AN ENDPOINT ALEXANDROV BAKELMAN PUCCI ESTIMATE IN THE PLANE

STEFAN STEINERBERGER

Abstract. The classical Alexandrov-Bakelman-Pucci estimate for the Laplacian states

$$
\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial\Omega} |u(x)| + c_{s,n} \operatorname{diam}(\Omega)^{2-\frac{n}{s}} \|\Delta u\|_{L^s(\Omega)}
$$

where $\Omega \subset \mathbb{R}^n$, $u \in C^2(\Omega) \cap C(\overline{\Omega})$ and $s > n/2$. The inequality fails for $s = n/2$. A Sobolev embedding result of Milman & Pustylink, originally phrased in a slightly different context, implies an endpoint inequality: if $n \geq 3$ and $\Omega \subset \mathbb{R}^n$ is bounded, then

 $\max_{x \in \Omega} |u(x)| \leq \max_{x \in \partial \Omega} |u(x)| + c_n \left\| \Delta u \right\|_{L^{\frac{n}{2},1}(\Omega)},$

where $L^{p,q}$ is the Lorentz space refinement of L^p . This inequality fails for $n = 2$ and we prove a sharp substitute result: there exists $c > 0$ such that for all $\Omega \subset \mathbb{R}^2$ with finite measure

$$
\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial\Omega} |u(x)| + c \max_{x \in \Omega} \int_{y \in \Omega} \max\left\{1, \log\left(\frac{|\Omega|}{\|x - y\|^2}\right)\right\} |\Delta u(y)| dy.
$$

This is somewhat dual to the classical Trudinger-Moser inequality – we also note that it is sharper than the usual estimates given in Orlicz spaces, the proof is rearrangement-free. The Laplacian can be replaced by any uniformly elliptic operator in divergence form.

1. Introduction and main results

1.1. Introduction. The Alexandrov-Bakelman-Pucci estimate [\[2,](#page-5-0) [3,](#page-5-1) [7,](#page-5-2) [27,](#page-6-0) [28\]](#page-6-1) is one of the classical estimates in the study of elliptic partial differential equations. In its usual form it is stated for a second order uniformly elliptic operator

$$
Lu = a_{ij}(x)\partial_{ij}u + b_i(x)\partial_i u
$$

with bounded measurable coefficients in a bounded domain $\Omega \subset \mathbb{R}^n$ and $c(x) \leq 0$. The Alexandrov-Bakelman-Pucci estimate then states that for any $u \in C^2(\Omega) \cap C(\overline{\Omega})$

$$
\sup_{x \in \Omega} |u(x)| \leq \sup_{x \in \partial\Omega} |u(x)| + c \operatorname{diam}(\Omega) ||Lu||_{L^{n}(\Omega)},
$$

where c depends on the ellipticity constants of L and the $Lⁿ$ -norms of the b_i . It is a rather foundational maximum principle and discussed in most of the standard textbooks, e.g. Caffarelli & Cabré [\[13\]](#page-6-2), Gilbarg & Trudinger [\[17\]](#page-6-3), Han & Lin [\[19\]](#page-6-4) and Jost [\[20\]](#page-6-5). The ABP estimate has inspired a very active field of research, we do not attempt a summary and refer to [\[11,](#page-6-6) [12,](#page-6-7) [13,](#page-6-2) [17,](#page-6-3) [33\]](#page-6-8) and references therein. Alexandrov [\[4\]](#page-5-3) and Pucci [\[28\]](#page-6-1) showed that L^n can generically not be replaced by a smaller norm. However, for some elliptic operators operators it is possible to get estimates with L^p with $p < n$, see [\[6\]](#page-5-4). We will start our discussion with the special case of the Laplacian, where the inequality reads, for any $s > n/2$,

$$
\max_{x \in \Omega} |u(x)| \leq \max_{x \in \partial\Omega} |u(x)| + c_{s,n} \operatorname{diam}(\Omega)^{2-\frac{n}{s}} \|\Delta u\|_{L^s(\Omega)}.
$$

1.2. **Results.** The inequality is known to fail in the endpoint $s = n/2$. The purpose of our short paper is to note endpoint versions of the inequality. The first result is essentially due to Milman & Pustylink [\[22\]](#page-6-9) (see also [\[23\]](#page-6-10)), with an alternative proof due to Xiao & Zhai [\[34\]](#page-6-11) (although ascribing it to anyone in particular is not an easy matter, one could reasonably argue that Talenti's seminal paper [\[31,](#page-6-12) Eq. 20] already contains the result without spelling it out).

