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Abstract

A pseudoline is a homeomorphic image of the real line in the plane
so that its complement is disconnected. An arrangement of pseudo-
lines is a set of pseudolines in which every two cross exactly once. A
drawing of a graph is pseudolinear if the edges can be extended to an
arrangement of pseudolines. In the recent study of crossing numbers,
pseudolinear drawings have played an important role as they are a nat-
ural combinatorial extension of rectilinear drawings. A characteriza-
tion of the pseudolinear drawings of Kn was found recently. We extend
this characterization to all graphs, by describing the set of minimal for-
bidden subdrawings for pseudolinear drawings. Our characterization
also leads to a polynomial-time algorithm to recognize pseudolinear
drawings and construct the pseudolines when it is possible.
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1 Introduction
A pseudoline is an unbounded open arc in the plane whose complement
is disconnected. In particular, lines are pseudolines, and any pseudoline
is the image of a line under a homeomorphism of the plane into itself. An
arrangement of pseudolines is a set of pseudolines in which every two intersect
in exactly one point, and their intersection point is a crossing. A drawing of a
graph G is pseudolinear if there is an arrangement of pseudolines consisting
of a different pseudoline for each edge and each edge is contained in its
pseudoline.

In this work we characterize pseudolinearity of a drawing of any graph,
not justKn: the drawing must be good (defined below) and not contain any of
the configurations in Figure 1. Thomassen [15] already observed that many of
the drawings in Figure 1 are obstructions for a drawing to be homeomorphic
to a rectilinear drawing; they are also obstructions for pseudolinearity.

Figure 1: Obstructions to pseudolinear drawings.
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We have been unable to find any literature that suggests even the possibil-
ity of a characterization of pseudolinearity. Moreover, informal conversations
with colleagues seemed to be more along the lines of finding more obstruc-
tions.

A rectilinear drawing of a graph is one in which edges are drawn using
straight line segments, and more generally, a stretchable drawing is one that
is homeomorphic to a rectilinear drawing. Fáry’s Theorem [6, 14, 16], a
classic result in graph theory, asserts that drawings of simple graphs with no
crossings between edges are stretchable.

In [15], Thomassen extended Fáry’s Theorem by characterizing stretch-
able drawings of graphs in which every edge is crossed at most once: In
addition to being a good drawing (that is, no edge self-intersects and no two
edges have two points – either crossings or common endpoints – in common),
there are two forbidden configurations, shown in Figure 2.

Figure 2: B and W configurations.

Thomassen’s characterization is a partial answer to the general problem
of determining which drawings are stretchable. There is not likely to be a
complete characterization, as Mnëv [11, 12] showed that the closely related
problem of stretchability of arrangements of pseudolines is NP-hard (in fact
∃R-hard). This easily implies that stretchability of graph drawings is NP-
hard.

The study of arrangements of pseudolines was initiated by Levi and Ringel
[9, 13], and propagated by Grünbaum’s popular monograph Arrangements
and spreads [7].

Arrangements of pseudolines have played an important role in the study
of the crossing number of Kn. A drawing of a graph G is pseudolinear if there
is an arrangement of pseudolines consisting of a different pseudoline for each
edge and each edge is contained in its pseudoline. The original, independent
proofs by Ábrego and Fernández-Merchant [1] and by Lovász et al [10] that
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a rectilinear drawing of Kn has at least
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crossings in fact applies to pseudolinear drawings of Kn. The substantial
progress on computing the rectilinear crossing number of Kn has contin-
ued this approach and has lead to further study of pseudolinear drawings
[4, 8, 3, 2, 5]. Since the pseudolinear obstructions are also rectilinear ob-
structions, we wonder if this work might shed light on rectilinear drawings of
graphs. For example, Thomassen characterizes when a drawing of a graph in
which each edge has at most one crossing is homeomorphic to a rectilinear
drawing. Our result shows that this is if and only if the drawing is pseudo-
linear. (Pseudolinearity is obviously necessary; that it is sufficient is a little
surprising.)

There have been recent, independent characterizations of pseudolinear
drawings of Kn [3, 2]. The simpler of the equivalent descriptions is that the
drawing is good and that it does not contain the unique (up to homeomor-
phism) good drawing of K4 having the crossing incident with the infinite
face.

Our main theorem is best presented in the context of strings in the plane.
A string σ is the image f([0, 1]) of a continuous function f : [0, 1] → R2

that restricted to (0, 1) is injective; in other words, strings are arcs that
are allowed to self-intersect only at their ends f(0) and f(1). If no such
self-intersection exists, then σ is simple. Most of the time we will consider
simple strings, although considering non-simple strings will come in handy
for technical reasons.

A set of strings Σ is in general position if, for every two strings σ, σ′ ∈ Σ
(i) σ∩σ′ is a finite set of points in R2; and (ii) each point in σ∩σ′ is either a
crossing between σ and σ′, or an end of either σ or σ′. For instance, the set of
edge-arcs of a good drawing of a graph is a set of strings in general position,
but not all the sets of strings in general position come in this fashion: a string
might include end points of other strings in its interior.

For a set Σ of strings in general position, its underlying plane graph G(Σ)
is the plane graph obtained from Σ by replacing the crossings between strings
and the end points of every string in Σ by vertices. Our main result below
characterizes when a set of strings in general position can be extended to an
arrangement of pseudolines.
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Theorem 1.1. A set of strings Σ in general position can be extended to an
arrangement of pseudolines if and only if, for each cycle C in the underlying
plane graph G(Σ) of Σ, there are at least three vertices with the property that
the edges incident to the vertex that are included in the closed disk bounded
by C belong to distinct strings in Σ.

For instance, let C be the unique cycle in the underlying plane graph in
any of the drawings in Figure 1. There are at most two vertices of G in C,
represented as black dots. The strings incident with such a vertex are distinct
and contained in the closed disk bounded by C. The vertices represented as
crossings do not satisfy this property: they are incident with four edges in
the disk bounded by C, and these four edges consist of two strings that cross
at this vertex. Theorem 1.1 implies that none of the drawings in Figure 1 is
pseudolinear. Surprisingly, we will show, as a consequence of Theorem 1.1,
that every non-pseudolinear drawing contains one of the configurations in
Figure 1 as a subdrawing.

Theorem 1.2. Let D be a non-pseudolinear good drawing of a graph H.
Then there is a subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each
σ ∈ S has a substring σ′ ⊆ σ for which

⋃
σ∈S σ

′ is one of the drawings in
Figure 1.

Cycles that have fewer than three vertices as in Theorem 1 are the ob-
structions of G(Σ) (this definition will be made more precise at the beginning
of Section 2). Showing that when G(Σ) has obstructions, then Σ cannot be
extended to an arrangement of pseudolines, is the first part of Section 2.
The rest of Section 2 is devoted to show that if G(Σ) has no obstructions,
then Σ can be extended to an arrangement of pseudolines. The proof of two
technical lemmas used in the proof of Theorem 1.1 are deferred to Section
3. In Section 4, we describe a simple algorithm that finds an obstruction in
polynomial time. In Section 5, by applying Theorem 1.1, we prove that a
drawing of a complete graph Kn is pseudolinear if and only if it does not
contain the B configuration in Figure 2. This result is equivalent to the
characterizations of pseudolinear drawings of Kn given in [2] and [3], but its
proof is simpler. At the end, in Section 6, we show how Theorem 1.2 easily
follows from Theorem 1.1, together with some concluding remarks.
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2 Proof of Theorem 1.1
In this section, we use Lemmas 2.4 and 2.5 (proved in the next section) to
prove Theorem 1.1. As we enter into the subject, we need some notation that
is useful in identifying an obstruction. Let C be a cycle of a plane graph G
and let v be a vertex of C. The rotation at v inside C is the counterclockwise
ordered list e0, e1..., ek of edges incident with v that are included in the closed
disk bounded by C, with e0 and ek both in C. Likewise, the rotation at v
outside C is defined as the counterclockwise ordered list ek, ek+1, . . . , e0 of
edges incident with v included in the closure of the exterior of C.

