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AN ENDPOINT ALEXANDROV BAKELMAN

PUCCI ESTIMATE IN THE PLANE

STEFAN STEINERBERGER

Abstract. The classical Alexandrov-Bakelman-Pucci estimate for the Laplacian states

max
x∈Ω

|u(x)| ≤ max
x∈∂Ω

|u(x)|+ cs,n diam(Ω)2−
n
s ‖∆u‖Ls(Ω)

where Ω ⊂ R
n, u ∈ C2(Ω) ∩ C(Ω) and s > n/2. The inequality fails for s = n/2. A Sobolev

embedding result of Milman & Pustylink, originally phrased in a slightly different context,
implies an endpoint inequality: if n ≥ 3 and Ω ⊂ R

n is bounded, then

max
x∈Ω

|u(x)| ≤ max
x∈∂Ω

|u(x)|+ cn ‖∆u‖
L

n
2

,1
(Ω)

,

where Lp,q is the Lorentz space refinement of Lp. This inequality fails for n = 2 and we prove
a sharp substitute result: there exists c > 0 such that for all Ω ⊂ R

2 with finite measure

max
x∈Ω

|u(x)| ≤ max
x∈∂Ω

|u(x)|+ cmax
x∈Ω

∫

y∈Ω
max

{

1, log

(

|Ω|

‖x− y‖2

)}

|∆u(y)| dy.

This is somewhat dual to the classical Trudinger-Moser inequality – we also note that it is
sharper than the usual estimates given in Orlicz spaces, the proof is rearrangement-free. The
Laplacian can be replaced by any uniformly elliptic operator in divergence form.

1. Introduction and main results

1.1. Introduction. The Alexandrov-Bakelman-Pucci estimate [2, 3, 7, 27, 28] is one of the clas-
sical estimates in the study of elliptic partial differential equations. In its usual form it is stated
for a second order uniformly elliptic operator

Lu = aij(x)∂iju+ bi(x)∂iu

with bounded measurable coefficients in a bounded domain Ω ⊂ R
n and c(x) ≤ 0. The Alexandrov-

Bakelman-Pucci estimate then states that for any u ∈ C2(Ω) ∩C(Ω)

sup
x∈Ω

|u(x)| ≤ sup
x∈∂Ω

|u(x)| + c diam(Ω) ‖Lu‖Ln(Ω) ,

where c depends on the ellipticity constants of L and the Ln−norms of the bi. It is a rather
foundational maximum principle and discussed in most of the standard textbooks, e.g. Caffarelli &
Cabré [13], Gilbarg & Trudinger [17], Han & Lin [19] and Jost [20]. The ABP estimate has inspired
a very active field of research, we do not attempt a summary and refer to [11, 12, 13, 17, 33] and
references therein. Alexandrov [4] and Pucci [28] showed that Ln can generically not be replaced
by a smaller norm. However, for some elliptic operators operators it is possible to get estimates
with Lp with p < n, see [6]. We will start our discussion with the special case of the Laplacian,
where the inequality reads, for any s > n/2,

max
x∈Ω

|u(x)| ≤ max
x∈∂Ω

|u(x)|+ cs,n diam(Ω)2−
n
s ‖∆u‖Ls(Ω) .

1.2. Results. The inequality is known to fail in the endpoint s = n/2. The purpose of our short
paper is to note endpoint versions of the inequality. The first result is essentially due to Milman &
Pustylink [22] (see also [23]), with an alternative proof due to Xiao & Zhai [34] (although ascribing
it to anyone in particular is not an easy matter, one could reasonably argue that Talenti’s seminal
paper [31, Eq. 20] already contains the result without spelling it out).
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Theorem 1. Let n ≥ 3, let Ω ⊂ R
n be bounded and u ∈ C2(Ω) ∩C(Ω). Then

max
x∈Ω

|u(x)| ≤ max
x∈∂Ω

|u(x)|+ cn ‖∆u‖
L

n
2

,1(Ω)
,

where cn only depends on the dimension.