²⁰¹⁰ Mathematics Subject Classification. 28A75, 35A23, 35B50, 49Q20.

Key words and phrases. Alexandrov-Bakelman-Pucci estimate, maximum principle, Trudinger-Moser inequality.

Theorem 1. Let $n \geq 3$, let $\Omega \subset \mathbb{R}^n$ be bounded and $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Then

$$
\max_{x \in \Omega} |u(x)| \leq \max_{x \in \partial \Omega} |u(x)| + c_n ||\Delta u||_{L^{\frac{n}{2},1}(\Omega)},
$$

where c_n only depends on the dimension.

Here $L^{n/2,1}$ is the Lorentz space refinement of $L^{n/2}$. We note that its norm is slightly larger than $L^{n/2}$ and this turns out to be sufficient to establish an endpoint result in a critical space for which the geometry of Ω now longer enters into the inequality. We refer to Grafakos [\[18\]](#page-6-13) for an introduction to Lorentz spaces. The proofs given in [\[22,](#page-6-9) [23,](#page-6-10) [24,](#page-6-14) [31\]](#page-6-12) rely on rearrangement techniques. Theorem 1 fails for $n = 2$: the Lorentz spaces collapse to $L^{1,1} = L^1$ and the inequality is false in L^1 (see below). We obtain a sharp endpoint result in \mathbb{R}^2 .

Theorem 2 (Main result). Let $\Omega \subset \mathbb{R}^2$ have finite measure and let $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Then

$$
\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial\Omega} |u(x)| + c \max_{x \in \Omega} \int_{y \in \Omega} \max\left\{1, \log\left(\frac{|\Omega|}{\|x - y\|^2}\right)\right\} |\Delta u(y)| dy.
$$

The result seems to be new. We observe that Talenti [\[31\]](#page-6-12) is hinting at the proof of a slightly weaker result using rearrangement techniques (after his equation (22), see a recent paper of Milman [\[24\]](#page-6-14) for a complete proof and related results). Ω need not be bounded, it suffices to assume that it has finite measure. We illustrate sharpness of the inequality with an example on the unit disk: define the radial function $u_{\varepsilon}(r)$ by

$$
u(r) = \begin{cases} \frac{1}{2} - \log \varepsilon - \frac{1}{2} \varepsilon^{-2} r^2 & \text{if } 0 \le r \le \varepsilon \\ -\log r & \text{if } \varepsilon \le r \le 1. \end{cases}
$$

We observe that $\Delta u_{\varepsilon} \sim \varepsilon^{-2} 1_{\{|x| \leq \varepsilon\}}$ and $||u||_{L^{\infty}} \sim \log(1/\varepsilon)$. This shows that the solution is unbounded as $\varepsilon \to 0$ while $\|\Delta u\|_{L^1} \sim 1$ remains bounded; in particular, no Alexandrov-Bakelman-Pucci inequality in L^1 is possible for $n = 2$. The example also shows Theorem 2 to be sharp: the maximum is assumed in the origin and

$$
\int_{y \in \Omega} \max \left\{ 1, \log \left(\frac{|\Omega|}{\|y\|^2} \right) \right\} \varepsilon^{-2} 1_{\{|y| \le \varepsilon\}} dy = \frac{1}{\varepsilon^2} \int_{B(0,\varepsilon)} \log \left(\frac{\pi}{\|y\|^2} \right) dy \sim \log \left(\frac{1}{\varepsilon} \right).
$$

The proof will show that the constant $|\Omega|$ inside the logarithm is quite natural but can be improved if the domain is very different from a disk: indeed, we can get sharper result that recover some of the information that is lost in applying rearrangement type techniques and with a slight modification of the main argument we can obtain a slightly stronger result capturing more geometric information.

Corollary. Let $\Omega \subset \mathbb{R}^2$ have finite measure and be simply connected and let $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Then

$$
\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial\Omega} |u(x)| + c \max_{x \in \Omega} \int_{y \in \Omega} \max\left\{1, \log\left(\frac{\operatorname{inrad}(\Omega)^2}{\|x - y\|^2}\right)\right\} |\Delta u(y)| dy.
$$

All results remain true if we replace the Laplacian $-\Delta$ by a uniformly elliptic operator in divergence form $-\text{div}(a(x) \cdot \nabla u)$ or replace \mathbb{R}^n by a manifold as long as the induced heat kernel satisfies Aronson-type bounds [\[5\]](#page-5-5).

