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Abstract

We study the Cauchy problem for the radial energy critical nonlinear wave equation in three
dimensions. Our main result proves almost sure scattering for radial initial data below the
energy space. In order to preserve the spherical symmetry of the initial data, we construct a
radial randomization that is based on annular Fourier multipliers. We then use a refined radial
Strichartz estimate to prove probabilistic Strichartz estimates for the random linear evolution.
The main new ingredient in the analysis of the nonlinear evolution is an interaction flux estimate
between the linear and nonlinear components of the solution. We then control the energy of the
nonlinear component by a triple bootstrap argument involving the energy, the Morawetz term,
and the interaction flux estimate.
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1 Introduction

We consider the defocusing nonlinear wave equation (NLW) in three dimensions

#
´Bttu` ∆u “ u5 , pt, xq P R ˆ R

3

up0, xq “ fpxq P 9Hs
xpR3q, Btup0, xq “ gpxq P 9Hs´1

x pR3q.
(1)

The flow of nonlinear wave equation (1) conserves the energy

Erusptq :“
ż

R3

|∇upt, xq|2
2

` |Btupt, xq|2
2

` upt, xq6
2

dx . (2)

Since the scaling-symmetry upt, xq ÞÑ uλpt, xq “ λ´
1
2upt{λ, x{λq of (1) leaves the energy invariant,

we call (1) energy critical. Using Sobolev embedding, it follows that the energy of the initial data
is finite if and only if pf, gq P 9H1

xpR3q ˆ L2
xpR3q. Therefore, we refer to 9H1

xpR3q ˆ L2
xpR3q as the

energy space.
If the initial data has finite energy, the nonlinear wave equation (1) is now well-understood. In a
series of seminal papers by several authors [1, 22, 23, 35, 36, 37, 41, 42, 44], it was proven that
solutions to (1) exist globally, obey global spacetime bounds, and scatter as t ÞÑ ˘8. In contrast,
the equation is ill-posed if the initial data only lies in Hs

xpR3q ˆHs´1
x pR3q for some 0 ă s ă 1. For

instance, it has been shown in [14] that solutions to (1) exhibit norm-inflation with respect to the
Hs

x ˆ Hs´1
x -norm. Consequently, this shows that we cannot construct local solutions of (1) with

initial data in Hs
x ˆHs´1

x by a contraction mapping argument.
In recent years, there has been much interest in determining whether bad behaviour such as norm
inflation is generic or only occurs for exceptional initial data. To answer this questions, multiple
authors have studied solutions to dispersive equations with randomized initial data. In the following
discussion, we will focus on the Wiener randomization, and we refer the reader to the introduction
of [34] as well as [7, 8, 10, 11, 31, 45] for related works.
Let us first recall the definition of the Wiener randomization from [4, 28]. We denote by Q “
r´1

2
, 1
2
qd the unit cube centered at the origin. The family of translates tQ´kukPZd forms a partition

2



of Rd (see. Fig 1). By convolving the indicator function χQ with a smooth and compactly supported
kernel, we can construct a function ψ P C8

c pRdq s.t.

ψ|r´ 1

4
, 1
4

qd ” 1, ψ|Rdzr´1,1qd ” 0, and
ÿ

kPZd

ψpξ ´ kq “ 1 .

Then, any function f P L2
xpRdq can be decomposed in frequency space as

pfpξq “
ÿ

kPZd

ψpξ ´ kq pfpξq .

If tgkukPZd is a family of independent standard complex-valued Gaussians, the Wiener randomiza-
tion fωW of f defined as

xfωW pξq :“
ÿ

kPZd

gkpωqψpξ ´ kq pfpξq .

Thus, fωW is a random linear combination of functions whose Fourier transform is supported in unit-
scale cubes. The Wiener randomization has been used to prove almost sure local and global well-
posedness of nonlinear wave equations below the scaling-critical regularity. In [28, 29], Lührmann
and Mendelson proved the almost sure global well-posedness of energy subcritical nonlinear wave
equations in R

3. The first probabilistic result on the energy critical NLW was obtained by Pocovnicu
in [34], which treated the dimensions d “ 4, 5. This method was extended by Oh and Pocovnicu [33]
to the three-dimensional case. In addition to nonlinear wave equations, the Wiener randomization
has also been applied to nonlinear Schrödinger equations (NLS). Bényi, Oh, and Pocovnicu [3, 4, 5]
proved the almost sure local well-posedness of the cubic NLS in R

d. This method was then extended
by Brereton [9] to the quintic NLS in R

d. In [6], the authors proved the almost sure global well-
posedness of the energy critical NLS in dimensions d “ 5, 6. However, the global well-posedness
results above do not give any information on the asymptotic behaviour of the solutions.
In contrast, Dodson, Lührmann, and Mendelson [19, 20] proved almost sure scattering for the
energy critical NLW. Their result holds in dimension d “ 4 and requires that the original initial
data (before the randomization) is spherically symmetric. The main idea is to control the energy-
increment of the nonlinear component of u by a bootstrap argument involving both the energy
and a Morawetz term. The spherical symmetry is needed since the Morawetz estimate is centered
around the origin. However, the Wiener randomization breaks the spherical symmetry, so that fωW
is no longer radial. This method was subsequently extended to the energy critical NLS in dimension
d “ 4 by [20, 25].
In this work, we introduce a radial randomization that preserves the spherical symmetry of the
initial data. To this end, let us first define a family of annular Fourier multipliers.

Definition 1.1 (Annular Multiplier).
Let f P L2

xpRdq, a ą 0, and δ P p0, 1q. Then, we define the operator Aa,δ by setting

{Aa,δfpξq :“ χra,p1`δqaqp}ξ}2qf̂pξq . (3)

3



ξ P R
d ξ P R

d

In the left image, we display a partition of Rd into unit-scale cubes, which forms the basis of the Wiener
randomization. In the right image, we display a partition of Rd into annuli, which forms the basis of the
radial randomization.

Figure 1: Partions of Rd

In addition, for any 0 ă a1 ă a2 ď 8, we also define the operator Ara1,a2q by setting

{Ara1,a2qfpξq :“ χra1,a2qp}ξ}2qf̂pξq .

Instead of partitioning Rd into unit-scale cubes, the idea of the radial randomization is to decompose
R
d into thin annuli (see Fig. 1).

Definition 1.2 (Radial Randomization).
Fix a parameter γ ą 0 and let tgku8

k“0 be a sequence of independent standard real-valued Gaussians.
For any f P L2

radpRdq, we define its radial symmetrization by

fωpxq :“
8ÿ

k“0

gkpwqArkγ ,pk`1qγqfpxq . (4)

There exist two natural choices of γ: Choosing γ “ 1 leads to annuli of unit width, whereas choosing
γ “ 1{d leads to annuli of approximately unit volume.
We now make a few remarks on the properties of fω. First, since the Fourier transform of fω is
radial, it follows that fω is radial. Using the same argument as for the Wiener randomization [32,
Lemma 43], it is easy to see that the radial randomization does not improve the regularity of f .
More precisely, if s P R is such that f R Hs

xpRdq, then fω R Hs
xpRdq almost surely. In light of

the unboundedness of the ball-multiplier (cf. [12, 21]), it is much harder to prove Lp-improving
properties for the radial randomization than for the Wiener randomization. The probabilistic
Strichartz estimates for the random linear evolution expp˘it|∇|qfω will be derived from a refined
(deterministic) radial Strichartz estimate. In contrast to the Wiener randomization, the radial
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randomization does not lead to a probabilistic gain of integrability in every non-sharp admissible
Strichartz space. Thus, we see a relationship between the geometric structure of the linear evolution
and the effects of the randomization, which was also discussed in [13].
Let us now formulate the main result of this work. In the following, we restrict the discussion to
the dimension d “ 3. Let pf, gq P Hs

radpR3q ˆ Hs´1
rad pR3q be the given (deterministic) initial data.

For technical reasons, we split the randomized initial data pfω, gωq into low- and high-frequency
components. For the high-frequency component, we let

Fωpt, xq “ cospt|∇|qPą26f
ωpxq ` sinpt|∇|q

|∇| Pą26g
ωpxq (5)

be the random and rough linear evolution. Next, we decompose the solution u of the energy critical
NLW into the linear component Fω and a nonlinear component v, i.e., u “ Fω ` v. Then, the
nonlinear component solves the initial value problem

#
´Bttv ` ∆v “ pv ` Fωq5 ,
vp0, xq “ Pď26f

ω, Btvp0, xq “ Pď26g
ω .

(6)

Note that the initial data in (6) almost surely lies in the energy-space 9H1
xpR3q ˆL2

xpR3q. The above
decomposition into a linear and nonlinear part is often called the Da Prato-Debussche trick [16]. In
the following, we analyze the solution v of the forced equation (6). Since u “ Fω `v, any statement
about v can easily be translated into a statement about u.

Theorem 1.3 (Almost sure scattering).
Let pf, gq P Hs

radpR3q ˆ Hs´1
rad pR3q, let 0 ă γ ď 1, and let maxp1 ´ 1

12γ
, 0q ă s ă 1. Then, almost

surely there exists a global solution v of (6) such that

v P C0
t

9H1
xpR ˆ R

3q
Ş
L5
tL

10
x pR ˆ R

3q, Btv P C0
t L

2
xpR ˆ R

3q .

Furthermore, there exist scattering states pv˘
0 , v

˘
1 q P 9H1

xpR3q ˆ L2
xpR3q such that, if w˘ptq are the

solutions to the linear wave equation with initial data pv˘
0 , v

˘
1 q, we have

}pvptq ´ w˘ptq, Btvptq ´ Btw˘ptqq} 9H1
xpR3qˆL2

xpR3q Ñ 0 as t Ñ ˘8 .

We remark that the restriction on s and the range for γ are not optimal, see e.g. Lemma 7.3 and

Remark 8.5. For any pu0, u1q P 9H1
radpR3q ˆ L2

radpR3q, we can also replace the initial data in (6) by
pu0 ` Pď26f

ω, u1 ` Pď26g
ωq . This implies the stability of the scattering mechanism of (1) under

random radial pertubations.
By using the deterministic theory and a perturbation theorem, the proof of Theorem 1.3 reduces
to an a priori energy bound on v, see [3, 19, 34]. We will discuss this reduction in Section 5. For
now, let us simply state the a priori energy bound as a separate theorem.

5



Theorem 1.4 (A priori energy bound).
Let pf, gq P Hs

radpR3q ˆ Hs´1
rad

pR3q, let 0 ă γ ď 1, and let maxp1 ´ 1
12γ

, 0q ă s ă 1. Assume that
almost surely there exists a solution v of (6) with some maximal time interval of existence I. Then,
we have that almost surely

sup
tPI

Ervsptq ă 8 . (7)

We now sketch the idea behind the proof of the a priori energy bound, which relies on a bootstrap
argument. Let us fix a time interval I “ ra, bs Ď R. We want to bound the energy increment
Ervspbq ´Ervspaq by the maximal energy E of v on I. We will see that the main error term in the
energy increment is given by ż

I

ż

R3

Fωv4Btvdxdt . (8)

In the following discussion, we argue heuristically and ignore all other error terms. Using a
Littlewood-Paley decomposition, we may assume that the linear evolution Fω is localized to fre-
quency „ N . In dimension d “ 4, Dodson, Lührmann and Mendelson [19] used the Morawetz
estimate to control the energy increment. Following their idea, we may assume under a bootstrap
hypothesis that

}|x|´ 1

6 v}6
L6
t,xpIˆR3q À E .

After directly applying the Morawetz estimate to (8), the best possible bound is „ pE 1

6 q4E 1

2 „ E
7

6 .
However, this cannot prevent the finite-time blowup of the energy. Following [33], we move the
time derivative onto the linear evolution Fω

N . First, we write BtFω
N “ |∇| rFω

N , where rFω
N is a different

solution to the linear wave equation. After neglecting boundary terms, we heuristically rewrite the
main error term as

ż

I

ż

R3

pBtFω
N qv5dxdt “

ż

I

ż

R3

p|∇| rFω
N qv5dxdt „

ż

I

ż

R3

p|∇| 12 rFω
N q v4 p|∇| 12 vqdxdt. (9)

By using the Morawetz term and the energy, we estimate

|
ż

I

ż

R3

p|∇| 12 rFω
N q v4 p|∇| 12 vqdxdt| À }|x| 34 |∇| 12 rFω

N }L4
tL

8
x pIˆR3q}|x|´ 1

6 v}
9

2

L6
t,xpIˆR3q

}∇v}
1

2

L8
t L2

xpIˆR3q

À }|x| 34 |∇| 12 rFω
N }L4

tL
8
x pIˆR3q E .

In this bound, the power of E allows us to use a Gronwall-type argument. However, even for smooth
and localized initial data, the linear evolution |∇| 12 rFω

N only decays like p1 ` |t|q´1 and is morally

supported near the light cone |x| “ |t|. Thus, the norm }|x| 34 |∇| 12 rFω
N }L4

tL
8
x pIˆR3q diverges logarith-

mically as the time interval I increases. Since the energy yields better decay for ∇v than for v itself,
the logarithmic divergence cannot be avoided by placing fewer derivatives on v. Consequently, this
argument does not yield global bounds on the energy of v.
To overcome the logarithmic divergence, we introduce two additional ingredients. First, since
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the radial randomization preserves the spherical symmetry of the initial data, the linear evolu-
tion |∇| 12 rFω

N is spherically symmetric. Using this, we can decompose the linear evolution into an
incoming and outgoing wave, i.e.,

|∇| 12 rFω
N “ 1

|x|
´
Winr|∇| 12 rFω

n spt` |x|q `Woutr|∇| 12 rFω
n spt´ |x|q

¯
.

