-energy tensor is divergence free. This leads to energy conservation, momentum conservation,
and several decay estimates, such as Morawetz estimates, flux estimates, or potential energy decay
(see [38,143]). If v solves the forced nonlinear wave equation (43]), then the stress-energy tensor is
no longer divergence free. However, the error terms in the divergence are of lower order, so that
we can still hope for almost conservation laws and some decay estimates. More precisely, with
N = (v+ F)® — 15, it follows from a standard computation that

T + 0, T% = —Néow (49)
, . 1
o170 + 0, TIF = Nog,v— 56%, (Nv) . (45)

For our purposes, the most important quantity measuring the size and regularity of v is its energy

1 1 1
Elv](t) = j§|Vv|2 +5lonl? + gl

23



For future use, we also define the local energy as

1 1 1
e[v](t) := f' ~ |Vl + §|8tv|2 + 6|v|6dx .

ol<ft] 2
Next, we determine the error terms in the almost energy conservation law.

Proposition 6.1 (Energy Increment).
Let I = [a,b] be a time interval and v: I x R — R be a solution to the forced nonlinear wave
equation (43]). Then, we have that

[E[v](b) — Elv](a)] (46)

ff (6tF)v5dxdt‘+ff FI2(|F| + |o])?|oroldadt .
I JR3 I JR3

< | Flpers rxr3) Stu})E[’U](t)% +
€

The first summand on the right-hand side of (46l has a lower power in the energy. After placing
the random linear evolution in L¥ LS (R x R3), it can easily be controlled via a bootstrap argument.
The second summand is the main error term in this almost energy conservation law, and we will
control it in Section Rl Finally, the third summand in (46]) only includes lower order error terms,
and they are controlled in Section [R4l

The idea to integrate by parts in the energy increment has previously been used in [20, 25, [33].

Proof. From the divergence formula ([44]), it follows that

%E[U](t) _ % fRS T 2)da

= — Noyvda
R3
= —5J Fvtopvdr — J (10F2213 +10F30% + 5F% + F5) orvdz .
R3 R3

Integrating in time, we obtain that

3
|E[v](b) — E[v](a)] < LJR FUA‘c?tvda:dt‘ + LJRB \E(|F| + [v])3|0pv|dadt (47)

The second summand in ([{7)) is already acceptable; thus, we now turn to the first summand. Using
integration by parts, we have that

ff FUA‘c?tvda:dt‘
1 JRrs3

ff F@t(vE’)d:Edt‘
1 Jr3

5
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< (915( ) 5d:17dt‘ ~|—j |F|(b, x)|v|° (b, 2)dx ~|—j |F|(a, z)|v]’ (a, z)dz
R3 R3
5
OUF) o] + Pl s sup BLLL(0F
R3 tel
Thus, the contribution of the first summand in (7)) is also acceptable. O

By contracting the stress-energy tensor against different vector fields, one sees that solutions to the
energy critical NLW obey a range of decay estimates. One of the most important decay estimates
in the study of dispersive equations is the Morawetz estimate, and it has been used to prove almost
sure scattering in [19, 20, 25]. For the reader’s convenience, we recall a classical Morawetz identity.

Lemma 6.2 (Morawetz identity).
Let I = [a,b] be a given time interval, and let v: I x R3 — R be a solution of (@3]). Then, we have
the Morawetz identity

6
gff v—dxdt—l—ﬂf \v\z(t,o)dtJrff IV g2t (48)
1 Jrs |7 I I
b
= Oy 2L v - 4ic?tfuda; ‘ —j N L Vodzdt — j J —Nvdxdt
|z| |z| t=a I R3

RS ] ]

Here, Vangv := Vv — ﬁ - Vv denotes the angular component of the gradient of v.

The lemma follows along a line of standard computations using ([@4)) and ({43]), see e.g. [43]. We
now rewrite the error terms in (48)) more explicitly in terms of F', and group similar terms together.

Proposition 6.3 (Morawetz Estimate).
Let I = [a,b] be a given time interval, and let v: I x R3 — R be a solution of (@3]). Then, we have
the Morawetz estimate

6
ff—lma
I JR3 |35\

< sup Efv
tel R3 |35\

\ﬂhﬁ+WHM&+ FEF]+ o) (12 4190 - (50)
H H (&

The second summand in ([49) is the main error term in this estimate, and we will control it in
Section In contrast, the error terms in (B0]) are easier to control, and they will be handled in

Section R.4l

5dxdt‘ (49)
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Proof. To prove the proposition, we have to control the terms on the right-hand side of ([@8]). First,
using Hardy’s inequality, we have that

b
O . Vv — 4iatvdx ‘
e Y Tl 2] e

v
< [0wv(t) L 2 (1 xr3) [ VU] Lo L2 (1 xr3) + Hatv(t)HLQOLg(IxRB)HmHLgOLg(IxH@)