1.3. Related results. There is a trivial connection between Alexandrov-Bakelman-Pucci estimates and second-order Sobolev inequalities that, to the best of our knowledge, has never been made explicit. After constructing

$$
\Delta \phi = 0 \qquad \text{in } \Omega
$$

$$
\phi = u \qquad \text{on } \partial \Omega
$$

we may trivially estimate, using the maximum principle for harmonic functions,

$$
\max_{x \in \Omega} |u(x)| \le \max_{x \in \Omega} |\phi(x)| + \max_{x \in \Omega} |u(x) - \phi(x)| \le \max_{x \in \partial\Omega} |u(x)| + \max_{x \in \Omega} |u(x) - \phi(x)|.
$$

This reduces the problem to studying functions $u \in C^2(\Omega)$ that vanish on the boundary and verifying the validity of estimates of the type

$$
||u||_{L^{\infty}(\Omega)} \lesssim_{\Omega} ||\Delta u||_{X}.
$$

The Alexandroff-Bakelman-Pucci estimate is one such estimate. These objects have been actively studied for a long time, see e.g. [\[15,](#page-6-15) [16,](#page-6-16) [34\]](#page-6-11) and references therein. Theorem 1 can thus be restated as second-order Sobolev inequality in the endpoint $p = \infty$ and requiring a Lorentz-space refinement; it can be equivalently stated as

$$
||u||_{L^{\infty}(\mathbb{R}^n)} \leq c_n ||\Delta u||_{L^{\frac{n}{2},1}(\mathbb{R}^n)} \quad \text{for all } u \in C_c^{\infty}(\mathbb{R}^n), \ n \geq 3.
$$

This inequality seems to have first been stated in the literature by Milman & Pustylink [\[22\]](#page-6-9) in the context of Sobolev embedding at the critical scale. Xiao & Zhai [\[34\]](#page-6-11) derive the inequality via harmonic analysis. The failure of the embedding of the critical Sobolev space into L^{∞} is classical

$$
W^{2,\frac{n}{2}}_0(\Omega)\not\hookrightarrow L^\infty(\Omega).
$$

There are two natural options: one could either try to find a slightly larger space $Y \supset L^{\infty}(\Omega)$ to have a valid embedding or one could try to find a space slightly smaller than the Sobolev space to have a valid embedding. The result of Milman & Pustylink [\[22\]](#page-6-9) deals with the second question. From the point of view of studying Sobolev spaces, the first question is quite a bit more relevant since it investigates extremal behavior of functions in a Sobolev space and has been addressed in many papers [\[1,](#page-5-6) [8,](#page-5-7) [10,](#page-6-17) [25,](#page-6-18) [22,](#page-6-9) [26\]](#page-6-19). We emphasize the Trudinger-Moser inequality [\[25,](#page-6-18) [32\]](#page-6-20): for $\Omega \subset \mathbb{R}^2$

$$
\sup_{\|\nabla u\|_{L^2}\le 1} \int_{\Omega} e^{4\pi |u|^2} dx \le c|\Omega|.
$$

Cassani, Ruf & Tarsi [\[14\]](#page-6-21) prove a variant: the condition $\|\Delta u\|_{L^1} < \infty$ suffices to ensure that u has at most logarithmic blow-up. These results should be seen as somewhat dual to Theorem 2. Put differently, Theorem 2 is a natural converse to this result since it implies that any function with $\|\Delta u\|_{L^1} < \infty$ and logarithmic blow-up has a Laplacian Δu that concentrates its L^1 -mass.

