
COMPACTNESS AND RIGIDITY OF λ-SURFACES
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Abstract. In this paper we develop the compactness theorem for λ-surface in R3 with
uniform λ, genus, and area growth. This theorem can be viewed as a generalization of
Colding-Minicozzi’s compactness theorem for self-shrinkers in R3. As an application of this
compactness theorem, we prove a rigidity theorem for convex λ-surfaces.

1. Introduction

A surface Σ ⊂ R3 is said to be a λ-surface if it is a critical point for Gaussian area
enclosing fixed Gaussian volume. Recall the Gaussian area and Gaussian volume are area and

volume in R3 with Gaussian measure density e−
|x|2
4 . λ-surfaces naturally arise in geometry

and probability theory. When λ = 0, λ-surfaces are also called self-shrinkers, which are the
models of the singular points of mean curvature flow.

A λ-surface satisfies the equation

H =
〈x,n〉

2
+ λ

where H = div n is the mean curvature of Σ, x is the position vector in R3, and n is the
unit normal vector of Σ.

In this paper, we prove a compactness theorem for λ-surfaces.

Theorem 1.1. Given an integer g ≥ 0 and Λ ≥ 0. Suppose Σi ⊂ R3 is a sequence of smooth
complete embedded λi-surfaces with genus at most g and ∂Σi = ∅, satisfying:

(1) Area(BR(x0) ∩ Σi) ≤ C(x0)R2 for all x0 ∈ R3 with a constant C depending on x0

and all R > 0,
(2) |λi| ≤ Λ.

Then

(1) either: there exists a complete smooth self-touching immersed λ-surface Σ with local
finitely many neck pinching points, such that a subsequence of Σi converges to Σ in
Ck topology in any compact subset of R3 which does not contain those neck pinching
points, for any k ≥ 2.

(2) or: there exists a complete smooth self-shrinker Σ and a subsequence of Σi converges
to Σ with multiplicity 2.
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Touching point

Here Σ is assumed to be homeomorphic to a closed surface with finitely many disjoint
closed disks removed. The genus is defined to be the genus of the closed surface. Locally
finite means finite inside any ball BR for any R > 0. Self-touching means that at each
non-embedded points p of Σ, Σ can be written as the union of two graphs over the tangent
plane at p, and the function u1, u2 defining the graphs satisfies u1 ≥ u2. See picture.

Neck pinching points are special touching points which behaves badly in the convergence
process. We will give precise definition in Section 3. Intuitively they are touching points
generated by a neck pinching process. In particular, if the limit surface Σ does not contain
touching points, then the convergence is smooth in any compact subset in R3.

This compactness theorem generalizes [CM12a], in which Colding-Minicozzi proved the
compactness result for self-shrinkers, which is our main theorem with λ = 0. [CM12a]
played an important role in the study of self-shrinkers, especially for the rigidity of self-
shrinkers. Here, we can also use the compactness theorem of λ-surfaces to study the rigidity
of λ-surfaces. In particular, we have the following rigidity theorem:

Theorem 1.2. There exists δD < 0, such that for any λ ∈ (δD,+∞), any convex λ-surface
with diameter less than D has to be sphere S(r) with radius r =

√
λ2 + 4− λ.

This theorem was previously only known for λ ≥ 0 case. In [CM12b], Colding and Mini-
cozzi showed that mean convex self-shrinkers in Rn+1 for all n ≥ 2 can only be spheres
and generalized cylinders. Later in [Hei17] Heilman generalized this kind of rigidity to λ-
hyersurfaces in Rn+1 for λ > 0.

The case λ < 0 is much more complicated. In [Cha17] Chang constructed 1 dimensional
λ-curves in R2 which are not circles. These surprising examples show that λ-surfaces behave
very differently when λ < 0 compare to λ > 0. New techniques must be introduced to
study this phenomenon. We imagine these examples may carry meaningful information in
probability theory.

1.1. λ-hypersurfaces. From a variational point of view, a λ-hypersurface is the critical
point of the Gaussian area
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(1.1) F(Σ) =

∫
Σ

e−
|x|2
4 dµ

with variational field V = fn preserving the volume of the domain enclosed by Σ, i.e.∫
Σ

fe−
|x|2
4 dµ = 0.

Self-shrinkers are hypersurfaces in Rn+1 satisfying the λ-hypersurface equation with λ = 0.
Self-shrinkers are the models for singularities of mean curvature flows, and have been studied
in many papers. See [Hui90], [CM12b].

In probability theory, λ-hypersurfaces are related to the isoperimetric problem in Gaussian
space. This space plays a central role in probability, and the isoperimetric problem in
Gaussian space is of long time interest in probability, see for example [IM12], [MN+15]. If
the boundary Σ of the best solution to isoperimetric problem is smooth, then it must be a
minimizer of the F functional under variations preserving the volume enclosed by Σ, i.e. a
λ-hypersurface. So one approach to the isoperimetric problem in Gaussian space is to study
λ-hypersurfaces.

In 70’s, Sudakov and Cirel’son [ST78] showed that the most optimal solutions to the
isoperimetric problem in Gaussian space are hyperplanes. Later McGonagle and Ross [MR15]
also proved this result by techniques in geometric analysis. In 2001, Barthe [Bar01] studied
the Gaussian isoperimetric problem when the set is required to be symmetric. He suggested
that symmetric two planes could be the most optimal case in symmetric setting. Some other
research also suggested that the most optimal case could be a sphere, for details see the
introduction of [Hei17]. We hope our study could play a role in this probability problem.