Second, we use a flux estimate to control the integral of the potential v6 on shifted light cones by
the energy. We now combine both of these tools by integrating the profiles |Winr|∇| 12 rFω

n s|2pτq and

|Woutr|∇| 12 rFω
n s|2pτq against the flux estimate on t ˘ |x| “ τ . Under a bootstrap hypothesis, we

obtain the interaction flux estimateż

I

ż

R3

|x|2||∇| 12 rFω
N |2v6dxdt À

´
}Winr|∇| 12 rFω

n spτq}2L2
τ pRq ` }Woutr|∇| 12 rFω

n spτq}2L2
τ pRq

¯
E

À }pfωN , gωN q}2
9H
1
2
x ˆ 9H

´ 1
2

x

E .

We have not seen this estimate in the previous literature. It is reminiscent of the interaction
Morawetz estimate for the NLS [15], but it controls an interaction between the linear and nonlinear
evolution rather than the interaction of the nonlinear evolution with itself. We believe that similar
interaction estimates may be of interest beyond this work. Using the interaction flux estimate, we
boundˇ̌

ˇ̌
ż

I

ż

R3

p|∇| 12 rFN q v4 p|∇| 12 vqdxdt
ˇ̌
ˇ̌

À }|x| 38 |∇| 12 rFω
N}

2

3

L
8
3
t L8

x pIˆR3q
}|x| 13 p|∇| 12 rFω

N q 1

3 v}L6
t,xpIˆR3q}|x|´ 1

6 v}
7

2

L6
t,xpIˆR3q

}∇v}
1

2

L8
t L2

xpIˆR3q

À }|x| 38 |∇| 12 rFω
N}

2

3

L
8
3
t L8

x pIˆR3q
}pfωN , gωN q}

1

3

9H
1
2
x ˆ 9H

´ 1
2

x

E .

From the probabilistic Strichartz estimates, we will see that the semi-norm of rFω scales like 9H
5

4
x ˆ 9H

1

4
x

and has a probabilistic gain of 1
8γ
-derivatives. Thus, we expect the regularity restriction

s ą 2
3

¨
´
5
4

´ 1
8γ

¯
` 1

3
¨ 1
2

“ 1 ´ 1
12γ

.

Outline.
In Section 2, we review basic facts from harmonic analysis. In Sections 3 and 4, we study solutions
to the radial linear wave equation. First, we prove a refined radial Strichartz estimate which is based
on [40]. As a consequence, we obtain probabilistic Strichartz estimates for the radial randomization.
Then, we discuss the in/out decomposition mentioned above in detail. In Sections 5 and 6, we study
solutions to the forced nonlinear wave equation (6). We prove an almost energy conservation law
and an approximate Morawetz estimate. Here, we also introduce the novel interaction flux estimate
between the linear and nonlinear evolution. In Sections 7 and 8, we set up a bootstrap argument to
bound the energy and estimate the error terms. Finally, we prove the main theorem in Section 9.
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2 Notation and preliminaries

In this section, we introduce the notation that will be used throughout the rest of this paper. We
also recall some basic results from harmonic analysis and prove certain auxiliary lemmas.
If A and B are two nonnegative quantities, we write A À B if there exists an absolute constant
C ą 0 such that A ď CB. We write A „ B if A À B and B À A. For a vector x P Rd, we write
|x| :“ přd

i“1 x
2
i q 1

2 . We define the Fourier transform of a Schwartz function f by setting

pfpξq :“ 1

p2πq
d
2

ż

Rd

expp´ixξqfpxqdx .

We denote by Jνpxq the Bessel functions of the first kind. Recall that for a spherically symmetric
function f we have

pfpξq “ |ξ|´ d´2

2

ż 8

0

J d´2

2

p|ξ|rqfprqr d
2dr .

With a slight abuse of notation, we identify a spherically symmetric function f : Rd Ñ R with a
function f : Rą0 Ñ R.

2.1 Littlewood-Paley theory and Sobolev embeddings

We start this section by defining the Littlewood-Paley operators PL. Let φ P C8
c pRdq be a nonneg-

ative radial bump function such that φ|Bp0,1q ” 1 and φRdzBp0,2q ” 0. We set Ψ1pξq “ φpξq and, for

a dyadic L ą 1, we set ΨLpξq “ φp ξ
L

q ´ φp ξ
2L

q. Then, we define the Littlewood-Paley operators PL

by
yPLfpξq “ ΨLpξq pfpξq .

To simplify the notation, we also write fL :“ PLf .

Lemma 2.1 (Bernstein Estimate).
For any 1 ă p1 ď p2 ă 8 and s ě 0, we have the Bernstein inequalities

@L ě 1: }fL}Lp2
x pRdq À L

d
p1

´ d
p2 }fL}Lp1

x pRdq ,

@L ą 1: }|∇|˘sfL}Lp1
x pRdq „ L˘s}fL}Lp1

x pRdq ,

@L ą 1: }∇fL}Lp1
x pRdq „ L}fL}Lp1

x pRdq .

Lemma 2.2 (Square-Function Estimate, see [30, Theorem 8.3]).
Let 1 ă p ă 8. Then, we have for all f P Lp

xpRdq that

}f}Lp
xpRdq „d,p }fL}Lp

xℓ
2

LpRdˆ2Nq . (10)
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For notational convenience, we use a different function to define a dyadic decomposition in physical
space. As before, we let χ P C8

c pRdq be a nonnegative, radial bump function such that χ|Bp0,1q ” 1
and χ|RdzBp0,2q ” 0. We also assume that χ is radially non-increasing. We set χ1 :“ χ, and for any

dyadic J ą 1, we set χJpxq :“ χpx
J

q ´ χp2x
J

q. Thus, the family tχJuJě1 defines a partition of unity
adapted to dyadic annuli. Furthermore, we let ĂχJ be a slightly fattened version of χJ .

Lemma 2.3 (Mismatch Estimate).
Let L, J,K P 2N0 . Furthermore, we assume that the separation condition J

K
` K

J
ě 25 holds. Then,

we have for all 1 ď r ď 8 that

}χJPLχK}Lr
xpRdqÑLr

xpRdq ÀM pLJKq´M for all M ą 0 . (11)

We follow the argument in [20, Lemma 5.10], which treats the case L “ 1.

Proof. Let f P Lr
xpRdq be arbitrary. Let ϕ be a suitable bump function on the annulus |x| „ 1.

Using the separation condition, it holds that

χJPLχKfpxq “ χJpxqLd

ż

Rd

Ψ̌pLpx´ yqqχKpyqfpyqdy

“ χJpxqLd

ż

Rd

Ψ̌pLpx´ yqqϕpmaxpJ,Kq´1px ´ yqqχKpyqfpyqdy .

From Young’s inequality, it follows that

}χJPLχKf}Lr
xpRdq ď }LdΨ̌pLxqϕpmaxpJ,Kq´1xq}L1

xpRdq}f}Lr
xpRdq .

Next, we estimate

}LdΨ̌pLxqϕpmaxpJ,Kq´1xq}L1
x

“ Ld

ż

Rd

|qΨpLxq|ϕpmaxpJ,Kq´1xqdx

“
ż

Rd

|qΨpxq|ϕpL´1 maxpJ,Kq´1xqdx

“
ż

|x|„LmaxpJ,Kq
|qΨpxq|dx

ÀM pLmaxpJ,Kqq´M .

Lemma 2.4 (Bernstein-type estimate).
Let L P 2N0 , 1 ă p ă 8, and α ą 0. Then, we have that

}xxy´αPLf}Lp
xpRdq À L´1}xxy´α

∇f}Lp
xpRdq ` L´1}xxy´α´1f}Lp

xpRdq . (12)

9



By iterating this inequality, we could further decrease the weight in the term }xxy´α´1f}Lp
x
.

Proof. The proof is based on a dyadic decomposition, the localized kernel estimate (11), and the
standard Bernstein estimate. We have that

}xxy´αPLf}p
L
p
xpRdq

À
8ÿ

Jě1

J´αp}χJPLf}p
L
p
xpRdq

À
8ÿ

Jě1

J´αp}χJPLĂχJf}p
L
p
xpRdq

`
8ÿ

Jě1

J´αp

˜ ÿ

K : KJ

}χJPLχKf}Lp
xpRdq

¸p

. (13)

We now estimate the first summand in (13). Using the Bernstein estimate, we have that

8ÿ

Jě1

J´αp}χJPLĂχJf}p
L
p
xpRdq

ď
8ÿ

Jě1

J´αp}PLĂχJf}p
L
p
xpRdq

À
8ÿ

Jě1

J´αpL´p}∇pĂχJfq}p
L
p
xpRdq

À
8ÿ

Jě1

J´αpL´p}ĂχJ∇f}p
L
p
xpRdq

`
8ÿ

Jě1

J´αpL´p}∇pĂχJqf}p
L
p
xpRdq

À
8ÿ

Jě1

J´αpL´p}∇f}p
L
p
xp|x|„Jq

`
8ÿ

Jě1

J´pα`1qpL´p}f}p
L
p
xp|x|„Jq

À L´p}xxy´α
∇f}p

L
p
xpRdq

` L´p}xxy´α´1f}p
L
p
xpRdq

Thus, it remains to estimate the second summand in (13). Using (11) and choosing M ą 0 large,
we have that

8ÿ

Jě1

J´αp

˜ ÿ

K : KJ

}χJPLχKf}Lp
xpRdq

¸p

À
8ÿ

Jě1

J´αp

˜ ÿ

K : KJ

pJKLq´pM`α`1q} ĂχKf}Lp
xpRdq

¸p

À L´pM`α`1qp
8ÿ

Jě1

J´pM`2α`1qp

˜ ÿ

Kě1

K´M

¸p

}xxy´α´1f}p
L
p
xpRdq

À L´p}xxy´α´1f}p
L
p
xpRdq

.
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In Section 8.2, we will use a Littlewood-Paley decomposition in an error term coming from the
Morawetz estimate. To control this error, we will need the following estimate for the Morawetz
weight x{|x|.

Lemma 2.5.
Let L ą 1 and let d ě 2. Then, we have that

ˇ̌
ˇ̌PL

ˆ
x

|x|

˙ˇ̌
ˇ̌ À 1

L|x| . (14)

Proof. Let j “ 1, . . . , d. It holds that

|PLp xj|x| q| “ Ld

ˇ̌
ˇ̌
ż

Rd

qΨpLyqxj ´ yj

|x´ y| dy
ˇ̌
ˇ̌

“ Ld

ˇ̌
ˇ̌
ż

Rd

qΨpLyq
ˆ
xj ´ yj

|x ´ y| ´ xj

|x|

˙
dy

ˇ̌
ˇ̌

ď Ld

ż

Rd

|qΨpLyq|
ˇ̌
ˇ̌xjp|x| ´ |x ´ y|q ´ yj|x|

|x´ y||x|

ˇ̌
ˇ̌dy

ď Ld

ż

Rd

|qΨpLyq| |y|
|x ´ y|dy

ď
ż

Rd

|qΨpyq| |y|
|Lx ´ y|dy .

Using the rapid decay of qΨ, the estimate then follows by splitting the integral into the regions
|y| ď L|x|

2
, |y| „ L|x|, and |y| ě 2L|x|.

In addition to the standard Sobolev embedding, we will also rely on the following weighted Sobolev
embedding for radial functions.

Proposition 2.6 (Radial Sobolev Embedding, see [17, Remark 2.1] and [18]).
Let d ě 1, 0 ă s ă d, 1 ă p ă 8, α ă d

p1 , β ą ´d
q
, α ´ β ě pd ´ 1qp1

q
´ 1

p
q, and 1

q
“ 1

p
` α´β´s

d
. If

p ď q ă 8, then the inequality
}|x|βf}Lq

x
À }|x|α|∇|sf}Lp

x
(15)

holds for all radially symmetric f . If q “ 8, the result holds provided that α´ β ą pd´ 1qp1
q

´ 1
p
q.

2.2 Calderón-Zygmund theory

In order to use weighted estimates, we introduce some basic Calderón-Zygmund theory.

11



Definition 2.7 ([39, Section V]).
Let w P L1

locpRdq be nonnegative. For 1 ă p ă 8, we say that w satisfies the Ap-condition if

sup
B“Brpxq

ˆ
1

|B|

ż

B

wdy

˙ ˆ
1

|B|

ż

B

w
´ p1

p dy

˙ p

p1

ă 8 . (16)

The following well-known criterion for power weights can be proven by a simple computation.

Lemma 2.8 ([39, Section V.6]).
Let w “ |x|α and let 1 ă p ă 8. Then w satisfies the Ap-condition if and only if

´d ă α ă dpp´ 1q .

The following proposition is a consequence of [30, Theorem 7.21] and the proof of [30, Theorem
8.2]. We also refer the reader to [39, p.205].

Proposition 2.9 (Mikhlin-multiplier theorem).
Let m : Rdzt0u Ñ C be a smooth function. Assume that m satisfies for any multiindex γ of length
|γ| ď d` 2

|Bγmpξq| ď B|ξ|´|γ| .

Let mp∇{iq be the associated Fourier multiplier and let 1 ă p ă 8. For any Ap-weight w, there
exists a constant C depending only on d, p, and the supremum in (16), such that

}mp∇{iqf}Lppwdxq ď CB}f}Lppwdxq @f P SpRdq .

Remark 2.10.
We will apply Proposition 2.9 to the Riesz multipliers mjpξq “ ξj

|ξ| and to the Littlewood-Paley

multipliers ΨLpξq.

3 Probabilistic Strichartz estimates

In this section, we derive probabilistic Strichartz estimates for the radial randomization. For the
Wiener randomization, there exist two different methods for proving probabilistic Strichartz esti-
mates.
The first method relies on Bernstein-type inequalities for the multipliers f ÞÑ ψp∇{i ´ kqf . Af-
ter using Khintchine’s inequality to decouple the individual atoms of the randomization, the Lp

x-
improving properties of the multiplier are used to move from a space Lq

tL
phi
x into a space Lq

tL
plo
x .

Then, one applies the usual Strichartz estimate to control the evolution in Lq
tL

plo
x , which depends

more favorably on the regularity of the initial data. For example, this method has been used in
[3, 4, 5, 6, 25, 28].

