
ar
X

iv
:1

80
4.

09
33

2v
2 

 [
m

at
h.

C
O

] 
 1

9 
O

ct
 2

01
8

Spanning trees with at most 4 leaves in K1,5-free graphs

Yuan Chen∗

School of Mathematics and Computer Science

Wuhan Textile University

1 Fangzhi Road, Wuhan 430073, P.R. China

Pham Hoang Ha†

Department of Mathematics

Hanoi National University of Education

136 XuanThuy Street, Hanoi, Vietnam

Dang Dinh Hanh‡

Department of Mathematics

Hanoi Architectural University

Km10 NguyenTrai Street, Hanoi, Vietnam

Abstract

In 2009, Kyaw proved that every n-vertex connected K1,4-free graph G with σ4(G) ≥
n− 1 contains a spanning tree with at most 3 leaves. In this paper, we prove an analogue
of Kyaw’s result for connected K1,5-free graphs. We show that every n-vertex connected
K1,5-free graph G with σ5(G) ≥ n − 1 contains a spanning tree with at most 4 leaves.
Moreover, the degree sum condition “σ5(G) ≥ n− 1” is best possible.
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1 Introduction

In this paper, we only consider finite simple graphs. Let G be a graph with vertex set V (G)
and edge set E(G). For any vertex v ∈ V (G), we use NG(v) and dG(v) (or N(v) and d(v) if
there is no ambiguity) to denote the set of neighbors of v and the degree of v in G, respectively.
For any X ⊆ V (G), we denote by |X| the cardinality of X. We define N(X) =

⋃

x∈X

N(x)

and d(X) =
∑

x∈X

d(x). For k ≥ 1, we let Nk(X) = {x ∈ V (G) | |N(x) ∩ X| = k} and

N≥k(X) = {x ∈ V (G) | |N(x)∩X| ≥ k}. We use G−X to denote the graph obtained from G
by deleting the vertices in X together with their incident edges. The subgraph of G induced
by X is denoted by G[X]. We define G− uv to be the graph obtained from G by deleting the
edge uv ∈ E(G), and G+ uv to be the graph obtained from G by adding an edge uv between
two non-adjacent vertices u and v of G. We write A := B to rename B as A.

A subset X ⊆ V (G) is called an independent set of G if no two vertices of X are adjacent
in G. The maximum size of an independent set in G is denoted by α(G). For k ≥ 1, we define

σk(G) = min{
k
∑

i=1

d(vi) | {v1, . . . , vk} is an independent set in G}. For r ≥ 1, a graph is said

to be K1,r-free if it does not contain K1,r as an induced subgraph. A K1,3-free graph is also
called a claw-free graph. We use Kn to denote the complete graph on n vertices.

Let T be a tree. A vertex of degree one is a leaf of T and a vertex of degree at least three
is a branch vertex of T . For two distinct vertices u, v of T , we denote by PT [u, v] the unique
path in T connecting u and v and denote by dT [u, v] the distance between u and v in T . We
define the orientation of PT [u, v] is from u to v. We refer to [4] for terminology and notation
not defined here.

There are several well-known conditions (such as the independence number conditions and
the degree sum conditions) ensuring that a graph G contains a spanning tree with a bounded
number of leaves or branch vertices (see the survey paper [12] and the references cited therein
for details). Win [13] obtained a sufficient condition related to the independence number for
k-connected graphs, which confirms a conjecture of Las Vergnas [9]. Broersma and Tuinstra [1]
gave a degree sum condition for a connected graph to contain a spanning tree with at most m
leaves.

Theorem 1.1 (Win [13]) Let G be a k-connected graph and let m ≥ 2. If α(G) ≤ k +m− 1,
then G has a spanning tree with at most m leaves.

Theorem 1.2 (Broerma and Tuinstra [1]) Let G be a connected graph with n vertices and let

m ≥ 2. If σ2(G) ≥ n−m+ 1, then G has a spanning tree with at most m leaves.

Kano et al. [6] presented a degree sum condition for a connected claw-free graph to have a
spanning tree with at most m leaves, which generalizes a result of Matthews and Sumner [11]
and a result of Gargano et al. [5]. Matsuda, Ozeki and Yamashita [10] and Chen, Li and Xu [2]
considered the sufficient conditions for a connected claw-free graph to have a spanning tree
with few branch vertices or few leaves, respectively.

Theorem 1.3 (Kano et al. [6]) Let G be a connected claw-free graph with n vertices and let

m ≥ 2. If σm+1(G) ≥ n−m, then G has a spanning tree with at most m leaves.
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Theorem 1.4 (Matsuda, Ozeki and Yamashita [10]) Let G be a connected claw-free graph

with n vertices. If σ5(G) ≥ n − 2, then G contains a spanning tree with at most one branch

vertex.