Here Ln/2,1 is the Lorentz space refinement of Ln/2. We note that its norm is slightly larger
than Ln/2 and this turns out to be sufficient to establish an endpoint result in a critical space
for which the geometry of Ω now longer enters into the inequality. We refer to Grafakos [18] for
an introduction to Lorentz spaces. The proofs given in [22, 23, 24, 31] rely on rearrangement
techniques. Theorem 1 fails for n = 2: the Lorentz spaces collapse to L1,1 = L1 and the inequality
is false in L1 (see below). We obtain a sharp endpoint result in R

2.

Theorem 2 (Main result). Let Ω ⊂ R
2 have finite measure and let u ∈ C2(Ω) ∩C(Ω). Then

max
x∈Ω

|u(x)| ≤ max
x∈∂Ω

|u(x)| + cmax
x∈Ω

∫

y∈Ω

max

{

1, log

(

|Ω|

‖x− y‖2

)}

|∆u(y)| dy.

The result seems to be new. We observe that Talenti [31] is hinting at the proof of a slightly weaker
result using rearrangement techniques (after his equation (22), see a recent paper of Milman [24]
for a complete proof and related results). Ω need not be bounded, it suffices to assume that it has
finite measure. We illustrate sharpness of the inequality with an example on the unit disk: define
the radial function uε(r) by

u(r) =

{

1
2 − log ε− 1

2ε
−2r2 if 0 ≤ r ≤ ε

− log r if ε ≤ r ≤ 1.

We observe that ∆uε ∼ ε−21{|x|≤ε} and ‖u‖L∞ ∼ log (1/ε). This shows that the solution is
unbounded as ε → 0 while ‖∆u‖L1 ∼ 1 remains bounded; in particular, no Alexandrov-Bakelman-
Pucci inequality in L1 is possible for n = 2. The example also shows Theorem 2 to be sharp: the
maximum is assumed in the origin and

∫

y∈Ω

max

{

1, log

(

|Ω|

‖y‖2

)}

ε−21{|y|≤ε}dy =
1

ε2

∫

B(0,ε)

log

(

π

‖y‖2

)

dy ∼ log

(

1

ε

)

.

The proof will show that the constant |Ω| inside the logarithm is quite natural but can be improved
if the domain is very different from a disk: indeed, we can get sharper result that recover some of the
information that is lost in applying rearrangement type techniques and with a slight modification of
the main argument we can obtain a slightly stronger result capturing more geometric information.

Corollary. Let Ω ⊂ R
2 have finite measure and be simply connected and let u ∈ C2(Ω) ∩ C(Ω).

Then

max
x∈Ω

|u(x)| ≤ max
x∈∂Ω

|u(x)|+ cmax
x∈Ω

∫

y∈Ω

max

{

1, log

(

inrad(Ω)2

‖x− y‖2

)}

|∆u(y)| dy.

All results remain true if we replace the Laplacian−∆ by a uniformly elliptic operator in divergence
form −div(a(x) · ∇u) or replace R

n by a manifold as long as the induced heat kernel satisfies
Aronson-type bounds [5].

1.3. Related results. There is a trivial connection between Alexandrov-Bakelman-Pucci esti-
mates and second-order Sobolev inequalities that, to the best of our knowledge, has never been
made explicit. After constructing

∆φ = 0 in Ω

φ = u on ∂Ω

we may trivially estimate, using the maximum principle for harmonic functions,

max
x∈Ω

|u(x)| ≤ max
x∈Ω

|φ(x)| +max
x∈Ω

|u(x)− φ(x)| ≤ max
x∈∂Ω

|u(x)|+max
x∈Ω

|u(x)− φ(x)|.
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This reduces the problem to studying functions u ∈ C2(Ω) that vanish on the boundary and
verifying the validity of estimates of the type

‖u‖L∞(Ω) .Ω ‖∆u‖X .

The Alexandroff-Bakelman-Pucci estimate is one such estimate. These objects have been actively
studied for a long time, see e.g. [15, 16, 34] and references therein. Theorem 1 can thus be
restated as second-order Sobolev inequality in the endpoint p = ∞ and requiring a Lorentz-space
refinement; it can be equivalently stated as

‖u‖L∞(Rn) ≤ cn‖∆u‖
L

n
2

,1(Rn)
for all u ∈ C∞

c (Rn), n ≥ 3.