12



1
q

α

1
p

`
1
2
, 1
2
, 0

˘

1
2

1

-1

1
2

We display the radial Strichartz estimate from Proposition 3.1. The true endpoint estimates correspond to
either green spheres or black lines, whereas the false endpoint estimates correspond to either red spheres or
red lines. The black sphere at p1{2, 1{2, 0q serves as a visual aid.

Figure 2: Weighted Radial Strichartz Estimate in d “ 3.

The second method relies on refined Strichartz inequalities. Here, the frequency localization is used
explicitly to derive improved Strichartz estimates. To mention one example, the refined Strichartz
estimate in [27] is based on a new L1

x Ñ L8
x -dispersive decay estimate. In the probabilistic context,

this approach was first used in [19].
For the radial randomization, the multipliers are of the form f ÞÑ Aa,δf . In a celebrated paper
[21], Fefferman proved that the annular Fourier multipliers in dimension d ě 2 are bounded on Lp

if and only if p “ 2. However, if we restrict to radial functions, then the annular Fourier multipliers
are bounded on Lp for all 2d{pd` 1q ă p ă 2d{pd´ 1q, see [12]. Using Young’s inequality, it is also
possible to prove L1

x Ñ L
p
x bounds for p ą 2d{pd`1q. From interpolation and duality, one can then

obtain the strong-type diagram for the annular Fourier-multipliers on radial functions. However,
the dependence of the operator norm on the normalized width δ is rather complicated, and the
resulting Strichartz estimates are non-optimal. Instead of using the Bernstein-based method, we
therefore prove a new refined Strichartz estimate for radial initial data. As in previous works, we
can then use Khintchine’s inequality to obtain probabilistic Strichartz estimates.

Proposition 3.1 (Refined Radial Strichartz Estimate).
Let f P L2

radpRdq. Let 0 ă δ ď 1 and assume that there exists an interval I Ď r1
2
, 2s such that

13



|I| ď δ and supp f̂ Ď tξ : }ξ}2 P Iu. Then, we have that

}|x|α expp˘it|∇|qf}Lq
tL

p
xpRˆRdq Àα,q,p δ

1

2
´ 1

minpp,qq }f}L2
xpRdq (17)

as long as

´d

p
ă α ă pd ´ 1q

ˆ
1

2
´ 1

p

˙
´ 1

q
if 2 ď q, p ă 8 (18)

´d

p
ă α ď pd ´ 1q

ˆ
1

2
´ 1

p

˙
if q “ 8, 2 ď p ă 8 (19)

0 ď α ă d ´ 1

2
´ 1

q
if 2 ď q ă 8, p “ 8 (20)

0 ď α ď d ´ 1

2
if q “ p “ 8 . (21)

The estimates of Proposition 3.1 can be visualized using a “Strichartz game room”, see Figure
2. Proposition 3.1 is a refinement of [24, Theorem 1.5] and [40, Proposition 1.2], and we follow
their argument closely. We remark that the corresponding Strichartz estimate for non-frequency
localized functions [24, Theorem 1.5] may fail for some of the endpoints above.

Proof. By time-reflection symmetry, it suffices to treat the operator exppit|∇|q. Recall that we
denote by Jν the Bessel functions of the first kind. For any radial function f P L2

radpRdq, we

identify f̂ with a function f̂ : Rą0 Ñ R. Then, it holds that

exppit|∇|qfprq “ r´ d´2

2

ż 8

0

exppitρqJ d´2

2

prρqf̂pρqρ d
2dρ (22)

Inserting the known asymptotics for Bessel functions (cf. [24]), we may estimate

p1 ` rq´ d´1

2

ż 2π

0

exppipt ˘ rqρqmpr; ρqφp 1

4
,4qpρqf̂pρqdρ . (23)

Here, φp 1

4
,4q is a smooth cutoff-function that equals 1 on r1{2, 2s and is supported on r1{4, 4s, and

mpr; ρq is a smooth function that satisfies |Bjρmpr; ρq| Àj 1 for all j ě 0. Since supp f̂ Ď r1
2
, 2s, we

may write

f̂pρq “
ÿ

kPZ

ck exppikρq, where ck “ 1

2π

ż 2π

0

expp´ikρqf̂pρqdρ . (24)

Inserting (24) into (23), we have to bound

ÿ

kPZ

p1 ` rq´ d´1

2 ck

ż 2π

0

exppipt ˘ r ` kqρqmpr; ρqφp 1

4
,4qpρqdρ . (25)
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Integrating by parts 2M -times, we have that
ˇ̌
ˇ̌
ż 2π

0

exppipt ˘ r ` kqqmpr; ρqφp 1

4
,4qpρqdρ

ˇ̌
ˇ̌ ÀM p1 ` |t˘ r ` k|q´2M .

Therefore, we obtain that

}|x|α exppit|∇|qf}Lp
xpRdq

À }p1 ` rq´ d´1

2 rαr
d´1

p p1 ` |t` k ˘ r|q´2M ck}Lp
rℓ

1

k
pRą0ˆZq

À }p1 ` rq´ d´1

2 r
α` d´1

p p1 ` |t` k ˘ r|q´Mck}Lp
rℓ

p
k

pRą0ˆZq , (26)

where we have used Hölder’s inequality in the k-variable. Since α ` d´1
p

ą ´1
p
if 2 ď p ă 8, or

α ě 0 if p “ 8, we obtain for sufficiently large M that

}p1 ` rq´ d´1

2 r
α` d´1

p p1 ` |t` k ˘ r|q´M}Lp
rpRą0q À p1 ` |t` k|q´ d´1

2 |t` k|α` d´1

p .

From the embedding ℓ
minpp,qq
k ãÑ ℓ

p
k and Minkowski’s integral inequality, we obtain that

}|x|α exppit|∇|qf}Lq
tL

p
xpRˆRdq

À }p1 ` |t` k|q´ d´1

2 |t` k|α` d´1

p ck}Lq
t ℓ

p
k

pRˆZq

À }p1 ` |t` k|q´ d´1

2 |t` k|α` d´1

p ck}
ℓ
minpp,qq
k

L
q
t pZˆRq

À }ck}
ℓ
minpp,qq
k pZq

. (27)

From Plancherell’s theorem and the support condition on f̂ , we have that

}ck}2
ℓ2
k

pZq “ 1

2π

ż 2π

0

|f̂pρq|2dρ „ }f}2
L2
xpRdq .

Furthermore, since supp f̂ is contained in an interval of size ď δ, we have that

}ck}ℓ8
k

pZq ď 1

2π

ż

I

|f̂pρq|dρ À δ
1

2 }f}L2
xpRdq .

Then (17) follows from (27) and Hölder’s inequality.

Remark 3.2.
We note that there is no δ-gain for q “ 2. For instance, this follows from a non-stationary phase
argument by choosing f as the inverse Fourier transform of χr1,1`δsp|ξ|q. As a consequence, we
obtain no probabilistic gain for Strichartz estimates with parameter q “ 2, see Lemma 3.4. This
indicates that the spherical symmetry imposes restrictions on the randomized linear evolutions. We
therefore view the radial randomization as a modest step towards probabilistic treatments of the
geometric equations discussed in [13].
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Corollary 3.3.
Let f P L2

radpRdq and Aa,δ as in (3) with a „ N . If α, p, and q satisfy (18)-(21), then

}|x|α expp˘it|∇|qAa,δf}Lq
tL

p
x

À N
d
2

´α´ 1

q
´ d

p δ
1

2
´ 1

minpp,qq }Aa,δf}L2
x
. (28)

Proof. For any g P L2
radpRdq, we have that

Aa,δgpxq “
´
A a

N
,δ

´
g

´ ¨
N

¯¯¯
pNxq .

From scaling and (17), it then follows that

}|x|α expp˘it|∇|qAa,δf}Lq
tL

p
x

À N
d
2

´α´ 1

q
´ d

p δ
1

2
´ 1

minpp,qq }f}L2
x
.

Finally, replacing f by Aa,δf above, we arrive at (28).

Lemma 3.4 (Probabilistic Strichartz Estimates).
Let f P Hs

radpRdq with

s ě d

2
´ 1

q
´ d

p
´ α´ 1

γ

ˆ
1

2
´ 1

minpp, qq

˙
, (29)

where γ is as in Definition 1.1. Let α and 2 ď p, q ă 8 satisfy (18). Then, we have for all 1 ď σ ă 8
that

}|x|α expp˘it|∇|qfω}Lσ
ωL

q
tL

p
x

Àp,q,α,s

?
σ}f}Hs

xpR4q . (30)

Proof. We prove (30) only for σ ě maxpp, qq. The general case then follows by Hölder in the ω-
variable. From the square-function estimate (Lemma 2.2), Minkowski’s integral inequality, Khint-
chine’s inequality, and Corollary 3.3, it follows that

}|x|α expp˘it|∇|qfω}Lσ
ωL

q
tL

p
x

}|x|α expp˘it|∇|qfωN}Lσ
ωL

q
tL

p
xℓ

2

N

ď }|x|α expp˘it|∇|qfωN}ℓ2NL
q
tL

p
xLσ

ω

À
?
σ}|x|α expp˘it|∇|qAkfN}ℓ2NL

q
tL

p
xℓ

2

k

ď
?
σ}|x|α expp˘it|∇|qAkfN}ℓ2N ℓ2

k
L
q
tL

p
x

ď
?
σ}N

d
2

´α´ 1

q
´ d

p

´
N

´ 1

γ

¯ 1

2
´ 1

minpp,qq
AkfN}ℓ2N ℓ2kL

2
x

ď
?
σ}N sfN}ℓ2NL2

x

ď
?
σ}f}Hs

x
.

We remark that f1 is only localized to frequencies À 1, so that the inhomogeneous Sobolev norm
above is necessary.
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Lemma 3.5 (Probabilistic L8
x -Strichartz Estimates).

Let fN P L2
radpR3q and let fωN be its radial randomization. Then, we have that

}|x| 38 expp˘it|∇|qfωN }
Lσ
ωL

8
3
t L8

x

À
?
σN

3

4
´ 1

8γ }fN}L2
x
,

}|x| 14 expp˘it|∇|qfωN }Lσ
ωL

4
tL

8
x

À
?
σN

1´ 1

4γ }fN}L2
x
,

Remark 3.6.
Since p “ 8, we can no longer use the usual combination of Minkowski’s integral inequality and
Khintchine’s inequality. We resolve this by using a radial Sobolev embedding.

Proof. Let 1 ď p ă 8 be a sufficiently large exponent. Using Proposition 2.6 and Lemma 3.4 , we
have for all p ď σ ă 8 that

}|x| 38 expp˘it|∇|qfωN}
Lσ
ωL

8
3
t L8

x

À }|x| 38 expp˘it|∇|q|∇|
3

p fωN}
Lσ
ωL

8
3
t L

p
x

À
?
σN

3

4
´ 1

8γ }fN}L2
x
.

Note that, due to scaling, the parameter p does not appear in the final estimate. Similarly, we have
that

}|x| 14 expp˘it|∇|qfωN}Lσ
ωL

4
tL

8
x

À }|x| 14 expp˘it|∇|q|∇|
3

p fωN}Lσ
ωL

4
tL

p
x

À
?
σN

1´ 1

4γ }fN}L2
x
.

Lemma 3.7 (Probabilistic L8
t -Strichartz Estimates).

Let f P L2
radpR3q and let δ ą 0. Then, we have for all 1 ď σ ă 8 and all N P 2Z that

} expp˘it|∇|qfωN }Lσ
ωL

8
t L6

x
À

?
σN

1´ 1

3γ }fN}L2
x
, (31)

}|x| 12 expp˘it|∇|qfωN}Lσ
ωL

8
t L8

x
Àδ

?
σN

1´ 1´δ
2γ }fN}L2

x
. (32)

Remark 3.8.
Since q “ 8, we can no longer use the same combination of Minkowski’s integral inequality and
Khintchine’s inequality as in the proof of Lemma 3.4. The same problem was encountered in
previous works using the Wiener randomization. In [33, Proposition 3.3], a chaining-type method
was used to bound L8

t -norms on compact time intervals. In [25, Proposition 2.10], the authors
obtain global control on an L8

t -norm via the fundamental theorem of calculus. Here we present a
slight modification of their argument. An alternative approach consists of using a fractional Sobolev
embedding in time [20].
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Proof. Let 1 ă q ă 8 be sufficiently large and assume that σ ě q. We fix t0, t1 P R. By the
fundamental theorem of calculus, it holds that

} exppit1|∇|qfωN }L6
x

ď } exppit0|∇|qfωN}L6
x

`
ż

rt0,t1s
}Btpexppit|∇|qfωN q}L6

x
dt

À } exppit0|∇|qfωN}L6
x

`N

ż

rt0,t1s
} exppit|∇|qfωN }L6

x
dt

À } exppit0|∇|qfωN}L6
x

`Npt1 ´ t0q
1

q1 } exppit|∇|qfωN}Lq
tL

6
xpRˆR3q .

By taking the q-th power of this inequality and integrating over t0 P rt1´N´1, t1`N´1s, we obtain
that

} exppit1|∇|qfωN }q
L6
x

À N} exppit|∇|qfωN}q
L
q
tL

6
xpRˆR3q

.

Taking the supremum in t1 and using Lemma 3.4, it follows that

} expp˘it|∇|qfωN }Lσ
ωL

8
t L6

x
À N

1

q } exppit|∇|qfωN }Lσ
ωL

q
tL

6
xpRˆR3q À

?
σN

1´ 1

3γ }fN}L2
x
.

Using the radial Sobolev embedding (Prop. 2.6), Proposition 2.9, and the same argument as before,
we obtain that

}|x| 12 expp˘it|∇|qfωN}Lσ
ωL

8
t L8

x
À }|x| 12 expp˘it|∇|q|∇|

3

q fωN}Lσ
ωL

8
t L

q
x

À N
1

q
` 3

q }|x| 12 expp˘it|∇|qfωN}Lσ
ωL

q
tL

q
x

À
?
σN

1´ 1

γ

´
1

2
´ 1

q

¯
}fN}L2

x
.

This completes the proof of the second estimate.