Theorem 1.5 (Chen, Li and Xu [2]) Let G be a k-connected claw-free graph with n vertices.

If σk+3(G) ≥ n− k, then G contains a spanning tree with at most 3 leaves.

For connected K1,4-free graphs, Kyaw [7, 8] obtained the following two sharp results.

Theorem 1.6 (Kyaw [7]) Let G be a connected K1,4-free graph with n vertices. If σ4(G) ≥
n− 1, then G contains a spanning tree with at most 3 leaves.

Theorem 1.7 (Kyaw [8]) Let G be a connected K1,4-free graph with n vertices.

(i) If σ3(G) ≥ n, then G has a hamiltonian path.

(ii) If σm+1(G) ≥ n − m
2

for some integer m ≥ 3, then G has a spanning tree with at most

m leaves.

Chen, Chen and Hu [3] considered the degree sum condition for a k-connected K1,4-free
graph to contain a spanning tree with at most 3 leaves.

Theorem 1.8 (Chen, Chen and Hu [3]) Let G be a k-connected K1,4-free graph with n vertices

and let k ≥ 2. If σk+3(G) ≥ n+ 2k − 2, then G has a spanning tree with at most 3 leaves.

In this paper, we further consider connected K1,5-free graphs. We give a sufficient condition
for a connected K1,5-free graph to have a spanning tree with few leaves.

Theorem 1.9 Let G be a connected K1,5-free graph with n vertices. If σ5(G) ≥ n − 1, then
G contains a spanning tree with at most 4 leaves.

It is easy to see that if a tree has at most k leaves (k ≥ 2), then it has at most k−2 branch
vertices. Therefore, we immediately obtain the following corollary from Theorem 1.9.

Corollary 1.10 Let G be a connected K1,5-free graph with n vertices. If σ5(G) ≥ n− 1, then
G contains a spanning tree with at most 2 branch vertices.

We end this section by constructing an example to show that the degree sum condition
“σ5(G) ≥ n− 1” in Theorem 1.9 is sharp. For m ≥ 1, let D1,D2,D3,D4,D5 be vertex-disjoint

copies of Km and let xy be an edge such that neither x nor y is contained in
5
⋃

i=1

V (Di). Join

x to all the vertices in D1 ∪D2 ∪D3 and join y to all the vertices in D4 ∪D5. The resulting
graph is denoted by G. Then it is easy to check that G is a connected K1,5-free graph with
n = 5m+ 2 vertices and σ5(G) = 5m = n− 2. However, every spanning tree of G contains at
least 5 leaves.
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2 Proof of the main result

In this section, we extend the idea of Kyaw in [7] to prove Theorem 1.9. For this purpose,
we need the following lemma.

Lemma 2.1 Let G be a connected graph such that G does not have a spanning tree with at

most 4 leaves, and let T be a maximal tree of G with 5 leaves. Then there does not exist a tree

T ′ in G such that T ′ has at most 4 leaves and V (T ′) = V (T ).

Proof. Suppose for a contradiction that there exists a tree T ′ in G with at most 4 leaves and
V (T ′) = V (T ). Since G has no spanning tree with at most 4 leaves, we see that V (G) −
V (T ′) 6= ∅. Hence there must exist two vertices v and w in G such that v ∈ V (T ′) and
w ∈ N(v) ∩ (V (G)− V (T ′)). Let T1 be the tree obtained from T ′ by adding the vertex w and
the edge vw.

If T1 has 5 leaves, then T1 contradicts the maximality of T (since |V (T1)| = |V (T )|+ 1 >
|V (T )|). So we may assume that T1 has at most 4 leaves. By repeating this process, we can
recursively construct a set of trees {Ti | i ≥ 1} in G such that Ti has at most 4 leaves and
|V (Ti+1)| = |V (Ti)| + 1 for each i ≥ 1. Since G has no spanning tree with at most 4 leaves
and |V (G)| is finite, the process must terminate after a finite number of steps, i.e., there exists
some k ≥ 1 such that Tk+1 is a tree in T with 5 leaves. But this contradicts the maximality
of T . So the lemma holds.

Proof of Theorem 1.9. We prove the theorem by contradiction. Suppose to the contrary
that G contains no spanning tree with at most 4 leaves. Then every spanning tree of G
contains at least 5 leaves. We choose a maximal tree T of G with exactly 5 leaves. Let U =
{u1, u2, u3, u4, u5} be the set of leaves of T . By the maximality of T , we have N(U) ⊆ V (T ).

We consider three cases according to the number of branch vertices in T . (Note that T
contains at most three branch vertices.)

Case 1. T contains two branch vertices.