< sup E[v](t) .
tel

Thus, the contribution is acceptable. Second, we have that

./\/'i . Vvdxdt’

x

RS
gfffw—-wmm‘ff\ﬂ\m+wpwmma
R3 2]

s f f x:lt‘ f f u ‘ |F| + \U\) \Vv\dazdt
R3 ‘Z’|

s JJ < ) ’ xdt’ Jj |1 | |1 |+ |U|) |Vv|d:17dt
R3

< JJ 5(1.’17(]t’ JJ |"U‘5dxdt+ JJ ‘ ‘ | | ‘?}‘) |§7U|dxdt
R3 |£I7| RS | | F F +

Thus, the contribution is acceptable. Finally, we have that

1 1 1
—NMM4SJJ-—WMH+WWMM&$ff-—WMN+WWM&.
7 Jrs |z 7 Jrs |z

1 Jrs |2
O
In contrast to the case d = 4 as in |19, 220], the energy and the Morawetz term are not strong

enough to control the main error terms. In addition, we will rely on the following flux estimates
on light cones.

Lemma 6.4 (Forward Flux Estimate).
Let v be a solution of (43]) on a compact time interval I = [a,b] < [0,00). Then, we have that

: J WO(t, x)do(t, ) < e[v](b) — e[v](a) + j ow ((v+ F)® — ) dadt . (51)
|x|=t,tel

|x|<t,tel
Remark 6.5.

The flux estimate is a monotonicity formula based on the increment of the local energy. The term
on the left-hand side of (GI) describes the inflow of potential energy through the light cone.
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This figure displays the quantities involved in the forward flux estimate. The local energy at times ¢ = a,b
is the integral of the energy density over the red regions. The flux is the integral of v% over the blue region
in space-time. Using the stress-energy tensor, we can control the flux by the increment of the local energy.

Figure 4: Forward Flux Estimate

Proof. We have that

d
L epin
- J ~ SIVu? + S0 + §v[bdo(t, z) + J » 0;Vv Vv + dyvdpw + v’ dpvde

- J UVl + 1af2 — 8 Vo - 7 + Holfdo(t, 2)
|z|=t
+ j Opv(Opv — Av + v5)dx
lz|<t

> J L $v[Cdo(t, ) + j drv(—(v + F)? +v°)dz .

lz|<t
Integrating over ¢ € I, we arrive at (GI). O

The estimate (B1]) by itself is not useful. Indeed, it only controls the size of v on a lower-dimensional
surface in space-time. We will now use time-translation invariance to integrate it against a weight
w e LL(R).
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Wout[|V|Fx]
T

We display the idea behind the interaction flux estimate. By using the time-translation invariance of the
equation, we can control v® on the blue region of each shifted light cone. Then, we integrate the forward flux
estimate against a weight w depending only on the shift 7. Since the outgoing component Wey [|V|Fn](t—|z|)
is constant on forward light cones, we choose w = |Weu[|V|Fn]|2.

Figure 5: Interaction Flux Estimate

Proposition 6.6 (Forward Interaction Flux Estimate).

Let v be a solution to the forced NLW (43]) on a compact time interval I = [a,b] < [0,00). Also,
let w € L1(R) be nonnegative. Then, we have that

j jsw(t — |z])|v[°(¢, z)dzdt

< Jwlza e 59p ELIO) + el 1P . sup EL0] 0)F (52)
t—|x]
f (1)dr | a(F)oPdadt| + w(t — [z F v>dadt (53)
R3 —0o0 R3
#luln ||| IFEOPI+ o)l ornldodt (54)

In order to control the energy, we essentially choose w as the outgoing component of the linear
wave F (cf. Section [7] and Figure [)).

The terms in (52]) correspond to boundary terms, and they can easily be controlled by a bootstrap
argument. The main error terms are in (53)), and they will be controlled in Section 83l In contrast,
the errors in (B4]) are of lower order, and they will be controlled in Section 841

To remember that the weight w in (53]) should be integrated over (—oo,t — |x|], note that the
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contribution of the error é;(F)v° should be weighted less as t — —oo and |x| — oo.

Proof. By time-translation invariance and Lemma [6.4] we obtain for any 7 € R that

6
t

J [v|°( ’x)da(t,x)

\x|=t—rtel O

1 1 1 1 1 1
< —Vv2~|——8v2~l——v6d:n‘ —j ~ Vo2 + Z|ow]? + =|v|8de
fm«,ﬂ' o+ glawf + ghltdal = | SITel + Glanl? + ghitda],

+ J o ((v + F)° —0°)dadt
|z|<t—T7,tel
< 2sup E[v](t) + J ov((v 4+ F) —v®)dzdt . (55)
|z|<t—T,tel

tel

Integrating (B5) against the function w(7), we obtain that

! wlt — leD vt 2)18dz
6” (t = [alo(t, ) *dadt

= 1 w\T U6 X )ao X )aT
o G R et
< 2|w| p1(w) SupE ff i w(T)op(t)((v + F)® — v°)dadtdr

w(T)Fvtoudrdtdr (56)

< llwl i) SUPE[ o
x|<t—T,te

|
+ lwlzye “R FP(E] + ol léofdads

The first and third summand in (56) are acceptable contributions. Thus, we turn to the second
summand in (B6). Using integration by parts, we have that

w(T)Fvtdvdedtdr

x|<t—T,tel

1Y

1 Jrs (f:l" w<T)dT> Fop(v°)dadt
L (1 o) o () .
1 JR3 (f;xw(r)d7> Or(F)v°dadt| +
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w(t — |z|)F Udedt‘
1 Jrs




S HwHL;(R)HFHLgOLg(sza>iu?E[v](t)% +
€

j j w(t — |z|)F v5d$dt‘
I JR3

Lfms (f:l w<T)dT> Oy (F)v°dadt

_I_

O

By replacing the forward light-cones in the derivation of Proposition by backward light-cones,
one easily derives the following proposition.