4 An in/out decomposition

In this section, we describe a decomposition of solutions to the linear wave equation into incom-
ing and outgoing components (see Figure 3). This decomposition relies heavily on the spherical
symmetry of the initial data. The in/out-decomposition can be derived in physical space by us-
ing spherical means, see e.g. [38]. However, for our purposes it is more convenient to derive the
decomposition in frequency space. A similar method has been used for the mass-critical NLS in
[26].

Let f P L2
radpR3q be spherically symmetric. Using the explicit expression J 1

2

pxq “
b

2
πx

sinpxq (cf.

[2]), it follows that

cospt|∇|qfprq

18



r

t
t “ r

inin in

out

out out

We display the in/out-decomposition for radial solutions of the linear wave equation in d “ 3. The blue lines
correspond to incoming waves and the red lines correspond to outgoing waves. The incoming wave will be
reflected at the origin and transformed into an outgoing wave.

Figure 3: In/out-decomposition

“ r´ 1

2

ż 8

0

cosptρqJ 1

2

prρqf̂pρqρ 3

2dρ

“
c

2

π

1

r

ż 8

0

cosptρq sinprρqf̂pρqρdρ

“ 1?
2π

1

r

ż 8

0

psinppt ` rqρq ´ sinppt ´ rqρqqf̂pρqρdρ .

By defining

Wsrhspτq “ 1?
2π

ż 8

0

sinpτρqhpρqρdρ , (33)

it follows that

cospt|∇|qf “ 1

r
pWsrf̂ spt ` rq ´Wsrf̂ spt ´ rqq .

Next, let us derive the corresponding decomposition for the operator sinpt|∇|q{|∇|. Let g P 9H´1
x pR3q

be spherically symmetric. Then,

sinpt|∇|q
|∇| gprq “ r´ 1

2

ż 8

0

sinptρqJ 1

2

prρqpgpρqρ 1

2dρ

“
c

2

π

1

r

ż 8

0

sinptρq sinprρqpgpρqdρ

“ 1?
2π

1

r

ż 8

0

pcosppt ´ rqρq ´ cosppt` rqρqqpgpρqdρ
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By defining

Wcrhspτq “ 1?
2π

ż 8

0

cospτρqhpρqρdρ ,

it follows that
sinpt|∇|q

|∇| g “ r´1
`
´Wcrρ´1ĝspt ` rq `Wcrρ´1ĝspt ´ rq

˘
.

Thus, the solution F of the linear wave equation with initial data pf, gq P L2
radpR3q ˆ 9H´1

rad
pR3q is

given by

F pt, xq “ 1

r

´
Wsr pf spt ` rq ´Wcrρ´1pgspt ` rq ´Wsr pf spt ´ rq `Wcrρ´1pgspt ´ rq

¯

Definition 4.1 (In/out-decomposition).
Let pf, gq P L2

radpR3qˆ 9H´1
radpR3q and let F be the corresponding solution to the linear wave equation.

Then, we define

WinrF spτq “ Wsr pf spτq ´Wcrρ´1pgspτq ,
WoutrF spτq “ ´Wsr pf spτq `Wcrρ´1pgspτq .

As a consequence, we have that

F pt, xq “ 1

r
pWinrF spt ` rq `WoutrF spt ´ rqq . (34)

Even though WinrF s equals ´WoutrF s we introduced to different notations to serve as a visual aid.
This also allows us to savely leave out the arguments t` r and t´ r in subsequent computations.
From Plancherell’s theorem, it follows that

}Wsrhspτq}L2
τ pRq ` }Wcrhs}L2

τ pRq À }ρh}L2
ρpRą0q . (35)

As a consequence, we have that

}WinrF spτq}L2
τ pRq ` }WoutrF spτq}L2

τ pRq À }f}L2
xpR3q ` }g} 9H´1

x pR3q . (36)

In the analysis of the Morawetz error term (see Section 8.2), we will need to control an interaction
between ∇F and the nonlinear part v. However, the individual components of ∇F are not radial.
To overcome this technical problem, we write

Bxj
F pt, xq

“ xj

r
BrF pt, rq

“ ´xj

r3
pWoutrF spt ´ rq `WinrF spt ` rqq ` xj

r2
p´pBτWoutrF sqpt ´ rq ` pBτWinrF sqpt ` rqq
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After a short calculation, we see that

BτWsrf̂ spτq “ Wcrρf̂ spτq and BτWcrρ´1ĝspτq “ ´Wsrĝspτq .

Then, we define

Win,∇rF spτq :“ Wcrρf̂ spτq `Wsrĝspτq , (37)

Wout,∇rF spτq :“ Wcrρf̂ spτq `Wsrĝspτq . (38)

Using these definitions, it follows that

Bxj
F pt, xq “ ´xj

r2
F pt, xq ` xj

r2
pWout,∇rF spt ´ rq `Win,∇rF spt ` rqq . (39)

Using the same argument as above, we have that

}Wout,∇rF spτq}L2
τ pRq ` }Win,∇rF spτq}L2

τ pRq À }f} 9H1
xpR3q ` }g}L2

xpR3q .

Lemma 4.2.
Let f P L2

radpR3q be such that supppf̂q Ď tξ : |ξ| P ra, p1 ` δqasu. Then, we have for all 2 ď q ď 8
that

}Wsrf spτq}Lq
τ pRq ` }Wcrf spτq}Lq

τ pRq À paδq
1

2
´ 1

q }f}L2
xpR3q . (40)

Proof. Using Hölder’s inequality, we have that

|Wsrf spτq| ` |Wcrf spτq| À
ż p1`δqa

a

|f̂pρq|ρdρ ď paδq 1

2

ˆż 8

0

|f̂pρq|2ρ2dρ
˙1

2

“ paδq 1

2 }f}L2
xpR3q .

This proves (40) for q “ 8. Together with (36), the general case follows by interpolation.

Lemma 4.2 is the analog of the square-function estimate [19, Lemma 2.2] for the Wiener random-
ization. However, since f is radial, it is much easier to prove.

Corollary 4.3 (Improved integrability for the in/out decomposition).
Let f P L2

radpR3q. Then, we have for all 2 ď q ă 8 that

}WsrfωN spτq}Lσ
ωL

q
τ

` }WcrfωN spτq}Lσ
ωL

q
τ

À N
p1´ 1

γ
qp 1

2
´ 1

q
q}fN}L2

xpR3q .

Proof. As in Section 3, we restrict to the case q ď σ ă 8. Using a combination of Khintchine’s
inequality, Minkowski’s integral inequality, and Lemma 4.2, we have that

}WsrfωN spτq}Lσ
ωL

q
τ

ď }WsrfωN spτq}Lq
τLσ

ω
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À
?
σ}WsrAkfN spτq}Lq

τ ℓ
2

k

ď
?
σ}WsrAkfN spτq}ℓ2kLq

τ

À N
p1´ 1

γ
qp 1

2
´ 1

q
q}AkfN}ℓ2

k
L2
x

À N
p1´ 1

γ
qp 1

2
´ 1

q
q}fN}L2

x
.

The same argument also works for WcrfωN spτq.

Remark 4.4.
For γ “ 1, Corollary 4.3 shows that WsrfωN spτq P Ş

2ďqă8 L
q
τ pRq almost surely for all f P H0`

rad
pR3q.

This holds because the radial randomization is similar to a Wiener randomization of the function
fprqr.

5 Local well-posedness and conditional scattering

Recall that the forced nonlinear wave equation is given by

#
´Bttv ` ∆v “ pv ` F q5 , pt, xq P R ˆ R

3 .

vpt0, xq “ v0 P 9H1
xpR3q, Btvpt0, xq “ v1 P L2

xpR3q .
(41)

In this section, it is not important that F solves a linear wave equation. However, this will be
essential in Sections 6-9.

Lemma 5.1 (Local Well-Posedness).
Let pv0, v1q P 9H1

xpR3q ˆL2
xpR3q and assume that F P L5

tL
10
x pRˆR

3q. Then, there exists a maximal
time interval of existence I and a corresponding unique solution v of (41) satisfying

pv, Btvq P
`
C0
t

9H1
xpI ˆ R

3q X L5
t,locL

10
x pI ˆ R

3q
˘

ˆ C0
t L

2
xpI ˆ R

3q .

Moreover, if both the initial data pv0, v1q and the forcing term F are radial, then v is also radial.

The proof consists of a standard application of Strichartz estimates, and we omit the details. We
refer the reader to [19, Lemma 3.1] and [34, Theorem 1.1] for related results. In [34] the stability
theory for energy critical equations was used to reduce to the proof of almost sure global well-
posedness to an a priori energy bound. Similar methods have also been used in [3, 19, 20, 25, 33].

Proposition 5.2 ([19, Theorem 1.3]).
Let pv0, v1q P 9H1

xpR3q ˆL2
xpR3q and F P L5

tL
10
x pRˆR

3q. Let vptq be a solution (41) and let I be its
maximal time interval of existence. Furthermore, we assume that v satisfies the a priori bound

M :“ sup
tPI

Ervsptq ă 8 . (42)
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Then v is a global solution, it obeys the global space-time bound

}v}L5
tL

10
x pRˆR3q ď CpM, }F }L5

tL
10
x pRˆR3qq ă 8 ,

and it scatters as t Ñ ˘8.

Theorem 1.3 in [19] is stated for the energy critical NLW in d “ 4. However, the same argument
also yields Proposition 5.2. We point out that the proof crucially relies on the deterministic theory
for the energy critical NLW [1, 44].

6 Almost energy conservation and decay estimates

In this section, we prove new estimates for the solution to the forced NLW

#
´Bttv ` ∆v “ pv ` F q5 , pt, xq P R ˆ R

3 .

vpt0, xq “ v0 P 9H1
xpR3q, Btvpt0, xq “ v1 P L2

xpR3q .
(43)

In contrast to Section 5, we now assume that F is a solution to the linear wave equation. Recall
that the stress-energy tensor of the energy critical NLW is given by

T 00 :“ 1

2

`
pBtvq2 ` |∇v|2

˘
` 1

6
v6 ,

T j0 :“ ´Btv Bxj
v

T jk :“ Bxj
v Bxk

v ´ δjk

4
p´Btt ` ∆qpv2q ` δjk

3
v6 .

In the above tensor, we have that j, k “ 1, 2, 3. If v solves the energy critical NLW (1), then the
stress-energy tensor is divergence free. This leads to energy conservation, momentum conservation,
and several decay estimates, such as Morawetz estimates, flux estimates, or potential energy decay
(see [38, 43]). If v solves the forced nonlinear wave equation (43), then the stress-energy tensor is
no longer divergence free. However, the error terms in the divergence are of lower order, so that
we can still hope for almost conservation laws and some decay estimates. More precisely, with
N :“ pv ` F q5 ´ v5, it follows from a standard computation that

BtT 00 ` Bxk
T 0k “ ´N Btv (44)

BtT j0 ` Bxk
T jk “ N Bxj

v ´ 1

2
Bxj

pN vq . (45)

For our purposes, the most important quantity measuring the size and regularity of v is its energy

Ervsptq “
ż

1

2
|∇v|2 ` 1

2
|Btv|2 ` 1

6
|v|6dx .
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For future use, we also define the local energy as

ervsptq :“
ż

|x|ď|t|

1

2
|∇v|2 ` 1

2
|Btv|2 ` 1

6
|v|6dx .

Next, we determine the error terms in the almost energy conservation law.

Proposition 6.1 (Energy Increment).
Let I “ ra, bs be a time interval and v : I ˆ R

3 Ñ R be a solution to the forced nonlinear wave
equation (43). Then, we have that

|Ervspbq ´ Ervspaq| (46)

À }F }L8
t L6

xpIˆR3q sup
tPI

Ervsptq 5

6 `
ˇ̌
ˇ̌
ż

I

ż

R3

pBtF qv5dxdt
ˇ̌
ˇ̌ `

ż

I

ż

R3

|F |2p|F | ` |v|q3|Btv|dxdt .

The first summand on the right-hand side of (46) has a lower power in the energy. After placing
the random linear evolution in L8

t L
6
xpRˆR

3q, it can easily be controlled via a bootstrap argument.
The second summand is the main error term in this almost energy conservation law, and we will
control it in Section 8.1. Finally, the third summand in (46) only includes lower order error terms,
and they are controlled in Section 8.4.
The idea to integrate by parts in the energy increment has previously been used in [20, 25, 33].

Proof. From the divergence formula (44), it follows that

d

dt
Ervsptq “ d

dt

ż

R3

T 00pt, xqdx

“ ´
ż

R3

N Btvdx

“ ´5

ż

R3

Fv4Btvdx´
ż

R3

`
10F 2v3 ` 10F 3v2 ` 5F 4v ` F 5

˘
Btvdx .

Integrating in time, we obtain that

|Ervspbq ´ Ervspaq| À
ˇ̌
ˇ̌
ż

I

ż 3

R

Fv4Btvdxdt
ˇ̌
ˇ̌ `

ż

I

ż

R3

|F |2p|F | ` |v|q3|Btv|dxdt . (47)

The second summand in (47) is already acceptable; thus, we now turn to the first summand. Using
integration by parts, we have that

5

ˇ̌
ˇ̌
ż

I

ż

R3

Fv4Btvdxdt
ˇ̌
ˇ̌

“
ˇ̌
ˇ̌
ż

I

ż

R3

FBtpv5qdxdt
ˇ̌
ˇ̌
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ď
ˇ̌
ˇ̌
ż

I

ż

R3

BtpF q v5dxdt
ˇ̌
ˇ̌ `

ż

R3

|F |pb, xq|v|5pb, xqdx`
ż

R3

|F |pa, xq|v|5pa, xqdx

À
ˇ̌
ˇ̌
ż

I

ż

R3

BtpF q v5dxdt
ˇ̌
ˇ̌ ` }F }L8

t L6
xpIˆR3q sup

tPI
Ervsptq 5

6 .

Thus, the contribution of the first summand in (47) is also acceptable.