Let s and t be the two branch vertices in T such that dT (s) = 4 and dT (t) = 3. For each
1 ≤ i ≤ 5, let Bi be the vertex set of the connected component of T −{s, t} containing ui and
let vi be the unique vertex in Bi ∩NT ({s, t}). Without loss of generality, we may assume that
{v1, v2, v3} ⊆ NT (s) and {v4, v5} ⊆ NT (t). For each 1 ≤ i ≤ 5 and x ∈ Bi, we use x− and
x+ to denote the predecessor and the successor of x on PT [s, ui] or PT [t, ui], respectively (if
such a vertex exists). Let s+ and t− be the successor of s and the predecessor of t on PT [s, t],
respectively. Define P := V (PT [s, t])− {s, t}.

For this case, we further choose T such that

(C1) dT [s, t] is as small as possible, and

(C2) subject to (C1),
3
∑

i=1

|Bi| is as large as possible.

Claim 2.2 For all 1 ≤ i, j ≤ 5 and i 6= j, if x ∈ N(uj) ∩ Bi, then x /∈ {ui, vi} and x− /∈
N(U − {uj}).
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Proof. Suppose x ∈ {ui, vi}. Then T ′ := T − viv
−
i + xuj is a tree in G with 4 leaves and

V (T ′) = V (T ), which contradicts Lemma 2.1. So we have x /∈ {ui, vi}.
Next, assume x− ∈ N(U −{uj}). Then there exists some k ∈ {1, 2, 3, 4, 5} − {j} such that

x−uk ∈ E(G). Now, T ′ := T − {viv
−
i , xx

−} + {xuj , x
−uk} is a tree in G with 4 leaves and

V (T ′) = V (T ), also contradicting Lemma 2.1. This proves Claim 2.2.

By Claim 2.2, we know that U is an independent set in G. Since G is K1,5-free, we have
N5(U) = ∅.

Claim 2.3 N(ui) ∩ P = ∅ for each 4 ≤ i ≤ 5.

Proof. Suppose the assertion of the claim is false. Then there exists some vertex x ∈ P such
that xui ∈ E(G) for some i ∈ {4, 5}. Let T ′ := T − tvi + xui, then T ′ is a tree in G with 5
leaves such that V (T ′) = V (T ), T ′ has two branch vertices s and x, dT ′(s) = 4, dT ′(x) = 3
and dT ′ [s, x] < dT [s, t]. But this contradicts the condition (C1). So the claim holds.

Claim 2.4 If P 6= ∅, then
3
∑

i=1

|N(ui) ∩ {x}| ≤ 1 for each x ∈ P .

Proof. Suppose to the contrary that there exists some vertex x ∈ P such that
3
∑

i=1

|N(ui) ∩

{x}| ≥ 2. Then there exist two distinct j, k ∈ {1, 2, 3} such that xuj, xuk ∈ E(G). Let
T ′ := T −{svj , svk}+{xuj , xuk}, then T ′ is a tree in G with 5 leaves such that V (T ′) = V (T ),
T ′ has two branch vertices x and t, dT ′(x) = 4, dT ′(t) = 3 and dT ′ [x, t] < dT [s, t], contradicting
the condition (C1). This completes the proof of Claim 2.4.

Claim 2.5 If P 6= ∅, then N(U) ∩ {s+} = ∅.

Proof. Suppose this is false. Then by Claim 2.3, there exists some i ∈ {1, 2, 3} such that
s+ui ∈ E(G). Now, T ′ := T − ss+ + s+ui is a tree in G with 4 leaves and V (T ′) = V (T ),
which contradicts Lemma 2.1. So the assertion of the claim holds.

Claim 2.6 N(ui) ∩ {s} = ∅ for each 4 ≤ i ≤ 5.

Proof. Suppose sui ∈ E(G) for some i ∈ {4, 5}. If P = ∅, then we have st ∈ E(T ) and
T ′ := T − st+ sui is a tree in G with 4 leaves and V (T ′) = V (T ), contradicting Lemma 2.1.
So we may assume that P 6= ∅ and hence s+ 6= t. By applying Claims 2.2 and 2.3, we deduce
that N(ui) ∩ {s+, v1, v2, v3} = ∅.

Suppose that s+vj ∈ E(G) for some j ∈ {1, 2, 3}. Then T ′ := T − {ss+, svj}+ {sui, s
+vj}

is a tree in G with 4 leaves and V (T ′) = V (T ), which contradicts Lemma 2.1. So we conclude
that N(s+) ∩ {v1, v2, v3} = ∅.

Now, assume there exits two distinct j, k ∈ {1, 2, 3} such that vjvk ∈ E(G). Then by
Claim 2.2, we see that uk 6= vk. Let T ′ := T − {svj , tvi} + {sui, vjvk}, then T ′ is a tree in
G with 5 leaves such that V (T ′) = V (T ), T ′ has two branch vertices s and vk, dT ′(s) = 4,
dT ′(vk) = 3 and dT ′ [s, vk] < dT [s, t], contradicting the condition (C1). Therefore, v1, v2 and v3
are pairwise non-adjacent in G.