1.2. Compactness Theorem. The compactness theorem for minimal surfaces in 3 dimen-
sional manifolds was first developed by Choi and Schoen in [CS85]. Later their result were
generalized to many different situations. For examples, White generalized the compactness
theorem to stationary surfaces of parametric elliptic functional in [Whi87], Colding and
Minicozzi generalized the compactness theorem to self-shrinkers in [CM12a], and later Ding
and Xin weakened the requirements in [DX+13]. There are also other generalizations, see
[CMZ15], [LW15].

The compactness theorem relies on two main ingredients. The first ingredient is a curva-
ture estimate. In [CS85] Choi and Schoen developed a blow up technique to get a point-wise
curvature bound for minimal surfaces with small total curvature. Here we will use the same
technique, but develop the necessary tools for λ-surfaces.

The second ingredient is the smoothness of the convergence. We will follow the idea
of Colding and Minicozzi in [CM12a]. Their idea is if the sequence of self-shrinkers do not
convergence smoothly to a limit self-shrinker, then we can construct a positive Jacobi field of
the second variational operator of self-shrinkers, which is impossible by a result in [CM12b].
In this paper, we observe that although λ-surfaces do not satisfy the same equations for
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different λ’s, the major linear terms of the difference between λ-surfaces are the same. Thus
we can still get some uniform estimate just like the self-shrinker case.

If the limit is a self-shrinker, i.e. λ = 0, then the multiplicity 2 convergence is possible.
Suppose Σi are λi-surfaces converge to Σ which is a self-shrinker, then it is possible that
Σi locally is double sheeting graphs over Σ, with different orientation. Then the linearized
operator is not the same as the second variational operator over Σ. However, if the number
of sheets is larger than 2, then we can find two sheets have the same orientation, and
considering the sheets with this orientation we can get a positive Jacobi field as well. Thus
the convergence if at most of multiplicity 2.

Note for general λ 6= 0, λ-surfaces do not have a maximum principle, so touching may
happen in the limit surface. There are two limiting models of touching points. One is
called kissing, and we can image two disks are far from each other at first and then try
to kiss each other. Finally they really kiss each other to form a touching; Another one is
called neck pinching, and we can image a very thin neck is pinching and finally collapse
to form a touching. It turns out that the smooth convergence can actually passing through
those kissing touching points, but can never be smooth at neck pinching points, because the
topology changes during this limiting process.

We will discuss more details in a paper in preparation.

1.3. Organization of the Paper. In section 2 we will discuss the properties of the second
variational operator L for λ-surfaces. We will prove L is the linearized operator of λ-surfaces,
hence the solution to this operator carries the information of the nearby λ-surfaces.

In section 3 we prove the main compactness theorem. We first follow [CS85] to get cur-
vature estimate, so that we can find convergence subsequence; then we follow the idea of
[Whi87] to prove the limit is smoothly immersed; finally we follow the idea of [CM12a] to
show the convergence is smooth.

In section 4 we will prove the rigidity theorem. The main idea is to use the compactness
theorem to analyze the linearized operators.

1.4. Acknowledgement. The author want to thank Professor Bill Minicozzi for his helpful
advises and heuristic conversations. We also want to thank Jonathan Zhu for pointing our
the possibility of multiplicity 2 convergence.

2. Linearized Operator

Throughout this section, we will assume the λ-surface Σ ⊂ R3 is smooth immersed with
polynomial area growth.

2.1. Property of Linearized Operator. We define the operator

(2.1) L := ∆Σ −
1

2
〈∇Σ·, x〉+ |A|2 +

1

2

where A is the second fundamental form of the surface.
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If Σ is a self-shrinker, L is the second variational operator with respect to the Gaussian
weight of the surface. See [CM12b] for more details. One important property of L is that
for any vector v ∈ R3, 〈v,n〉 is an eigenfunction of L with eigenvalue 1/2. This is obtained
in [MR15], [Gua14].

Lemma 2.1. If Σ ∈ R3 is a λ-surface, then for any constant vector v ∈ R3, we have

L〈v,n〉 =
1

2
〈v,n〉.

Proof. Fix a constant vector v, and set f = 〈v,n〉. Let e1, e2 be an orthonormal frame for Σ
at p, then

∇eif = 〈v,∇ein〉 = −aij〈v, ej〉.
here aij is the second fundamental form under the local frame. Differentiating again and
using the Codazzi equation gives at p that

∇ek∇eif = −aik,j〈v, ej〉 − aij〈v, ajkn〉.

Taking the trace gives

(2.2) ∆Σf = 〈v,∇H〉 − |A|2f.

By the λ-surface equation H = 〈x,n〉
2

+ λ, we get

(2.3) ∇eiH = 〈ei,n〉+ 〈x,∇ein〉 = −aij〈x, ej〉.

Combining these two identities gives the lemma.
�

With the help of this lemma, we can follow [CM12b] and [CM12a] to prove the following
non-existence theorem

Theorem 2.2. For any λ-surface Σ, there is no positive function u on Σ with Lu = 0.

Proof. Set w = log u, so that

∆w =
δu

u
− |∇w|2 = −|A|2 +

1

2
〈x,∇w〉 − 1

2
− |∇w|2.

Then given φ with compact support on Σ, applying Stokes theorem to div(φ2e
−|x|2

4 ∇w) gives

0 =

∫
Σ

(2φ〈∇φ,∇w〉+ (−|A|2 − 1

2
− |∇w|2)φ2)e

−|x|2
4

≤
∫

Σ

(φ2|∇w|2 + |∇φ|2 − |A|2 − 1

2
|A|2 − |∇w|2φ2)e

−|x|2
4

≤
∫

Σ

(|∇φ|2 − |A|2φ2 − 1

2
φ2)e

−|x|2
4 = −

∫
Σ

(φLφ)e
−|x|2

4 .