By contracting the stress-energy tensor against different vector fields, one sees that solutions to the
energy critical NLW obey a range of decay estimates. One of the most important decay estimates
in the study of dispersive equations is the Morawetz estimate, and it has been used to prove almost
sure scattering in [19, 20, 25]. For the reader’s convenience, we recall a classical Morawetz identity.

Lemma 6.2 (Morawetz identity).
Let I “ ra, bs be a given time interval, and let v : I ˆ R

3 Ñ R be a solution of (43). Then, we have
the Morawetz identity

2
3

ż

I

ż

R3

v6

|x|dxdt` π

ż

I

|v|2pt, 0qdt `
ż

I

ż

R3

|∇angv|2dxdt (48)

“
ż

R3

Btv
x

|x| ¨ ∇v ´ 4
v

|x|Btvdx
ˇ̌
ˇ
b

t“a
´

ż

I

ż

R3

N
x

|x| ¨ ∇vdxdt´
ż

I

ż

R3

1

|x|N vdxdt .

Here, ∇angv :“ ∇v ´ x
|x| ¨ ∇v denotes the angular component of the gradient of v.

The lemma follows along a line of standard computations using (44) and (45), see e.g. [43]. We
now rewrite the error terms in (48) more explicitly in terms of F , and group similar terms together.

Proposition 6.3 (Morawetz Estimate).
Let I “ ra, bs be a given time interval, and let v : I ˆ R

3 Ñ R be a solution of (43). Then, we have
the Morawetz estimate

ż

I

ż

R3

v6

|x|dxdt

À sup
tPI

Ervsptq `
ˇ̌
ˇ̌
ż

I

ż

R3

x

|x| ¨ ∇xpF q v5dxdt
ˇ̌
ˇ̌ (49)

`
ż

I

ż

R3

1

|x| |F |p|v|5 ` |F |5qdxdt`
ż

I

ż

R3

|F |2p|F | ` |v|q3
ˆ |v|

|x| ` |∇v|
˙
. (50)

The second summand in (49) is the main error term in this estimate, and we will control it in
Section 8.2. In contrast, the error terms in (50) are easier to control, and they will be handled in
Section 8.4.
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Proof. To prove the proposition, we have to control the terms on the right-hand side of (48). First,
using Hardy’s inequality, we have that

ˇ̌
ˇ̌
ż

R3

Btv
x

|x| ¨ ∇v ´ 4
v

|x| Btvdx
ˇ̌
ˇ
b

t“a

ˇ̌
ˇ̌

À }Btvptq}L8
t L2

xpIˆR3q}∇v}L8
t L2

xpIˆR3q ` }Btvptq}L8
t L2

xpIˆR3q}
v

|x| }L8
t L2

xpIˆR3q

À sup
tPI

Ervsptq .

Thus, the contribution is acceptable. Second, we have that
ˇ̌
ˇ̌
ż

I

ż

R3

N
x

|x| ¨ ∇vdxdt
ˇ̌
ˇ̌

À
ˇ̌
ˇ̌
ż

I

ż

R3

Fv4
x

|x| ¨ ∇vdxdt
ˇ̌
ˇ̌ `

ż

I

ż

R3

|F |2 p|F | ` |v|q3 |∇v|dxdt

À
ˇ̌
ˇ̌
ż

I

ż

R3

F
x

|x| ¨ ∇pv5qdxdt
ˇ̌
ˇ̌ `

ż

I

ż

R3

|F |2 p|F | ` |v|q3 |∇v|dxdt

À
ˇ̌
ˇ̌
ż

I

ż

R3

∇ ¨
ˆ
F
x

|x|

˙
v5dxdt

ˇ̌
ˇ̌ `

ż

I

ż

R3

|F |2 p|F | ` |v|q3 |∇v|dxdt

À
ˇ̌
ˇ̌
ż

I

ż

R3

x

|x| ¨ ∇pF q v5dxdt
ˇ̌
ˇ̌ `

ż

I

ż

R3

|F |
|x| |v|5dxdt`

ż

I

ż

R3

|F |2 p|F | ` |v|q3 |∇v|dxdt

Thus, the contribution is acceptable. Finally, we have that
ˇ̌
ˇ̌
ż

I

ż

R3

1

|x|N vdxdt

ˇ̌
ˇ̌ À

ż

I

ż

R3

1

|x| |F |p|F | ` |v|q4|v|dxdt À
ż

I

ż

R3

1

|x| |F |p|F | ` |v|q5dxdt .

In contrast to the case d “ 4 as in [19, 20], the energy and the Morawetz term are not strong
enough to control the main error terms. In addition, we will rely on the following flux estimates
on light cones.

Lemma 6.4 (Forward Flux Estimate).
Let v be a solution of (43) on a compact time interval I “ ra, bs Ď r0,8q. Then, we have that

1
6

ż

|x|“t,tPI
v6pt, xqdσpt, xq ď ervspbq ´ ervspaq `

ż

|x|ďt,tPI
Btv

`
pv ` F q5 ´ v5

˘
dxdt . (51)

Remark 6.5.
The flux estimate is a monotonicity formula based on the increment of the local energy. The term
on the left-hand side of (51) describes the inflow of potential energy through the light cone.
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x

t

Ð flux

t “ |x|

a

epaq
Ó

b

Ò
epbq

I

This figure displays the quantities involved in the forward flux estimate. The local energy at times t “ a, b

is the integral of the energy density over the red regions. The flux is the integral of v6 over the blue region
in space-time. Using the stress-energy tensor, we can control the flux by the increment of the local energy.

Figure 4: Forward Flux Estimate

Proof. We have that

d

dt
ervsptq

“
ż

|x|“t

1
2
|∇v|2 ` 1

2
|Btv|2 ` 1

6
|v|6dσpt, xq `

ż

|x|ďt

Bt∇v ∇v ` BttvBtv ` v5Btvdx

“
ż

|x|“t

1
2
|∇v|2 ` 1

2
|Btv|2 ´ Btv ∇v ¨ ~n` 1

6
|v|6dσpt, xq

`
ż

|x|ďt

BtvpBttv ´ ∆v ` v5qdx

ě
ż

|x|“t

1
6
|v|6dσpt, xq `

ż

|x|ďt

Btvp´pv ` F q5 ` v5qdx .

Integrating over t P I, we arrive at (51).

The estimate (51) by itself is not useful. Indeed, it only controls the size of v on a lower-dimensional
surface in space-time. We will now use time-translation invariance to integrate it against a weight
w P L1

τ pRq.
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x

t

I

Woutr|∇| ĂFN s

τ

We display the idea behind the interaction flux estimate. By using the time-translation invariance of the
equation, we can control v6 on the blue region of each shifted light cone. Then, we integrate the forward flux
estimate against a weightw depending only on the shift τ . Since the outgoing componentWoutr|∇| ĂFN spt´|x|q
is constant on forward light cones, we choose w “ |Woutr|∇| ĂFN s|2.

Figure 5: Interaction Flux Estimate

Proposition 6.6 (Forward Interaction Flux Estimate).
Let v be a solution to the forced NLW (43) on a compact time interval I “ ra, bs Ď r0,8q. Also,
let w P L1

τ pRq be nonnegative. Then, we have that

ż

I

ż

R3

wpt ´ |x|q|v|6pt, xqdxdt

À }w}L1
τ pRq sup

tPI
Ervsptq ` }w}L1

τ pRq}F }L8
t L6

xpIˆR3q sup
tPI

Ervsptq 5

6 (52)

`
ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

˜ż t´|x|

´8
wpτqdτ

¸
BtpF qv5dxdt

ˇ̌
ˇ̌
ˇ `

ˇ̌
ˇ̌
ż

I

ż

R3

wpt ´ |x|qF v5dxdt

ˇ̌
ˇ̌ (53)

` }w}L1
τ pRq

ż

I

ż

R3

|F |2p|F | ` |v|q3|Btv|dxdt (54)

In order to control the energy, we essentially choose w as the outgoing component of the linear
wave F (cf. Section 7 and Figure 5).
The terms in (52) correspond to boundary terms, and they can easily be controlled by a bootstrap
argument. The main error terms are in (53), and they will be controlled in Section 8.3. In contrast,
the errors in (54) are of lower order, and they will be controlled in Section 8.4.
To remember that the weight w in (53) should be integrated over p´8, t´ |x|s, note that the
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contribution of the error BtpF qv5 should be weighted less as t Ñ ´8 and |x| Ñ 8.

Proof. By time-translation invariance and Lemma 6.4, we obtain for any τ P R that

ż

|x|“t´τ,tPI

|v|6pt, xq
6

dσpt, xq

ď
ż

|x|ďb´τ

1

2
|∇v|2 ` 1

2
|Btv|2 ` 1

6
|v|6dx

ˇ̌
ˇ
t“b

´
ż

|x|ďa´τ

1

2
|∇v|2 ` 1

2
|Btv|2 ` 1

6
|v|6dx

ˇ̌
ˇ
t“a

`
ż

|x|ďt´τ,tPI
Btvppv ` F q5 ´ v5qdxdt

ď 2 sup
tPI

Ervsptq `
ż

|x|ďt´τ,tPI
Btvppv ` F q5 ´ v5qdxdt . (55)

Integrating (55) against the function wpτq, we obtain that

1

6

ż

I

ż

R3

wpt ´ |x|q|vpt, xq|6dxdt

“ 1

6

ż ż

|x|“t´τ

wpτq|v|6pt, xqdσpt, xqdτ

ď 2}w}L1
τ pRq sup

tPI
Ervsptq `

ż ż

|x|ďt´τ,tPI
wpτqBtvptqppv ` F q5 ´ v5qdxdtdτ

À }w}L1
τ pRq sup

tPI
Ervsptq `

ˇ̌
ˇ̌
ˇ

ż

R

ż

|x|ďt´τ,tPI
wpτqFv4Btvdxdtdτ

ˇ̌
ˇ̌
ˇ (56)

` }w}L1
τ pRq

ż

I

ż

R3

|F |2p|F | ` |v|q3|Btv|dxdt .

The first and third summand in (56) are acceptable contributions. Thus, we turn to the second
summand in (56). Using integration by parts, we have that

5

ˇ̌
ˇ̌
ˇ

ż

I

ż

|x|ďt´τ,tPI
wpτqFv4Btvdxdtdτ

ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

˜ż t´|x|

´8
wpτqdτ

¸
FBtpv5qdxdt

ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ

ż

R3

˜ż t´|x|

´8
wpτqdτ

¸
Fv5dx

ˇ̌
ˇ
t“b

ˇ̌
ˇ̌
ˇ `

ˇ̌
ˇ̌
ˇ

ż

R3

˜ż t´|x|

´8
wpτqdτ

¸
Fv5dx

ˇ̌
ˇ
t“a

ˇ̌
ˇ̌
ˇ

`
ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

˜ż t´|x|

´8
wpτqdτ

¸
BtpF qv5dxdt

ˇ̌
ˇ̌
ˇ `

ˇ̌
ˇ̌
ż

I

ż

R3

wpt ´ |x|qF v5dxdt

ˇ̌
ˇ̌
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À }w}L1
τ pRq}F }L8

t L6
xpIˆR3q sup

tPI
Ervsptq 5

6 `
ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

˜ż t´|x|

´8
wpτqdτ

¸
BtpF qv5dxdt

ˇ̌
ˇ̌
ˇ

`
ˇ̌
ˇ̌
ż

I

ż

R3

wpt ´ |x|qF v5dxdt

ˇ̌
ˇ̌

By replacing the forward light-cones in the derivation of Proposition 6.6 by backward light-cones,
one easily derives the following proposition.

Proposition 6.7 (Backward Interaction Flux Estimate).
Let v be a solution of (43) on a compact time interval I “ ra, bs Ď r0,8q. Also, let w P L1

τ pRq be
nonnegative. Then, we have that

ż

I

ż

R3

wpt ` |x|q|v|6pt, xqdxdt (57)

À }w}L1
τ pRq sup

tPI
Ervsptq ` }w}L1

τ pRq}F }L8
t L6

xpIˆR3q sup
tPI

Ervsptq 5

6

`
ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

˜ż 8

t`|x|
wpτqdτ

¸
BtpF qv5dxdt

ˇ̌
ˇ̌
ˇ `

ˇ̌
ˇ̌
ż

I

ż

R3

wpt ` |x|qF v5dxdt

ˇ̌
ˇ̌ (58)

` }w}L1
τ pRq

ż

I

ż

R3

|F |2p|F | ` |v|q3|Btv|dxdt

To remember that the weight w in (58) should be integrated over rt` |x|,8q, note that the contri-
bution of the error BtpF qv5 should be weighted less as t, |x| Ñ 8.