Proposition 6.7 (Backward Interaction Flux Estimate).
Let v be a solution of (@3] on a compact time interval I = [a,b] < [0,0). Also, let w € LL(R) be
nonnegative. Then, we have that

Jj w(t + 2ol ¢, z)dzdt (57)
I JR3

5
6

< llwl L) Stu})E[U](t) + |lwlpr ) | Fll e s (1xr3) Stu})E[U](t)
(S €

LJ{RS (f:x w(T)dT> 0 (F)v°dadt

#uln [ [ | IFEOPI+ o) onldod

+ +

L JRS w(t + [z F v*dadt (58)

To remember that the weight w in (58] should be integrated over [t + |z, o0), note that the contri-
bution of the error é;(F)v® should be weighted less as ¢, |z| — co.

7 Bootstrap argument

In this section, we introduce the quantities in the bootstrap argument to control the energy. For a
given time interval I € R, we define the energy

1 1 1
Er:=sup Ev](t) = supf —(Qp(t, ) + | Vou(t,z)|? + = |v(t, z)|d (59)
tel tel Jr3 2 2 6
and the Morawetz term )
Ar = el FolS oo, (60)

Before we can define the interaction flux term, we need to introduce some further notation. Let F
be a solution to the linear wave equation with initial data Fli—o = fo € L2 4(R3) and & F|;—o = go €
H_L(R3). As in the definition of F* in (F)) , we assume that Pys fo = P<osgo = 0. We recall from

rad
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([6) that the low-frequency component of (f“, g*) will be treated as the initial data of the nonlinear
component v. In order to use Littlewood-Paley theory in the spatial variables, it is convenient to
introduce a second solution F' to the linear wave equation. A short computation shows that

_ sin(t|V
our = 191 (coste V911 + 2V o)

Then,

-~ B sin(t|V

F = cos(DIVI g + G IV1) (61)
satisfies 0,F = |V|F and has initial data F|—o = |V| lg € L2 ,(R3) and O F)—g = —|V|f €
Hr_aé (R3). After localizing in frequency space, we write

- 1 - -
V1B (t) = [ (WoulIVIENI(E = )+ W[ VIEW(E + 1)) (62)

In the bootstrap argument, we want to apply the interaction flux estimate to the Littlewood-Paley
pieces Pxov of v. In order to deal with the operators Px, we need to slightly modify the weights.
Unfortunately, we cannot use the Hardy-Littlewood maximal function, since it is unbounded in L'.
Instead, we define for each K € 2N the operator

Sgw = K(KTY 2% w . (63)

Definition 7.1 (Interaction Flux Term).
Let (fo,90) € L2 4(R?) x H_}(R?) and assume that Pcys fo = P<gsgo = 0. Let F be the solution of

rad

the linear wave equation with data (fo, o), let F be as in (@), let v be a solution to ([@3), and let
I < R. For % € {out,in}, we define

_1 _ 1
Fra= Y (NT52 4 N722) sup Ju, g (t — [a])s0(t, )8 (1o (64)
N>1 Ke2Z b
_1 _ 1
+ DN 52 L N2 sup [wsw, ko (t — z])su(t, 2)]S, (IxR?) (65)
N>1 K€2Z e
1
+ Wl = D 50lSs e, (66)

where wy g N = SK(|W*[\V|}~7N]|2) and wy v kN = Sk (|We v[Fn]|?), see Section @l For notational
convenience, we also set

Fr:=Frouw + Fln -

In the following definition, we introduce two auxiliary norms on F' that will be used in the rest of
this paper.
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Definition 7.2 (Y] and Z-norms).
Let (fo,90) € L2 4(R3) x Hr;é(R?’) and assume that Pcos fo = P<gsgo = 0. Let F be the solution of

the linear wave equation with data (fo,go), let F be as in (61)), and let I < R. Then, we define
Fly = [N~ 55|53 |v|F
IFlye = 9B 8 5 e

+INT R | 2 v Fy
| e NNy i 2

ST R 5 ~
+ |NT| 6‘V|FNHZ§5\,L?L§(2NXIXR3) + N |33\3\V|FNHZ}V2Lg2L;2(2Nx1xR3)

1 1 2
Flzl3Flzareaxrsy + I1F|sri0axrs) + 2] 6F||Lgx(1xR3) + “|x|3F“L%?x(IxR3) :

Furthermore, we also define

-1 4926 — ~
|1Flz:= > D IV L NTHEOYWLIVIEN] | e o cr)
xe{out,in} pe{2,4,24}
__1 195 _
+ N L NTEOW, O[N], e
xe€{out,in} pe{2,4,24}

+ D) DU Wl ey

xe{out,in} pe{2,4,24}

§ 1
+ |V |$|2FN”Z}VL§OL;0(2N><R><R3) + |F | 2o s (mxr3) -

We remark that |F|y, is divisible in space-time. More precisely, let n > 0 be given and assume
that |Fy®) < c0. Then, there exists a finite number J = J(n, [F'|y®)) and a partition of R into
finitely many intervals Iy, ..., Iy such that ||F[;, <nforall j=1,...,J.