2. Proofs

The proofs are all based on the idea of representing a function $u : \Omega \to \mathbb{R}$ as the stationary solution of the heat equation with a suitably chosen right-hand side (these techniques have recently proven useful in a variety of problems [\[9,](#page-5-8) [21,](#page-6-22) [29,](#page-6-23) [30\]](#page-6-24))

$$
v_t + \Delta v = \Delta u \qquad \text{in } \Omega
$$

$$
v = u \qquad \text{on } \partial \Omega.
$$

The Feynman-Kac formula then implies a representation of $u(x) = v(t, x)$ as a convolution of the heat kernel and its values in a neighborhood to which standard estimates can be applied. We use $\omega_x(t)$ to denote Brownian motion started in $x \in \Omega$ at time t; moreover, in accordance with Dirichlet boundary conditions, we will assume that the boundary is sticky and remains at the boundary once it touches it. The Feynman-Kac formula then implies that for all $t > 0$

$$
u(x) = \mathbb{E}u(\omega_x(t)) + \mathbb{E}\int_0^t (\Delta u)(\omega_x(t))dt.
$$

This representation will be used in all our proofs. The proof of Theorem 1 will be closely related in spirit to [\[34,](#page-6-11) Lemma 3.2.] phrased in a different language; this language turns out to be useful in the proof of Theorem 2 where an additional geometric argument is required.

2.1. **A Technical Lemma.** The purpose of this section is to quickly prove a fairly basic inequality. The Lemma already appeared in a slightly more precise form in work of Lierl and the author [\[21\]](#page-6-22). We only need a special case and prove it for completeness of exposition.

Lemma. Let $n \in \mathbb{N}$, let $t > 0$, $c_1, c_2 > 0$ and $0 \neq x \in \mathbb{R}^n$. We have

$$
\int_0^t \frac{c_1}{s} \exp\left(-\frac{\|x\|^2}{c_2 s}\right) ds \lesssim_{c_1, c_2} \left(1 + \max\left\{0, -\log\left(\frac{\|x\|^2}{c_2 t}\right)\right\}\right) \exp\left(-\frac{\|x\|^2}{c_2 t}\right).
$$

and, for $n \geq 3$,

$$
\int_0^\infty \frac{c_1}{s^{n/2}} \exp\left(-\frac{\|x\|^2}{c_2 s}\right) ds \lesssim_{c_1, c_2, n} \frac{1}{\|x\|^{n-2}}
$$

.

Proof. The substitutions $z = s/|x|^2$ and $y = 1/(c_2z)$ show

$$
\int_0^t \frac{c_1}{s} \exp\left(-\frac{|x|^2}{c_2 s}\right) ds \lesssim_{c_1, c_2} \int_{|x|^2/(c_2 t)}^{\infty} y^{-1} e^{-y} dy.
$$

If $|x|^2/(c_2d) \leq 1$ we have

$$
\int_{|x|^2/(c_2 t)}^{\infty}{y^{-1} e^{-y} dy} \lesssim 1 + \int_{|x|^2/(c_2 t)}^{1}{y^{-1} e^{-y} dy} \lesssim 1 + \int_{|x|^2/(c_2 t)}^{1}{y^{-1} dy} \lesssim 1 - \log{(\frac{|x|^2}{c_2 t})},
$$

and if $|x|^2/(c_2 t) \geq 1$ we have

$$
\int_{|x|^2/(c_2 t)}^{\infty} y^{-1} e^{-y} dy \leq \frac{c_2 d}{|x|^2} \int_{|x|^2/(c_2 t)}^{\infty} e^{-y} dy = \frac{c_2 t}{|x|^2} \exp\left(-\frac{|x|^2}{c_2 t}\right) \leq \exp\left(-\frac{|x|^2}{c_2 t}\right).
$$

Summarizing, this establishes

$$
\int_{|x|^2/(c_2 t)}^{\infty} \frac{1}{y} e^{-y} dy \lesssim \left(1 + \max\left\{0, -\log\left(\frac{|x|^2}{c_2 t}\right)\right\}\right) \exp\left(-\frac{|x|^2}{c_2 t}\right),
$$

which is the desired statement for $n = 2$. The second statement, for $n \geq 3$, is trivial.

2.2. Proof of Theorem 1.

Proof. We rewrite u as the stationary solution of the heat equation

$$
v_t + \Delta v = \Delta u \qquad \text{in } \Omega
$$

$$
v = u \qquad \text{on } \partial \Omega.
$$

As explained above, the Feynman-Kac formula implies that for all $t > 0$

$$
u(x) = v(t, x) = \mathbb{E}v(\omega_x(t)) + \mathbb{E}\int_0^t (\Delta u)(\omega_x(t))dt.
$$

Let x be arbitrary, we now let $t \to \infty$. The first term is quite simple since we recover the harmonic measure. Indeed, as $t \to \infty$, we have

$$
\lim_{t \to \infty} \mathbb{E}v(\omega_x(t)) = \phi(x) \quad \text{where} \quad \begin{cases} \Delta \phi = 0 \text{ inside } \Omega \\ \phi = u \text{ on } \partial \Omega. \end{cases}
$$