7 Bootstrap argument

In this section, we introduce the quantities in the bootstrap argument to control the energy. For a
given time interval I Ď R, we define the energy

EI :“ sup
tPI

Ervsptq “ sup
tPI

ż

R3

1

2
pBtvpt, xqq2 ` 1

2
|∇vpt, xq|2 ` 1

6
|vpt, xq|6dx (59)

and the Morawetz term
AI :“ }|x|´ 1

6 v}6
L6
t,xpIˆR3q . (60)

Before we can define the interaction flux term, we need to introduce some further notation. Let F
be a solution to the linear wave equation with initial data F |t“0 “ f0 P L2

radpR3q and BtF |t“0 “ g0 P
9H´1
radpR3q. As in the definition of Fω in (5) , we assume that Pď25f0 “ Pď25g0 “ 0. We recall from
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(6) that the low-frequency component of pfω, gωq will be treated as the initial data of the nonlinear
component v. In order to use Littlewood-Paley theory in the spatial variables, it is convenient to
introduce a second solution rF to the linear wave equation. A short computation shows that

BtF “ |∇|
ˆ
cospt|∇|q|∇|´1g ` sinpt|∇|q

|∇| p´|∇|fq
˙

Then,

rF :“ cospt|∇|q|∇|´1g ` sinpt|∇|q
|∇| p´|∇|fq (61)

satisfies BtF “ |∇| rF and has initial data rF |t“0 “ |∇|´1g P L2
radpR3q and Bt rF |t“0 “ ´|∇|f P

9H´1
rad

pR3q. After localizing in frequency space, we write

|∇| rFN pt, xq “ 1

|x|
´
Woutr|∇| rFN spt ´ rq `Winr|∇| rFN spt ` rq

¯
(62)

In the bootstrap argument, we want to apply the interaction flux estimate to the Littlewood-Paley
pieces PKv of v. In order to deal with the operators PK , we need to slightly modify the weights.
Unfortunately, we cannot use the Hardy-Littlewood maximal function, since it is unbounded in L1.
Instead, we define for each K P 2N the operator

SKw “ KxKτy´2 ˚ w . (63)

Definition 7.1 (Interaction Flux Term).
Let pf0, g0q P L2

radpR3q ˆ 9H´1
rad

pR3q and assume that Pď25f0 “ Pď25g0 “ 0. Let F be the solution of

the linear wave equation with data pf0, g0q, let rF be as in (61), let v be a solution to (43), and let
I Ď R. For ˚ P tout, inu, we define

FI,˚ :“
ÿ

Ně1

pN´ 1

6γ
`2δ `N´2`2δq sup

KP2Z
}w˚,K,Npt´ |x|q 1

6 vpt, xq}6
L6
t,xpIˆR3q (64)

`
ÿ

Ně1

pN´ 1

6γ
`2δ `N´2`2δq sup

KP2Z
}w˚,∇,K,Npt ´ |x|q 1

6 vpt, xq}6
L6
t,xpIˆR3q (65)

` }W˚rF spt ´ |x|q 1

3 v}6
L6
t,xpIˆR3q , (66)

where w˚,K,N “ SKp|W˚r|∇| rFN s|2q and w˚,∇,K,N “ SKp|W˚,∇rFN s|2q, see Section 4. For notational
convenience, we also set

FI :“ FI,out ` FI,in .

In the following definition, we introduce two auxiliary norms on F that will be used in the rest of
this paper.
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Definition 7.2 (YI and Z-norms).
Let pf0, g0q P L2

radpR3q ˆ 9H´1
rad

pR3q and assume that Pď25f0 “ Pď25g0 “ 0. Let F be the solution of

the linear wave equation with data pf0, g0q, let rF be as in (61), and let I Ď R. Then, we define

}F }Y pIq :“ }N´ 3

4
` 1

24γ
`δ|x| 38 |∇| rFN }

ℓ
8
3

NL
8
3
t L8

x p2NˆIˆR3q

` }N´ 3

4
` 1

24γ
` 5δ

2 |x| 3`2δ
8 |∇|FN }

ℓ
8

3´2δ
N L

8

3´2δ
t L

2

δ
x p2NˆIˆR3q

` }N´1`δ|x|´ 1

6 |∇|FN}ℓ6
N
L6
tL

6
xp2NˆIˆR3q ` }N´1`δ|x| 23 |∇| rFN }ℓ12

N
L12
t L12

x p2NˆIˆR3q

` }|x| 14F }L4
tL

8
x pIˆR3q ` }F }L5

tL
10
x pIˆR3q ` }|x|´ 1

6F }L6
t,xpIˆR3q ` }|x| 23F }L12

t,xpIˆR3q .

Furthermore, we also define

}F }Z :“
ÿ

˚Ptout,inu

ÿ

pPt2,4,24u

}pN´ 1

12γ
`2δ `N´1`δqW˚r|∇| rFN s}ℓ1NL

p
τ p2NˆRq

`
ÿ

˚Ptout,inu

ÿ

pPt2,4,24u

}pN´ 1

12γ
`2δ `N´1`δqW˚,∇rFN s}ℓ1NL

p
τ p2NˆRq

`
ÿ

˚Ptout,inu

ÿ

pPt2,4,24u

}W˚rF s}Lp
τ pRq

` }N δ|x| 12FN}ℓ1NL8
t L8

x p2NˆRˆR3q ` }F }L8
t L6

xpRˆR3q .

We remark that }F }YI
is divisible in space-time. More precisely, let η ą 0 be given and assume

that }F }Y pRq ă 8. Then, there exists a finite number J “ Jpη, }F }Y pRqq and a partition of R into
finitely many intervals I1, . . . , IJ such that }F }Ij ă η for all j “ 1, . . . , J .

Lemma 7.3 (Almost sure finiteness of Y and Z-norms).
Let pf, gq P Hs

radpR3q ˆHs´1
rad

pR3q, let 0 ă γ ď 1, let s ą maxp0, 1 ´ 1
12γ

q, and let Fω be as in (5).
If δ “ δps, γq ą 0 is chosen sufficiently small, we have that

}Fω}Y pRq ă 8 and }Fω}Z ă 8 a.s. .

Proof. In the following, we assume that δ “ δpγ, sq ą 0 is sufficiently small. In the computations
below, we have that N ě 26 and pt, xq P R ˆ R

3. For σ ě 8{3, it follows from Minkowski’s integral
inequality and Lemma 3.5 that

}N´ 3

4
` 1

24γ
`δ|x| 38 |∇| rFω

N }
Lσ
ωℓ

8
3

NL
8
3
t L8

x

ď }N´ 3

4
` 1

24γ
`δ|x| 38 |∇| rFω

N }
ℓ
8
3

NLσ
ωL

8
3
t L8

x
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À
?
σ}N1´ 1

12γ
`δpfN , gN q}

ℓ
8
3

N pL2
xˆ 9H´1

x q

À
?
σ}pf, gq}Hs

xˆHs´1
x

.

In particular, we have that

}N´ 3

4
` 1

24γ
`δ|x| 38 |∇| rFω

N }
ℓ
8
3

N
L

8
3
t L8

x

ă 8

almost surely. A similar argument for the remaining terms in the YR-norm leads to the regularity
restrictions

s ą max
´
1 ´ 1

12γ
, 1 ´ 1

3γ
, 1
2

´ 5
12γ

, 1 ´ 1
4γ
, 1 ´ 3

10γ
, 1 ´ 1

3γ
, 1
2

´ 5
12γ

¯
,

which have been listed in the same order as the terms in the definition of }Fω}YR
. Next, we estimate

}Fω}Z . Using Corollary 4.3, the terms involving }W˚r|∇| rFN s}Lp
τ
lead to the restriction

s ą max
´

p1 ´ 1
γ

qp1
2

´ 1
24

q, 0
¯

` max
´
1 ´ 1

12γ
, 0

¯
.

Since 0 ă γ ď 1, this leads to s ą maxp1´ 1
12γ

, 0q. Using Lemma 3.7, the fourth and fifth summand
in the Z-norm lead to the restriction

s ą max
´
1 ´ 1

3γ
, 1 ´ 1

2γ

¯
.

In this paper, the condition γ ď 1 is only used in the proof of Lemma 7.3. By changing the
restriction on s, we could also treat a slightly larger range of parameters γ.

8 Control of error terms

In this section, we estimate the error terms in Proposition 6.1, Lemma 6.3, and Proposition 6.6.
Before we begin with our main estimates we prove an auxiliary lemma.

Lemma 8.1.
Let w P L1

τ pRq be nonnegative. Let K P 2N be arbitrary, and let SK be defined by

SKw “ K xKρy´2 ˚ w .

Then, we have for all v P L1
locpR3q that

ż

R3

|PKvpxq|6wpt ´ |x|qdx À
ż

R3

|vpxq|6ppSKwqpt ´ |x|q ` |x|´1}w}L1
τ
qdx . (67)

33



Proof. We prove (67) by interpolation. The L8 Ñ L8 estimate is trivial. Thus, it suffices to prove
the L1 Ñ L1 estimate

ż

R3

|PKvpxq|wpt ´ |x|qdx À
ż

R3

|vpxq|ppSKwqpt ´ |x|q ` |x|´1}w}L1
τ
qdx . (68)

Let Ψ P tφ,ψu be as in the definition of the Littlewood-Paley projection. Then,
ż

R3

|PKvpxq|wpt ´ |x|qdx ď
ż

R3

ż

R3

|vpyq| K3|qΨpKpx ´ yqq|wpt ´ |x|qdydx

“
ż

R3

|vpyq|
ˆ
K3

ż

R3

|qΨpKpy ´ xqq|wpt ´ |x|qdx
˙
dy .

Hence, we it remains to establish the pointwise bound

K3

ż

R3

|qΨpKpy ´ xqq|wpt ´ |x|qdx À pSK ˚ wqpt ´ |y|q ` |y|´1}w}L1
τ
.

Now, the main task consists of converting the left-hand side into a one-dimensional integral. Using
an integral formula from [38, p. 8], we have that

K3

ż

R3

|qΨpKpy ´ xqq|wpt ´ |x|qdx

“ K3

ż

R3

|qΨpKxq|wpt ´ |y ´ x|qdx

À K3

ż 8

0

|qΨpKrq|
˜ż

|x|“r

wpt ´ |y ´ x|qdσpt, xq
¸
dr

“ K3

ż 8

0

|qΨpKrq|
˜ż

|y´x|“r

wpt ´ |x|qdσpt, xq
¸
dr

“ K3

ż 8

0

|qΨpKrq|2πr|y|

ż |y|`r

||y|´r|
wpt ´ ρqρdρdr

À K3

|y|

ż 4|y|

0

ż |y|`r

|y|´r

r|qΨpKrq|wpt ´ ρq|ρ|dρdr (69)

` K3

|y|

ż 8

4|y|

ż r`|y|

r´|y|
r|qΨpKrq|wpt ´ ρqρdρdr

Let us now estimate the first summand in (69). We have that

K3

|y|

ż 4|y|

0

ż |y|`r

|y|´r

r|qΨpKrq|wpt ´ ρq|ρ|dρdr

“ K3

|y|

ż 4|y|

0

ż r

´r

r|qΨpKrqwpt ´ |y| ´ ρq|p|y| ` ρq|dρdr
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À K3

ż 4|y|

0

ż r

´r

r|qΨpKrq|wpt ´ |y| ´ ρqdρdr

ď K3

ż 8

´8

˜ż 8

|ρ|
|qΨpKrq|rdr

¸
wpt ´ |y| ´ ρqdρ

ď K

ż 8

´8

˜ż 8

K|ρ|
|qΨprq|rdr

¸
wpt ´ |y| ´ ρqdρ

À K

ż 8

´8
xK|ρ|y´2wpt ´ |y| ´ ρqdρ

“ pSKwqpt ´ |y|q .
Thus, it remains to estimate the second integral in (69). We have that

K3

|y|

ż 8

4|y|

ż r`|y|

r´|y|
r|qΨpKrq|wpt ´ ρqρdρdr

À K3

|y|

ż 8

4|y|

ż r`|y|

r´|y|
r2|qΨpKrq|wpt ´ ρqdρdr

ď K3

|y| }w}L1
τ pRq

ż 8

0

|qΨpKrq|r2dr

ď 1

|y| }w}L1
τ pRq

ż 8

0

|qΨprq|r2dr

À 1

|y| }w}L1
τ pRq .

Corollary 8.2 (Frequency-Localized Interaction Flux Estimate).
Let F be as in Definition 7.2 and let v : I ˆ R

3 Ñ R be a solution of (43). Then, we have that

sup
KP2N

}|x| 13 p|∇| rFN q 1

3PKv}6
L6
t,xpIˆR3q À min

´
N

1

6γ
´2δ

, N2´2δ
¯ `

FI ` }F }2ZAI

˘
. (70)

Remark 8.3.
The flux estimate yields much better integrability in the spatial variable x than the Morawetz
estimate. To see this, note that (70) cannot be controlled by the Morawetz term. For instance, one
might try to estimate

}|x||∇| rFNv
3}L2

t,xpIˆR3q À }|x| 32 |∇| rFN }L8
t,xpIˆR3q }|x|´ 1

6 v}3
L6
t,xpIˆR3q .

Even for smooth and compactly supported initial data, |∇| rFN only decays like „ p1 ` |t|q´1 and is

morally supported around the light cone |x| “ |t|. Thus, the term }|x| 32 |∇| rFN }L8
t,xpIˆR3q grows like

„ p1 ` |t|q 1

2 as I increases.
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Proof. Using the in/out-decomposition and Lemma 8.1, it follows that

}|x| 13
`
|∇| rFN

˘ 1

3PKv}6
L6
t,xpIˆR3q

À }pWoutr|∇| rFN sq 1

3PKv}6
L6
t,xpIˆR3q ` }pWinr|∇| rFN sq 1

3PKv}6
L6
t,xpIˆR3q

À }SKp|Woutr|∇| rFN s|2q 1

6 v}6
L6
t,xpIˆR3q ` }|Woutr|∇| rFN s|2}L1

τ
}|x|´ 1

6 v}6
L6
t,xpIˆR3q

` }SKp|Winr|∇| rFN s|2q 1

6 v}6
L6
t,xpIˆR3q ` }|Winr|∇| rFN s|2}L1

τ
}|x|´ 1

6 v}6
L6
t,xpIˆR3q

À min
´
N

1

6γ
´2δ

, N2´2δ
¯ `

FI ` }F }2ZAI

˘
.

By taking the supremum over K P 2N, we arrive at (70).

8.1 Energy increment

In this section, we control the main error term in the energy increment.

Proposition 8.4 (Main error term in energy increment).
Let F be as in Definition 7.2 and let v : I ˆ R

3 Ñ R be a solution of (43). Then, it holds that
ˇ̌
ˇ̌
ż

I

ż

R3

p|∇| rF qv5dxdt
ˇ̌
ˇ̌ À pFI ` }F }2ZAIq 1

6A
7

12

I E
1

4

I }F }
2

3

YI
. (71)

Remark 8.5.

Instead of using F
1

6

I to overcome the logarithmic divergence, we could also just use F ǫ
I . Then, the

term }|x| 38 |∇| rFN }
L

8
3
t L8

x pIˆR3q
changes into a (non-endpoint) term }|x| 14 ´|∇| rFN }

L4´
t L8

x pIˆR3q. The

probabilistic gain should then increase from 2
3

¨ 1
8γ

to 1
4γ

derivatives, which should lead to the

restriction s ą maxp1 ´ 1
4γ
, 0q. For expository purposes, we do not present this argument here.