But then, {s+, ui, v1, v2, v3} is an independent set and G[{s, s+, ui, v1, v2, v3}] is an induced
K1,5 of G, again a contradiction. This proves Claim 2.6.
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Claim 2.7 If
5
∑

i=1

|N(ui) ∩ {t}| ≥ 3, then P 6= ∅.

Proof. Suppose for a contradiction that P = ∅. Then we have st ∈ E(G). Since
5
∑

i=1

|N(ui) ∩

{t}| ≥ 3, there exists some j ∈ {1, 2, 3} such that tuj ∈ E(G). Let T ′ := T − st + tuj, then
T ′ is a tree in G with 4 leaves and V (T ′) = V (T ), which contradicts Lemma 2.1. So the claim
holds.

Claim 2.8 N4(U) = ∅.

Proof. Suppose to the contrary that there exists some vertex x ∈ N4(U). Then by Claims 2.3
and 2.6, we have x ∈ B1 ∪B2 ∪B3 ∪B4 ∪B5 ∪ {t}.

First, suppose x ∈ Bi for some 1 ≤ i ≤ 5. By Claim 2.2, we know that x− /∈ N(U). Then
(N(x) ∩ U) ∪ {x−} is an independent set and G[(N(x) ∩ U) ∪ {x, x−}] is an induced K1,5 of
G, contradicting the assumption that G is K1,5-free.

So we may assume that x = t. Then by Claim 2.7, we conclude that P 6= ∅ and hence
t− 6= s. It follows from Claim 2.3 that N(ui) ∩ {t−} = ∅ for each 4 ≤ i ≤ 5. Suppose that
t−uj ∈ E(G) for some j ∈ {1, 2, 3}. Since t ∈ N4(U), there exists some k ∈ {1, 2, 3}−{j} such
that tuk ∈ E(G). Let T ′ := T−{svj, tt

−}+{tuk, t
−uj}, then T ′ is a tree in G with 4 leaves and

V (T ′) = V (T ), which contradicts Lemma 2.1. Therefore, we deduce that N(U) ∩ {t−} = ∅.
But then, (N(t) ∩ U) ∪ {t−} is an independent set and G[(N(t) ∩ U) ∪ {t, t−}] is an induced
K1,5 of G, again a contradiction. This completes the proof of Claim 2.8.

Claim 2.9 (N3(U)−N(ui)) ∩Bi = ∅ for each 1 ≤ i ≤ 5.

Proof. Suppose this is false. Then there exists some vertex x ∈ (N3(U)−N(ui))∩Bi for some
1 ≤ i ≤ 5. By applying Claim 2.2, we have x /∈ {ui, vi} and x−, x+ /∈ N(U − {ui}).

Suppose that x−x+ ∈ E(G). Since x ∈ N3(U) − N(ui), there must exist two distinct
j, k ∈ {1, 2, 3, 4, 5} − {i} such that xuj, xuk ∈ E(G). Then T ′ := T − {vjv

−
j , xx

−, xx+} +

{xuj , xuk, x
−x+} is a tree in G with 4 leaves and V (T ′) = V (T ), contradicting Lemma 2.1.

Hence x−x+ /∈ E(G).
Now, (N(x) ∩ U) ∪ {x−, x+} is an independent set and G[(N(x) ∩ U) ∪ {x, x−, x+}] is an

induced K1,5 of G, giving a contradiction. So the assertion of the claim holds.

Claim 2.10 N(uj) ∩Bi = ∅ for all 4 ≤ i ≤ 5 and 1 ≤ j ≤ 3. In particular, N3(U) ∩N(ui) ∩
Bi = ∅ for each 4 ≤ i ≤ 5.

Proof. Suppose the assertion of the claim is false. Then there exists some vertex x ∈ Bi such
that xuj ∈ E(G) for some i ∈ {4, 5} and j ∈ {1, 2, 3}. By Claim 2.2, we have x /∈ {ui, vi}. Let
T ′ := T − xx− + xuj , and let B′

k be the vertex set of the connected component of T ′ − {s, t}
containing uk for each 1 ≤ k ≤ 3. It is easy to check that T ′ is a tree in G with 5 leaves such that
V (T ′) = V (T ), T ′ has two branch vertices s and t, dT ′(s) = 4, dT ′(t) = 3, dT ′ [s, t] = dT [s, t]

and
3
∑

k=1

|B′
k| =

3
∑

k=1

|Bk| + |V (PT [x, ui])| >
3
∑

k=1

|Bk|. But this contradicts the condition (C2).