This can be easily seen from the stochastic interpretation of harmonic measure. This implies

$$
\lim_{t \to \infty} \mathbb{E}v(\omega_x(t)) \le \max_{x \in \partial \Omega} u(x).
$$

It remains to estimate the second term. We denote the heat kernel on Ω by $p_{\Omega}(t, x, y)$ and observe

$$
\left| \mathbb{E} \int_0^t (\Delta u)(\omega_x(t))dt \right| \leq \mathbb{E} \int_0^t |\Delta u(\omega_x(t))| dt
$$

=
$$
\int_0^t \int_{y \in \Omega} p_{\Omega}(s, x, y) |\Delta u(y)| dy ds
$$

$$
\leq \int_{y \in \Omega} \left(\int_0^\infty p_{\Omega}(s, x, y) ds \right) |\Delta u(y)| dy
$$

However, using domain monotonicity $p_{\Omega}(t, x, y) \leq p_{\mathbb{R}^n}(t, x, y)$ as well as the explicit Gaussian form of the heat kernel on \mathbb{R}^n and the Lemma we have, uniformly in $x, y \in \Omega$,

$$
\int_0^\infty p_\Omega(s,x,y)ds \leq \int_0^\infty p_{\mathbb{R}^n}(s,x,y)ds \leq \frac{c_n}{\|x-y\|^{n-2}}.
$$

The duality of Lorentz spaces

$$
||fg||_{L^{1}(\mathbb{R}^n)} \leq ||f||_{L^{\frac{n}{2},1}(\mathbb{R}^n)} ||g||_{L^{\frac{n}{n-2},\infty}(\mathbb{R}^n)}
$$
 and $\frac{1}{||x-y||^{n-2}} \in L^{\frac{n}{n-2},\infty}(\mathbb{R}^n,dy)$

then implies the desired result

$$
\left| \mathbb{E} \int_0^t (\Delta u)(\omega_x(t)) dt \right| \leq c_n \int_{y \in \Omega} \frac{|\Delta u|(y)}{\|x - y\|^{n-2}} dy \leq \left\| \frac{c_n}{\|x - y\|^{n-2}} \right\|_{L^{\frac{n}{n-2}, \infty}} \|\Delta u\|_{L^{\frac{n}{2}, 1}}.
$$

2.3. Proof of Theorem 2.

Proof. This argument requires a simple statement for Brownian motion: for all sets $\Omega \subset \mathbb{R}^2$ with finite volume $|\Omega| < \infty$ and all $x \in \Omega$,

$$
\mathbb{P}\left(\exists 0 \leq t \leq \frac{|\Omega|}{8} : w_x(t) \notin \Omega\right) \geq \frac{1}{2}.
$$

We start by bounding the probability from below: for this, we introduce the free Brownian motion $\omega_x^*(t)$ that also starts in x but moves freely through \mathbb{R}^n without getting stuck on the boundary ∂Ω. Continuity of Brownian motion then implies

$$
\mathbb{P}\left(\exists 0 \leq t \leq \frac{|\Omega|}{8}: w_x(t) \notin \Omega\right) \geq \mathbb{P}\left(w_x^*\left(|\Omega|/8\right) \notin \Omega\right).
$$

Moreover, we can compute

$$
\mathbb{P}\left(w_x^*(|\Omega|/8) \notin \Omega\right) = \int_{\mathbb{R}^n \setminus \Omega} \frac{\exp\left(-2\|x-y\|^2/|\Omega|\right)}{(\pi |\Omega|/2)} dy.
$$

We use the Hardy-Littlewood rearrangement inequality to argue that

$$
\int_{\mathbb{R}^n\setminus\Omega} \frac{\exp\left(-2\|x-y\|^2/|\Omega|\right)}{(\pi|\Omega|/2)}dy\geq \int_{\mathbb{R}^n\setminus B} \frac{\exp\left(-2\|y\|^2/|B|\right)}{(\pi|B|/2)}dy,
$$

where B is a ball centered in the origin having the same measure as Ω . However, assuming $|B| = R^2 \pi$ this quantity can be computed in polar cordinates as

$$
\int_{\mathbb{R}^n \setminus B} \frac{\exp(-2||y||^2/|B|)}{(\pi |B|/2)} dy = \int_R^{\infty} \frac{\exp(-2r^2/(R^2\pi))}{R^2\pi^2/2} 2\pi r dr = e^{-\frac{2}{\pi}} > \frac{1}{2}.
$$