Proof. Using a Littlewood-Paley decomposition, we write v “ ř
Kě1 PKv and rF “ ř

Ně26
rFN .

Thus,
ˇ̌
ˇ̌
ż

I

ż

R3

p|∇| rF qv5dxdt
ˇ̌
ˇ̌ À

ÿ

Ně26

ÿ

K1ěK2ě...ěK5ě1

ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

p|∇| rFN q
5ź

j“1

PKj
vdxdt

ˇ̌
ˇ̌
ˇ

“
ÿ

Ně26

ÿ

K1ěK2ě...ěK5ě1
K1ě2´4N

ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

p|∇| rFN q
5ź

j“1

PKj
vdxdt

ˇ̌
ˇ̌
ˇ

Note that, for all summands above, we have K1 ą 1. Using Proposition 2.9 and Corollary 8.2, it
follows thatˇ̌

ˇ̌
ˇ

ż

I

ż

R3

p|∇| rFN q
5ź

j“1

PKj
vdxdt

ˇ̌
ˇ̌
ˇ
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ď }|x| 38 |∇| rFN }
2

3

L
8
3
t L8

x pIˆR3q
}|x| 13 p|∇| rFN q 1

3PK5
v}L6

t,xpIˆR3q

4ź

j“2

}|x|´ 1

6PKj
v}L6

t,xpIˆR3q

¨ }|x|´ 1

6PK1
v}

1

2

L6
t,xpIˆR3q

}PK1
v}

1

2

L8
t L2

xpIˆR3q

À N
2

3

´
3

4
´δ´ 1

24γ

¯
}F }

2

3

YI
N

1

36γ
´ δ

3 pFI ` }F }2ZAIq 1

6A
7

12

I K
´ 1

2

1 E
1

4

I

“
ˆ
N

K1

˙ 1

2
´δ

K´δ
1 }F }

2

3

YI
pFI ` }F }2ZAIq 1

6A
7

12

I E
1

4

I .

Using that K1 Á N and K1, . . . ,K5 ě 1, we obtain (71) after summing.

8.2 Morawetz estimate

In this section, we control the main error term in the Morawetz estimate. The main new difficulty
is the weight x{|x|.

Proposition 8.6 (Main error term in Morawetz estimate).
Let F be as in Definition 7.2 and let v be a solution of (43). Then,

ˇ̌
ˇ̌
ż

I

ż

R3

x

|x| ¨ ∇xpF q v5dxdt
ˇ̌
ˇ̌

À pFI ` }F }2ZAIq 1

6A
7

12
` δ

6

I E
1

4
´ δ

2

I }F }
2

3

YI
` }F }YI

A
5

6

I .

Proof. As before, we use a Littlewood-Paley decomposition and write

ˇ̌
ˇ̌
ż

I

ż

R3

x

|x| ¨ ∇xpF q v5dxdt
ˇ̌
ˇ̌ À

ÿ

Ně25

ÿ

Lě1,K1ě...ěK5ě1

maxpL,K1qě2´4N

ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

PL

ˆ
x

|x|

˙
¨ ∇xpFN q

5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ

Case 1: K1 ě L. From the conditions K1 ě 2´4N and N ě 25, it follows that K1 ą 1. Thus, we
can place PK1

v in L8
t L

2
xpI ˆ R

3q. Using (39), we estimate

ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

PL

´ x

|x|
¯

¨ ∇xpFN q
5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ

ď
ż

I

ż

R3

ˇ̌
ˇ̌PL

´ x

|x|
¯ˇ̌

ˇ̌ 1

|x| 13
p|Wout,∇rFN s| ` |Win,∇rF s|q

1

3 |∇xFN | 23
5ź

j“1

|PKj
v|dxdt (72)

`
ż

I

ż

R3

ˇ̌
ˇ̌PL

´ x

|x|
¯ˇ̌

ˇ̌ 1

|x| 13
|FN | 13 |∇xFN | 23

5ź

j“1

|PKj
v|dxdt
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To control the first term, we estimate

ż

I

ż

R3

ˇ̌
ˇ̌PL

´ x

|x|
¯ˇ̌

ˇ̌ 1

|x| 13
p|Wout,∇rFN s| ` |Win,∇rF s|q

1

3 |∇xFN | 23
5ź

j“1

|PKj
v|dxdt

À }PL

´ x

|x|
¯

}L8
t,xpIˆR3q

´
}|Wout,∇rFN s| 13PK5

v}L6
t,xpIˆR3q ` }|Win,∇rF s| 13PK5

v}L6
t,xpIˆR3q

¯

¨
4ź

j“2

}|x|´ 1

6PKj
v}L6

t,xpIˆR3q ¨ }|x|´ 1

6PK1
v}

1

2
`δ

L6
t,xpIˆR3q

}PK1
v}

1

2
´δ

L8
t L2

xpIˆR3q
}|x| 3`2δ

8 ∇xFN }
2

3

L
8

3´2δ
t L

2

δ
x pIˆR3q

The first factor is estimated by

}PLp x|x| q}L8
t,xpIˆR3q À } x|x| }L8

t,xpRˆR3q À 1 .

Using Lemma 8.1 and arguing as in the proof of Corollary 8.2, we estimate the second factor by

}|Wout,∇rFN s| 13PK5
v}L6

t,xpIˆR3q ` }|Win,∇rF s| 13PK5
v}L6

t,xpIˆR3q

À }SK5
p|Wout,∇rFN s|2q 1

6 v}L6
t,xpIˆR3q ` }SK5

p|Win,∇rF s|2q 1

6 v}L6
t,xpIˆR3q

`
ˆ

}Wout,∇rFN s}
1

3

L2
τ pRq

` }Win,∇rF s}
1

3

L2
τ pRq

˙
}|x|´ 1

6 v}L6
t,xpIˆR3q

À N
1

36γ
´ δ

3 pFI ` }F }2ZAIq 1

6

From Proposition 2.9, we have that

}|x|´ 1

6PKj
v}L6

t,xpIˆR3q À }|x|´ 1

6 v}L6
t,xpIˆR3q À A

1

6

I .

Furthermore, since K1 ą 1, we have that

}PK1
v}L8

t L2
xpIˆR3q À K´1

1 E
1

2

I

Finally, applying Proposition 2.9 to the Riesz multipliers, we have that

}|x| 3`2δ
8 ∇xFN }

L
8

3´2δ
pIˆR3q

t L
2

δ
x pIˆR3q

À }|x| 3`2δ
8

pIˆR3q|∇|FN }
L

8

3´2δ
t L

2

δ
x pIˆR3q

À N
3

4
´ 1

24γ
´ 5δ

2 }F }YI
.

Putting everything together, it follows that

ż

I

ż

R3

ˇ̌
ˇ̌PL

ˆ
x

|x|

˙ˇ̌
ˇ̌ 1

|x| 13
p|Wout,∇rFN s| ` |Win,∇rF s|q

1

3 |∇xFN | 23
5ź

j“1

|PKj
v|dxdt

À
ˆ
N

K1

˙1

2
´2δ

K´δ
1

`
FI ` }F }2ZAI

˘ 1

6 A
7

12
` δ

6

I E
1

2
´ δ

2

I }F }
2

3

YI
.
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Using the decay K´δ
1 in the highest frequency, we may sum N,L,K1, . . . K5.

Next, we estimate the second term in (72). We have that

ż

I

ż

R3

ˇ̌
ˇ̌PL

ˆ
x

|x|

˙ˇ̌
ˇ̌ 1

|x| 13
|FN | 13 |∇xFN | 23

5ź

j“1

|PKj
v|dxdt

À }PLp x|x| q}L8
t,xpIˆR3q

5ź

j“2

}|x|´ 1

6PKj
v}L6

t,xpIˆR3q ¨ }|x|´ 1

6PK1
v}

1

2
`δ

L6
t,xpIˆR3q

}PK1
v}

1

2
´δ

L8
t L2

xpIˆR3q

¨ }|x| 12FN }
1

3

L8
t,xpIˆR3q

}|x| 3`2δ
8 ∇xFN}

2

3

L
8

3´2δ
t L

2

δ
x pIˆR3q

.

Arguing as above, together with }|x| 1`δ
2 FN }L8

t,xpIˆR3q ď N´δ}F }Z , we get that

ż

I

ż

R3

ˇ̌
ˇ̌PL

ˆ
x

|x|

˙ˇ̌
ˇ̌ 1

|x| 13
|FN | 13 |∇xFN | 23

5ź

j“1

|PKj
v|dxdt

À N
1

2
´ 1

36γ
´2δ

K
´ 1

2
`δ

1 A
3

4
` δ

6

I E
1

4
´δ

I }F }
2

3

YI
}F }

1

3

Z

À
ˆ
N

K1

˙ 1

2
´2δ

K´δ
1 A

3

4
` δ

6

I E
1

4
´ δ

2

I }F }
2

3

YI
}F }

1

3

Z .

Summing over the appropriate range, this contribution is acceptable.
Case 2: L ě K1. Consequently, we have that L ě 2´4N ą 1. Using Lemma 2.5, it follows that
|PLp x

|x|q| À pL|x|q´1. This yields
ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

PL

ˆ
x

|x|

˙
¨ ∇xpFN q

5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ

À L´1

ż

I

ż

R3

1

|x| |∇xpFN q|
5ź

j“1

|PKj
v| dxdt

À L´1}|x|´ 1

6 |∇|FN }L6
t,x

5ź

j“1

}|x|´ 1

6PKj
v}L6

t,x

À
ˆ
N

L

˙1´δ

L´δ}F }YI
A

5

6

I

Using the decay L´δ in the highest frequency, we may sum N,L,K1, . . . K5.

8.3 Interaction flux estimate

In this section, we control the main error terms in the interaction flux estimate. The main difficulty

is the weight
şt´|x|

´8 wpτqdτ . First, we recall a radial Sobolev embedding.
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Lemma 8.7.
For any v P L8

t
9H1
radpI ˆ R

3q, we have

sup
KP2N

}|x| 12PKv}L8
t,xpIˆR3q À }v}

3

4

L8
t L6

xpIˆR3q
}∇v}

1

4

L8
t L2

xpIˆR3q
À sup

tPI
Ervsptq 1

4 .

Proof. Let r P Rą0. Then, we have that

pPKvq4pt, rq “ 4

ż 8

r

pPKvq3pt, ρqpBrPKvqpt, ρqdρ

ď 4r´2

ż 8

r

|pPKvq3pt, ρq||BrPKvpt, ρq|ρ2dρ

ď 4r´2}PKvpt, xq}3L6
xpR3q}∇PKvpt, xq}L2

xpR3q

ď 4r´2}vpt, xq}3L6
xpR3q}∇vpt, xq}L2

xpR3q .

The first inequality then follows by taking the supremum in r and t. The second inequality follows
from the definition of Ervs.

Proposition 8.8 (First main error term in interaction flux estimate).
Let w P L1

τ pRqXL12
τ pRq be a nonnegative weight. Let F be as in Definition 7.2 and let v : IˆR

3 Ñ R

be a solution of (43). Then, it holds that
ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

˜ż t´|x|

´8
wdτ

¸
p|∇| rF qv5dxdt

ˇ̌
ˇ̌
ˇ

À }w}L1
τ pRq}F }

2

3

YI
pFI ` }F }2ZAIq 1

6A
7

12

I E
1

4

I

` }w}L2
τ pRq

`
FI ` }F }2ZAI

˘ 1

2 E
1

2

I

` }w}L12
τ pRq}F }YI

A
5

6

I .

The same argument also controls the main error term in the backward interaction flux estimate.

Proof. As before, we use Littlewood-Paley theory to decompose into frequency-localized functions.
Then, it remains to control

ÿ

Ně26

ÿ

Lě1,K1ě...ěK5ě1

maxpL,K1qě2´4N

ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

PL

˜ż t´|x|

´8
wdτ

¸
p|∇| rFN q

5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ .

We distinguish several different cases.
Case 1: K1 ě L. We have that

ˇ̌
ˇ̌
ˇ

ż

I

ż

R3

PL

˜ż t´|x|

´8
wdτ

¸
p|∇| rFN q

5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ
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À }PL

` ż t´|x|

´8
wdτ

˘
}L8

t,xpIˆR3q }|x| 38 |∇| rFN }
2

3

L
8
3
t L8

x pIˆR3q
}|x| 13 p|∇| rFN q 1

3PK5
v}L6

t,xpIˆR3q

¨
4ź

j“2

}|x|´ 1

6PKj
v}L6

t,xpIˆR3q}|x|´ 1

6PK1
v}

1

2

L6
t,xpIˆR3q

}PK1
v}

1

2

L8
t L2

xpIˆR3q

The first factor is controlled by

}PL

` ż t´|x|

´8
wdτ

˘
}L8

t,xpIˆR3q À }
ż t´|x|

´8
wdτ}L8

t,xpRˆR3 ď }w}L1
τ pRq .

Arguing as in the proof of Proposition 8.4, this leads to the total contribution

À }w}L1
τ
}F }

2

3

YI
pFI ` }F }2ZAIq 1

6A
7

12

I E
1

4

I .

