AN ENDPOINT ALEXANDROV BAKELMAN PUCCI ESTIMATE IN THE PLANE

STEFAN STEINERBERGER

ABSTRACT. The classical Alexandrov-Bakelman-Pucci estimate for the Laplacian states

 $\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial \Omega} |u(x)| + c_{s,n} \operatorname{diam}(\Omega)^{2-\frac{n}{s}} \|\Delta u\|_{L^{s}(\Omega)}$

where $\Omega \subset \mathbb{R}^n$, $u \in C^2(\Omega) \cap C(\overline{\Omega})$ and s > n/2. The inequality fails for s = n/2. A Sobolev embedding result of Milman & Pustylink, originally phrased in a slightly different context, implies an endpoint inequality: if $n \geq 3$ and $\Omega \subset \mathbb{R}^n$ is bounded, then

 $\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial \Omega} |u(x)| + c_n \left\| \Delta u \right\|_{L^{\frac{n}{2},1}(\Omega)},$

where $L^{p,q}$ is the Lorentz space refinement of L^p . This inequality fails for n = 2 and we prove a sharp substitute result: there exists c > 0 such that for all $\Omega \subset \mathbb{R}^2$ with finite measure

$$\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial\Omega} |u(x)| + c \max_{x \in \Omega} \int_{y \in \Omega} \max\left\{1, \log\left(\frac{|\Omega|}{\|x - y\|^2}\right)\right\} |\Delta u(y)| \, dy.$$

This is somewhat dual to the classical Trudinger-Moser inequality – we also note that it is sharper than the usual estimates given in Orlicz spaces, the proof is rearrangement-free. The Laplacian can be replaced by any uniformly elliptic operator in divergence form.

1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. The Alexandrov-Bakelman-Pucci estimate [2, 3, 7, 27, 28] is one of the classical estimates in the study of elliptic partial differential equations. In its usual form it is stated for a second order uniformly elliptic operator

$$Lu = a_{ij}(x)\partial_{ij}u + b_i(x)\partial_i u$$

with bounded measurable coefficients in a bounded domain $\Omega \subset \mathbb{R}^n$ and $c(x) \leq 0$. The Alexandrov-Bakelman-Pucci estimate then states that for any $u \in C^2(\Omega) \cap C(\overline{\Omega})$

$$\sup_{x \in \Omega} |u(x)| \le \sup_{x \in \partial \Omega} |u(x)| + c \operatorname{diam}(\Omega) ||Lu||_{L^n(\Omega)},$$

where c depends on the ellipticity constants of L and the L^n -norms of the b_i . It is a rather foundational maximum principle and discussed in most of the standard textbooks, e.g. Caffarelli & Cabré [13], Gilbarg & Trudinger [17], Han & Lin [19] and Jost [20]. The ABP estimate has inspired a very active field of research, we do not attempt a summary and refer to [11, 12, 13, 17, 33] and references therein. Alexandrov [4] and Pucci [28] showed that L^n can generically not be replaced by a smaller norm. However, for some elliptic operators operators it is possible to get estimates with L^p with p < n, see [6]. We will start our discussion with the special case of the Laplacian, where the inequality reads, for any s > n/2,

$$\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial \Omega} |u(x)| + c_{s,n} \operatorname{diam}(\Omega)^{2-\frac{n}{s}} \|\Delta u\|_{L^{s}(\Omega)}$$

1.2. **Results.** The inequality is known to fail in the endpoint s = n/2. The purpose of our short paper is to note endpoint versions of the inequality. The first result is essentially due to Milman & Pustylink [22] (see also [23]), with an alternative proof due to Xiao & Zhai [34] (although ascribing it to anyone in particular is not an easy matter, one could reasonably argue that Talenti's seminal paper [31, Eq. 20] already contains the result without spelling it out).

²⁰¹⁰ Mathematics Subject Classification. 28A75, 35A23, 35B50, 49Q20.

Key words and phrases. Alexandrov-Bakelman-Pucci estimate, maximum principle, Trudinger-Moser inequality.

Theorem 1. Let $n \geq 3$, let $\Omega \subset \mathbb{R}^n$ be bounded and $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Then

$$\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial \Omega} |u(x)| + c_n \left\| \Delta u \right\|_{L^{\frac{n}{2},1}(\Omega)}$$

where c_n only depends on the dimension.