(a) A reflecting vertex (b) A rainbow

Figure 3: A representation of reflecting and rainbow vertices, where each
string in G(Σ) has assigned a unique colour.

In the case G = G(Σ) for some set Σ of strings in general position, a
vertex v in a cycle C of G(Σ) is reflecting in C if at least two edges in the
rotation at v inside C belong to the same string (Figure 3a). The alternative
is that v is a rainbow, in which case all the edges of its rotation inside C are
in different strings (Figure 3b). In these terms, an obstruction is a cycle with
at most two rainbows.

2.1 Sets of strings with obstructions are not extendible

The following observation will be used in this subsection and also in Theorem
5.1. If C is a cycle in G(Σ), where Σ is a set of strings in general position,
then δ(C) is the set of vertices in C for which their two incident edges in C
belong to two distinct strings in Σ. Note that if |δ(C)| < 3 for some cycle C,
then either |δ(C)| = 2 and two strings intersect more than once, or |δ(C)| ≤ 1
and some string is self-crossed. Both these possibilities are forbidden in good
drawings.
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Observation 2.1. Let Σ be a set of simple strings in general position in
which every two strings intersect at most once. Let:

(a) C be an obstruction of G(Σ) for which |δ(C)| is as small as possible;

(b) x ∈ δ(C);

(c) e be an edge in C incident to x;

(d) σ ∈ Σ be the string containing e; and

(e) σ′ be the component of σ \ e containing x.

Then σ′ ∩ C = {x}.

Proof. By way of contradiction, suppose that σ′∩C includes a point distinct
from x. This in particular implies that σ′ 6= {x}, and, because x ∈ δ(C), the
points of σ′ \ {x} near x are not in C. Let P be the path in G(Σ) obtained
by traversing σ′, starting at x, and stopping the first time we encounter a
point y ∈ C ∩ (σ′ \ {x}). Note that y ∈ V (C) and that P is drawn in either
the interior or the exterior of C.

First, suppose that P is drawn in the interior of C. Let C1 and C2 be the
cycles obtained from the union of P and one of the two xy-subpaths in C. We
may assume C1 includes e. Each of C1−P and C2−P has a vertex in δ(C);
otherwise one of C1 or C2 would be included in at most two strings, implying
that a string is self-crossing or two strings intersect twice. Therefore |δ(C1)|
and |δ(C2)| are strictly smaller than |δ(C)|. Then, by assumption, C1 and
C2 are not obstructions.

None of the vertices in P − y is a rainbow for C1 (P ⊆ σ′ and x is
reflecting in C1, so the interior rotations of the vertices in P − y include two
edges in σ). Since all the vertices in C1 − V (P ) that are rainbow in C1 are
also rainbow in C, C1 has at most two rainbows in V (C1) \V (P ). These last
two observations and the fact that C1 is not an obstruction, together imply
that C1 has three rainbows: two of them are in V (C1) \ V (P ) and the other
is y.

Now we look at the rainbows in C2. Because C has two rainbows in
C1 − V (P ) and any rainbow in V (C2) \ V (P ) for C2 is rainbow for C, C2

has no rainbow in V (C2) \ V (P ). All the interior vertices of P are reflecting
in C2, so C2 has at most two rainbows. This contradicts that C2 is not an
obstruction.
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Secondly, suppose that P is drawn in the exterior of C. Let Cout be the
cycle bounding the outer face of C ∪ P . The cycle Cout is the union of P
and one of the two xy-paths in C, and, in both cases, as x ∈ δ(C) \ δ(Cout)
and P − y ⊂ σ, |δ(Cout)| < |δ(C)| . Every vertex in P − y is reflecting
in Cout (this statement follows from the fact that the rotation of a vertex
inside a cycle also includes the edges of the cycle incident with the vertex).
Moreover, every vertex in V (Cout) \ (V (P − y)) that is a rainbow in Cout is
also a rainbow in C. These two facts imply that Cout has at most as many
rainbows as C; hence Cout is an obstruction. This contradicts the fact that
C minimizes |δ|.

Next we show that, if a set of strings contains an obstruction, then it is
not pseudolinear.

Observation 2.2. If Σ is a set of strings in general position and G(Σ) has
an obstruction, then Σ cannot be extended to an arrangement of pseudolines.

Proof. By way of contradiction, suppose that there is a set of strings Σ
that can be extended to an arrangement of pseudolines and G(Σ) has an
obstruction C. Consider an extension of Σ to an arrangement of pseudolines,
and then cut off the two infinite ends of each pseudoline to obtain a set
of strings Σ′ extending Σ, and in which every two strings in Σ′ cross. In
G(Σ′), there is a cycle C ′ that represents the same simple closed curve as
C. Because C ′ is obtained from subdiving some edges of C, C ′ has fewer
than three rainbows. Therefore, we may assume that Σ = Σ′ and C = C ′.
Now, the ends of every string in Σ are degree-one vertices in the outer face
of G(Σ).

As every string in Σ is simple, and no two strings intersect more than
once, |δ(C)| ≥ 3. We will assume that C is chosen to minimize |δ(C)|.

Since C is an obstruction, there is at least one vertex x ∈ δ(C) reflecting
inside C. Let e ∈ E(C) be an edge incident to x, and suppose that σ is the
string including e. Traversing σ along e through x, we encounter another
edge e′ ⊆ σ incident to x. Because x ∈ δ(C), e′ is not in C. Suppose that
e′ is drawn in the outer face of C. As x is reflecting inside C, there exists a
string σ̄ that includes two edges in the rotation at x inside C. However, σ
and σ̄ tangentially intersect at x, contradicting that the strings in Σ are in
general position. Therefore e′ is drawn inside C.

Let y be the end of σ contained in the component of σ \ e containing x.
Since |δ(C)| is minimum, Observation 2.1 implies that the component of σ\e
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having x and y as ends have all its points, with the exception of x, in the
inner face of C. However, y is drawn in the inner face of C, contradicting
that the ends of all the strings in Σ are incident with the outer face of G(Σ).

2.2 Extending sets of strings with no obstructions

In this subsection we prove that a set of strings with no obstructions can be
extended to an arrangement of pseudolines. We restate Theorem 1.1 using
our new terminology.

Theorem 2.3. A set of strings Σ in general position can be extended to an
arrangement of pseudolines if and only if G(Σ) has no obstructions.

Proof. We showed in Observation 2.2 that if G(Σ) has an obstruction, then
Σ cannot be extended to an arrangement of pseudolines. For the converse,
suppose that G(Σ) has no obstructions.

We start by reducing the proof to the case in which the point set
⋃

Σ is
connected. If

⋃
Σ is not connected, then we add a simple string to Σ, con-

necting two points in distinct components of G(Σ), and so that it is included
inside a face of G(Σ). This operation: reduces the number of components;
does not create obstructions; and ensures that any pseudolinear extension of
the new set of strings shows the existence of one for Σ. We continue adding
strings in this way until we obtain a connected set of strings and we redefine
Σ to be this set. Thus, we may assume

⋃
Σ is connected.

Our proof is algorithmic, and consists of repeatedly applying one of the
three steps described below.

• Disentangling Step. If a string σ ∈ Σ has an end a with degree at
least 2 in G(Σ), then we slightly extend the a-end of σ into one of the
faces incident with a.

• Face-Escaping Step. If a string σ ∈ Σ has an end a with degree 1 in
G(Σ), and is incident with an inner face, then we extend the a-end of
σ until we intersect some point in the boundary of this face.

• Exterior-Meeting Step. Assuming that all the strings in Σ have
their two ends in the outer face and these ends have degree 1 in G(Σ),
we extend the ends of two disjoint strings so that they meet in the
outer face.

9



We can always perform at least one of these steps, unless the strings are
pairwise intersecting and all of them have their ends in the outer face (in
this case we extend their ends to infinity to obtain the desired arrangement
of pseudolines). Each step increases the number of pairwise intersecting
strings. Henceforth, our aim is to show that, as long as there is a pair of
non-intersecting strings, then one of these three steps may be performed
without adding an obstruction. The proof is now divided into three parts
that can be read independently.