This proves Claim 2.10.

Claim 2.11 |N3(U) ∩N(ui) ∩Bi| ≤ 1 for each 1 ≤ i ≤ 3.
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Proof. Suppose for a contradiction that there exist two distinct vertices x, y ∈ N3(U)∩N(ui)∩
Bi for some i ∈ {1, 2, 3}. Without loss of generality, we may assume that x ∈ V (PT [s, y]).
By Claim 2.2, we have x, y /∈ {ui, vi}, x

− /∈ N(U) and x+ /∈ N(U − {ui}). In particular,
x+ 6= y. Since x, y ∈ N3(U) ∩ N(ui), there exist two distinct j, k ∈ {1, 2, 3, 4, 5} − {i} such
that xuj , yuk ∈ E(G). We may assume that x−x+, x+ui /∈ E(G); for otherwise,

T ′ :=

{

T − {svi, xx
−, xx+, yy+}+ {xui, xuj , x

−x+, yuk}, if x−x+ ∈ E(G),
T − {svi, xx

+, yy−}+ {xuj , x
+ui, yuk}, if x+ui ∈ E(G),

is a tree in G with 4 leaves and V (T ′) = V (T ), which contradicts Lemma 2.1. But then,
(N(x) ∩ U) ∪ {x−, x+} is an independent set and G[(N(x) ∩ U) ∪ {x, x−, x+}] is an induced
K1,5 of G, again a contradiction. So the claim holds.

Claim 2.12 For each 1 ≤ i ≤ 3, if uivi ∈ E(G), then N3(U) ∩N(ui) ∩Bi = ∅.

Proof. Suppose to the contrary that uivi ∈ E(G) and there exists some vertex x ∈ N3(U) ∩
N(ui)∩Bi for some i ∈ {1, 2, 3}. By Claim 2.2, we have x 6= vi. Since x ∈ N3(U)∩N(ui), there
exists some j ∈ {1, 2, 3, 4, 5}−{i} such that xuj ∈ E(G). Let T ′ := T−{svi, xx

−}+{uivi, xuj},
then T ′ is a tree in G with 4 leaves and V (T ′) = V (T ), contradicting Lemma 2.1. This
completes the proof of Claim 2.12.

Claim 2.13 For each 1 ≤ i ≤ 3, if sui ∈ E(G), then N3(U) ∩N(ui) ∩Bi = ∅.

Proof. For the sake of convenience, we may assume by symmetry that i = 1. Suppose the
assertion of the claim is false. Then there exists some vertex x ∈ N3(U) ∩ N(u1) ∩ B1. By
applying Claims 2.2 and 2.12, we know that x /∈ {u1, v1} and N(u1) ∩ {v1, v2, v3} = ∅.

Suppose v1vj ∈ E(G) for some j ∈ {2, 3}. Then T ′ := T − {sv1, svj} + {su1, v1vj} is
a tree in G with 4 leaves and V (T ′) = V (T ), which contradicts Lemma 2.1. So we have
v1v2, v1v3 /∈ E(G).

Next, assume that v2v3 ∈ E(G). Then u2 6= v2 and u3 6= v3 by Claim 2.2. If there exists
some j ∈ {2, 3} such that xuj ∈ E(G), then T ′ := T − {sv2, sv3} + {v2v3, xuj} is a tree in G
with 4 leaves and V (T ′) = V (T ), contradicting Lemma 2.1. Hence xu2, xu3 /∈ E(G). Since
x ∈ N3(U) ∩ N(u1), we conclude that xu4, xu5 ∈ E(G). Let T ′ := T − {sv2, tt

−, xx−} +
{su1, v2v3, xu4}. If P = ∅, then t− = s, and T ′ is a tree in G with 4 leaves and V (T ′) = V (T ),
giving a contradiction. So we deduce that P 6= ∅. But then, T ′ is a tree in G with 5 leaves
such that V (T ′) = V (T ), T ′ has two branch vertices s and v3, dT ′(s) = 4, dT ′(v3) = 3 and
dT ′ [s, v3] < dT [s, t], contradicting the condition (C1). Therefore, v1, v2 and v3 are pairwise
non-adjacent in G.

We now consider the vertex s+. We will show that N(s+) ∩ {u1, v1, v2, v3} = ∅.
We first prove that s+u1 /∈ E(G). Suppose this is false. Then by Claim 2.5, we see that

P = ∅ and hence s+ = t. Let T ′ := T − st + tu1, then T ′ is a tree in G with 4 leaves and
V (T ′) = V (T ), which contradicts Lemma 2.1.