Lemma 7.3 (Almost sure finiteness of Y and Z-norms).
Let (f,g) € H? (R®) x H*1(R3), let 0 < v < 1, let s > max(0,1 —

rad rad

If 6 = 6(s,y) > 0 is chosen sufficiently small, we have that

%), and let F“ be as in ().

[F“ly@ <0 and  [F¥[z <0 as..

Proof. In the following, we assume that § = d(v, s) > 0 is sufficiently small. In the computations
below, we have that N > 26 and (t,z) € R x R3. For o > 8/3, it follows from Minkowski’s integral
inequality and Lemma B.5] that

3 1 ~
|NTE RO 5 V| FY
LU

g8 8
L3 L3 LY

< INTHEEVIF s g
L3 LG L3 LY
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1
< Vo N (fy
Vo (fN’gNHu%U%XH;U
$ \/EH(fa g)HH;xH;71 .
In particular, we have that

3 ~
INTTH I R VIFY) 5 s < oo
FLILP

almost surely. A similar argument for the remaining terms in the Yg-norm leads to the regularity
restrictions

1 1 1 5 1 3 1 1 5
S>maX<1—m,l—g,i—m,l—ﬂ,l—m7l—5,§—m> ,

which have been listed in the same order as the terms in the definition of | F*|y,. Next, we estimate
|F*|z. Using Corollary B3, the terms involving |[Wy[|V[Fy]|| > lead to the restriction

s > max ((1— %)(% - %)70) + max <1— ﬁ,O) .

Since 0 < 7y < 1, this leads to s > max(1— %, 0). Using Lemma[3.7 the fourth and fifth summand
in the Z-norm lead to the restriction

s>max<1—%,1—%) .
O
In this paper, the condition v < 1 is only used in the proof of Lemma [7.3l By changing the
restriction on s, we could also treat a slightly larger range of parameters ~.
8 Control of error terms

In this section, we estimate the error terms in Proposition 6.1l Lemma [6.3] and Proposition
Before we begin with our main estimates we prove an auxiliary lemma.

Lemma 8.1.
Let w € LL(R) be nonnegative. Let K € 2V be arbitrary, and let Sk be defined by

Sxw =K (Kp) 2 sw .

Then, we have for all v e LL (R?) that

loc

f Prev(@) Pt — Ja])dz < f [o(@)[S((Sxw)(t — [z]) + ||l )dz (67)
R3 R3
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Proof. We prove (67)) by interpolation. The L® — L* estimate is trivial. Thus, it suffices to prove
the L' — L! estimate

| 1Psvtaot ~ ehds < [ o@l(Sxw)e - fa) + o Mulde . (09
Let W e {¢, 4} be as in the definition of the Littlewood-Paley projection. Then,
| 1Psvtaote —lehda < [ o6l KA @ = )~ o) dyde
= [ el (52 [ 1900 - ot - lahac ) ay

Hence, we it remains to establish the pointwise bound
K° jRB [W(K (y — ) |w(t — e)dz < (S = w)(t —lyl) + |y |wls -

Now, the main task consists of converting the left-hand side into a one-dimensional integral. Using
an integral formula from [38, p. 8], we have that

K ng B @y — o)l — |a))da

_ g3 fRS B (K2 w(t — |y — o|)da
NK?’ OO\T/KT w(t — |y — z|)do(t,x) | dr
<K [ (fH (t — ly — o])do(t >)

= 3 " r wit — |T g x r
- K | (fH (t ~ oo, >>d

- Oy (lyl+r
—K?’f B[ it — p)pdpdr
wl Jjjyi—r

Ayl rlyl+r
< Mf f P (Kt — p)|pldpdr (69)

?“+\y| ¥
J J U(Kr)|w(t — p)pdpdr
|y| Ayl

\yl

Let us now estimate the first summand in (69). We have that

Ayl lyl+r
7 f f U(Kr)|w(t — p)|pldpdr

4[y|
Iy\f f”‘I’KT (t = lyl = Pyl + p)|dpdr
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Ay pr o
sK?’jO ' [ rtente = 1 - p)par
3 0 0 - B B
<K fw ( flplw <Kr>\rdr> w(t — y] — p)dp
Kf (fK >|rdr) w(t — y] — p)dp

<K [ <Rl 2wt~ 1yl - s
—0o0
= (Skw)(t —y|) -
Thus, it remains to estimate the second integral in (69). We have that

K3 r+lyl
j j r|U(Kr)|w(t — p)pdpdr
Tyl 4\y| 1

r+y|
J J P2 (Kr)|w(t — p)dpdr
|y| alyl Jr—1y)

< B e f B (Kr)|rdr
|y| 0
1 o e 2
< Dwlpg [ [FE)dr
|y| 0

= W LL(R) -
Yl +(R)

U
Corollary 8.2 (Frequency-Localized Interaction Flux Estimate).
Let F be as in Definition [7.2] and let v: I x R® — R be a solution of (@3]). Then, we have that
a1 -
sup o} (1B} PrcolSy 1oy < min (VE5,N09) (7 4 |FBA) . ()

Ke2N

Remark 8.3.