Disentangling Step. Suppose that σ ∈ Σ has an end a with degree at least
2 in G(Σ). Then we can extend the a-end of σ into one of the faces incident
to a without creating an obstruction.

Proof. An edge f of G(Σ) incident with a is a twin if there exists another
edge f ′ 6= f incident with a such that both f and f ′ are part of the same
string in Σ. Observe that the edge e0 ⊆ σ incident with a is not a twin.

The fact no pair of strings tangentially intersect at a tells us that if
(f1, f

′
1) and (f2, f

′
2) are pairs of corresponding twins, then f1, f2, f ′1, f ′2 occur

in this cyclic order for either the clockwise or counterclockwise rotation at a.
Thus, we may assume that the twins at a are labeled as f1, . . . , ft, f

′
1, . . . , f

′
t ,

and that this is their counterclockwise order occurrence when we follow the
rotation at a starting at e0. In such a case, (fi, f

′
i) is a pair of corresponding

twins for i = 1, . . . , t.
In order to avoid tangential intersections when twins are present, every

valid extension of σ at a must cross into the angle between ft and f ′1 not
containing e0.

Let (e1, . . . , ek) be the list of non-twin edges between ft and f ′1 in the
counterclockwise rotation at a; this list might be empty. In the case there
are no twins, we set ft and f ′1 both equal to e0, so (e1, . . . , ek) is all the edges
incident with a other than e0.

We consider all the feasible extensions for σ: for each i ∈ {1, ..., k − 1},
we let Σi be the set of strings obtained from extending σ by adding a small
bit of arc αi starting at a, and continuing into the face between ei and ei+1.
Let Σ0 be the set of strings obtained by adding an arc α0 in the face between
ft and e1, and let Σk be obtained by adding an arc αk in the face between ek
and f ′1.

Seeking a contradiction, suppose that, for each i ∈ {0, ..., k}, G(Σi) con-
tains an obstruction Ci. The cycle Ci does not include the bit of arc αi as
an edge, so Ci is a cycle in G(Σ). This cycle is not an obstruction in G(Σ),
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e0

f1

ft

α0

e1

e2ek−1

ek

f ′1

f ′t

Figure 4: Substrings included in the disk bounded by C0.

although it becomes one when we add αi. The reason explaining this conver-
sion is simple: in G(Σ), Ci has exactly three vertices not reflecting, and one
of them is a. After αi is added, a is now reflecting in Ci (witnessed by σ).

Understanding how cycles with exactly three rainbows may behave in an
obstruction-less set of strings is a crucial piece of the proof. In general, if v is
a vertex in the underlying plane graph of a set of strings in general position,
then a near-obstruction at v is a cycle with exactly three rainbows, and one
of them is v. Each of the cycles C0, C1,...,Ck above is a near-obstruction at
a in G(Σ).

Both e0 and α0 are on the disk bounded by C0, and since α0 is not part
of C0, either e0, f1, f2, . . . , ft, e1 are on the same side of C0 (blue bidirectional
arrow in Figure 4) or all of ft, e1, . . . , ek, f

′
1, f

′
2, . . . , f

′
1, e0 are in the same side

of C0 (green bidirectional arrow in Figure 4). Because α0 is the only edge
between ft and e1, we see that e1 belongs to the first sublist (the blue one)
and ft belongs to the second list (the green one). In the second case both
ft and f ′t are in the disk bounded by C0, showing that a is not a rainbow for
C0 in Σ. Therefore, all of e0, f1, f2, . . . , ft, e1 are in the disk bounded by C0.

Regardless of the presence or absence of twins, we know that (e0, e1)
occurs as a sublist of the rotation of a inside C0. A symmetric argument
shows that (ek, e0) occurs as a sublist of the rotation of a inside Ck.

Since (e0, e1) is a substring of the rotation at a inside C0 and (e0, e1, . . . , ek,
f ′1) is not inside Ck, there is a largest i ∈ {0, 1, . . . , k−1} such that (e0, . . . , ei+1)
is inside Ci. The choice of i implies (ei+1, . . . , ek, e0) is inside Ci+1.

The next lemma states that the existencce of such a pair of cycles Ci and
Ci+1 is impossible, completing the proof.

11



Lemma 2.4. Let Σ be a set of strings in general position. Suppose that C1

and C2 are cycles in G(Σ) that are near-obstructions at v, so that the rotation
at v inside C1 includes (as a sublist) the rotation at v outside C2, and that
the rotation at v inside C2 includes the rotation at v outside C1. Then G(Σ)
has an obstruction.

We defer the proof of Lemma 2.4 to Section 3 as it is technical and it
deviates our attention from the proof of Theorem 1.1.

Face-Escaping Step. Suppose that there is a string σ that has an end a
with degree 1 in G(Σ), and a is incident to an inner face F . Then there is
an extension σ′ of σ from its a-end to a point in the boundary of F such that
the set (Σ \ {σ}) ∪ {σ′} has no obstruction.

a

x1 = x8
x2

x3 = x5

x6

x4
x7

Figure 5: All possible extensions in the Face-Escaping Step.

Proof. Let W be the closed boundary walk (x0, e1, . . . , en, xn) of F such that
x0 = xn = a and F is to the left as we traverse W . Let P denote the list
of points (m1, x1,m2, x2, . . . , xn−1,mn). For each point p in P , let Σp be the
set of strings obtained from Σ by extending the a-end of σ adding an arc αp
connecting a to p in F (see Figure 5).

Figure 6 shows the importance of considering extensions meeting points
in the middle an edge in the boundary of F , as sometimes this is the only
way for extending σ without creating an obstruction.

Let fp be the edge e1 ∪ αp in G(Σp); it has ends x1 and p. Also, let
σp = σ ∪ αp. The existence of obstructions in G(Σp) is independent of how
we draw αp inside F . We will take advantage of this fact later on in the
proof.
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F

a

Figure 6: Face-Escaping Step.

Seeking a contradiction, suppose that each G(Σp) has an obstruction.
Our next claim gives two sufficient conditions on p that imply that all the
obstructions in G(Σp) contain fp.

Claim 1. Let p ∈ P be either one of m1, . . . ,mn or not in σ. Then every
obstruction in G(Σp) includes fp.

Proof. Let p ∈ P be such that there is an obstruction C in G(Σp) not in-
cluding fp.

First, we show that p is not a vertex in the middle of an edge in W .
By contradiction, suppose that p = mi for some i ∈ {1, ..., n}. Since mi is
the only vertex whose rotation in G(Σ) differs from its rotation in G(Σmi

),
mi ∈ V (C). Consider the cycle C ′ of G(Σ) obtained by replacing the subpath
xi−1,mi, xi of C by the edge xi−1xi. The inside rotation of each vertex in C ′
is the same as their rotation inside C. This shows that C ′ is an obstruction
in G(Σ), a contradiction.

Now suppose that p is not in the middle of an edge in W . Then C is a
cycle in G(Σ) and is not an obstruction in G(Σ). The only vertex in G(Σp)
that has a rotation that is different from its rotation in G(Σ) is p. Therefore
p is a point in C that is reflecting inside C (witnessed by two edges included
in σp), and is not reflecting in C with respect to G(Σ). Exactly one of the
two witnessing edges is in G(Σ). So p ∈ σ.

More can be said about the obstructions in G(Σp) for each point in P , but
for this we need some terminology. If we orient an edge e in a plane graph,
then the sides of e are either the points near e that are to the right of e, or
the points near e to the left of e. Our next lemma shows that if p ∈ P , then
all the obstructions in G(Σp) include the same side of fp in its interior face.
We defer its proof to Section 3 to keep the flow of the current proof. For the
convenience of the reader, we provide all the hypotheses in the statement.
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Lemma 2.5. Let Σ be a set of strings in general position. Let C1 and C2 be
obstructions in G(Σ) with e ∈ E(C1) ∩E(C2). If C1 and C2 include distinct
sides of e in their interior faces, then G(Σ) has an obstruction not including
e.