Here $L^{n/2,1}$ is the Lorentz space refinement of $L^{n/2}$. We note that its norm is slightly larger than $L^{n/2}$ and this turns out to be sufficient to establish an endpoint result in a critical space for which the geometry of Ω now longer enters into the inequality. We refer to Grafakos [18] for an introduction to Lorentz spaces. The proofs given in [22, 23, 24, 31] rely on rearrangement techniques. Theorem 1 fails for n = 2: the Lorentz spaces collapse to $L^{1,1} = L^1$ and the inequality is false in L^1 (see below). We obtain a sharp endpoint result in \mathbb{R}^2 .

Theorem 2 (Main result). Let $\Omega \subset \mathbb{R}^2$ have finite measure and let $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Then

$$\max_{x \in \Omega} |u(x)| \le \max_{x \in \partial \Omega} |u(x)| + c \max_{x \in \Omega} \int_{y \in \Omega} \max\left\{1, \log\left(\frac{|\Omega|}{\|x - y\|^2}\right)\right\} |\Delta u(y)| \, dy.$$

The result seems to be new. We observe that Talenti [31] is hinting at the proof of a slightly weaker result using rearrangement techniques (after his equation (22), see a recent paper of Milman [24] for a complete proof and related results). Ω need not be bounded, it suffices to assume that it has finite measure. We illustrate sharpness of the inequality with an example on the unit disk: define the radial function $u_{\varepsilon}(r)$ by

$$u(r) = \begin{cases} \frac{1}{2} - \log \varepsilon - \frac{1}{2} \varepsilon^{-2} r^2 & \text{if } 0 \le r \le \varepsilon \\ -\log r & \text{if } \varepsilon \le r \le 1. \end{cases}$$

We observe that $\Delta u_{\varepsilon} \sim \varepsilon^{-2} \mathbb{1}_{\{|x| \leq \varepsilon\}}$ and $||u||_{L^{\infty}} \sim \log(1/\varepsilon)$. This shows that the solution is unbounded as $\varepsilon \to 0$ while $||\Delta u||_{L^1} \sim 1$ remains bounded; in particular, no Alexandrov-Bakelman-Pucci inequality in L^1 is possible for n = 2. The example also shows Theorem 2 to be sharp: the maximum is assumed in the origin and

$$\int_{y\in\Omega} \max\left\{1, \log\left(\frac{|\Omega|}{\|y\|^2}\right)\right\} \varepsilon^{-2} \mathbf{1}_{\{|y|\leq\varepsilon\}} dy = \frac{1}{\varepsilon^2} \int_{B(0,\varepsilon)} \log\left(\frac{\pi}{\|y\|^2}\right) dy \sim \log\left(\frac{1}{\varepsilon}\right).$$

The proof will show that the constant $|\Omega|$ inside the logarithm is quite natural but can be improved if the domain is very different from a disk: indeed, we can get sharper result that recover some of the information that is lost in applying rearrangement type techniques and with a slight modification of the main argument we can obtain a slightly stronger result capturing more geometric information.

Corollary. Let $\Omega \subset \mathbb{R}^2$ have finite measure and be simply connected and let $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Then

$$\max_{x\in\Omega}|u(x)| \le \max_{x\in\partial\Omega}|u(x)| + c\max_{x\in\Omega}\int_{y\in\Omega}\max\left\{1,\log\left(\frac{\operatorname{inrad}(\Omega)^2}{\|x-y\|^2}\right)\right\}|\Delta u(y)|\,dy.$$

All results remain true if we replace the Laplacian $-\Delta$ by a uniformly elliptic operator in divergence form $-\operatorname{div}(a(x) \cdot \nabla u)$ or replace \mathbb{R}^n by a manifold as long as the induced heat kernel satisfies Aronson-type bounds [5].