The flux estimate yields much better integrability in the spatial variable x than the Morawetz
estimate. To see this, note that (70 cannot be controlled by the Morawetz term. For instance, one
might try to estimate

~ 3 _1
H|x||V|FNU3”L?,x(IxR3) S Wlzl2[VIEN | g, (1xr3) [l2| GUIIigz(szS) :

Even for smooth and compactly supported initial data, |V|Fy only decays like ~ (1 + |¢])~! and is
morally supported around the light cone |z| = |t|. Thus, the term H|az\%\V|ﬁ N e (1xws) grows like

~ 1+ |t|)% as I increases.
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Proof. Using the in/out-decomposition and Lemma BT} it follows that
llal ¥ (1V1FN)* PrcvlSs 1z
< NWoulIVIEND Prevlly gmsy + I(WinllVIEND)S Prcvlf 1oy
< ISk (WoutIVIENT)601Se (ms) + IIWoutlIVIENTP s L2601 (1 ms)
+ 1Sk (Wl VIENIP) 50055 (fgs) + Wil VIENIPles Il 750l (fms)
< min (N, N*2) (F; + | F|3A;) -

By taking the supremum over K € 2N we arrive at (70). O

8.1 Energy increment

In this section, we control the main error term in the energy increment.

Proposition 8.4 (Main error term in energy increment).
Let F be as in Definition [7.2] and let v: I x R?* — R be a solution of (@3]). Then, it holds that

~ 7 1 2
[ [ 0wy ast] < 7+ iFigAni AT e LY, (m)

Remark 8.5.
Instead of using F Ig to overcome the logarithmic divergence, we could also just use ;. Then, the

ER . , 1o
term H|az\8\V|FNHL§L%(1XR3) changes into a (non-endpoint) term ||x|1 \V|FNHL§*L$(MR3). The
2

probabilistic gain should then increase from 3 - % to % derivatives, which should lead to the

restriction s > max(1 — %, 0). For expository purposes, we do not present this argument here.

Proof. Using a Littlewood-Paley decomposition, we write v = >}, -, Pxv and F = DIN26 Fy.

Thus,
R 5
ff (\V|F)v5dxdt‘$ > > ff (IVIEN) | | Pr,vdadt
I JR3 N>26 Ki2Ko>..2K5>1 |V /R j=1
5
- > > ff (IVIEn) | | Px,vdadt
N>20 K12K3>..>K5>1 [T JR? =1

K1>274N

Note that, for all summands above, we have K7 > 1. Using Proposition 2.9] and Corollary B.2] it
follows that

5
V|E Py, vdadt
| Law I
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EINNES, 1 ~ 1 ! _1
< Jfs[VIEN] S)H\fc|3(IV\FNPPKSUHLQZ(IXW) [ T lll™5 Prollzs 1)

8
L3 LP(IxR

rv~

ol

=l GPKIUHLG (Ix®3) HPKlUHLOOLQ(IxRS)

_(__5__) 2 15 9 1 Lo 11
< NI P N+ | FIADAT K e

1
N \2 _ 2 . 11
- (%) KRG IFAATE

Using that K1 2 N and Ki,..., K5 > 1, we obtain (1) after summing. O

8.2 Morawetz estimate

In this section, we control the main error term in the Morawetz estimate. The main new difficulty
is the weight z/|z|.

Proposition 8.6 (Main error term in Morawetz estimate).
Let F be as in Definition [7.2] and let v be a solution of ([43). Then,

Vil dedt’
R3 |517|

en

T4 1_
$(f1+HFHzAI) SAPTES

g
2

HFHY] £ [Pl A -

Proof. As before, we use a Littlewood-Paley decomposition and write
P
dxdt j J PL < > FN PK v dxdt
3 |x| ‘ 2 R3 || H

N>25 L>1 K1> 2Ks5>1
max(L,K1)=2"4N

Case 1: K; > L. From the conditions K; > 27*N and N > 2°, it follows that K; > 1. Thus, we

can place Py, v in LPL2(I x R3). Using (39), we estimate

R

e )

<J ol
o L

5
Vo(Fy) [ [ Pxyv dedt
j=1

5

1 1 2
|$| ‘ F (|W0ut,V[FN]| + |I/V1n,V[F]|)3 |VEFN|§ H |PKjU|dxdt (72)
x|s Jj=1

P i ‘ —|FN| |V FN|3H|PK v|dzdt
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To control the first term, we estimate