The condition on the two cycles C1 and C2 containing distinct sides of e
implies that e is incident with only interior faces of C1∪C2. The perspective
of the cycles being on distinct sides of e is useful in the application, but what
we really use in the proof of Lemma 2.5 is that e is not incident with the
outer face of C1 ∪ C2.

For each point p ∈ P , we will consider an obstruction Cp containing fp;
the choice of Cp will be more specific when p ∈ σ (see below). For p ∈ P , we
orient fp from x1 to p, so that we keep track of the side of fp contained in
the interior of Cp.

Observe that Cx1 contains the right of fx1 while Cxn−1 contains the left
of fxn−1 (here we use the fact that F is bounded). This implies the existence
of two consecutive vertices xi−1, xi in W − a, such that the interior of Cxi−1

includes the right of fxi−1
and the interior of Cxi includes the left of fxi .

Without loss of generality, suppose that the interior of Cmi
includes the

left of fmi
(otherwise we reflect our drawing in a mirror). To make the

notation simpler, we let x = xi−1 and m = mi. We may assume that fm is
drawn near the left of fx.

The next claim is the last ingredient to obtain a final contradiction.

Claim 2. Exactly one of the following holds:

(a) x ∈ σ and G(Σm) has an obstruction containing fm whose interior
includes a side that is distinct from the side included by Cm; or

(b) x /∈ σ and G(Σx) has an obstruction containing fx whose interior in-
cludes a side of fx that is distinct from the side included by Cx.

Proof. First, suppose that x ∈ σ. For (2.a) we have two cases depending on
whether xi−1xi is an edge in Cx.

Case a.1 xi−1xi is not in Cx.

In this case we consider the cycle C ′m obtained by replacing in Cx the
edge fx by the path P = (x1, fm, m, mx, x). Since x ∈ σ, by the choice of
Cx, all the edges in Cx are in σx. Therefore all the edges in C ′m, with the
possible exception of mx, are in σm. Thus C ′m is an obstruction in G(Σm).

14



It remains to show that the interior of C ′m includes the right side of fm.
Note that Cx ∪P consists of three internally disjoint x1x-paths, and because
some points in P are near the left side of fx, P is in the outer face of Cx.
The face of fx∪P that is to the right of fm is included in the inner face F , so
it is bounded. This implies the interior face of C ′m includes the right of fm.
Since the interior of Cm includes the left of fm, C ′m and Cm are obstructions
including distinct sides of fm.

Case a.2. xi−1xi is in Cx.

In this case, (x1, fx, x, xxi, xi) is a subpath of Cx. We let C ′m be the cycle
obtained by replacing this path by P = (x1, fm,m,mxi, xi). Since x ∈ σ, the
way we choose Cx implies that all the edges in Cx are in σx. So all the edges
in C ′m are in σm, and C ′m is an obstruction. An argument similar to the one
given in the previous case shows that the interior of C ′m includes the right
side of fm. Thus the interior of Cm and C ′m include distinct sides of fm.

Turning to (2.b), let us suppose that p 6∈ σ. We split the proof into two
cases depending on whether x is in Cm.

Case b.1. x is in Cm.

First, we redraw fx and fm inside F so that fx ∩ fm = {x1}. Let T be
the triangle bounded by fx, fm and xm. The interior face of T is to the left
of fx and to the right of fm. Consider the mx-path P of Cm that does not
include the edge fm. Since the interior face of T is a subset of F , P is drawn
in the closure of the exterior of T (possibly P = (m,mx, x)).

Let C be the simple closed curve bounded by P ∪ fx ∪ fm. We claim that
the interior of C is on the left of fx. In the alternative, suppose that the
interior of C is on the right of fx. Then C ′ = P + xm is a cycle of G(Σm)
including fx and fm in its interior. The xx1-path P ′ of Cm that does not
include m, is an arc connecting x1 to x inside C ′. Thus, V (C ′) ⊆ V (Cm)
and the closed disk bounded by C ′ includes Cm. These two observations
together imply that C ′ has at most as many rainbows as Cm, and hence, C ′
is an obstruction of G(Σm) not including fm. Claim 1 asserts that all the
obstructions in G(Σm) include fm, a contradiction. Thus the interior of C is
on the left of fm.

From our last observation, it follows that P ′ is an arc connecting x1 and
x in the exterior of C. Because the interior of Cm = P ′ ∪ fm ∪ P is on the
left of fm, the interior of the cycle C ′x = P ′ + fx is on the left of fx.
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Now we show that C ′x is an obstruction. Note that V (C ′x) ⊆ V (Cm) and
that the closed disk bounded by C ′x includes Cm. Then, every rainbow in C ′x
is a rainbow in Cm, and hence C ′x is an obstruction. The cycles Cx and C ′x
are obstructions including distinct sides of fx in their interiors, as claimed.

Case b.2. x is not in Cm.

In this case we let C ′x be the cycle obtained by replacing the path (x1, fm,
m,mxi, xi) in Cm by the path P = (x1, fx, x, xxi, xi) in G(Σx). Let α be
the subarc of P joining x1 to m. As the points of α near x1 are drawn on
the left of fm, and α is internally disjoint to Cm, α connects x1 and m in
the exterior of Cm. Since the interior face of α ∪ fm is on the left of fx, the
interior face of C ′x is on the left of fx.

To show that C ′x is an obstruction, note that the disk bounded by C ′x
includes Cm and that V (C ′x) \ {x} ⊆ V (Cm). Thus all the rainbows of C ′x
in V (C ′x) \ {x} are also rainbows in Cm. The rotation of x inside C ′x is the
list (xxi, fx), and, because x /∈ σ, x is a rainbow in C ′x, and is not a vertex
of Cm. To compensate, we note that m is a rainbow in Cm that is not in
V (Cx): if m is not rainbow, both fm and xxi are included in σ, implying
that x ∈ σ. This shows that C ′x has at most as many rainbows as Cm. Thus
C ′x is an obstruction. Again, the interiors of Cx and C ′x include distinct sides
of fx.

By Claim 2, for some p ∈ {x,m}, G(Σp) has obstructions including both
sides of fp (and when p = x, we can guarantee that p /∈ σ). Lemma 2.5
implies that G(Σp) has an obstruction not including fp. Since either p /∈ σ
or p = m, this last statement contradicts Claim 1.

Exterior-Meeting Step. Suppose that all the strings in Σ have their ends
on the outer face of G(Σ) and that all the ends have degree 1 in G(Σ). Then
either all the strings are pairwise intersecting, and then Σ can be extended to
an arrangement of pseudolines, or we can extend two disjoint strings so that
these strings intersect without creating an obstruction.

Proof. We start by considering a simple closed curveO containing all the ends
of the strings in Σ, and that is otherwise disjoint from

⋃
Σ. We construct this

curve by connecting each pair of vertices with degree 1 that are consecutive
in the boundary walk of the outer face. To connect these pairs we use an arc
whose interior is included in the outer face, near the portion of the boundary
walk between the two vertices.

16



Suppose σ1, σ2 are two disjoint strings in Σ. For i = 1, 2, let ai, bi be
the ends of σi. Since σ1 and σ2 do not intersect inside O, their ends do not
alternate as we traverse O in counterclockwise order. We may assume, by
relabeling if necessary, that the ends occur in the order a1, b1, b2, a2.

We extend the ai-ends of σ1 and σ2 so that they meet in a point p in
the outer face. We do this extension so that the two added segments are
in the outer face, and, more importantly, so that the interior face of the
simple closed curve bounded by the added segments and the a2a1-arc in O
not containing {b1, b2}, does not include the inner face of O. In Figure 7 we
show the right and wrong way to extend, respectively.

a1

b1

a2

b2

p

a1

b1

a2

b2

p

Figure 7: The right and wrong way to extend in the Exterior-Meeting Step.

We denote the new set of strings obtained as above by Σ′. To show that
Σ′ has no obstruction, we consider a cycle C in G(Σ′). If C does not contain
p, then C is a cycle in G(Σ), and so is not an obstruction in G(Σ′). Now
suppose that p is in C.