(2.4)
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On the other hand, fix a point p in Σ and define a function v(x) = 〈n(p),n(x)〉. Then we
know v(p) = 1, |v(p)| ≤ 1, and by Lemma 2.1 Lv = 1

2
v. So we have

L(ηv) =
1

2
ηv + v(∆η − 1

2
〈x,∇η〉) + 2〈∇η,∇v〉.

Then integrate ηvL(ηv) we get that

−
∫

Σ

ηvL(ηv)e
−|x|2

4 = −
∫

Σ

(
1

2
η2v2 + ηv2(∆η − 1

2
〈x,∇η〉) +

1

2
〈∇η2,∇v2〉)e

−|x|2
4

= −
∫

Σ

(
1

2
η2v2 − v2|∇η|2)e

−|x|2
4 .

(2.5)

where the second inequality uses Stokes’ theorem. Now we choose η be identically 1 on BR

and cut-off linearly to 0 on BR+1 \BR, we get

(2.6) −
∫

Σ

ηvL(ηv)e
−|x|2

4 ≤
∫

Σ\BR
v2e

−|x|2
2 − 1

2

∫
Σ∩BR

v2e
−|x|2

4 .

Since Σ has polynomial area growth and |v| ≤ 1, we have

lim
R→∞

∫
Σ\BR

v2e
−|x|2

4 = 0.

So for R sufficiently large, we have∫
Σ

ηvL(ηv)e
−|x|2

4 < 0.

Then we get a contradiction if we set u = ηv. �

2.2. Difference of Two λ-Surfaces. In previous section we defined the linearized operator
to be the second variational operator of Gaussian weight of λ-surfaces. The reason it is called
linearized operator is that for two λ-surfaces close enough, then their difference satisfies an
second order elliptic equation, and the main linear term is just this linearized operator. This
is a well-known result in minimal surfaces case, see [S+87], [Kap90].

Theorem 2.3. Suppose Σ1 is a λ1-surface and Σ2 is a λ2-surface. If Σ2 can be written as
a graph on Σ1, namely suppose Σ1 is a map X : Σ1 → R3, then Σ2 is X + ϕn for some C2

function ϕ. If on Σ1, |ϕA| < 1, then ϕ satisfies the equation

(2.7) Lϕ+ (λ2 − λ1) = div(a · ∇ϕ) + b · ∇ϕ+ cϕ.

Moreover if Σi is a sequence of λi-surfaces converge to a λ-surface Σ in the C2 sense, i.e.
Σi = Σ + ϕin and ϕi are C2 converges to 0. Suppose

(2.8) Lϕi + (λi − λ) = div(ai · ∇ϕi) + bi · ∇ϕi + ciϕi.

Then ai, bi, ci all uniformly converges to 0, and the right hand side of the equation uniformly
converges to 0.
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Proof. In this proof Hi will be the mean curvature on Σi. We refer to Kapouleas’ paper
[Kap90], Appendix 3. Note in [Kap90], his H is our H with a factor −1

2
.

We follow Kapouleas to use Φ to denote a term which can be either ϕA or ∇ϕ, and use
? to denote contraction with respect to the metric on Σ1. Gi stands for linear combinations
with universal coefficients of terms which are contractions with respect to the metric on Σ1

of at least two Φ’s, and G̃i stands for linear combinations with universal coefficients of terms
which are contraction of a number of (possibly none) Φ’s with one of the following:

• A ? Φ ? Φ
• ϕ∇A ? Φ
• ϕA ?∇2ϕ
• ∇2ϕ ? Φ ? Φ

So all the terms are linear in at most the second derivative of ϕ.
By Lemma C.2 in [Kap90], if |ϕA| < 1 we have

(2.9) H1 −H2 − (∆ϕ+ |A|2ϕ) =
G̃1√

1 +G1

+
G̃2

1 +G1 +
√

1 +G1

.

Plugging in the equation of λ-surfaces gives

(2.10) − (∆ϕ+ |A|2ϕ)+
1

2
〈x,n〉− 1

2
〈x+ϕn,n〉+λ1−λ2 =

G̃1√
1 +G1

+
G̃2

1 +G1 +
√

1 +G1

.

Then we get

(2.11) Lϕ+ λ2 − λ1 = − G̃1√
1 +G1

− G̃2

1 +G1 +
√

1 +G1

= div(a∇ϕ) + b · ∇ϕ+ cϕ.

where we write the coefficients to a, b, c. When ϕ → 0 in C2, since Gi, G̃i has universal
coefficients, and Φ terms will uniformly converge to 0, we get a, b, c uniformly converge to
0. �

Remark 2.4. We can get more information from the calculation

(2.12) Lϕ+ λ2 − λ1 = − G̃1√
1 +G1

− G̃2

1 +G1 +
√

1 +G1

.

Let the right hand side of the equation to be P (x, ϕ,∇ϕ,∇2ϕ). Then from the computation
in K paper,

(2.13) ‖P (x, ϕ,∇ϕ,∇2ϕ)‖C1 ≤ C‖ϕ‖C1 .

More precisely, in the definition of G and G̃, each ϕ,∇ϕ,∇2ϕ term contracts with at least
one other ϕ or ∇ϕ term. So the coefficients of linearization of P must also consist at least
one other ϕ or ∇ϕ term. So it is bounded by C1 norm of ϕ.

This bound would play a role in later section.
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3. Compactness

3.1. Choi-Schoen Type Curvature Estimate. In this section we are going to prove the
main compactness theorem. In order to prove the compactness theorem, we need to get the
curvature bound of λ-surfaces. First we show there is a uniform integral bound for λ-surface
if λ is bounded. We need the local Gauss-Bonnet estimate by Ilmanen [Ilm95].