This inequality seems to have first been stated in the literature by Milman & Pustylink [22] in
the context of Sobolev embedding at the critical scale. Xiao & Zhai [34] derive the inequality via
harmonic analysis. The failure of the embedding of the critical Sobolev space into L∞ is classical

W
2,n

2

0 (Ω) 6 →֒ L∞(Ω).

There are two natural options: one could either try to find a slightly larger space Y ⊃ L∞(Ω) to
have a valid embedding or one could try to find a space slightly smaller than the Sobolev space to
have a valid embedding. The result of Milman & Pustylink [22] deals with the second question.
From the point of view of studying Sobolev spaces, the first question is quite a bit more relevant
since it investigates extremal behavior of functions in a Sobolev space and has been addressed
in many papers [1, 8, 10, 25, 22, 26]. We emphasize the Trudinger-Moser inequality [25, 32]: for
Ω ⊂ R

2

sup
‖∇u‖

L2≤1

∫

Ω

e4π|u|
2

dx ≤ c|Ω|.

Cassani, Ruf & Tarsi [14] prove a variant: the condition ‖∆u‖L1 < ∞ suffices to ensure that u
has at most logarithmic blow-up. These results should be seen as somewhat dual to Theorem 2.
Put differently, Theorem 2 is a natural converse to this result since it implies that any function
with ‖∆u‖L1 < ∞ and logarithmic blow-up has a Laplacian ∆u that concentrates its L1−mass.

2. Proofs

The proofs are all based on the idea of representing a function u : Ω → R as the stationary solution
of the heat equation with a suitably chosen right-hand side (these techniques have recently proven
useful in a variety of problems [9, 21, 29, 30])

vt +∆v = ∆u in Ω

v = u on ∂Ω.

The Feynman-Kac formula then implies a representation of u(x) = v(t, x) as a convolution of the
heat kernel and its values in a neighborhood to which standard estimates can be applied. We
use ωx(t) to denote Brownian motion started in x ∈ Ω at time t; moreover, in accordance with
Dirichlet boundary conditions, we will assume that the boundary is sticky and remains at the
boundary once it touches it. The Feynman-Kac formula then implies that for all t > 0

u(x) = Eu(ωx(t)) + E

∫ t

0

(∆u)(ωx(t))dt.

This representation will be used in all our proofs. The proof of Theorem 1 will be closely related
in spirit to [34, Lemma 3.2.] phrased in a different language; this language turns out to be useful
in the proof of Theorem 2 where an additional geometric argument is required.

2.1. A Technical Lemma. The purpose of this section is to quickly prove a fairly basic inequality.
The Lemma already appeared in a slightly more precise form in work of Lierl and the author [21].
We only need a special case and prove it for completeness of exposition.
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Lemma. Let n ∈ N, let t > 0, c1, c2 > 0 and 0 6= x ∈ R
n. We have

∫ t

0

c1
s
exp

(

−
‖x‖2

c2s

)

ds .c1,c2

(

1 + max

{

0,− log

(

‖x‖2

c2t

)})

exp

(

−
‖x‖2

c2t

)

.

and, for n ≥ 3,
∫ ∞

0

c1
sn/2

exp

(

−
‖x‖2

c2s

)

ds .c1,c2,n
1

‖x‖n−2
.

Proof. The substitutions z = s/|x|2 and y = 1/(c2z) show
∫ t

0

c1
s
exp

(

−
|x|2

c2s

)

ds .c1,c2

∫ ∞

|x|2/(c2t)

y−1e−ydy.

If |x|2/(c2d) ≤ 1 we have
∫ ∞

|x|2/(c2t)

y−1e−ydy . 1 +

∫ 1

|x|2/(c2t)

y−1e−ydy . 1 +

∫ 1

|x|2/(c2t)

y−1dy . 1− log

(

|x|2

c2t

)

,

and if |x|2/(c2t) ≥ 1 we have
∫ ∞

|x|2/(c2t)

y−1e−ydy ≤
c2d

|x|2

∫ ∞

|x|2/(c2t)

e−ydy =
c2t

|x|2
exp

(

−
|x|2

c2t

)

≤ exp

(

−
|x|2

c2t

)

.

Summarizing, this establishes
∫ ∞

|x|2/(c2t)

1

y
e−ydy .