1.3. **Related results.** There is a trivial connection between Alexandrov-Bakelman-Pucci estimates and second-order Sobolev inequalities that, to the best of our knowledge, has never been made explicit. After constructing

$$\begin{aligned} \Delta \phi &= 0 & \text{ in } \Omega \\ \phi &= u & \text{ on } \partial \Omega \end{aligned}$$

we may trivially estimate, using the maximum principle for harmonic functions,

$$\max_{x\in\Omega} |u(x)| \le \max_{x\in\Omega} |\phi(x)| + \max_{x\in\Omega} |u(x) - \phi(x)| \le \max_{x\in\partial\Omega} |u(x)| + \max_{x\in\Omega} |u(x) - \phi(x)|.$$

This reduces the problem to studying functions $u \in C^2(\Omega)$ that vanish on the boundary and verifying the validity of estimates of the type

$$||u||_{L^{\infty}(\Omega)} \lesssim_{\Omega} ||\Delta u||_X.$$

The Alexandroff-Bakelman-Pucci estimate is one such estimate. These objects have been actively studied for a long time, see e.g. [15, 16, 34] and references therein. Theorem 1 can thus be restated as second-order Sobolev inequality in the endpoint $p = \infty$ and requiring a Lorentz-space refinement; it can be equivalently stated as

$$\|u\|_{L^{\infty}(\mathbb{R}^n)} \leq c_n \|\Delta u\|_{L^{\frac{n}{2},1}(\mathbb{R}^n)} \quad \text{for all } u \in C_c^{\infty}(\mathbb{R}^n), \ n \geq 3$$

This inequality seems to have first been stated in the literature by Milman & Pustylink [22] in the context of Sobolev embedding at the critical scale. Xiao & Zhai [34] derive the inequality via harmonic analysis. The failure of the embedding of the critical Sobolev space into L^{∞} is classical

$$W_0^{2,\frac{n}{2}}(\Omega) \not\hookrightarrow L^{\infty}(\Omega).$$

There are two natural options: one could either try to find a slightly larger space $Y \supset L^{\infty}(\Omega)$ to have a valid embedding or one could try to find a space slightly smaller than the Sobolev space to have a valid embedding. The result of Milman & Pustylink [22] deals with the second question. From the point of view of studying Sobolev spaces, the first question is quite a bit more relevant since it investigates extremal behavior of functions in a Sobolev space and has been addressed in many papers [1, 8, 10, 25, 22, 26]. We emphasize the Trudinger-Moser inequality [25, 32]: for $\Omega \subset \mathbb{R}^2$

$$\sup_{\|\nabla u\|_{L^2} \le 1} \int_{\Omega} e^{4\pi |u|^2} dx \le c |\Omega|.$$

Cassani, Ruf & Tarsi [14] prove a variant: the condition $\|\Delta u\|_{L^1} < \infty$ suffices to ensure that u has at most logarithmic blow-up. These results should be seen as somewhat dual to Theorem 2. Put differently, Theorem 2 is a natural converse to this result since it implies that any function with $\|\Delta u\|_{L^1} < \infty$ and logarithmic blow-up has a Laplacian Δu that concentrates its L^1 -mass.

2. Proofs

The proofs are all based on the idea of representing a function $u : \Omega \to \mathbb{R}$ as the stationary solution of the heat equation with a suitably chosen right-hand side (these techniques have recently proven useful in a variety of problems [9, 21, 29, 30])

$$v_t + \Delta v = \Delta u \quad \text{in } \Omega$$
$$v = u \quad \text{on } \partial \Omega.$$

The Feynman-Kac formula then implies a representation of u(x) = v(t, x) as a convolution of the heat kernel and its values in a neighborhood to which standard estimates can be applied. We use $\omega_x(t)$ to denote Brownian motion started in $x \in \Omega$ at time t; moreover, in accordance with Dirichlet boundary conditions, we will assume that the boundary is sticky and remains at the boundary once it touches it. The Feynman-Kac formula then implies that for all t > 0

$$u(x) = \mathbb{E}u(\omega_x(t)) + \mathbb{E}\int_0^t (\Delta u)(\omega_x(t))dt.$$

This representation will be used in all our proofs. The proof of Theorem 1 will be closely related in spirit to [34, Lemma 3.2.] phrased in a different language; this language turns out to be useful in the proof of Theorem 2 where an additional geometric argument is required.