Theorem 3.1 (Theorem 3 in [Ilm95]). Let R > r > 0 and let M be a 2-manifold properly
immersed in BR. Then for any ε > 0

(3.1) (1− ε)
∫
M∩Br

|A|2dµ ≤
∫
M∩BR

H2dµ+ 8πg(M ∩BR) +
24πD′R2

ε(R− r)2
.

Here

D′ = sup
s∈[r,R]

Area(M ∩Bs)

πs2
.

Note for a λ-surface Σ, its mean curvature satisfies |H| = |1
2
〈x,N〉+ λ| ≤ |x|+ |λ|. Then

we choose ε = 1/2 in the theorem we get the following uniformly integral curvature bound:

Corollary 3.2. Suppose Σ is a λ-surface with |λ| ≤ Λ, genus no more than g and Area(Bs(x0)∩
Σ) ≤ V s2 for r < s < 2r, then we get uniformly integral curvature bound

(3.2)

∫
M∩Br

|A|dµ ≤ C(Λ, g, V, x0).

Proof. Just choose ε = 1/2 and R = 2r in the local Gauss-Bonnet estimate. �

Then we will follow the idea of Choi-Schoen in [CS85] to prove a pointwise curvature
bound from a small integral curvature bound. Choi-Schoen did this estimate for minimal
surfaces in three manifold, and later Colding-Minicozzi did this estimate for self-shrinkers in
R3. We need to generalize this type of estimate to λ-surfaces.

Theorem 3.3. Let Σ be a λ-surface in R3 without boundary, |λ| ≤ |Λ|. Let x0 be a point
in Σ. Then there exists ε0 > 0 such that if∫

Σ∩Br(x0)

|A|2 ≤ ε0

and r ≤ ε0, then the following inequality holds

(3.3) max
0≤σ≤r

σ2 sup
Br−σ(x0)

|A|2 ≤ C.

where C is a constant depending on Λ and |x0|.
Before the proof of Theorem 3.3, we need some lemmas for λ-surfaces. The first two

lemmas are computations of the drift Laplacian of various quantities. See [CM12b]. Recall
that from [CM12b] the drift Laplacian operator L is defined by

L = ∆− 1

2
〈x,∇·〉 = e

|x|2
4 div(e

−|x|2
4 ∇·).
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Lemma 3.4. Suppose Σ is a λ-surface with |λ| ≤ Λ, then

(3.4) L|A|2 = 2(
1

2
− |A|2)|A|2 − 2λ〈A2, A〉+ 2|∇A|2 ≥ −C(Λ)(|A|2 + |A|4).

Proof. We refer the proof to Lemma 2.1 in [Gua14]. �

Lemma 3.5. For x0 a fixed point in R3,

(3.5) L|x− x0|2 = −〈x, x− x0〉 − 2λ〈n, x− x0〉+ 4.

Proof. We will show the result for n dimensional λ-hypersurface in Rn+1. We follow the
proof in [CM12b]. Note ∆x = −Hn, so we have

∆〈x− x0, x− x0〉 = 2〈∆(x− x0), x− x0〉+ 2|∇(x− x0)|2

= −2〈Hn, x− x0〉+ 2n

= −〈x,n〉〈n, x− x0〉 − 2λ〈n, x− x0〉+ 2n

= −〈x, (x− x0)⊥〉 − 2λ〈n, x− x0〉+ 2n.

(3.6)

This identity combined with the fact that

1

2
〈x,∇|x− x0|2〉 = 〈x, (x− x0)>〉

gives the identity. �

Remark 3.6. Let the point xmin achieve the minimum of |x| on Σ, then set x0 = 0 we get

|xmin| ≤
√
λ2 + 4− λ.

If Σ is compact, consider the point xmax achieve the maximum of |x| on Σ, then set x0 = 0
we get

|xmax| ≥
√
λ2 + 4− λ.

In conclusion, any λ-surface must intersect with the sphere S2
r=
√
λ2+4−λ.

The third lemma is a monotonicity formula for λ-surfaces.

Lemma 3.7. Suppose Σn ⊂ Rn+1 is a λ-hypersurface. Let x0 ∈ Σ and Bs = Bs(x0) be the
ball centered at x0. Suppose f is a nonnegative function satisfying Lf ≥ −ct−2f , then

(3.7) f(x0) ≤ C(Λ, c, t, x0)

∫
Bt(x0)∩Σ

f.

Proof. The proof is based on section 1.3 of [CM11]. By Lemma 3.1 we have
(3.8)

2n

∫
Bs∩Σ

fe
−|x|2

4 =

∫
Bs∩Σ

fL(|x−x0|2)e
−|x|2

4 +

∫
Bs∩Σ

f〈x, x−x0〉e
−|x|2

4 +

∫
Bs∩Σ

2λf〈n, x−x0〉e
−|x|2

4 .

Applying integration by part to the first term on right hand side gives
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∫
Bs∩Σ

fL(|x− x0|2)e
−|x|2

4 =

∫
Bs∩Σ

fL(|x− x0|2 − s2)e
−|x|2

4 =

∫
Bs∩Σ

fdiv(e
−|x|2

4 (|x− x0|2 − s2))

=

∫
Bs∩Σ

Lf(|x− x0|2 − s2)e
−|x|2

4 +

∫
∂Bs∩Σ

fν · e
−|x|2

4 ∇(|x− x0|2 − s2))

=

∫
Bs∩Σ

Lf(|x− x0|2 − s2)e
−|x|2

4 + 2

∫
∂Bs∩Σ

f |(x− x0)>|e
−|x|2

4 .