We then have s+v1 /∈ E(G); for otherwise, T ′ := T − {ss+, sv1} + {su1, s
+v1} is a tree in

G with 4 leaves and V (T ′) = V (T ), also contradicting Lemma 2.1.
Finally, we show that s+v2, s

+v3 /∈ E(G). Suppose not, and let s+vj ∈ E(G) for some
j ∈ {2, 3}. If there exists some k ∈ {4, 5} such that xuk ∈ E(G), then T ′ := T − {ss+, svj}+
{s+vj , xuk} is a tree in G with 4 leaves and V (T ′) = V (T ), which contradicts Lemma 2.1.
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Therefore, we have xu4, xu5 /∈ E(G). Since x ∈ N3(U) ∩ N(u1), we deduce that xu2, xu3 ∈
E(G). Let T ′ := T − {ss+, svj , xx

−, xx+}+ {su1, s
+vj , xu2, xu3}, then T ′ is a tree in G with

4 leaves and V (T ′) = V (T ), again a contradiction. Hence N(s+) ∩ {u1, v1, v2, v3} = ∅.
Now, {s+, u1, v1, v2, v3} is an independent set and G[{s, s+, u1, v1, v2, v3}] is an induced

K1,5 of G, giving a contradiction. So the assertion of the claim holds.

By Claim 2.2, {ui}, N(ui) ∩ Bi, (N(U − {ui}))
− ∩ Bi and (N2(U) − N(ui)) ∩ Bi are

pairwise disjoint subsets in Bi for each 1 ≤ i ≤ 5, where (N(U − {ui}))
− ∩ Bi = {x− | x ∈

N(U − {ui}) ∩ Bi}. Recall that N5(U) = N4(U) = (N3(U) − N(ui)) ∩ Bi = ∅ (for each
1 ≤ i ≤ 5) by Claims 2.8 and 2.9. Then for each 1 ≤ i ≤ 3, we conclude that

|Bi| ≥ 1 + |N(ui) ∩Bi|+ |(N(U − {ui}))
− ∩Bi|+ |(N2(U)−N(ui)) ∩Bi|

= 1 + |N(ui) ∩Bi|+ |N(U − {ui}) ∩Bi|+ |(N2(U)−N(ui)) ∩Bi|

= 1 +

5
∑

j=1

|N(uj) ∩Bi| − |N3(U) ∩N(ui) ∩Bi|

≥
5
∑

j=1

|N(uj) ∩Bi|+ |N(ui) ∩ {s}|, (1)

where the last inequality follows from Claims 2.11 and 2.13. Similarly, for each 4 ≤ i ≤ 5, we
have

|Bi| ≥ 1 + |N(ui) ∩Bi|+ |(N(U − {ui}))
− ∩Bi|+ |(N2(U)−N(ui)) ∩Bi|

= 1 + |N(ui) ∩Bi|+ |N(U − {ui}) ∩Bi|+ |(N2(U)−N(ui)) ∩Bi|

= 1 +

5
∑

j=1

|N(uj) ∩Bi| − |N3(U) ∩N(ui) ∩Bi|

= 1 +

5
∑

j=1

|N(uj) ∩Bi|+ |N(ui) ∩ {s}|, (2)

where the last equality follows from Claims 2.6 and 2.10.
For each 1 ≤ i ≤ 5, we define di = |N(ui) ∩ P |. Then d4 = d5 = 0 by Claim 2.3. By

applying Claim 2.4, we know that N(u1) ∩ P,N(u2) ∩ P and N(u3) ∩ P are pairwise disjoint.
Therefore,

|P | ≥
5
∑

i=1

di =

5
∑

i=1

|N(ui) ∩ P |.

Moreover, if P 6= ∅, then by Claim 2.5, we see that N(U) ∩ {s+} = ∅ and hence

|P | ≥ 1 +

5
∑

i=1

di = 1 +

5
∑

i=1

|N(ui) ∩ P |.

It follows from Claim 2.8 that
5
∑

i=1

|N(ui) ∩ {t}| ≤ 3. If
5
∑

i=1

|N(ui) ∩ {t}| ≤ 2, then

|V (PT [s, t])| = 2 + |P | ≥
5
∑

i=1

|N(ui) ∩ {t}|+
5
∑

i=1

|N(ui) ∩ P |.
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If
5
∑

i=1

|N(ui) ∩ {t}| = 3, then by Claim 2.7, we deduce that P 6= ∅. This implies that

|V (PT [s, t])| = 2 + |P | ≥ 2 +

(

1 +

5
∑

i=1

|N(ui) ∩ P |

)

=

5
∑

i=1

|N(ui) ∩ {t}|+
5
∑

i=1

|N(ui) ∩ P |.