Jo o

1 1
S 1Pz () ety (1Woun o LEWIE Prcstlsg, sy + I1Win e LIS Prcol g ok

5
1 2
r (Wout, v [EN]| + [Win v [F1) 3 [V Ex |5 [ ] [Px,vldadt
j=1

le ‘ |z[3

_1 _1 8425
T2l ™8 Preyll g 1y - ] 6PK1”UHL6 (IxR) !\PKIU\\Lsz(Ist o] 5V, | 2
j=2 ’ L 5L?>'(IxR3)

The first factor is estimated by
x
I L(| |)HL (IxR3) S HmHfo(RXH@) <1
Using Lemma [R.I] and arguing as in the proof of Corollary R.2], we estimate the second factor by
1 1
[ Wout, v [FN1I3 Presvllng | (rxms)y + [Win v [F113 Prsvlrs | (1xms)
1 1
< 18k, (Wout S TENTP) 80151y + 1, (Wi g [F1) vl )
1 1 1
(I L gy + IWino P ey ) el ol
1 ¢ 9 1
S N33 (Fr + | FlzAD)s
From Proposition 2.9] we have that
_1 _1 %
el P, ol g ruesy < el 80l rms) < AG -
Furthermore, since K7 > 1, we have that
1
1Py vl o2 (rxmsy < Ki'ep
Finally, applying Proposition 2.9] to the Riesz multipliers, we have that

2140 3+20 3
Jl2] " VFNH < [z 757 OF)

xR?) Ly 25L?>'(1xR3) ~

26 (IXRS) S(I

Putting everything together, it follows that

J, bl

1926
N \?2 B 1 7,48 1
()7 K IRRA AR

5
1 2
( )\ o (Wouns Il Wi I 9Pl ] P
X 3 j=1
_9d
2

HFHy, :
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Using the decay K| % in the highest frequency, we may sum N, L, K1,... K5.
Next, we estimate the second term in (72)). We have that

Fn|3|VyFn|3 PKdedt
Jo L ()l gt T e

j=1
T —+5 é
< HPL<H)HL (IxR3) 1_[2‘$| GPKJUHLSQC(IXR3 H|‘T‘ 6PKlUHL‘S L (IxR3) HPKlvHLOO[ﬁ(]X]RS)
J
8425
H|$|2FN||Loo axrayll|ZEV FN|| 5 o

L3272 L8 (IxR3)

Arguing as above, together with H\x|1TMFNHL§oz(IXR3) < N9 F|z , we get that

J, bl

5
< )’ —_|FN|3|V, FN\3H|PKjv|dxdt
|$|3 7j=1

1 28 _l+6 §+§ 1_
< Nz w2 Ap &} HF”YI“FHZ
N\z® sy 1 1
s(m) woaite e

Summing over the appropriate range, this contribution is acceptable.
Case 2: L > K;. Consequently, we have that L > 27*N > 1. Using Lemma [2.5] it follows that
|PL(‘—£‘)| < (L|z|)~'. This yields

5
X
P <W) Vo(Fy) | ] Pr,v dadt

J=1

5
1
-1 — |V (F Pr. t
J, L S0 TTimel asd

j=1

IJR

—1 _1 > _1
S LYl |V Ewlgg, | T ll2l™s Prcyvll g,

N 1-6 B 5
<(3) £l

Using the decay L~ in the highest frequency, we may sum N, L, K7, ... Ks.

8.3 Interaction flux estimate

In this section, we control the main error terms in the interaction flux estimate. The main difficulty

is the weight S el (7)dr. First, we recall a radial Sobolev embedding.
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Lemma 8.7.
For any v € LOOH1

rad

(I x R3), we have

=

3 1
;221)1\] |||$|2PK’U”L§?I(I><R3) < ”UHE?LQ(IXRS)”VUHE?L%(IXRS) < Stg})E['U](t)

Proof. Let r € R-g. Then, we have that

o]

(Prv)i(t,r) = 4f (Pv) (£, p) (6, Prcv) (L, p)dp

T

0
< wj (Pv) (¢, p)10r Prco(t, ) o dp

< 42| Prco(t, ) g o[V Prcolt ) 3 o)
< 47"_2\\1)(75,x)H?ig(RS)”VU(ta$)||L§(R3) :

The first inequality then follows by taking the supremum in r and ¢. The second inequality follows
from the definition of E[v]. O

Proposition 8.8 (First main error term in interaction flux estimate).
Let w € LL(R)nL!*(R) be a nonnegative weight. Let F be as in Definition [Z.2land let v: I xR3 — R
be a solution of (43]). Then, it holds that

LJRS ( f: MT) (IV|F)vdadt

2 ;11
< Wl |FIS, (Fr + [ FIZAD AP ES

11
+ |wl 2wy (Fr + |1F|%AL)? EF

+wlpazm) [ Fly, A7 -

The same argument also controls the main error term in the backward interaction flux estimate.

Proof. As before, we use Littlewood-Paley theory to decompose into frequency-localized functions.