(

1 + max

{

0,− log

(

|x|2

c2t

)})

exp

(

−
|x|2

c2t

)

,

which is the desired statement for n = 2. The second statement, for n ≥ 3, is trivial. �

2.2. Proof of Theorem 1.

Proof. We rewrite u as the stationary solution of the heat equation

vt +∆v = ∆u in Ω

v = u on ∂Ω.

As explained above, the Feynman-Kac formula implies that for all t > 0

u(x) = v(t, x) = Ev(ωx(t)) + E

∫ t

0

(∆u)(ωx(t))dt.

Let x be arbitrary, we now let t → ∞. The first term is quite simple since we recover the harmonic
measure. Indeed, as t → ∞, we have

lim
t→∞

Ev(ωx(t)) = φ(x) where

{

∆φ = 0 inside Ω

φ = u on ∂Ω.

This can be easily seen from the stochastic interpretation of harmonic measure. This implies

lim
t→∞

Ev(ωx(t)) ≤ max
x∈∂Ω

u(x).

It remains to estimate the second term. We denote the heat kernel on Ω by pΩ(t, x, y) and observe
∣

∣

∣

∣

E

∫ t

0

(∆u)(ωx(t))dt

∣

∣

∣

∣

≤ E

∫ t

0

|∆u(ωx(t))| dt

=

∫ t

0

∫

y∈Ω

pΩ(s, x, y) |∆u(y)| dyds

≤

∫

y∈Ω

(
∫ ∞

0

pΩ(s, x, y)ds

)

|∆u(y)| dy
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However, using domain monotonicity pΩ(t, x, y) ≤ pRn(t, x, y) as well as the explicit Gaussian form
of the heat kernel on R

n and the Lemma we have, uniformly in x, y ∈ Ω,
∫ ∞

0

pΩ(s, x, y)ds ≤

∫ ∞

0

pRn(s, x, y)ds ≤
cn

‖x− y‖n−2
.

The duality of Lorentz spaces

‖fg‖L1(Rn) ≤ ‖f‖
L

n
2

,1(Rn)
‖g‖

L
n

n−2
,∞

(Rn)
and

1

‖x− y‖n−2
∈ L

n
n−2

,∞(Rn, dy)

then implies the desired result
∣

∣

∣

∣

E

∫ t

0

(∆u)(ωx(t))dt

∣

∣

∣

∣

≤ cn

∫

y∈Ω

|∆u| (y)

‖x− y‖n−2
dy ≤

∥

∥

∥

∥

cn
‖x− y‖n−2

∥

∥

∥

∥

L
n

n−2
,∞

‖∆u‖
L

n
2

,1 .

�

2.3. Proof of Theorem 2.

Proof. This argument requires a simple statement for Brownian motion: for all sets Ω ⊂ R
2 with

finite volume |Ω| < ∞ and all x ∈ Ω,

P

(

∃ 0 ≤ t ≤
|Ω|

8
: wx(t) /∈ Ω

)

≥
1

2
.

We start by bounding the probability from below: for this, we introduce the free Brownian motion
ω∗
x(t) that also starts in x but moves freely through R

n without getting stuck on the boundary
∂Ω. Continuity of Brownian motion then implies

P

(

∃ 0 ≤ t ≤
|Ω|

8
: wx(t) /∈ Ω

)

≥ P (w∗
x (|Ω|/8) /∈ Ω) .

Moreover, we can compute

P (w∗
x(|Ω|/8) /∈ Ω) =

∫

Rn\Ω

exp
(

−2‖x− y‖2/|Ω|
)

(π|Ω|/2)
dy.

We use the Hardy-Littlewood rearrangement inequality to argue that
∫

Rn\Ω

exp
(

−2‖x− y‖2/|Ω|
)

(π|Ω|/2)
dy ≥

∫

Rn\B

exp
(

−2‖y‖2/|B|
)

(π|B|/2)
dy,

where B is a ball centered in the origin having the same measure as Ω. However, assuming
|B| = R2π this quantity can be computed in polar cordinates as

∫

Rn\B

exp
(

−2‖y‖2/|B|
)

(π|B|/2)
dy =

∫ ∞

R

exp
(

−2r2/(R2π)
)

R2π2/2
2πrdr = e−

2

π >
1

2
.

We return to the representation, valid for all t > 0,

v(t, x) = Ev(ωx(t)) + E

∫ t

0

(∆u)(ωx(t))dt.