In both cases, we have

|V (PT [s, t])| ≥
5
∑

i=1

|N(ui) ∩ {t}|+
5
∑

i=1

|N(ui) ∩ P |. (3)

Note that N(U) ⊆ V (T ). By (1), (2) and (3), we conclude that

|V (T )| =
3
∑

i=1

|Bi|+
5
∑

i=4

|Bi|+ |V (PT [s, t])|

≥
3
∑

i=1





5
∑

j=1

|N(uj) ∩Bi|+ |N(ui) ∩ {s}|



 +

5
∑

i=4



1 +

5
∑

j=1

|N(uj) ∩Bi|+ |N(ui) ∩ {s}|





+

(

5
∑

i=1

|N(ui) ∩ {t}| +
5
∑

i=1

|N(ui) ∩ P |

)

= 2 +
5
∑

i=1

5
∑

j=1

|N(uj) ∩Bi|+
5
∑

i=1

|N(ui) ∩ {s, t}|+
5
∑

i=1

|N(ui) ∩ P |

=

5
∑

j=1

|N(uj) ∩ V (T )|+ 2

=

5
∑

j=1

d(uj) + 2

= d(U) + 2.

Since U is an independent set in G, we have

n− 1 ≤ σ5(G) ≤ d(U) ≤ |V (T )| − 2 ≤ n− 2,

a contradiction.

Case 2. T contains only one branch vertex.

Let r be the unique branch vertex in T with dT (r) = 5 and let NT (r) = {v1, v2, v3, v4, v5}.
Since G is K1,5-free, there exist two distinct i, j ∈ {1, 2, 3, 4, 5} such that vivj ∈ E(G). Let
T ′ := T − rvi+vivj. If vj is a leaf of T , then T ′ is a tree in G with 4 leaves and V (T ′) = V (T ),
which contradicts Lemma 2.1. So we may assume that vj has degree two in T . Then T ′

is a tree in G with 5 leaves such that V (T ′) = V (T ), T ′ has two branch vertices r and vj ,
dT ′(r) = 4 and dT ′(vj) = 3. By the same argument as in the proof of Case 1, we can also
derive a contradiction.

Case 3. T contains three branch vertices.
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Let s,w and t be the three branch vertices in T such that dT (s) = dT (w) = dT (t) = 3 and
w ∈ V (PT [s, t]). For each 1 ≤ i ≤ 5, let Bi be the vertex set of the connected component of
T − {s,w, t} containing ui and let vi be the unique vertex in Bi ∩NT ({s,w, t}). Without loss
of generality, we may assume that {v1, v2} ⊆ NT (s), {v3, v4} ⊆ NT (t) and v5 ∈ NT (w). For
each 1 ≤ i ≤ 5 and x ∈ Bi, we use x− to denote the predecessor of x on PT [s, ui] or PT [t, ui]
or PT [w, ui]. Define P := V (PT [s, t])− {s,w, t}.

For this case, we further choose T such that

(C3) dT [s, t] is as small as possible.

It is easy to check that the following claim still holds in this case. (The proof is exactly
the same as that of Claim 2.2.)

Claim 2.14 For all 1 ≤ i, j ≤ 5 and i 6= j, if x ∈ N(uj) ∩ Bi, then x /∈ {ui, vi} and

x− /∈ N(U − {uj}).

By applying Claim 2.14, we deduce that U is an independent set in G.

Claim 2.15 N(ui) ∩ P = ∅ for each 1 ≤ i ≤ 4.

Proof. Suppose to the contrary that there exists some vertex x ∈ P such that xui ∈ E(G) for
some 1 ≤ i ≤ 4. Without loss of generality, we may assume that x ∈ V (PT [s,w])−{s,w}. Let
T ′ := T −viv

−
i +xui. If i ∈ {1, 2}, then T ′ is a tree in G with 5 leaves such that V (T ′) = V (T ),

T ′ has three branch vertices x,w and t, dT ′(x) = dT ′(w) = dT ′(t) = 3, w ∈ V (PT ′ [x, t]) and
dT ′ [x, t] < dT [s, t], contradicting the condition (C3). Hence we have i ∈ {3, 4}. Now, T ′

is a tree in G with 5 leaves such that V (T ′) = V (T ), T ′ has three branch vertices s, x and
w, dT ′(s) = dT ′(x) = dT ′(w) = 3, x ∈ V (PT ′ [s,w]) and dT ′ [s,w] < dT [s, t]. But this also
contradicts the condition (C3). So the claim holds.

Claim 2.16 N(ui)∩{w, t} = ∅ for each 1 ≤ i ≤ 2 and N(uj)∩{s,w} = ∅ for each 3 ≤ j ≤ 4.

Proof. Suppose there exists some i ∈ {1, 2} such that wui ∈ E(G) or tui ∈ E(G). Then

T ′ :=

{

T − svi + wui, if wui ∈ E(G),
T − svi + tui, if tui ∈ E(G),

is a tree in G with 5 leaves such that V (T ′) = V (T ) and T ′ has two branch vertices w and t.
By the same argument as in the proof of Case 1, we can obtain a contradiction. Therefore,
N(ui) ∩ {w, t} = ∅ for each 1 ≤ i ≤ 2.