Case 2: L ě K1. In this case, the most severe term is the low-frequency scenario K1 “ . . . K5 “ 1.
Then, we can no longer place PK1

v in L8
t L

2
xpI ˆ R

3q and therefore lack space-integrability. To
resolve this, we make use of the integrability of wpt ´ |x|q in time.
Subcase 2.(a): L ě K1, |x| ě 1. Using Proposition 2.9, Corollary 8.2 and Lemma 8.7, we obtain
that

ˇ̌
ˇ̌
ˇ

ż

I

ż

|x|ě1

PL

˜ż t´|x|

´8
wdτ

¸
p|∇| rFN q

5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ

ď }xxy´2PL

˜ż t´|x|

´8
wdτ

¸
}L2

t,xpIˆR3q

5ź

j“3

´
}|x| 13 p|∇| rFN q 1

3PKj
v}L6

t,xpIˆR3q

¯

¨
2ź

j“1

}|x| 12PKj
v}L8

t,xpIˆR3q

À N1´δ}xxy´2PL

˜ż t´|x|

´8
wdτ

¸
}L2

t,xpIˆR3qpFI ` }F }2ZAIq 1

2E
1

2

I

It remains to control the weighted L2
t,x-norm. We recall that the kernel of PL has zero mean. Using

Lemma 2.4 and the boundedness of the Hardy-Littlewood maximal function M , we obtain that

}xxy´2PL

˜ż t´|x|

´8
wdτ

¸
}L2

t,xpIˆR3q

“ }xxy´2PL

˜ż t

t´|x|
wdτ

¸
}L2

t,xpIˆR3q

À L´1}xxy´2wpt ´ |x|q}L2
t,xpIˆR3q ` L´1}xxy´3

ż t

t´|x|
wpτqdτ}L2

t,xpIˆR3q
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À L´1}xxy´2wpt ´ |x|q}L2
t,xpIˆR3q ` L´1}xxy´3|x|pMwqpt ´ |x|q}L2

t,xpIˆR3q

À L´1}xxy´2}L2
xpR3q

´
}wptq}L2

t pRq ` }Mwptq}L2
t pRq

¯

À L´1}w}L2
t pRq .

Putting everything together, it follows that
ˇ̌
ˇ̌
ˇ

ż

I

ż

|x|ě1

PL

˜ż t´|x|

´8
wdτ

¸
p|∇| rFN q

5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ

À
ˆ
N

L

˙1´δ

L´δ}w}L2
τ pRq

`
FI ` }F }2ZAI

˘ 1

2 E
1

2

I .

Using the decay L´δ in the highest frequency, we may sum N,L,K1, . . . K5.
Subcase 2.(b): L ě K1, |x| ď 1. Near the origin, our strongest tool is the Morawetz estimate.
Thus, we write

ˇ̌
ˇ̌
ˇ

ż

I

ż

|x|ď1

PL

˜ż t´|x|

´8
wdτ

¸
p|∇| rFN q

5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ

À }|x| 16PL

´ ż t´|x|

´8
wdτ

¯
}L12

t,xpIˆt|x|ď1uq}|x| 23 |∇| rFN}L12
t,xpIˆR3q

5ź

j“1

}|x|´ 1

6PKj
v}L6

t,xpIˆR3q

À N1´δ}xxy´1PL

´ ż t´|x|

´8
wdτ

¯
}L12

t,xpIˆR3q} rF }YI
A

5

6

I .

Using Lemma 2.4, we have that

}xxy´1PL

´ ż t´|x|

´8
wdτ

¯
}L12

t,xpIˆR3q

ď }xxy´1PL

´ ż t

t´|x|
wdτ

¯
}L12

t,xpRˆR3q

À L´1}xxy´1wpt ´ |x|q}L12
t,xpRˆR3q ` L´1}xxy´2

´ ż t

t´|x|
wdτ

¯
}L12

t,xpRˆR3q

À L´1}xxy´1wpt ´ |x|q}L12
t,xpRˆR3q ` L´1}xxy´1pMwqpt ´ |x|q}L12

t,xpRˆR3q

“ L´1}xxy´1}L12
x pR3q

`
}w}L12

τ pRq ` }Mw}L12
τ pRq

˘

À L´1}w}L12
τ pRq .

Putting everything together, it follows that
ˇ̌
ˇ̌
ˇ

ż

I

ż

|x|ď1

PL

˜ż t´|x|

´8
wdτ

¸
p|∇| rFN q

5ź

j“1

PKj
v dxdt

ˇ̌
ˇ̌
ˇ À

ˆ
N

L

˙1´δ

L´δ}w}L12
τ pRq} rF }YI

A
5

6

I .
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Using the decay L´δ in the highest frequency, we may sum N,L,K1, . . . K5.

Proposition 8.9 (Second main error term in interaction flux estimate).
Let w P L1

τ pRqXL12
τ pRq be a nonnegative weight. Let F be as in Definition 7.2 and let v : IˆR

3 Ñ R

be a solution of (43). Then, it holds that

ˇ̌
ˇ̌
ż

I

ż

R3

wpt ´ |x|qFv5dxdt
ˇ̌
ˇ̌ À }w}L2

τ pRqF
1

2

I E
1

2

I ` }w}L12
τ pRq}F }YI

A
5

6

I .

Proof. We follow an easier version of the arguments in the proof of Proposition 8.8. As before, we
distinguish the two cases |x| ě 1 and |x| ď 1. First, we have that

ˇ̌
ˇ̌
ˇ

ż

I

ż

|x|ě1

wpt ´ |x|qFv5dxdt
ˇ̌
ˇ̌
ˇ

ď }|x|´2wpt ´ |x|q}L2
t,xp|x|ě1q

´
}WoutrF s 1

3 v}L6
t,xpIˆR3q ` }WinrF s 1

3 v}L6
t,xpIˆR3q

¯3

}|x| 12 v}2L8
t,x

À }w}L2
τ
F

1

2

I E
1

2

I .

Second, we have that

ˇ̌
ˇ̌
ˇ

ż

I

ż

|x|ď1

wpt ´ |x|qFv5dxdt
ˇ̌
ˇ̌
ˇ ď }|x| 16wpt ´ |x|q}L12

t,xp|x|ď1q}|x|´ 1

6 v}5
L6
t,xpIˆR3q}|x| 23F }L12

t,xpIˆR3q

À }w}L12
τ

}F }YI
A

5

6

I .

8.4 Lower order error terms

Lemma 8.10 (Control of lower order error terms).
Let F be as in Definition 7.2 and let v be a solution of (43). Then, it holds that

ż

I

ż

R3

|F |5
ˆ

|Btv| ` |v|
|x| ` |∇v|

˙
dxdt À }F }5YI

E
1

2

I ,

ż

I

ż

R3

|F |2|v|3
ˆ

|Btv| ` |v|
|x| ` |∇v|

˙
dxdt À }F }2YI

A
1

2

I E
1

2

I ,

ż

I

ż

R3

1

|x| |F ||v|5dxdt À }F }YI
A

5

6

I ,

ż

I

ż

R3

1

|x| |F |6dxdt À }F }6YI
.
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Proof. Using Hardy’s inequality, the first inequality follows from

ż

I

ż

R3

|F |5
ˆ

|Btv| ` |v|
|x| ` |∇v|

˙

ď }F }5
L5
tL

10
x pIˆR3qp}Btv}L8

t L2
xpIˆR3q ` } v|x| }L8

t L2
xpIˆR3q ` }∇v}L8

t L2
xpIˆR3qq

À }F }5YI
E

1

2

I

A similar argument yields that

ż

I

ż

R3

|F |2|v|3
ˆ

|Btv| ` |v|
|x| ` |∇v|

˙
dxdt

À }|x| 14F }2
L4
tL

8
x pIˆR3q}|x|´ 1

6 v}3
L6
t,xpIˆR3q sup

tPI
Ervsptq 1

2 .

Finally, the third and fourth inequality follow from Hölder’s inequality and

}|x|´ 1

6F }L6
t,xpIˆR3q ď }F }YI

.

9 Proof of the main theorem

In this section, we collect all previous estimates to prove the a priori energy bound (Theorem 1.4).
Using the conditional scattering result of [19], we finish the proof of Theorem 1.3.

Proof of Theorem 1.4.
By time-reversal symmetry, it suffices to prove that suptPr0,8q Ervsptq ă 8. Let 1

2
ě η0 ą 0 be a

sufficiently small absolute constant, and let 1
2

ě η ą 0 be sufficiently small depending on η0. In
the following, C “ Cp}F }Zq ą 0 denotes a large positive constant that depends only on }F }Z . By
Lemma 7.3 and space-time divisibility, we can choose a finite partition I1, . . . , IJ of r0,8q such that
}F }YIj

ă η for all j “ 1, . . . , J. With a slight abuse of notation, we write Ej :“ EIj ,Aj :“ AIj and

Fj :“ FIj . We also set E0 :“ Ervsp0q.

First, we estimate the energy increment. Combining Proposition 6.1, Proposition 8.4, and Lemma
8.10, we have that

Ej`1 ď Ej ` C}F }
2

3

YIj`1

pFj`1 ` Aj`1}F }2Zq 1

6A
7

12

j`1E
1

4

j`1

` C}F }2YIj`1

A
1

2

j`1E
1

2

j`1 ` C}F }5YIj`1

E
1

2

j`1

ď CpEj ` 1q ` η0Ej`1 ` η0pFj`1 ` Aj`1q . (73)
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Next, we estimate the Morawetz term. By combining Proposition 6.3, Proposition 8.6, and Lemma
8.10, we have that

Aj`1 ď CEj`1 ` C}F }
2

3

YIj`1

`
Fj`1 ` Aj`1}F }2Z

˘ 1

6 A
7

12
` δ

6

j`1 E
1

4
´ δ

2

j`1

` C}F }YIj`1
A

5

6

j`1 ` C}F }6YIj`1

ď CpEj`1 ` 1q ` 1
4
pFj`1 ` Aj`1q . (74)

Finally, we control the interaction flux term. First, recall that from the definition of }F }Z and the
embedding ℓ1 ãÑ ℓ2, we have that

ÿ

˚Ptout,inu

ÿ

pPt2,4,24u

˜ ÿ

Ně25

pN´ 1

6γ
`2δ `N´2`2δq

´
}W˚r|∇|FN s}2

L
p
τ

` }W˚,∇rFN s}2
L
p
τ

¯
` }W˚rF s}2

L
p
τ

¸

À }F }2Z .

We now apply our estimates to each of the terms in (64), (65), and (66) separately. By Young’s
inequality, the estimate }SKw}Lp

τ
Àp }w}Lp

τ
holds uniformly in K. Using the control on the main

and lower order error terms, i.e., Proposition 6.6, Proposition 6.7, Proposition 8.8, Proposition 8.9
and Lemma 8.10, we obtain that

Fj`1 ď C}F }2ZEj`1 ` C}F }2Z}F }
2

3

YIj`1

`
Fj`1 ` }F }2ZAj`1

˘ 1

6 A
7

12

j`1E
1

4

j`1

` C}F }2Z
`
Fj`1 ` }F }2ZAj`1

˘ 1

2 E
1

2

j`1

` C}F }2Z}F }YIj`1
A

5

6

j`1 ` C}F }2ZF
1

2

j`1E
1

2

j`1

` C}F }2Z}F }2YIj`1

ˆ
}F }3YIj`1

` A
1

2

j`1

˙
E

1

2

j`1

ď CpEj`1 ` 1q ` 1
4
pFj`1 ` Aj`1q . (75)

We briefly note that, as long as C ą 0 remains independent of η0 and η, terms such as C}F }2ZF
1

2

j`1E
1

2

j`1

prevent us from placing an η0 in front of Fj`1 ` Aj`1. Combining (73), (74), and (75), we arrive
at

Ej`1 ď CpEj ` 1q ` η0Ej`1 ` η0pAj`1 ` Fj`1q ,
Aj`1 ` Fj`1 ď CpEj`1 ` 1q ` 1

2
pAj`1 ` Fj`1q .

Finally, choosing η0 ą 0 sufficiently small depending on C “ Cp}F }Zq, we obtain that

Ej`1 ` 1 ď C̃ pEj ` 1q . (76)
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By iterating this inequality finitely many times, we obtain that

sup
tPr0,8q

Ervsptq “ max
j“1,...,J

Ej ă 8 . (77)

Proof of Theorem 1.3. Using Lemma 5.1 and Lemma 7.3, it follows that the forced nonlinear
wave equation (6) is almost surely locally well-posed. Then, Theorem 1.3 follows from Theorem
1.4 and Proposition 5.2.
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France Seminar, Vol. I (Paris, 1978/1979), volume 53 of Res. Notes in Math., pages 335–364.
Pitman, Boston, Mass.-London, 1981.

[36] Jalal Shatah and Michael Struwe. Regularity results for nonlinear wave equations. Ann. of
Math. (2), 138(3):503–518, 1993.

[37] Jalal Shatah and Michael Struwe. Well-posedness in the energy space for semilinear wave
equations with critical growth. Internat. Math. Res. Notices, (7):303ff., approx. 7 pp. 1994.

[38] Christopher D. Sogge. Lectures on nonlinear wave equations. Monographs in Analysis, II.
International Press, Boston, MA, 1995.

48



[39] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory in-
tegrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton,
NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[40] Jacob Sterbenz. Angular regularity and Strichartz estimates for the wave equation. Int. Math.
Res. Not., (4):187–231, 2005. With an appendix by Igor Rodnianski.

[41] Walter A. Strauss. Decay and asymptotics for cmu “ F puq. J. Functional Analysis, 2:409–457,
1968.

[42] Michael Struwe. Globally regular solutions to the u5 Klein-Gordon equation. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4), 15(3):495–513 (1989), 1988.

[43] Terence Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series
in Mathematics. Published for the Conference Board of the Mathematical Sciences, Wash-
ington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global
analysis.

[44] Terence Tao. Spacetime bounds for the energy-critical nonlinear wave equation in three spatial
dimensions. Dyn. Partial Differ. Equ., 3(2):93–110, 2006.

[45] Laurent Thomann and Nikolay Tzvetkov. Gibbs measure for the periodic derivative nonlinear
Schrödinger equation. Nonlinearity, 23(11):2771–2791, 2010.

Bjoern Bringmann, University of California, Los Angeles, Department of Mathematics, 520

Portola Plaza, Los Angeles, CA 90095

Email address: bringmann@math.ucla.edu

49


	1 Introduction
	2 Notation and preliminaries
	2.1 Littlewood-Paley theory and Sobolev embeddings
	2.2 Calderón-Zygmund theory

	3 Probabilistic Strichartz estimates
	4 An in/out decomposition
	5 Local well-posedness and conditional scattering
	6 Almost energy conservation and decay estimates
	7 Bootstrap argument
	8 Control of error terms
	8.1 Energy increment
	8.2 Morawetz estimate
	8.3 Interaction flux estimate
	8.4 Lower order error terms

	9 Proof of the main theorem