2.1. A Technical Lemma. The purpose of this section is to quickly prove a fairly basic inequality. The Lemma already appeared in a slightly more precise form in work of Lierl and the author [21]. We only need a special case and prove it for completeness of exposition.

Lemma. Let $n \in \mathbb{N}$, let t > 0, $c_1, c_2 > 0$ and $0 \neq x \in \mathbb{R}^n$. We have

$$\int_{0}^{t} \frac{c_{1}}{s} \exp\left(-\frac{\|x\|^{2}}{c_{2}s}\right) ds \lesssim_{c_{1},c_{2}} \left(1 + \max\left\{0, -\log\left(\frac{\|x\|^{2}}{c_{2}t}\right)\right\}\right) \exp\left(-\frac{\|x\|^{2}}{c_{2}t}\right).$$

$$n \ge 3.$$

and, for $n \geq 3$,

$$\int_0^\infty \frac{c_1}{s^{n/2}} \exp\left(-\frac{\|x\|^2}{c_2 s}\right) ds \lesssim_{c_1, c_2, n} \frac{1}{\|x\|^{n-2}}.$$

Proof. The substitutions $z = s/|x|^2$ and $y = 1/(c_2 z)$ show

$$\int_0^t \frac{c_1}{s} \exp\left(-\frac{|x|^2}{c_2 s}\right) ds \lesssim_{c_1, c_2} \int_{|x|^2/(c_2 t)}^\infty y^{-1} e^{-y} dy.$$

If $|x|^2/(c_2 d) \leq 1$ we have

$$\int_{|x|^2/(c_2t)}^{\infty} y^{-1} e^{-y} dy \lesssim 1 + \int_{|x|^2/(c_2t)}^{1} y^{-1} e^{-y} dy \lesssim 1 + \int_{|x|^2/(c_2t)}^{1} y^{-1} dy \lesssim 1 - \log\left(\frac{|x|^2}{c_2t}\right),$$

and if $|x|^2/(c_2t) \ge 1$ we have

$$\int_{|x|^2/(c_2t)}^{\infty} y^{-1} e^{-y} dy \le \frac{c_2 d}{|x|^2} \int_{|x|^2/(c_2t)}^{\infty} e^{-y} dy = \frac{c_2 t}{|x|^2} \exp\left(-\frac{|x|^2}{c_2 t}\right) \le \exp\left(-\frac{|x|^2}{c_2 t}\right).$$

Summarizing, this establishes

$$\int_{|x|^2/(c_2t)}^{\infty} \frac{1}{y} e^{-y} dy \lesssim \left(1 + \max\left\{0, -\log\left(\frac{|x|^2}{c_2t}\right)\right\}\right) \exp\left(-\frac{|x|^2}{c_2t}\right),$$

which is the desired statement for n = 2. The second statement, for $n \ge 3$, is trivial.

2.2. Proof of Theorem 1.

Proof. We rewrite u as the stationary solution of the heat equation

$$v_t + \Delta v = \Delta u \quad \text{in } \Omega$$
$$v = u \quad \text{on } \partial \Omega.$$

As explained above, the Feynman-Kac formula implies that for all t > 0

$$u(x) = v(t, x) = \mathbb{E}v(\omega_x(t)) + \mathbb{E}\int_0^t (\Delta u)(\omega_x(t))dt.$$

Let x be arbitrary, we now let $t \to \infty$. The first term is quite simple since we recover the harmonic measure. Indeed, as $t \to \infty$, we have

$$\lim_{t \to \infty} \mathbb{E}v(\omega_x(t)) = \phi(x) \qquad \text{where} \quad \begin{cases} \Delta \phi = 0 \text{ inside } \Omega \\ \phi = u \text{ on } \partial \Omega. \end{cases}$$

This can be easily seen from the stochastic interpretation of harmonic measure. This implies

$$\lim_{t \to \infty} \mathbb{E}v(\omega_x(t)) \le \max_{x \in \partial \Omega} u(x).$$