(3.9)

where ν is the boundary outer normal of Bs ∩ Σ.
Using the above identity and the coarea formula gives

d

ds
(s−n

∫
Bs∩Σ

fe
−|x|2

4 ) = −ns−n−1

∫
Bs∩Σ

fe
−|x|2

4 + s−n
∫
∂Bs∩Σ

f
|x− x0|
|(x− x0)>|

e
−|x|2

4

= −s−n−1 1

2

∫
Bs∩Σ

f〈x, x− x0〉e
−|x|2

4 − s−n−1

∫
Bs∩Σ

λf〈n, x− x0〉e
−|x|2

4

− s−n−1 1

2

∫
Bs∩Σ

Lf(|x− x0|2 − s2)e
−|x|2

4 + s−n−1

∫
∂Bs∩Σ

f
|(x− x0)⊥|2

|(x− x0)>|2
e
−|x|2

4 .

(3.10)

Now let

g(s) = s−n
∫
Bs∩Σ

fe
−|x|2

4 .

The previous computation implies that

(3.11) g′(s) ≥ −Cg(s)− Cg(s)− cst−2g(s),

where C is a positive constant depending on x0, Λ. Here note on Bs ∩Σ, |x− x0| ≤ s. Then
we have

g′(s)

g(s)
≥ −C − cs

t2
≥ −C − c

t
.

So e(C+ c
t
)sg(s) is monotone nondecreasing. Thus we get

(3.12) f(x0)e
−|x0|

2

4 ≤ eCt+cω−1t−n
∫
Bt(x0)∩Σ

fe
−|x|2

4 .

where ω is the volume of unit n-ball in Rn+1. We simplify the terms to get

(3.13) f(x0) ≤ C(Λ, x0, c)e
C(Λ,x0)tt−n

∫
Bt(x0)∩Σ

f = C(Λ, c, t, x0)

∫
Bt(x0)∩Σ

f.

�
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Remark 3.8. If we pick f = 1 in the above estimate, we will see that

Area(Σ ∩Bs)(x0)

s2
≤ C(x0,Λ)eC(x0,Λ)tArea(Σ ∩Bt(x0))

t2

if s < t and t > 1. As a result, if the sequence {Σi} in Theorem 1.1 are compact surfaces,
we only need uniform diameter bound and area bound to get compactness.

Now we have gathered all the ingredients to prove the curvature estimate.

Proof of Theorem 3.3. Let σ0 ∈ (0, r] be chosen so that

σ2
2 sup
Br−σ0 (x0)

|A|2 = max
0≤σ≤r

σ2 sup
Br−σ(x0)

|A|2.

Let y ∈ Br−σ0(x0) be the point such that

|A|2(y) = sup
Br−σ0 (x0)

|A|2.

Hence
sup

Bσ0/2(y)

|A|2 ≤ 4|A|2(y).

If σ2
0|A|2(y) ≤ 4, then the inequality is true. So we may assume that

(3.14) α := |A|2(y) ≥ 4σ−2
0 .

Then by Lemma 3.4, we have L|A|2 ≥ −(C(Λ) + α)|A|2, then applying Lemma 3.7 with
f = |A|2, t = σ0/2, x0 = y and c = σ2

0/4(C(λ) + α) we get

(3.15) |A|2(y) ≤ C(σ0, y,Λ, α)

∫
Bσ0/2(y)∩Σ

|A|2 ≤ C(σ0, y,Λ, α)ε0.

Moreover, keep track of the c term in (3.12) we can find a uniform bound C(Λ, y) for any
σ0 ≤ 1 and α ≥ 4σ2

0. i.e.

(3.16) |A|2(y) ≤ C(y,Λ)ε0.

So if ε0 is small enough, the inequality contradicts 3.14. Then we finish the proof.
�

Remark 3.9. Choi-Schoen used a blow-up argument in the proof for convenience. In their
case, minimal surface is still minimal after rescaling, but in our case, λ-surface is no longer a
λ-surface after rescaling. Hence we just carefully keep track of every term in the monotonicity
formula and get the same kind of contradiction.

With this curvature bound, we have the following compactness theorem with singular
points:

Theorem 3.10. Suppose we have a sequence of λi-surfaces Σi with genus at most g and
∂Σi = ∅ satisfying the following conditions:
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(1) Area(BR(x0) ∩ Σ) ≤ C(x0)R2 for all x0 ∈ R3 and all R > 0
(2) |λi| ≤ Λ

Then there is a subsequence (still denoted by Σi), a smooth embedded complete non-trivial
λ∞-surface Σ without boundary but locally finite collection of points S ⊂ Σ removed, so
that Σi converges smoothly (possibly with multiplicities) to Σ off of S.

Proof. We follow [CS85] and [CM12a]. For any ball BR(x) ⊂ R3, by Theorem 3.1, the total
curvature of any Σi over BR(x) ∩ Σi is uniformly bounded by some constant C. For each
positive integer m, take a finite covering {Brm(yj)} of BR(x) such that each point of BR(x)
is covered at most h times by balls in this covering, and {Brm/2(yj)} is still a covering of
BR(x). Here we set rm = 2−mε0 and h only depends on BR(x). Then we have∑

j

∫
Σi∩Brm (yj)

|A|2 ≤ hC

Therefore for each i at most hC/ε0 number of balls on which∫
Σi∩Brm (yj)

|A|2 ≥ ε0

By passing to a subsequence of Σi we can always assume that all the Σi has the same balls
with total curvature ≥ ε0. Call the center of these balls to be {x1,m, · · · , xl,m}, where l is
an integer at most hC/ε0. Then on the balls other than Bxk,m(rm), by Theorem 3.3 we have
uniformly point-wise curvature bound for Σi. Passing to subsequence we may assume that
Σi converges smoothly on a half of those balls to Σ.