The idea is to find three rainbows in C. To get the first one, we consider
the path P1 obtained by traversing C, starting at p, continuing along the
path induced by σ1, and stopping just before we reach a first vertex not in
σ1. Let c1 be the last vertex in P1, and let d1 be the neighbour of c1 in C
that is not in P1.

Claim 1. The cycle C has a rainbow included in the disk ∆1 bounded by σ1

and the a1b1-arc of O not containing a2.

Proof. The vertex d1 is in one of the two bounded faces of O ∪ σ1. Suppose
that d1 is in the face F that is bounded by σ1 and the a1b1-arc of O containing
a2 and b2. The rotation at c1 inside C does not include two edges in the same
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string σ, as otherwise σ and σ1 tangentially intersect at c1. Therefore, when
d1 ∈ F , c1 is a rainbow of C in ∆1.

Now suppose that d1 is in ∆1. Let P ′1 be the path of C starting at c1 and
the edge c1d1, and ending at the first vertex we encounter that is in σ1. The
cycle C ′ enclosed by P ′1 and σ1 is not an obstruction, so it has at least three
rainbows. The vertices in C ′ − V (P ′1) are reflecting inside C ′ because their
rotations inside C ′ contain two edges in σ. Hence at least one internal vertex
of P ′1 is a rainbow in C ′. This vertex is also a rainbow in C, and is included
in ∆1.

Considering σ2 instead of σ1, Claim 1 yields a second rainbow in C inside
an analogous disk ∆2. The third rainbow is p, showing that C is not an
obstruction.

Since the Disentangling Step, Face-Escaping Step and Exterior-Meeting
Step can be performed without creating new obstructions, either: one of
these steps can be performed to increase the number of pairwise intersecting
strings in Σ; or the strings in Σ are pairwise intersecting and all of them
have their ends in the outer face, which implies that Σ can be extended to
an arrangement of pseudolines.

3 Proof of Lemmas 2.4 and 2.5
We deferred the proofs of Lemmas 2.4 and 2.5, both essential in the proof of
Theorem 1.1, to this section.

Our next observation follows immediately from the definition of rainbow,
and it will be repeatedly used in the next proofs.

Useful Fact. Let Σ be set of strings in general position. Let v be a vertex
that is in both the cycles C and C ′ of G(Σ) such that the rotation at v inside
C includes the rotation at v inside C ′. If v is a rainbow in C, then v is a
rainbow in C ′.

Recall that a near-obstruction at v is a cycle C (in the underlying graph of
a set of strings) that has precisely three rainbows, one of which is v. In Figure
8, we depict (up to symmetries) how two near-obstructions may intersect at
v. In each of the nine diagrams, v is represented as a black dot, while the
interiors of the near-obstructions are represented as dotted and dashed lines.
In our next lemma, we will consider two near-obstructions at v that intersect
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only as in the last three diagrams, where every small open disk centered at v
is included in the union of the disks bounded by the two near-obstructions.
In the statement, an equivalent description is given in terms of the local
rotation at v.

Figure 8: Two near obstuctions at v.

Lemma 2.4. Let Σ be a set of strings in general position. Suppose that C1

and C2 are cycles in G(Σ) that are near-obstructions at v, so that the rotation
at v inside C1 includes (as a sublist) the rotation at v outside C2, and that
the rotation at v inside C2 includes the rotation at v outside C1. Then G(Σ)
has an obstruction.

Proof. In order to obtain a contradiction, suppose that G(Σ) has no obstruc-
tions and that it contains such cycles C1, C2. The conditions on the rotation
at v imply that every edge incident with v is in the interior of either C1 or
C2. Thus, v is not incident with the outer face of C1 ∪ C2.

Our next goal is to show that C1 ∩C2 has at least two vertices. If e is an
edge of C1 incident with v, then either e is an edge of C2 or e is inside C2. In
the former case |V (C1)∩V (C2)| ≥ 2, thus we may assume that both edges of
C1 incident with v are inside C2. If v is the only vertex in V (C1)∩V (C2), then
C1 − v is in the interior of C2, and hence the edges of C2 incident with v are
not in the rotation at v inside C1, a contradiction. Thus |V (C1)∩V (C2)| ≥ 2.
It follows that C1∪C2 is 2-connected; in particular, its outer face is bounded
by a cycle Cout.

The Useful Fact applied to C = Cout and to each C ′ ∈ {C1, C2}, shows
that every vertex that is a rainbow in Cout is also a rainbow in each of the
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cycles in {C1, C2} containing it. By assumption, Cout is not an obstruction,
so it has at least three rainbows. The preceding two sentences imply that
we may choose the labelling such that two of them, say p and q, are also
rainbows in C1. Neither p nor q is v and C1 is a near-obstruction. Thus, p
and q are the only rainbows of Cout that are in C1.

Since v /∈ V (Cout), C1 has a subpath Pv containing v in which only the
ends of Pv are in Cout. Since v is not in the outer face of Cout, Pv is included
in the inner face of Cout. We let u and w be the ends of Pv, and let Q1

out, Q2
out

be the uw-paths of Cout. The cycle C1 is inside one of the two disks bounded
by Pv and one of Q1

out and Q2
out. By symmetry, we may assume that C1 is

included in the disk bounded by Q1
out ∪ Pv. In this case Q2

out is a subpath of
C2.

Our desired contradiction will be obtained by finding three rainbows in
C2 distinct from v. The first is relatively easy to find: if C1 − (Pv) is the uw
path in C1 distinct from Pv, we consider the cycle (C1 − (Pv)) ∪ Q2

out. The
disk bounded by (C1 − (Pv)) ∪ Q2

out contains the one bounded by C1. Then
the Useful Fact applied to C = (C1− (Pv))∪Q2

out and C ′ = C1, implies that
each vertex in C1− (Pv) that is rainbow in (C1− (Pv))∪Q2

out is also rainbow
in C1. Since C1 has at most two rainbows in C1 − (Pv), namely p and q,
(C1 − (Pv)) ∪Q2

out must have a third rainbow r1 in the interior of Q2
out. The

interiors of the disks bounded by C2 and (C1 − (Pv)) ∪Q2
out are on the same

side of Q2
out; thus r1 is a rainbow for C2.

To find another rainbow in C2, consider the edge eu of C2 incident to
u and not in Q2

out. We claim that either u is a rainbow in C2 or that eu
is not included in the closed disk bounded by Pv ∪ Q2

out. Looking for a
contradiction, suppose that u is reflecting in C2 and that eu is included in
the disk. Then we can find two edges in the rotation at u, included in the
disk bounded by Pv ∪ Q2

out, that belong to the same string σ. The vertex
u is not reflecting in C1, as else, we would find another pair of edges in the
rotation at u inside Q1

out ∪ Pv, and included in a different string σ′; in this
case, σ and σ′ tangentially intersect at u, a contradiction. Therefore u is a
rainbow in C1, so u is one of p and q. This implies that u is a rainbow in
Cout, and hence, a rainbow in C2, a contradiction.

If u is a rainbow in C2, then this is the desired second one. Otherwise,
the preceding paragraph shows that eu is not in the closed disk bounded by
Pv ∪ Q2

out. In this latter case, eu is in a path Pu that starts at u, ends at u′
in Pv and is otherwise disjoint from Pv.

Note that u′ 6= w, as otherwise C2 = Pu ∪ Q2
out and we have the contra-
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diction that v is not in C2. Let Cu be the cycle consisting of Pu and the
uu′-subpath uPvu′ of Pv.

Claim 1. If Pu does not have a rainbow of Cu in its interior, then:

(a) Cu and C2 are near-obstructions at v satisfying the conditions in Lemma
2.4; and

(b) the closed disk bounded by the outer cycle of Cu ∪ C2 contains fewer
vertices than the disk bounded by Cout.