It remains to estimate the second term. We denote the heat kernel on Ω by $p_{\Omega}(t, x, y)$ and observe

$$\begin{split} \left| \mathbb{E} \int_{0}^{t} (\Delta u)(\omega_{x}(t))dt \right| &\leq \mathbb{E} \int_{0}^{t} \left| \Delta u(\omega_{x}(t)) \right| dt \\ &= \int_{0}^{t} \int_{y \in \Omega} p_{\Omega}(s, x, y) \left| \Delta u(y) \right| dy ds \\ &\leq \int_{y \in \Omega} \left(\int_{0}^{\infty} p_{\Omega}(s, x, y) ds \right) \left| \Delta u(y) \right| dy \end{split}$$

However, using domain monotonicity $p_{\Omega}(t, x, y) \leq p_{\mathbb{R}^n}(t, x, y)$ as well as the explicit Gaussian form of the heat kernel on \mathbb{R}^n and the Lemma we have, uniformly in $x, y \in \Omega$,

$$\int_0^\infty p_\Omega(s, x, y) ds \le \int_0^\infty p_{\mathbb{R}^n}(s, x, y) ds \le \frac{c_n}{\|x - y\|^{n-2}}.$$

The duality of Lorentz spaces

$$||fg||_{L^1(\mathbb{R}^n)} \le ||f||_{L^{\frac{n}{2},1}(\mathbb{R}^n)} ||g||_{L^{\frac{n}{n-2},\infty}(\mathbb{R}^n)} \text{ and } \frac{1}{||x-y||^{n-2}} \in L^{\frac{n}{n-2},\infty}(\mathbb{R}^n,dy)$$

then implies the desired result

$$\left| \mathbb{E} \int_{0}^{t} (\Delta u)(\omega_{x}(t)) dt \right| \leq c_{n} \int_{y \in \Omega} \frac{|\Delta u|(y)}{\|x - y\|^{n-2}} dy \leq \left\| \frac{c_{n}}{\|x - y\|^{n-2}} \right\|_{L^{\frac{n}{n-2},\infty}} \|\Delta u\|_{L^{\frac{n}{2},1}}.$$

2.3. Proof of Theorem 2.

Proof. This argument requires a simple statement for Brownian motion: for all sets $\Omega \subset \mathbb{R}^2$ with finite volume $|\Omega| < \infty$ and all $x \in \Omega$,

$$\mathbb{P}\left(\exists \ 0 \le t \le \frac{|\Omega|}{8} : w_x(t) \notin \Omega\right) \ge \frac{1}{2}.$$

We start by bounding the probability from below: for this, we introduce the free Brownian motion $\omega_x^*(t)$ that also starts in x but moves freely through \mathbb{R}^n without getting stuck on the boundary $\partial\Omega$. Continuity of Brownian motion then implies

$$\mathbb{P}\left(\exists \ 0 \le t \le \frac{|\Omega|}{8} : w_x(t) \notin \Omega\right) \ge \mathbb{P}\left(w_x^*\left(|\Omega|/8\right) \notin \Omega\right).$$

Moreover, we can compute

$$\mathbb{P}\left(w_x^*(|\Omega|/8) \notin \Omega\right) = \int_{\mathbb{R}^n \setminus \Omega} \frac{\exp\left(-2\|x-y\|^2/|\Omega|\right)}{(\pi|\Omega|/2)} dy.$$

We use the Hardy-Littlewood rearrangement inequality to argue that

$$\int_{\mathbb{R}^n \setminus \Omega} \frac{\exp\left(-2\|x-y\|^2/|\Omega|\right)}{(\pi|\Omega|/2)} dy \ge \int_{\mathbb{R}^n \setminus B} \frac{\exp\left(-2\|y\|^2/|B|\right)}{(\pi|B|/2)} dy,$$

where B is a ball centered in the origin having the same measure as Ω . However, assuming $|B| = R^2 \pi$ this quantity can be computed in polar cordinates as

$$\int_{\mathbb{R}^n \setminus B} \frac{\exp\left(-2\|y\|^2/|B|\right)}{(\pi|B|/2)} dy = \int_R^\infty \frac{\exp\left(-2r^2/(R^2\pi)\right)}{R^2\pi^2/2} 2\pi r dr = e^{-\frac{2}{\pi}} > \frac{1}{2}.$$

We return to the representation, valid for all t > 0,

$$v(t,x) = \mathbb{E}v(\omega_x(t)) + \mathbb{E}\int_0^t (\Delta u)(\omega_x(t))dt.$$