Then, it remains to control
t—|z|
JJ P, j wdr | (|V|Ey) HPK v dadt
R3 —00 j=1

N>26 L>1,K1>..2K5>1
max(L,K1)>2 iIN
We distinguish several different cases.
Case 1: K; > L. We have that
t—|z| - 5
Py f wdr | (|V|Ex) [ | Pr,v dadt
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t=lz| 3.~ 2 1 ~ 1
< |1Pc( wdt) | e (rxr3y 2[5 VIEN]? s I3 ([VIEN)? Prsvl s (rxrs)
’ 3 w( R3) t,x

—o0 L3 LP(Ix
_1 1 1 1
: H | 6PKjUHL?’Z(I><R3)H|x| 6PK1'U”ztGI(]XR3)HPKl’U”ZgoL%(IX]I@)
i=2 ’
The first factor is controlled by
t—|x| t—| x|
P wdr) g oy <1 | wdrlig s < Julosge -
—o0 —0

Arguing as in the proof of Proposition 8.4 this leads to the total contribution

.t
S [wlr HFHYI(E + | F|ZADs ARER .

Case 2: L > Kj. In this case, the most severe term is the low-frequency scenario K1 = ... K5 = 1.
Then, we can no longer place Px,v in L{°L2(I x R?®) and therefore lack space-integrability. To
resolve this, we make use of the integrability of w(t — |z|) in time.

Subcase 2.(a): L > Kj,|z| = 1. Using Proposition 2.9 Corollary and Lemma [RB.7] we obtain
that

t—|x| - 5
P, <j wd7'> (IV|Fn) HPK]»U dzdt
z|=1

I ‘ = —00 j—l
5

t—|x|
< Ka)?Pe (f wdT> iz o [ 1 (I (V1) Pic, ol g, 1)

—0 j=3

H 1212 Prc; vl rxm)

t—|z| 1
S N0 z) 2Py (J wdT) Iz (rxrs) (Fr + |FIZAp)zE]

—0

It remains to control the weighted L?,x—norm. We recall that the kernel of P, has zero mean. Using
Lemma [2.4] and the boundedness of the Hardy-Littlewood maximal function M, we obtain that

t—|x
[(x)~2 Py (j wdT) Iz, (rxmo)
—00

t
= |[<x)~?Pr (L | deT> Iz, (1xm3)
t

< L) Pw(t — 2Dl 22, (rxrs) + L)~ w(T)dT 2 (1xm)

t—|z|
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< L@y 2wt — |2l gz xmsy + LK) P lal (Mw) (¢ — |2l g2 xrs)

< L@ 2z (o2 + 1Mol )
S L_lﬂwHLg(R) :
Putting everything together, it follows that

t—|z| N 5
J J Pp (J wd7'> (IV|Fn) HPKjv dxdt
I J|z|=1 —o0

j=1

N 1-§
< (—) Ll 2y (Fr + 1FIZAD)

[NIES

3
- £2 .

Using the decay L~ in the highest frequency, we may sum N, L, K7, ... Ks.
Subcase 2.(b): L > Ki,|z| < 1. Near the origin, our strongest tool is the Morawetz estimate.
Thus, we write

t—|z| N 5
f f Py (f wdT) (IVIEN) | | Pr,v dadt
IJ|z|<1 —0

J=1

t—|x| 5
1 2 ~ _1
S |||<L"|6PL<J wdT) 12 (refei<ap 25 IV IEN L sy | [ Ml 5 Pyl i)
. , ) ok )

t—lel ~ 3
< Ny P f wdr) [ rmn | Pl AF -
—0

Using Lemma [2.4] we have that
. t—|ax|
Koy Pu( | wdr) g e
—a0

< e [

t—|z|

< L) wle = el ey + LG [

t—|z|
< Ly hw(t — 2Dz mxre) + L)y (Mw)(t — [D)llz2 ®xr2)
= L@y pizrey (Iwlpiz) + 1M w2 w))

< LY wlpizg) -

Wd7'> HL}?Z(RXRS)
t
WdT) HL%?I(RXW)

Putting everything together, it follows that

t—| x| N 5
f f Py (f wdT) (IVIEN) | | Pr,v dadt
IJ]z|<1 —00

N\ N B
S(T) 2 twolewl Pl 4]
j=1
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Using the decay L~? in the highest frequency, we may sum N, L, K7, ... Ks. O

Proposition 8.9 (Second main error term in interaction flux estimate).
Let w e LL(R)nL12(R) be a nonnegative weight. Let I be as in Definition [T 2and let v: I xR? — R
be a solution of ({A3]). Then, it holds that

11 5
[ [ ot =l Pt asdt] < fulusge 77 + ol Py Af

Proof. We follow an easier version of the arguments in the proof of Proposition 8.8 As before, we
distinguish the two cases |z| > 1 and |z| < 1. First, we have that

f f w(t — |z|)Fvddadt
IJz|>1

_ 1 1 3 1
< el 20t = 2Dl zz_ gty (IWoue 30l _(remsy + IWinlFT50lzg o)) el ol

11
S |wl2 FPEF -

Second, we have that

j J w(t — |z|)Fvddzdt
IJz|<1

1 _1 5 2
< Nzfsw(t —lzDl gz, o<l 750l Ls | rums) 1215 FllLiz (rxms)