Then we can continue this process as m increase. Finally by a diagonal argument we can
get a subsequence {Σi}, converges smoothly everywhere to Σ besides those points x1, · · · , xl
which is the limit of those {x1,m}, · · · , {xl,m}. Moreover, since there is no maximum principle
for λ-surfaces, the limit is only immersed. However if we consider the compactness for each
connected components in any fixed ball, we can see the limit is self-touching.

Finally, by Lemma 3.5 and the remark, we know that any λ-surface must intersect with
the union of spheres S2

r=
√
λ2i−4−λi

(0). So the limit must be non-trivial. �

3.2. Removable Singularities. Next we want to show the limit Σ in Theorem 3.10 is
actually smooth. [CM12a].

First, self-shrinkers are actually minimal surfaces under some conformal change of the
ambient metric, and the removable of singularities is already known in Choi-Schoen. In our
case, λ-surfaces are not minimal under certain conformal change of metric. Hence we need
another approach to prove the removable of singularities. Here we will follow White [Whi87].

Second, self-shrinkers satisfies the maximal principle, but here for λ-surfaces we only have
maximal principle in a more constraint sense. As a result, touching can not appear under
the convergence of self-shrinkers, but may appear under the convergence of λ-surfaces. So
we need extra assumption of the convergence to avoid touching under convergence.
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So we need more delicate curvature estimate for our limit. In later discussion, we some-
times need to translate and rescale λ surfaces, so we list some observation here. Suppose Σ
is a λ-surface, then after translation by −z and rescaling by α (x→ αx), the new surface Σ̃
satisfies the following equation

(3.17) H =
1

2α2
〈x,n〉+

λ

α
.

In particular, the right hand side of the equation goes to 0 when α→ +∞.
Now we show the main curvature estimate in this section. The idea is based on [Whi87].

Lemma 3.11. Suppose Σ is a properly self-touching λ-surface in Br(x0)\{x0} with |λ| ≤ Λ
and r ≤ R then there exists ε = ε(Λ, R, x0) > 0 such that if

∫
Σ
|A|2 ≤ ε, then there is C

such that

(3.18) |A(x)||x− x0| ≤ C.

Proof. We show by contradiction. If the criterion is not true, then we can find a sequence of
points xn ∈ ((BR(x0) \B1/n(x0)) ∩ Σ) such that

|A(xn)|2(|xn − x0| −
1

n
)→ +∞.

Otherwise we will have uniform bound for |A(x)|2(|x − x0| − 1
n
) for a sequence of n → ∞,

then passing to limit we will have a uniform bound for |A(x)|2|x− x0|.
Then we can choose zn ∈ ((BR(x0)\B1/n(x0))∩Σ) such that |A(zn)|2(|zn−x0|− 1

n
) achieve

maximum. Note that |A(x)|2(|x−x0|− 1
n
) achieve 0 on ∂B1/n(x0)∩Σ, so dn := |zn−x0|− 1

n
> 0.

Now we translate {x ∈ Σ : |x− zn| ≤ dn/2} in R3 such that zn becomes 0 the origin, and
then rescale this part of the surface with scale |A(zn)|. We denote this new surface by Σ̃n,
and use tilde to denote the quantities on this new surface.

Note Σ̃n satisfy the following properties. First, |Ã(0)| = 1; Second, by

|A(zn)|2dn → +∞

we know that for any fixed R > 0, Σ̃n ∩ ∂BR(0) 6= ∅ if n large enough, and ∂Σ̃n ∩BR(0) = ∅
if n large enough; Finally, for any x′ = |A(z)|x ∈ Σ̃n, we have

|A(x)|(|x− x0| −
1

n
) ≤ |A(z)|dn.

Since |x− z| ≤ dn/2, we have |x−x0|− 1
n
≥ dn/2, thus |A(x)| ≤ 2|A(z)|, thus |Ã(x′)| ≤ 2.

By the uniform curvature bound for Σ̃n, for each R > 0, there exists a subsequence
(still denoted by Σ̃n) converging smoothly on BR(0) to a complete surface Σ̃. Checking the
equation of translation and rescaling, we see that the limit Σ̃ must be a minimal surface, i.e.
H̃ = 0.

Since the rescaling would not change the integral of the squared curvature, we have
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∫
BR(0)∩Σ̃

|A|2 ≤ ε.

Thus Σ̃ has to be the plane. Which contradicts to the condition that |Ã(0)| = 1.
�

Theorem 3.12. The limit surface in Theorem 3.10 is smoothly immersed. Moreover, for
y ∈ S be a non-embedded point, in a small neighbourhood of y, Σ is a union of two disks
which are touching at y.

Proof. By appropriate translation of Σ suppose x0 ∈ S and r > 0 such that 0 is the only
element in S in Br(0). Since

∫
Σi∩Br(0)

|A|2 has uniform bound by generalized Gauss-Bonnet

theorem 3.1, we may assume r small enough such that
∫
Br(0)∩Σ

|A|2 ≤ ε.

By Lemma 3.11, there is a constant C such that

|A(x)||x| ≤ C.

for any x ∈ Br(0) ∩ Σ. Now we choose a sequence ri → 0 and rescale Σ by 1/ri and denote
it by Σ̃i. Note the curvature bound

|A(x)||x| ≤ C

is invariant under rescaling, so this uniform curvature bound indicate that Σ̃i smoothly
converges to a complete surface Σ̃ in R3 \ {0}. See [Whi87].

Now for K be any compact subset of R3 \ {0},∫
Σ̃i∩K

|A|2 =

∫
Σi∩riK

|A|2 → 0 as ri → 0.

This implies Σ̃ is a union of planes. Thus Σ∩Br(0) is actually a union of disks and punctured
disks (see[Whi87]).