We return to the representation, valid for all $t > 0$,

$$
v(t,x) = \mathbb{E}v(\omega_x(t)) + \mathbb{E}\int_0^t (\Delta u)(\omega_x(t))dt.
$$

We will now work with finite values of t: the computation above implies that at time $t = |\Omega|$

$$
|\mathbb{E}v(\omega_x(|\Omega|))| \leq \frac{1}{2} \max_{x \in \partial\Omega} |u(x)| + \frac{\max_{x \in \Omega} u(x)}{2}.
$$

Arguing as above and employing the Lemma shows that

$$
\left| \mathbb{E} \int_0^{|\Omega|} (\Delta u)(\omega_x(t))dt \right| \leq \int_{y \in \Omega} \left(\int_0^{|\Omega|} p(s, x, y)ds \right) |\Delta u(y)| dy
$$

$$
\lesssim ||\Delta u||_{L^1} + \int_{y \in \Omega} \max \left\{ 0, \log \left(\frac{|\Omega|}{||x - y||^2} \right) \right\} |\Delta u(y)| dy
$$

$$
\lesssim \int_{y \in \Omega} \max \left\{ 1, \log \left(\frac{|\Omega|}{||x - y||^2} \right) \right\} |\Delta u(y)| dy.
$$

We can now pick $x \in \Omega$ so that u assumes its maximum there and argue

$$
\max_{x \in \Omega} u(x) = v(|\Omega|, x) = \mathbb{E}v(\omega_x(|\Omega|)) + \mathbb{E}\int_0^{|\Omega|} (\Delta u)(\omega_x(t))dt
$$

$$
\leq \frac{1}{2} \max_{x \in \partial\Omega} |u(x)| + \frac{\max_{x \in \Omega} u(x)}{2} + c \max_{x \in \Omega} \int_{y \in \Omega} \max\left\{1, \log\left(\frac{|\Omega|}{||x - y||^2}\right)\right\} |\Delta u(y)| dy
$$

which implies the desired statement.

2.4. Proof of the Corollary.

Proof. The proof can be used almost verbatim, we only require the elementary statement that for all simply-connected domains $\Omega \subset \mathbb{R}^2$ and all $x_0 \in \Omega$

$$
\mathbb{P}\left(\exists 0 \leq t \leq c \cdot \mathrm{inrad}(\Omega)^2 : w_{x_0}(t) \notin \Omega\right) \geq \frac{1}{100}.
$$

The idea is actually rather simple: for any such x_0 there exists a point $||x_0 - x_1|| \leq \text{inrad}(\Omega)$ such that $y \notin \Omega$. Since Ω is simply connected, the boundary is an actual line enclosing the domain: in particular, the disk of radius minrad (Ω) centered around x_0 either already contains the entire domain Ω or has a boundary of length at least $(2m-2)$ · inrad (Ω) (an example being close to the extremal case is shown in Figure 1).

FIGURE 1. The point of maximum x_0 , the circle with radius $d(x_0, \Omega)$, the circle with radius $2d(x_0, \Omega)$ (dashed) and the possible local geometry of $\partial\Omega$.

It turns out that $m = 2$ is already an admissible choice, the computations are carried out in earlier work of M. Rachh and the author [\[29\]](#page-6-23).

 \Box

Acknowledgement. The author is grateful to Mario Milman for discussions about the history of some of these results.