Proof. Suppose that all the rainbows of Cu are located in uPvu′. Since Cu is
not an obstruction, at least one of them is an interior vertex of uPvu′. Each
vertex in the interior of uPvu′ that is a rainbow in Cu, is also a rainbow in
C1. As v is the only vertex in the interior of Pv that is a rainbow in C1, v
is the only rainbow of Cu that is in the interior of uPvu′. Since Cu is not
an obstruction, u, u′ and v are the only rainbows of Cu, and Cu is a near-
obstruction at v. The rotation at v inside Cu is the same as inside C1, so Cu
and C2 satisfy the conditions in Lemma 2.4.

Let C ′out be the outer cycle of Cu ∪ C2. Since Cu ∪ C2 ⊆ C1 ∪ C2, the
exterior of Cout is included in the exterior of C ′out. This shows that the disk
bounded by Cout includes the disk bounded by C ′out.

If both p and q are in C2, then p, q and r1 are rainbows in C2, and also
distinct from v, contradicting that C2 is a near-obstruction for v. Thus, we
may assume p /∈ C2. Then p is not in Pu ⊆ C2 and, since p is not an interior
vertex of Pv, p /∈ V (Cu). Since p is in Cout, and p is not in Cu ∪ C2, p is in
the outer face of Cu ∪C2. Then p is in the disk bounded by Cout but not by
C ′out, as required.

The proof of the existence of the additional two rainbows in C2 is by
induction on the number of vertices in the closed disk bounded by Cout. If u
is not a rainbow in C2 and Pu does not have a rainbow of C2 in its interior,
then Claim 1 implies Cu and C2 make a smaller instance and we are done.
Thus, we may assume one of them yields the next additional rainbow.

In the same way, either the induction applies or the last rainbow comes
by considering the edge of C2 − Q2

out incident with w. It follows that v, r1,
and these two other vertices are four different rainbows in C2, contradicting
the fact that C2 is a near-obstruction.
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Although the statements and proofs of Lemmas 2.4 and 2.5 are similar,
some subtle differences make it hard to find a statement encapsulating both
results. For instance, Lemma 2.5 assumes that G(Σ) has obstructions, while
finding an obstruction is the conclusion of Lemma 2.4. We sketch the proof
of Lemma 2.5, emphasizing such differences. It would be interesting to find
a common theory behind these two lemmas.

Lemma 2.5. Let Σ be a set of strings in general position. Let C1 and C2 be
obstructions in G(Σ) with e ∈ E(C1) ∩E(C2). If C1 and C2 include distinct
sides of e in their interior faces, then G(Σ) has an obstruction not including
e.

Sketch of the proof. We start assuming that such cycles exist and that every
obstruction includes e.

By assumption, C1 ∩ C2 has at least two vertices and, therefore, C1 ∪ C2

is 2-connected. Thus, its outer face is bounded by a cycle Cout.
The Useful Fact shows that every rainbow in Cout is a rainbow in each of

the cycles C1 and C2 containing it.
Since C1 and C2 include different sides of e, it follows that e is not in Cout.

Therefore Cout is not an obstruction. Thus, Cout has at least three rainbows,
and by our previous observation, we may choose the labelling such that two
of them, say p and q, are also rainbows in C1. Because C1 is an obstruction,
p and q are the only rainbows in C1.

Then C1 has a subpath Pe of containing e and in which only the ends u
and w of Pe are in Cout. Let Q1

out and Q2
out be the uw-paths of Cout. We may

assume that C1 is drawn in the disk bounded by Q1
out ∪ Pe.

Let C1 − (Pe) be uw-path in C1 that is not Pe. Note that p and q are
the only vertices in C1 − (Pe) that are rainbows in (C1 − (Pe)) ∪Q2

out. Since
(C1− (Pe))∪Q2

out is not an obstruction, the interior Q2
out has a vertex r1 that

is a rainbow of (C1 − (Pe)) ∪Q2
out. This vertex r1 is also a rainbow of C2.

Let eu be the edge incident to u in C2 that is not in Q2
out. As we did in

Lemma 2.4, we can show that either u is a rainbow in C2 or that eu is not
included in the disk bounded by Pe ∪ Q2

out. We assume the latter situation,
as in the former we found our desired second rainbow in C2.

Let Pu be the subpath of C2 starting at u, continuing on eu, and ending
on the first vertex u′ ∈ V (Pe) ∩ V (C2) distinct from u. Note that u′ 6= w, as
otherwise C2 = Pu ∪Q2

out and we have the contradiction that e is not in C2.
Let Cu be the cycle consisting of Pu and the uu′-subpath uPeu′ of Pe.
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We claim that either Pu has an interior vertex that is a rainbow in C2 or
that there is a pair of cycles C ′1 and C ′2 satisfying the conditions in Lemma
2.5, but with fewer vertices in the closed disk bounded by the outer cycle of
C ′1 ∪ C ′2 than in the disk bounded by Cout.

Suppose that none of the interior vertices in Pu is a rainbow in C2. Be-
cause the interior of Pe has no vertices that are rainbows in C1 (as p and q
are the only rainbows of C1), the interior of uPeu′ has no vertices that are
rainbows in Cu. Therefore Cu is an obstruction, and C ′1 = Cu and C ′2 = C2

is a pair of obstructions including both sides of e. As Cu ∪ C2 ⊆ C1 ∪ C2,
the closed disk bounded by the Cout contains the closed disk bounded by the
outer cycle of Cu ∪C2. Not both of p and q are in the outer cycle of Cu ∪C2,
as both p and q would be part of C2, concluding that C2 has three rainbows
p, q and r1, and contradicting that C2 is an obstruction.

From the previous paragraph, either Cu and C2 is a smaller instance,
and we are done by induction on the number of vertices in the closed disk
bounded by Cout, or we found our second rainbow of C2 in the interior of Pu.

In the same way, either the induction applies or the last rainbow comes
by considering an edge of C2 −Q2

out incident with w. It follows that r1, and
these other two vertices are three different rainbows in C2, contradicting that
C2 is an obstruction.

4 Finding obstructions in polynomial time
In this section we describe a polynomial-time algorithm that determines
whether a set of strings has an obstruction. We will assume that our in-
put is the underlying plane graph G(Σ) of a set Σ of simple strings in general
position, and that every string in Σ is identified as a path in G(Σ) (see
notation below).

The key idea behind the algorithm is simple: either find an obstruction
in the outer boundary of G(Σ) or find a vertex in the outer boundary whose
removal reduces our problem into a smaller instance.

We start by describing the vertex removal operation. Suppose that x
is a vertex of G(Σ) incident to the outer face of G(Σ). For each σ ∈ Σ,
we consider the path Pσ of G(Σ) representing σ. Let Pσ − x be the plane
graph obtained from Pσ by removing x and the edges of Pσ incident to x (if
x /∈ Pσ, then Pσ−x = Pσ). Each component of Pσ−x is either a vertex that
represents an end of σ, or a string. Let Sσ,x be the set of string components of
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Pσ−x and let Σ−x =
⋃
σ∈Σ Sσ,x. Note that G(Σ−x) can be obtained from

G(Σ) by removing x and the edges incident to x, and then suppressing the
degree-2 vertices whose incident edges belong to the same string in Σ, as well
as removing remaining degree-0 vertices (Figure 9 illustrates this process).

x

Figure 9: From Σ to Σ− x.

The next lemma is the key property used in the algorithm.

Lemma 4.1. Let Σ be a set of simple strings in general position and let x be
a vertex incident with the outer face. Then there is a 1 − 1 correspondence
between the obstructions in G(Σ) not containing x and the obstructions of
G(Σ−x). Moreover, corresponding obstructions are the same simple closed
curve.