We will now work with finite values of t: the computation above implies that at time $t = |\Omega|$

$$|\mathbb{E}v(\omega_x(|\Omega|))| \le \frac{1}{2} \max_{x \in \partial\Omega} |u(x)| + \frac{\max_{x \in \Omega} u(x)}{2}.$$

Arguing as above and employing the Lemma shows that

$$\begin{aligned} \left| \mathbb{E} \int_{0}^{|\Omega|} (\Delta u)(\omega_{x}(t)) dt \right| &\leq \int_{y \in \Omega} \left(\int_{0}^{|\Omega|} p(s, x, y) ds \right) |\Delta u(y)| \, dy \\ &\lesssim \|\Delta u\|_{L^{1}} + \int_{y \in \Omega} \max\left\{ 0, \log\left(\frac{|\Omega|}{\|x - y\|^{2}}\right) \right\} |\Delta u(y)| \, dy \\ &\lesssim \int_{y \in \Omega} \max\left\{ 1, \log\left(\frac{|\Omega|}{\|x - y\|^{2}}\right) \right\} |\Delta u(y)| \, dy. \end{aligned}$$

We can now pick $x \in \Omega$ so that u assumes its maximum there and argue

$$\begin{aligned} \max_{x\in\Omega} u(x) &= v(|\Omega|, x) = \mathbb{E}v(\omega_x(|\Omega|)) + \mathbb{E}\int_0^{|\Omega|} (\Delta u)(\omega_x(t))dt \\ &\leq \frac{1}{2} \max_{x\in\partial\Omega} |u(x)| + \frac{\max_{x\in\Omega} u(x)}{2} + c \max_{x\in\Omega} \int_{y\in\Omega} \max\left\{1, \log\left(\frac{|\Omega|}{\|x-y\|^2}\right)\right\} |\Delta u(y)| \, dy \end{aligned}$$
hich implies the desired statement.

which implies the desired statement.

2.4. Proof of the Corollary.

Proof. The proof can be used almost verbatim, we only require the elementary statement that for all simply-connected domains $\Omega \subset \mathbb{R}^2$ and all $x_0 \in \Omega$

$$\mathbb{P}\left(\exists \ 0 \le t \le c \cdot \operatorname{inrad}(\Omega)^2 : w_{x_0}(t) \notin \Omega\right) \ge \frac{1}{100}.$$

The idea is actually rather simple: for any such x_0 there exists a point $||x_0 - x_1|| \leq \operatorname{inrad}(\Omega)$ such that $y \notin \Omega$. Since Ω is simply connected, the boundary is an actual line enclosing the domain: in particular, the disk of radius $minrad(\Omega)$ centered around x_0 either already contains the entire domain Ω or has a boundary of length at least $(2m-2) \cdot \operatorname{inrad}(\Omega)$ (an example being close to the extremal case is shown in Figure 1).

FIGURE 1. The point of maximum x_0 , the circle with radius $d(x_0, \Omega)$, the circle with radius $2d(x_0, \Omega)$ (dashed) and the possible local geometry of $\partial \Omega$.

It turns out that m = 2 is already an admissible choice, the computations are carried out in earlier work of M. Rachh and the author [29].

Acknowledgement. The author is grateful to Mario Milman for discussions about the history of some of these results.

References

- [1] D. Adams, A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. 128 (1988), p. 385–398.
- [2] A. D. Aleksandrov, Certain estimates for the Dirichlet problem. Dokl. Akad. Nauk SSSR 134, p. 1001–1004; translated as Soviet Math. Dokl. 1, p. 1151–1154 (1961).
- [3] A. D. Aleksandrov, Uniqueness conditions and bounds for the solution of the Dirichlet problem, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 18, p. 5-29 (1963).
- [4] A.D. Alexandrov, The impossibility of general estimates for solutions and of uniqueness for linear equations with norms weaker than in L^n , Vestnik Leningrad University, 21, (1966), 5–10. Amer. Math. Soc. Translations (2) 68, 162–168, (1968).
- D. Aronson, Non-negative solutions of linear parabolic equations, Ann. Sci. Norm. Sup. 22 (1968), 607-694.
- [6] K. Astala, T. Iwaniec and G. Martin, Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane. J. Reine Angew. Math. 591 (2006), 49-74.
- [7] I. J. Bakelman, On the theory of quasilinear elliptic equations. Sibirsk. Mat. Z, 179–186 (1961).
- [8] J. Bastero, M. Milman and F. Ruiz.: A note on $L(\infty, q)$ spaces and Sobolev embeddings, Indiana Univ. Math. J. 52(5) (2003), 1215–1230.
- [9] A Biswas and J. Lőrinczi, Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for non-local Schrödinger equations with exterior conditions, arXiv:1711.09267