Now let Σ just denote one of its connected components which is a punctured disk. Since
Σ̃i converges to to the plane in R3 \ {0}, we can assume for some i, Σ̃i can be written as
a graph ϕi of that plane. Without lost of generality, let the plane be the xy plane in R3.
By the computations in Theorem 2.3 and the rescaled equation (3.17), in B1, Σ̃i satisfies a
elliptic equation

(3.19) ∆ϕi = div(ai · ∇ϕi) + bi · ∇ϕi + ciϕi + d.

Here every terms are defined on R2 ∩ B1(0). Again, when i large, each terms on the right
hand side goes to 0. Then by implicit function theorem, if we fixed the normal direction to
point upwards, we can solve ϕi,t for boundary date ϕi,t = ϕi + t on ∂B1(0). Then the graphs
of ϕi,t foliate a region of B1(0)× R2. Since we fixed the direction of normal vectors, we can
apply maximal principle, which indicates that the leaf such that ϕi,t(0) = 0 lies on one side

of Σ̃i. As a result, any sequence of dilations of Σ must converge to the same limiting plane,
which is just the tangent plane of that leaf at 0.
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Thus Σ ∪ {0} is a C1 graph of a function v in a neighbourhood of 0. Since v is a C2,α

solution to an elliptic equation except 0, then v is actually C2,α. Hence Σ∪ {0} is a smooth
disk.

We have already shown that Σ ∪ {0} is a union of smooth disks. So Σ is an immersed
surface, with locally finite many curvature concentration points. By maximal principle,
at each touching point Σ consists of two disks which are touching at that point. So Σ is
smoothly self-touching immersed. �

Remark 3.13. Suppose y ∈ S, then from the proof we know in a small neighbourhood of y,
Σ is the union of two disks which are touching at y. By maximum principle, on each disks
the normal vectors are pointing in opposite direction.

3.3. Smooth Convergence Besides Touching Points. In this section we will follow
[CM12a] to show the convergence is smooth besides touching points if the limit is not a
self-shrinker. Note λ-surface has bounded mean curvature inside any fixed ball BR(x). Thus
we can apply Allard’s theorem in [All72] (also see [CS85], [Whi87], [CM12a]), and we only
need to show the multiplicity must be one.

From now on we will adapt one of the condition in previous section and assume the limit
is smooth.

Theorem 3.14. The multiplicity of the convergence in Theorem 3.10 is one, if the limit is
not a self-shrinker.

Proof. Following Proposition 3.2 in [CM12a], we will show that if the multiplicity is greater
than one, then on Σ there is a positive function u such that Lu = 0.

Since the convergence is smooth away from S, we can choose εi → 0 and domain Ωi ⊂ Σ
exhausting Σ \ S so that each Σi decomposes locally as a collection of graphs over Ωi, and
is contained in the εi-neighbourhood of Σ. Since Σi is embedded (hence orientable), these
sheets over Ωi can be ordered by height. Let w+

i and w−i be the functions representing the
top sheet and the bottom sheet over Ωi, define wi = w+

i − w−i . By Theorem 2.3

Lwi = 0

up to higher order correction terms.
Fixed y 6∈ S and set ui = wi

wi(y)
. By embeddedness of Σi, ui is positive. Then Harnack

inequality implies local Cα bound, and elliptic theory gives C2,α bound. See [CM12a] and
[GT15] for the details of elliptic PDE. Then by Areazela-Ascoli theorem, a subsequence of
ui converges uniformly in C2 on a compact subset of Σ \ S to a non-negative function u on
Σ \ S such that

Lu = 0, u(y) = 1.

Next we show u can extends smoothly across S. This follows the standard removable
singularity results for elliptic equations once we show that u is bounded up to each yk.
Again we follow the idea of [Whi87] and [CM12a] in Theorem 3.12. Suppose yk ∈ S, from
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Theorem 3.12, in a small neighbourhood of yk Σ is union of at most two disks. Let Σ̃ be one
of them. Suppose w+

i satisfies the elliptic equation

Lw+
i = div(ai∇w+

i ) + bi · ∇w+
i + ciw

+
i + d

Then when i large enough, by implicit function theorem, over the tangent plane of Σ̃, let’s
say R2, we can solve equation

Lvt = div(ai∇vt) + bi · ∇vt + civt

with boundary value vt = t on ∂Bδ(yk) for a fixed small δ. Harnack inequality implies that
t/C ≤ vt ≤ Ct for some C > 0. Then by maximum principle ui is bounded by Ct1 and t2/C
if the boundary data of ui satisfies t2 ≤ ui ≤ t1. In conclusion, ui is bounded on Bδ(yk) by a
multiple of its supremum on Bδ(yk) \Bδ/2(yk). This multiple is uniform because ui satisfies
the same equation up to higher order. Then we conclude that u is bounded in Bδ(yk), hence
u has a removable singularity at each yk, and thus extends to a non-negative solution of
Lu = 0 on all of Σ. Since u(y) = 1, Harnack inequality implies that u is positive everywhere.

However, this contradicts Theorem 2.2. So the convergence can only has multiplicity one.
Then we can extend the smoothly convergence across those singular points in S which are
not touching points, i.e. has density 1. �

So we extends our smooth convergence to whole Σ besides local finite touching points with
curvature concentration. The last step is to validate the terminology neck pinching we used
in the main theorem. We claim that these touching points are really generated via a neck
pinching process.

Definition 3.15. We say a touching point p on Σ is a neck pinching point if for 0 < r < r0,
there are at most finitely many Σi such that Σi ∩ Br can be written as graphs over each
connected disks of Σ ∩Br.

Intuitively, a neck pinching point is generated by splitting a connected neck into two
different connected components.

Proposition 3.16. If p ∈ S is not a neck pinching point, then smooth convergence can be
extended across p.