Proof. In general, there is a natural correspondence between cycles in G(Σ)
not containing x and cycles in G(Σ−x): if C is a cycle in G(Σ) not containing
x, then every edge of C is not incident with x, and hence every edge is part
of a string in Σ − x. Thus, there is a cycle C ′ in G(Σ − x) that represents
the same simple closed curve as C. Conversely, each cycle C ′ in G(Σ− x) is
a simple closed curve in

⋃
(Σ − x) ⊆

⋃
Σ, and hence, there is a cycle C in

G(Σ) representing the same simple closed curve as C ′.
To complete the proof it is enough to show that any two cycles C, C ′ that

correspond as above have the same rainbows. Since G(Σ − x) is obtained
from suppressing and removing vertices in a subgraph of G(Σ), V (C ′) ⊆
V (C). Thus, V (C) \ V (C ′) consists of suppressed and removed vertices in
the process of converting G(Σ) into G(Σ− x). Since x /∈ V (C), if v ∈ V (C)
is suppressed, then the two edges of C incident to v belong to the same string
in Σ. Therefore, none of the vertices in V (C) \ V (C ′) is a rainbow in C.

Every rainbow in C is also a rainbow in C ′ because every two edges of
G(Σ−x) that are included in distinct strings of Σ are also included in distinct
strings in Σ− x.
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Conversely, suppose that v ∈ V (C) ∩ V (C ′) is reflecting in C. Let σ ∈ Σ
be a string including two edges of G(Σ) in the rotation at v inside C. Since
x is drawn in the exterior of C, these two edges are part of the same string
in Σ− x, and hence v is reflecting inside C ′.

Therefore every rainbow of C ′ is a rainbow of C, and thus, C and C ′ have
the same rainbows.

A vertex in G(Σ) is an outer-rainbow if it is in the outer boundary and
all the edges in its rotation belong to different strings. Note that every
outer-rainbow is a rainbow for all the cycles in G(Σ) that contain it.

An outer cycle is a cycle of G(Σ) that has all its edges incident to the outer
face of G(Σ). For any graph G(Σ), a block of G(Σ) is a maximal connected
subgraph of G(Σ) with no cut-vertex. If G(Σ) is connected with at least two
vertices, then each block is either an edge or is 2-connected. In the latter
case, the outer face of the block is bounded by a cycle of the block.

We find obstructions by solving an auxiliary problem: finding obstruc-
tions including one or two fixed outer-rainbows. The next subroutine (Al-
gorithm 1) describes how to find an obstruction containing two fixed outer-
rainbows. Below we discuss its correctness.
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Algorithm 1: Finding obstructions through two fixed outer-rainbows.
Data: G(Σ) and two outer-rainbows x and y.
Result: Either an obstruction containing x and y or that no such

obstruction exists.
1 repeat
2 if there is no cycle containing x and y then
3 return G(Σ) has no obstruction containing x and y;
4 end
5 Find the outer cycle C containing x and y;
6 while C is not the outer boundary of G(Σ) do
7 Pick w ∈ V (G(Σ)) \ V (C) incident with the outer face;
8 Σ←− Σ− w
9 end

10 if C has a rainbow z /∈ {x, y} in G(Σ) then
11 Σ←− Σ− z;
12 else
13 return C;
14 end
15 until V (G(Σ)) = {x, y};
16 return G(Σ) has no obstruction containing x and y.

To see that Algorithm 1 is correct, observe that when Step 2 does not
apply, then Step 5 can be performed: if there is a cycle containing x and y,
then, as x and y are incident to the outer face of G(Σ), the outer boundary
of the block containing x and y is an outer cycle C containing x and y. Every
obstruction C through x and y is drawn in the closed disk bounded by C.
Lemma 4.1 guarantees that if we remove a vertex in the outer boundary that
is not in C (Step 7) and we update Σ (Step 8), then C (or more precisely,
the cycle in the new G(Σ) that is the same simple closed curve as C) is an
obstruction through x and y.

In Step 10, if x and y are the only rainbows of C, then C is an obstruction
returned in Step 13. Else, C has a rainbow z /∈ {x, y}. Any obstruction C
through x and y does not contain z, and hence removing z and updating
Σ (Step 11) does not change the fact that C is an obstruction in the new
G(Σ). This algorithm terminates as the number of vertices in G(Σ) is always
decreasing.

We now turn to Algorithm 2, used as subroutine in the main algorithm.
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Its correctness again easily follows from Lemma 4.1.

Algorithm 2: Finding obstructions through a fixed outer-rainbow.
Data: G(Σ) and an outer-rainbow vertex x.
Result: Either an obstruction containing x or that no such

obstruction exists.
1 repeat
2 if there is no cycle containing x then
3 return G(Σ) has no obstruction containing x;
4 end
5 Find an outer cycle C containing x;
6 if C has an outer-rainbow y 6= x then
7 Run Algorithm 1 on (G(Σ), x, y);
8 if G(Σ) has an obstruction D including x and y, then
9 return D;

10 end
11 Σ←− Σ− y;
12 else
13 return C;
14 end
15 until V (G(Σ)) = {x};
16 return G(Σ) has no obstruction containing x.

Finally we present the algorithm to find obstructions, whose correctness
also relies on Lemma 4.1.
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Algorithm 3: Finding obstructions.
Data: G(Σ).
Result: Either finds an obstruction or that no such obstruction exists.

1 repeat
2 if G(Σ) has no cycles then
3 return G(Σ) has no obstructions;
4 end
5 Find an outer cycle C;
6 if C has no rainbows then
7 return C;
8 end
9 Pick a rainbow x in C (x is outer-rainbow in G(Σ));

10 Run Algorithm 2 on (G(Σ), x);
11 if G(Σ) has an obstruction D including x then
12 return D;
13 end
14 Σ←− Σ− x;
15 until G(Σ) = ∅;
16 return G(Σ) has no obstructions.

5 Pseudolinear drawings of Kn

In this section we present a simple proof of a characterization of pseudolinear
drawings of complete graphs (Theorem 5.1), equivalent to the ones given in
[2] and [3].

Theorem 5.1. A good drawing of a complete graph is pseudolinear if and
only if it does not include the B configuration (see Figure 2).

Proof. The unique cycle in a B configuration is an obstruction, so, by Theo-
rem 1.1, no pseudolinear drawing of Kn can include it. Conversely, suppose
that D is a good drawing of Kn that is not pseudolinear. Let Σ = {D[e] :
e ∈ E(Kn)} be the set of edge-arcs, and let G(Σ) be its underlying plane
graph. In order to avoid confusion between vertices and edges of Kn and
G(Σ), vertices in G(Σ) are called points, and edges of G(Σ) are segments.
Because D is good, each point is either in V (Kn) or a crossing.

28



For every cycle C in G(Σ), we let δ(C) be the set of points in C for which
their two incident segments in D belong to distinct edges in Σ. Theorem 1.1
implies that G(Σ) has an obstruction C. We choose our obstruction C so
that |δ(C)| is as small as possible.

Since D is good, |δ(C)| ≥ 3 and, because C is an obstruction, at most
two vertices in δ(C) are rainbows in C. Consider a point x ∈ δ(C) that is
reflecting inside C. Note that x is a crossing. Let σ1 and σ2 be the two
edge-arcs in Σ crossed at x. We traverse σ1, starting at x, continuing on the
segment of σ1 included in the interior of C, until an end a1 ∈ V (Kn) of σ1

is reached. Likewise we define a2 for σ2. Henceforth, we refer to a1 and a2

as the internal vertices corresponding to the crossing x. The following claim
explains why we call them “internal”.

Claim 1. Let x ∈ δ(C) be a point reflecting inside C. Then the two internal
vertices corresponding to x are in the interior of C.

Proof. Let a1 be an internal vertex corresponding to x, and suppose σ1 is
the edge-arc including both x and a1. Let σ′1 be the substring of σ, having
x and a1 as endpoints. Applying Observation 2.1 to our obstruction C, with
σ = σ1 and σ′ = σ′1, we obtain that σ′1 ∩ C = {x}. Since points of σ′1 near
x are in the interior face of C, σ′1 \ {x} is included in the interior of C. In
particular, a1 is in such a face.

Now we look at the points in δ(C) that are not reflecting inside C. If x
is one of them, then x is a vertex or a crossing. Suppose that x is a crossing.
Let σ1, σ2 be the edge-arcs crossing at x. Because x is not reflecting inside
C, one of the two segments at x included in σ1 is in the outer face of C. We
traverse σ1, starting in x, and continuing in the outer face until we reach
an end b1 of σ1. Likewise we define b2 for σ2. These vertices b1, b2 are the
external vertices corresponding to the crossing x.