REFERENCES

- [1] D. Adams, A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. 128 (1988),p. 385–398.
- [2] A. D. Aleksandrov, Certain estimates for the Dirichlet problem. Dokl. Akad. Nauk SSSR 134, p. 1001–1004; translated as Soviet Math. Dokl. 1, p. 1151–1154 (1961).
- [3] A. D. Aleksandrov, Uniqueness conditions and bounds for the solution of the Dirichlet problem, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 18, p. 5–29 (1963).
- [4] A.D. Alexandrov, The impossibility of general estimates for solutions and of uniqueness for linear equations with norms weaker than in L^n , Vestnik Leningrad University, 21, (1966), 5–10. Amer. Math. Soc. Translations (2) 68, 162–168, (1968).
- [5] D. Aronson, Non-negative solutions of linear parabolic equations, Ann. Sci. Norm. Sup. 22 (1968), 607–694.
- [6] K. Astala, T. Iwaniec and G. Martin, Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane. J. Reine Angew. Math. 591 (2006), 49–74.
- [7] I. J. Bakelman, On the theory of quasilinear elliptic equations. Sibirsk. Mat. Z, 179–186 (1961).
- [8] J. Bastero, M. Milman and F. Ruiz.: A note on $L(\infty, q)$ spaces and Sobolev embeddings, Indiana Univ. Math. J. 52(5) (2003), 1215–1230.
- [9] A Biswas and J. Lőrinczi, Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for non-local Schrödinger equations with exterior conditions, [arXiv:1711.09267](http://arxiv.org/abs/1711.09267)
- [10] H. Brezis, and S., Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5 (1980), p. 773–789.
- [11] X. Cabré, On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Comm. Pure Appl. Math. 48 (1995), p. 539–570.
- [12] X. Cabré, Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: a survey. Chin. Ann. Math. Ser. B 38 (2017), p. 201–214.
- [13] L. Caffarelli and X. Cabré, Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, RI, 1995.
- [14] D. Cassani, B. Ruf and C. Tarsi, Best constants in a borderline case of second-order Moser type inequalities. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), p. 73-93.
- [15] A. Cianchi, Symmetrization and second-order Sobolev inequalities. Ann. Mat. Pura Appl. 183 (2004), p. 45–77.
- [16] A. Cianchi and V. Maz'ya, Sobolev inequalities in arbitrary domains. Adv. Math. 293 (2016), p. 644–696.
- [17] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. Springer, 1983.
- [18] L. Grafakos, Classical Fourier analysis. Springer, 2008.
- [19] Q. Han and F. Lin, Elliptic partial differential equations. Courant Lecture Notes in Mathematics, American Mathematical Society, Providence, RI, 1997.
- [20] J. Jost, Partial differential equations. Translated and revised from the 1998 German original by the author. Graduate Texts in Mathematics, 214. Springer-Verlag, New York, 2002.
- [21] J. Lierl and S. Steinerberger, A Local Faber-Krahn inequality and Applications to Schrodinger's Equation, Comm. PDE 43, p. 66–81 (2018)
- [22] M. Milman and E. Pustylnik: On sharp higher order Sobolev embeddings,Comm.Cont.Math.6 (2004), 495-511.
- [23] M. Milman, BMO: oscillations, self-improvement, Gagliardo coordinate spaces, and reverse Hardy inequalities. Harmonic analysis, partial differential equations, complex analysis, Banach spaces, and operator theory. Vol. 1, 233–274, Assoc. Women Math. Ser., 4, Springer, 2016.
- [24] M. Milman, Addendum to "BMO: Oscillations, Self Improvement, Gagliardo Coordinate Spaces and Reverse Hardy Inequalities", [arXiv:1806.08275](http://arxiv.org/abs/1806.08275)
- [25] J. Moser, A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1970/71), 1077–1092.
- [26] F. L`azaro P´erez, A note on extreme cases of Sobolev embeddings. J. Math. Anal. Appl. 320 (2006), 973–982.
- [27] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche. Ann. Mat. Pura Appl. (4) 74 1966, p. 15–30.
- [28] C. Pucci, Operatori ellittici estremanti, Ann. Mat. Pura. Appl., (4), 72, (1966), p. 141–170.
- [29] M. Rachh and S. Steinerberger, On the location of maxima of solutions of Schroedinger's equation, Comm. Pure Appl. Math, Vol. 71, 1109–1122 (2018).
- [30] S. Steinerberger, Lower bounds on nodal sets of eigenfunctions via the heat flow. Comm. Partial Differential Equations 39 (2014), no. 12, 2240–2261.
- [31] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 697–718.
- [32] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. , 17 (1967) pp. 473–483.
- [33] K. Tso, On an Aleksandrov-Bakelman type maximum principle for second-order parabolic equations. Comm. Partial Differential Equations 10 (1985), no. 5, 543–553.
- [34] J. Xiao and Zh. Zhai, Zh. Fractional Sobolev, Moser-Trudinger Morrey-Sobolev inequalities under Lorentz norms. Problems in mathematical analysis. No. 45. J. Math. Sci. (N.Y.) 166 (2010), no. 3, 357–376.

Department of Mathematics, Yale University E-mail address: stefan.steinerberger@yale.edu