By a similar argument as above (by exchanging the roles of s and t), we can also show that
N(uj) ∩ {s,w} = ∅ for each 3 ≤ j ≤ 4. This completes the proof of Claim 2.16.

Claim 2.17 N(u5) ∩ {s, t} = ∅.

Proof. Suppose for a contradiction that N(u5) ∩ {s, t} 6= ∅. Then we have su5 ∈ E(G) or
tu5 ∈ E(G). Define

T ′ :=

{

T − wv5 + su5, if su5 ∈ E(G),
T − wv5 + tu5, if tu5 ∈ E(G).

Now, T ′ is a tree in G with 5 leaves such that V (T ′) = V (T ) and T ′ has two branch vertices s
and t. By the same argument as in the proof of Case 1, we can derive a contradiction. So the
assertion of the claim holds.
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Claim 2.18 N≥2(U − {ui}) ∩Bi = ∅ for each 1 ≤ i ≤ 5.

Proof. Suppose the assertion of the claim is false. Then there exists some vertex x ∈ N≥2(U −
{ui})∩Bi for some 1 ≤ i ≤ 5. By Claim 2.14, we see that x /∈ {ui, vi}. Since x ∈ N≥2(U−{ui}),
there must exist two distinct j, k ∈ {1, 2, 3, 4, 5}−{i} such that xuj , xuk ∈ E(G). By symmetry
between j and k, we can always choose j such that v−i 6= v−j . Let T ′ := T − {viv

−
i , vjv

−
j } +

{xuj , xuk} and let y := {s,w, t} − {v−i , v
−
j }. Then T ′ is a tree in G with 5 leaves such that

V (T ′) = V (T ), T ′ has two branch vertices x and y, dT ′(x) = 4 and dT ′(y) = 3. By the same
argument as in the proof of Case 1, we can deduce a contradiction. This proves Claim 2.18.

By applying Claim 2.14, we conclude that {ui}, N(ui) ∩Bi and (N(U − {ui}))
− ∩Bi are

pairwise disjoint subsets in Bi for each 1 ≤ i ≤ 5, where (N(U − {ui}))
− ∩ Bi = {x− | x ∈

N(U − {ui}) ∩ Bi}. It follows from Claims 2.15–2.18 that N5(U) = N4(U) = N3(U) =
(N2(U)−N(ui)) ∩Bi = ∅ (for each 1 ≤ i ≤ 5). Therefore, for each 1 ≤ i ≤ 5, we have

|Bi| ≥ 1 + |N(ui) ∩Bi|+ |(N(U − {ui}))
− ∩Bi|

= 1 + |N(ui) ∩Bi|+ |N(U − {ui}) ∩Bi|

= 1 +

5
∑

j=1

|N(uj) ∩Bi|. (4)

By Claims 2.16 and 2.17, we know that

5
∑

i=1

|N(ui) ∩ {s,w, t}| =
2
∑

i=1

|N(ui) ∩ {s,w, t}| +
4
∑

i=3

|N(ui) ∩ {s,w, t}| + |N(u5) ∩ {s,w, t}|

≤ 2 + 2 + 1

= 5.

On the other hand, by Claim 2.15, we have

5
∑

i=1

|N(ui) ∩ P | = |N(u5) ∩ P | ≤ |P |.

Hence

|V (PT [s, t])| = 3 + |P | = 5 + |P | − 2 ≥
5
∑

i=1

|N(ui) ∩ {s,w, t}| +
5
∑

i=1

|N(ui) ∩ P | − 2. (5)

Since N(U) ⊆ V (T ) and by (4) and (5), we deduce that

|V (T )| =
5
∑

i=1

|Bi|+ |V (PT [s, t])|

≥
5
∑

i=1



1 +
5
∑

j=1

|N(uj) ∩Bi|



+

(

5
∑

i=1

|N(ui) ∩ {s,w, t}| +
5
∑

i=1

|N(ui) ∩ P | − 2

)
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= 5 +

5
∑

i=1

5
∑

j=1

|N(uj) ∩Bi|+
5
∑

i=1

|N(ui) ∩ {s,w, t}| +
5
∑

i=1

|N(ui) ∩ P | − 2

=

5
∑

j=1

|N(uj) ∩ V (T )|+ 3

=

5
∑

j=1

d(uj) + 3

= d(U) + 3.

This implies that

σ5(G) ≤ d(U) ≤ |V (T )| − 3 ≤ n− 3,

contradicting the assumption that σ5(G) ≥ n− 1. This completes the proof of Theorem 1.9.
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