Claim 2. Let x be a crossing in δ(C) that is not reflecting inside C, and
let σ be an edge-arc including x and an external vertex b of x. If σ′ is the
substring of σ connecting x to b, then σ′ \ {x} is included in the outer face
of C.

Proof. Applying Observation 2.1 to C, σ1, and σ′, we see that σ′ ∩C = {x}.
Since the points of σ′1 near x are in the outer face of C, σ′1 \ {x} is included
in the outer face of C.
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It is convenient, in the case when x is a vertex of Kn, to let x be its own
external vertex.

Henceforth we refer to the vertices ofKn that are internal to some crossing
in C as the internal vertices of C, and likewise, the external vertices of C are
the vertices of Kn that are external to some crossing or to a vertex in C.

Claim 3. Every segment in C is included in an edge-arc whose ends are
either internal or external vertices of C.

Proof. Any segment s of C is contained in a subpath P of C whose ends
are in δ(C) but is otherwise disjoint from δ(C). This path P is part of an
edge-arc σ ∈ Σ. Let a ∈ V (Kn) be one of the ends of σ, and suppose that x
is the first end of P that we encounter when we traverse σ from a to the other
end of σ. If σ is reflecting at x, then a is internal. If σ is not reflecting at x,
then a is external. Likewise, the other end of σ is internal or external.

Suppose that Kn has a vertex y that is neither external nor internal to C.
Then, by our previous claim, the underlying plane graph ofD[Kn−y] contains
a cycle whose drawing is D[C] and is an obstruction. Thus, D[Kn− y] is not
pseudolinear, and applying induction on n, we obtain that D[Kn − y] has a
B configuration. Henceforth we assume that all the vertices of Kn are either
internal or external to C.

Claim 4. Either the outer face of D is bounded by a cycle of Kn or D has
a B configuration.

Proof. Suppose that the outer face of D is not bounded by a cycle of Kn.
Then the outer face is incident to a crossing × between two edge-arcs σ1

and σ2. Let K be the crossing K4 induced by the ends of σ1 and σ2. The
drawing D[K] has exactly five faces, four of them incident to ×. Exactly
one of the faces incident to × includes the outer face of D. Such a face of
D[K] is bounded by portions of σ1, σ2, and an edge e of Kn connecting an
end of σ1 to an end of σ2. The drawing induced by σ1, σ2 and D[e] is a B
configuration.

Claims 1 and 4 imply that the outer cycle of D consists of only external
vertices of C. Every external vertex either is associated with a crossing that
is not reflecting inside C, or is itself a vertex of Kn in C. Because C has at
most two points not reflecting inside C, and each of them has at most two
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external vertices, there are at most four points in the outer cycle of D. Thus
the outercycle is a 3- or 4-cycle of Kn.

As C has at least three external vertices (in the outer cycle), δ(C) has
precisely two points p and q not reflecting inside C. The outer cycle of D has
an edge uv, where u is external to p and v is external to q (possibly u = p or
q = v).

Consider the pq-path P in G(Σ), starting at p, continuing on the edge-arc
connecting p to u, then following the edge uv until we reach v, and ending by
following the edge-arc connecting v to q. We finish our proof by considering
two cases, depending on whether uv is a segment of C.

Case. uv is not a segment of C.

In this case, there exists a point w ∈ D[uv] \ D[C]. As D[uv] is part of
the outer cycle, it contains neither crossings nor vertices in its interior, so
the arcs in D[uv] connecting w to the ends u and v are internally disjoint
from C. From Claim 2, it follows that the pu- and the qv-subpaths of P are
internally disjoint from C. Thus P is an arc connecting p and q in the outer
face of C.

Consider the cycle C ′ obtained from the union of P and the pq-path of
C that lies in the outer face of D[C ∪ P ].

We will show that C ′ is an obstruction by showing that u and v are the
only rainbows of C ′. If p 6= u, then the edge-arc σ connecting p and u shows
that every point in (P − u) ∩ σ is reflecting inside C ′. Analogously, if q 6= v,
the points distinct from v in the edge-arc connecting q and v, are reflecting
inside C ′. Thus the internal points in P , with the exception of u and v, are
not reflecting. The same holds for the points in C ′ − P , as these points are
not reflecting inside C (recall that p and q are the only rainbows of C). Thus
u and v are the only rainbows of C ′.

Note that all the segments of C ′ are included in edges whose ends are u,
v or interior points of C. So if y is a vertex in the outercycle of D distinct
from u and v, D[Kn−y] also includes D[C ′] as an obstruction, implying that
D[Kn − y] is not pseudolinear. Again, by induction on n, we obtain that
Kn − y has a B configuration.

Case. uv is a segment of C.

In this case, as u, v are vertices of Kn in C, they are rainbows of C. Since
p and q are the only rainbows, p = u, q = v, and D[uv] is a segment of C.
Then, all the segments of C are included in edge-arcs whose ends are u, v or
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interior points of C. Again, remove a vertex in the outer cycle of D distinct
from u and v to obtain a non-pseudolinear drawing of Kn−1 in which, by
induction, we find a B configuration.

6 Concluding remarks
In our initial attempts to formulate Theorem 1.1, we intended to characterize
non-pseudolinear good drawings of graphs by means of having at least one
of the configurations in Figure 1 as a subdrawing. We obtain this as an easy
consequence of Theorem 1.1. We sketch its proof.

Theorem 1.2. Let D be a non-pseudolinear good drawing of a graph H.
Then there is a subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each
σ ∈ S has a substring σ′ ⊆ σ for which

⋃
σ∈S σ

′ is one of the drawings in
Figure 1.

Proof. Take C an obstruction of the underlying plane graph associated to D.
We choose C so that |δ(C)| is as small as possible. Decompose C into a cyclic
sequence of paths P0, . . . , Pm, where Pi connects two points in δ(C) and it is
otherwise disjoint from δ(C). By using Observation 2.1, one can show that
P0, . . . , Pm belong to distinct edge-arcs σ0, . . . , σm, respectively. For each Pi,
we consider the string σ′i, obtained by slightly extending the ends of Pi that
are reflecting in C; we extend them along σi.

Let x ∈ δ(C) be an end shared by Pi−1 and Pi. If x is reflecting in C,
then x is a crossing between σi−1 and σi. Moreover, the arcs added to Pi−1

and Pi at x to obtain σ′i−1 and σ′i are in the interior of C. If x is a rainbow
in C, then Pi and Pi−1 are not extended at x, and x acts as one of the black
dots in Figure 1. The rest of the points in δ(C) are crossings in

⋃m
i=0 σ

′
i facing

the interior of C. Since C has at most two rainbows,
⋃m
i=0 σ

′
i is one in Figure

1.

There are pseudolinear drawings that are not stretchable. For instance,
consider the Non-Pappus configuration in Figure 10. Nevertheless, as an
immediate consequence of Thomassen’s main result in [15], pseudolinear and
stretchable drawings are equivalent, under the assumption that every edge is
crossed at most once.

Corollary 6.1. A drawing of a graph in which every edge is crossed at most
once is stretchable if and only it is pseudolinear.
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Figure 10: Non-Pappus configuration.

Proof. Let D be a drawing of a graph in which every edge is crossed at most
once. IfD is stretchable then clearly it is pseudolinear. To show the converse,
suppose that D is pseudolinear. Then D does not contain any obstruction,
and in particular, neither of the B and W configurations in Figure 2 occur
in D. In [15], it was shown that not containing the B and W configurations
is equivalent to being rectilinear.

One can construct more general examples of pseudolinear drawings that
are not stretchable by considering non-strechable arrangements of pseudo-
lines. However, such examples seem to inevitably have edges crossing several
times. This leads to two natural questions.

Question 1. Is it true that if D is a pseudolinear drawing in which every
edge is crossed at most twice, then D is stretchable?

Question 2. Is it true that if D is a pseudolinear drawing in which all the
crossings involve a fixed edge, then D is stretchable?
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