Proof. If p is not a neck pinching point, by definition locally we can write Σi as graphs over
each connected disks of Σ∩Br. Then we study the convergence of each such graphs, then we
can argue the smooth convergence for each components just like non-touching points. �

Finally we discuss the situation that the limit is a self-shrinker. If the limit is a self-
shrinker, and the convergence is of multiplicity larger than 2, then we can find at least two
sheets has the same orientation. Then we repeat the above discussion but just for the sheets
with this orientation, we can construct a positive Jacobi field, which is a contradiction. Thus
the multiplicity of the convergence is at most 2.

Now we can conclude our main compactness theorem.
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Proof of Theorem 1.1. Theorem 3.10 gives the convergence subsequence, Theorem 3.12 shows
the limit is smooth and embedded besides touching points, and Theorem 3.14 shows the con-
vergence is smooth besides those neck pinching points if the limit is not a self-shrinker. �

4. Rigidity of convex λ-Surfaces

In this section we will prove a rigidity theorem. The main idea is that we can use the
smoothly convergence λ-surfaces sequence to generate a solution to the linearized equation
on the limit surface. Then the property of the solution would provide information of the
surfaces which are closed to the limit.

Theorem 4.1. There exists δD < 0 such that for any λ ∈ (δD,+∞), compact convex
λ-surface with bounded diameter D must be sphere S2

r (0) with r =
√
λ2 + 4− λ.

The self-shrinkers case λ = 0 was proved by Colding-Minicozzi in [CM12b]. Later Heilman
generalized Colding-Minicozzi’s result to the case λ ≥ 0 in [Hei17]. Note they actually proved
the rigidity for mean convex λ-surface. Their proof can not be generalized to λ < 0 case
because one key estimate in their proof relies on the positivity of λ.

In order to use the compactness theorem, first we need an area growth bound for convex
surface.

Lemma 4.2. Suppose Σ is a convex surface in R3 without boundary. Then for any x0 ∈ R3,

(4.1) Area(BR(x0) ∩ Σ) ≤ 4πR2.

Note here our area bound holds for even non-compact convex surface.

Proof. A stronger argument appeared in the proof of the replacement lemma of Almgren-
Simon in [AS79]. See proof of Theorem 1 in section 3 in [AS79].

Since Σ is convex, it divides the whole R3 into two parts: either the point in R3 lies in
the convex hull of Σ, or it doesn’t lie in the convex hull of Σ. Moreover, by convexity of
Σ, for any point x ∈ R3 do not lie in Σ, we can find an unique points π(x) on Σ such that
the distance between π(x) and x is the shortest distance from x to Σ, and the straight line
connect x and π(x) is perpendicular to Σ.

Now we define a vector field V (x) out side Σ such that V (x) = n(x) on Σ, and for any
x ∈ R3 out side Σ, V (x) = V (π(x)). Since Σ is convex, divV ≥ 0. This vector field is well
defined because the projection is unique.

Let S to be the part of ∂BR(x0) lies out side Σ, and denote D to be the domain of BR(x0)
lies out side of Σ. Then ∂D = S ∪ Σ. Integration by part gives∫

Σ∪S
V · n =

∫
D

divV ≥ 0

Note on Σ, V · n = 1, where on S, V · n ≥ −1. So

Area(Σ) ≤ Area(S) ≤ 4πR2.

�
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Now we can prove the rigidity of bounded convex λ-surfaces.

Proof of Theorem 4.1. When λ ≥ 0 this rigidity is known in [CM12b] and [Hei17]. So we
only need to show δD < 0 exists. We argue by contradiction. Suppose such δD does not
exists, then we can find a sequence of convex λi-surface Σi, λ → 0, such that Σi is not
a sphere S2√

λ2i+4−λi
. Convexity indicates that Σi are all diffeomorphic to spheres, which

gives the genus bound. By Lemma 4.2, we get Area(BR(x0) ∩ Σi) ≤ CR2 for a constant C.
Thus we can apply our compactness Theorem 1.1 to {Σi}, and a subsequence must smoothly
converge to a smooth compact self-shrinker Σ because of the diameter bound. Convexity
also implies that the the convergence must has multiplicity 1. By maximum principle, Σ can
not have touching point, hence Σ is embedded. Since the convergence is smooth and Σi are
all convex, Σ is also convex. Then by [CM12b] we know Σ has to be the sphere S2

2(0).
On sphere with radius r

L = ∆S2
r

+
1

2
+

2

r2
.

So when r = 2, L = ∆S2
2

+ 1.
Let us consider a family of maps between Banach spcaes:

(4.2) f : R× C2,α → C0,α

where f(t, u) = Lu + 1 − Pt(x, u,∇u,∇2u), such that f(t, u) = 0 is the λ-surface equation
with λ = t. The Fréchet differential of f with respect to the second position at (0, 0) is
just the linearized operator L. Since 1 is not an eigenvalue of S2

2 , by Fredholm alternative
theorem, L is a local homomorphism from C2,α → C0,α. So by implicit function theorem,
locally there is a unique function g : I ⊂ R→ C2,α such that f(t, g(t)) = 0. Moreover, if we
treat the sphere of radius S2√

t2+4−t is a graph ut over S2
2 , then ut is a solution to f(t, ut) = 0.

Thus they are the unique solutions to f(t, ut) = 0.
So when i large enough, Σi is sphere S2√

λ2i+4−λi
, which is a contradiction. Thus, there

must be δ0 < 0 such that for λ ∈ (0,+∞). �

Remark 4.3. It is an interesting question to know more information about δD. In the 1
dimensional case Chang in [Cha17] constructed examples to show that δD > −∞ for some
D. We conjecture δD > −∞ also holds in 2-dimensional λ-surfaces in R3 for some D.
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