We will now work with finite values of t: the computation above implies that at time t = |Ω|

|Ev(ωx(|Ω|))| ≤
1

2
max
x∈∂Ω

|u(x)|+
maxx∈Ω u(x)

2
.

Arguing as above and employing the Lemma shows that
∣

∣

∣

∣

∣

E

∫ |Ω|

0

(∆u)(ωx(t))dt

∣

∣

∣

∣

∣

≤

∫

y∈Ω

(

∫ |Ω|

0

p(s, x, y)ds

)

|∆u(y)| dy

. ‖∆u‖L1 +

∫

y∈Ω

max

{

0, log

(

|Ω|

‖x− y‖2

)}

|∆u(y)| dy

.

∫

y∈Ω

max

{

1, log

(

|Ω|

‖x− y‖2

)}

|∆u(y)| dy.
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We can now pick x ∈ Ω so that u assumes its maximum there and argue

max
x∈Ω

u(x) = v(|Ω|, x) = Ev(ωx(|Ω|)) + E

∫ |Ω|

0

(∆u)(ωx(t))dt

≤
1

2
max
x∈∂Ω

|u(x)|+
maxx∈Ω u(x)

2
+ cmax

x∈Ω

∫

y∈Ω

max

{

1, log

(

|Ω|

‖x− y‖2

)}

|∆u(y)| dy

which implies the desired statement. �

2.4. Proof of the Corollary.

Proof. The proof can be used almost verbatim, we only require the elementary statement that for
all simply-connected domains Ω ⊂ R

2 and all x0 ∈ Ω

P
(

∃ 0 ≤ t ≤ c · inrad(Ω)2 : wx0
(t) /∈ Ω

)

≥
1

100
.

The idea is actually rather simple: for any such x0 there exists a point ‖x0 − x1‖ ≤ inrad(Ω) such
that y /∈ Ω. Since Ω is simply connected, the boundary is an actual line enclosing the domain:
in particular, the disk of radius minrad(Ω) centered around x0 either already contains the entire
domain Ω or has a boundary of length at least (2m− 2) · inrad(Ω) (an example being close to the
extremal case is shown in Figure 1).

x1

x0

∂Ω

∂Ω

x1
x0 x1

∂Ω

x0

∂Ω

Figure 1. The point of maximum x0, the circle with radius d(x0,Ω), the circle
with radius 2d(x0,Ω) (dashed) and the possible local geometry of ∂Ω.

It turns out that m = 2 is already an admissible choice, the computations are carried out in earlier
work of M. Rachh and the author [29].

�
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[15] A. Cianchi, Symmetrization and second-order Sobolev inequalities. Ann. Mat. Pura Appl. 183 (2004), p. 45–77.
[16] A. Cianchi and V. Maz’ya, Sobolev inequalities in arbitrary domains. Adv. Math. 293 (2016), p. 644–696.
[17] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. Springer, 1983.
[18] L. Grafakos, Classical Fourier analysis. Springer, 2008.
[19] Q. Han and F. Lin, Elliptic partial differential equations. Courant Lecture Notes in Mathematics, American

Mathematical Society, Providence, RI, 1997.
[20] J. Jost, Partial differential equations. Translated and revised from the 1998 German original by the author.

Graduate Texts in Mathematics, 214. Springer-Verlag, New York, 2002.
[21] J. Lierl and S. Steinerberger, A Local Faber-Krahn inequality and Applications to Schrodinger’s Equation,

Comm. PDE 43, p. 66–81 (2018)
[22] M. Milman and E. Pustylnik: On sharp higher order Sobolev embeddings,Comm.Cont.Math.6 (2004), 495-511.
[23] M. Milman, BMO: oscillations, self-improvement, Gagliardo coordinate spaces, and reverse Hardy inequalities.

Harmonic analysis, partial differential equations, complex analysis, Banach spaces, and operator theory. Vol.
1, 233–274, Assoc. Women Math. Ser., 4, Springer, 2016.

[24] M. Milman, Addendum to ”BMO: Oscillations, Self Improvement, Gagliardo Coordinate Spaces and Reverse
Hardy Inequalities”, arXiv:1806.08275

[25] J. Moser, A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1970/71), 1077–1092.
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