5
S [wlpe |1 Fly; Af -

8.4 Lower order error terms

Lemma 8.10 (Control of lower order error terms).
Let F be as in Definition and let v be a solution of ([@3]). Then, it holds that

[ [ ire (1ol B o) asar < 1m e
[ 1o (10l + 2 1900) doct < 1718, A
| [, miFiepasa: < IFl A7
LL@ %\F\dedt < |IFIS, -
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Proof. Using Hardy’s inequality, the first inequality follows from

[ [ (|atv| LI \w)
1 JR3 \$|
v

< HFHigL;O(IxRB)(Hat’UHLQOLg(IxR% + HmHLgoLg(Ixﬂ@) + Vol e rz (1xr3))
1
S IFI3, €7

A similar argument yields that

f f F2Jof? <|8tv\ I \W\) dudt
I JR3 ||

1 2 -1 .3
< H|x‘4FHL§L30(]><R3)H‘x| 6UHL§@(1><R3)?€1?E[U]@)

I

Finally, the third and fourth inequality follow from Hoélder’s inequality and

_1
275 Flrs (1xmsy < [Fllys -
t,x

9 Proof of the main theorem

In this section, we collect all previous estimates to prove the a priori energy bound (Theorem [T.4]).
Using the conditional scattering result of [19], we finish the proof of Theorem [[.3]

Proof of Theorem [1.J)

By time-reversal symmetry, it suffices to prove that supepg ) E[v](t) < o0. Let 2> >0bea
sufficiently small absolute constant, and let % > 1 > 0 be sufficiently small depending on 7. In
the following, C' = C(||F||z) > 0 denotes a large positive constant that depends only on |F|z. By
Lemma [7.3] and space-time divisibility, we can choose a finite partition Iy, ..., I; of [0,00) such that
HFHYIj <mnforall j =1,...,J. With a slight abuse of notation, we write &; := £y, A; := A, and
Fj = F;. We also set & := E[v](0).

First, we estimate the energy increment. Combining Proposition [6.1] Proposition 84l and Lemma
RI0, we have that

2 P
Eir1 <&+ C”Fngfjo (Fjr1 + Aj+1||FH22)6«4;-2+1 %)
1 1 1
2 2 2 5 2
+ CHFHYIJ.H y2+15j2+1 + CHFHYIJ.HE;H
< COEj+ 1) + m&pr + no(Fjrr + Ajr1) - (73)
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Next, we estimate the Morawetz term. By combining Proposition [6.3] Proposition 8.6l and Lemma,
RI0, we have that

)

2 1 1_
Aj1 < G+ CIFly, (Fjo1+ Al FZ)® A2y 654 1’

5
+ CIFly;,, A5y + CIFIS,
< C(EJ‘Fl + 1) (]:J+1 + -AJ+1) (74)

Finally, we control the interaction flux term. First, recall that from the definition of |F|z and the
embedding /1 — /{5, we have that

> X (2<N‘6%+26+N-2+26>(W*UV\FN]%ﬂW*,V[FN]Hig)wW*[F]%g)

x€{out,in} pe{2,4,24} \N>25
2
S FlZ -
We now apply our estimates to each of the terms in (64]), (63]), and (G6l) separately. By Young’s
inequality, the estimate |Skw|» <, |w[» holds uniformly in K. Using the control on the main

and lower order error terms, i.e., Proposition [6.6], Proposition [6.7] Proposition [8.8 Proposition 8.9
and Lemma [R.10], we obtain that

1

2 1
Fir1 < CIF|ZE5 + CHFH%HFH%,_ (Fi+1 + IF1Z A1) ° ]+15f+1

1

1 1
+ O FJZ ( ]+1+HFHZ'A]+1) €

+ CIFIZI Fllyi,,  Afyr + CIFIZ ]+15f+1

1 1
+CIPRIER,, (11, + Al €

< C<5J+1 + 1) <~7:J+1 + ‘A]-l-l) (75)

We briefly note that, as long as C' > 0 remains independent of 79 and 7, terms such as C| F'|% ] +15 ]2 1

prevent us from placing an 7 in front of Fj;1 + A;11. Combining (73)), (7)), and (75)), we arrive
at

Eit
-A]+1 + "F]-i-l

(& +1)+ 7705j+1 +n0(Ajs1 + Fjr1)

C
C(Ej1+1) + 5(Ajer + Fian)

NN

Finally, choosing 7 > 0 sufficiently small depending on C' = C(|Fz), we obtain that

Eim+1<C(E+1). (76)
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By iterating this inequality finitely many times, we obtain that

sup E[v](t) = max & <. (77)
te[0,00) g=1e

O

Proof of Theorem [1.3. Using Lemma 5.1l and Lemma [T.3] it follows that the forced nonlinear
wave equation (0] is almost surely locally well-posed. Then, Theorem [[.3] follows from Theorem
[L4] and Proposition O
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