- [10] H. Brezis, and S., Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5 (1980), p. 773–789.
- [11] X. Cabré, On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Comm. Pure Appl. Math. 48 (1995), p. 539–570.
- [12] X. Cabré, Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: a survey. Chin. Ann. Math. Ser. B 38 (2017), p. 201–214.
- [13] L. Caffarelli and X. Cabré, Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, RI, 1995.
- [14] D. Cassani, B. Ruf and C. Tarsi, Best constants in a borderline case of second-order Moser type inequalities. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), p. 73–93.
- [15] A. Cianchi, Symmetrization and second-order Sobolev inequalities. Ann. Mat. Pura Appl. 183 (2004), p. 45–77.
- [16] A. Cianchi and V. Maz'ya, Sobolev inequalities in arbitrary domains. Adv. Math. 293 (2016), p. 644–696.
- [17] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. Springer, 1983.
- [18] L. Grafakos, Classical Fourier analysis. Springer, 2008.
- [19] Q. Han and F. Lin, Elliptic partial differential equations. Courant Lecture Notes in Mathematics, American Mathematical Society, Providence, RI, 1997.
- [20] J. Jost, Partial differential equations. Translated and revised from the 1998 German original by the author. Graduate Texts in Mathematics, 214. Springer-Verlag, New York, 2002.
- [21] J. Lierl and S. Steinerberger, A Local Faber-Krahn inequality and Applications to Schrodinger's Equation, Comm. PDE 43, p. 66–81 (2018)
- [22] M. Milman and E. Pustylnik: On sharp higher order Sobolev embeddings, Comm. Cont. Math. 6 (2004), 495-511.
- [23] M. Milman, BMO: oscillations, self-improvement, Gagliardo coordinate spaces, and reverse Hardy inequalities. Harmonic analysis, partial differential equations, complex analysis, Banach spaces, and operator theory. Vol. 1, 233–274, Assoc. Women Math. Ser., 4, Springer, 2016.
- [24] M. Milman, Addendum to "BMO: Oscillations, Self Improvement, Gagliardo Coordinate Spaces and Reverse Hardy Inequalities", arXiv:1806.08275
- [25] J. Moser, A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1970/71), 1077-1092.
- [26] F. Làzaro Pérez, A note on extreme cases of Sobolev embeddings. J. Math. Anal. Appl. 320 (2006), 973–982.
- [27] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche. Ann. Mat. Pura Appl. (4) 74 1966, p. 15–30.
- [28] C. Pucci, Operatori ellittici estremanti, Ann. Mat. Pura. Appl., (4), 72, (1966), p. 141–170.
- [29] M. Rachh and S. Steinerberger, On the location of maxima of solutions of Schroedinger's equation, Comm. Pure Appl. Math, Vol. 71, 1109–1122 (2018).
- [30] S. Steinerberger, Lower bounds on nodal sets of eigenfunctions via the heat flow. Comm. Partial Differential Equations 39 (2014), no. 12, 2240–2261.
- [31] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 697–718.
- [32] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967) pp. 473–483.
- [33] K. Tso, On an Aleksandrov-Bakelman type maximum principle for second-order parabolic equations. Comm. Partial Differential Equations 10 (1985), no. 5, 543–553.
- [34] J. Xiao and Zh. Zhai, Zh. Fractional Sobolev, Moser-Trudinger Morrey-Sobolev inequalities under Lorentz norms. Problems in mathematical analysis. No. 45. J. Math. Sci. (N.Y.) 166 (2010), no. 3, 357–376.

Department of Mathematics, Yale University $E\text{-}mail\ address:\ \texttt{stefan.steinerberger@yale.edu}$