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REGULAR S-ACTS WITH PRIMITIVE NORMAL AND

ANTIADDITIVE THEORIES

STEPANOVA A.A. 1, BATURIN G.I.

Abstract. In this work we investigate the commutative monoids over which the
axiomatizable class of regular S-acts is primitive normal and antiadditive. We prove
that the primitive normality of an axiomatizable class of regular S-acts over the com-
mutative monoid S is equivalent to the antiadditivity of this class and it is equivalent
to a linearly order of semigroup R such that an S-act SR is a maximum under the
inclusion regular subact of S-act SS.

1. Introduction

In [1] the primitive normal, primitive connected and additive theories of S-acts are
studied. In particular it is proved that a class of all S-acts is primitive normal if
and only if S is a linearly ordered monoid. In [2] on a language of a structure of
primitive equivalences there are described S-acts with primitive normal, additive and
antiadditive theories. It is shown that the class of all S-acts is antiadditive only for a
linearly ordered monoid S, that is the class of all S-acts is antiadditive if and only if this
class is primitive normal. In this work we investigate the commutative monoids over
which the axiomatizable class of regular S-acts is primitive normal and antiadditive.
We prove that the primitive normality of an axiomatizable class of regular S-acts over
the commutative monoid S is equivalent to the antiadditivity of this class and it is
equivalent to a linearly order of semigroup R such that an S-act SR is a maximum
under the inclusion regular subact of S-act SS.

Let T be a complete first order theory of a language L. We fix some large much
saturated model C of T and we suppose that all considered models of the theory are
its elementary submodels. All elements, tuples of elements and sets will be taken from
C. The tuples of elements 〈a0, . . . , an−1〉 and variables 〈x0, . . . , xn−1〉 will be denoted
by ā and x̄ accordingly. Let s̄ = 〈s0, . . . , sn−1〉 and t̄ = 〈t0, . . . , tk−1〉 be the tuples of
variables or elements, A be a set. We will often write s̄ ∈ A instead s0, . . . , sn−1 ∈ A,
s̄(i) instead si, ∃s̄ instead ∃s0 . . .∃sn−1. The set {s0, . . . , sn−1, t0, . . . , tk−1} we will
denote by s̄ ∪ t̄. We will denote the length of a tuple s̄ by |s̄|, i.e. |s̄| = n. If Φ(x̄, ȳ)
is a formula of language L, A is a model of the theory T , ā is a tuple of elements from
A and |ā| = |ȳ|, then Φ(A, ā) will denote the set {b̄ | A |= Φ(b̄, ā)}.

The formula of a form

∃x̄(Φ0 ∧ · · · ∧ Φk),

where Φi are the atomic formulas (0 6 i 6 k), is called a primitive formula.
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Let Φ(x̄, ȳ) be a primitive formula of language L, ā, b̄ be the tuples of elements and
|ā| = |b̄| = |ȳ|. The set Φ(C, ā) is called a primitive set. The sets Φ(C, ā) and Φ(C, b̄)
are called the primitive copies.

A theory T is called primitive normal if for each primitive copies X, Y we have
X = Y or X ∩ Y = ∅. An axiomatizable class of structures K of language L is called
primitive normal if the theory of this class is primitive normal. It is known (see [3])
that the Cartesian closed stable class of structures is primitive normal.

An equivalence α on some set X of n-tuples of elements from C, which is defined in
C by some primitive formula Φ(x̄1, x̄2), is called a primitive equivalence. The domain
X of such equivalence α is defined in C by primitive formula Φ(x̄, x̄) and is denoted by
dom(α). If ā ∈ X then α-class which contains ā will be denoted by ā/α.

A set X is called ∆-primitive if there exists a family S of primitive sets such that

X =
⋂

{Y | Y ∈ S}.

A set of form X = X∗/α = {ā/α | ā ∈ X∗}, where X∗ is ∆-primitive set, α is primitive
equivalence and X∗ ⊆ dom(α), is called a generalized primitive set. A set X∗ is called
a basis and α is called a generative equivalence of generalized primitive set X .

The theory T is called antiadditive if it is primitive normal and there is no infinite
generalized primitive set which is an Abelian group under the defined by primitive
formula operation. An axiomatizable class of structures K of language L is called
antiadditive if the theory of this class is antiadditive.

Let us remind some concepts from the theory of S-acts. Throughout this paper S
will denote a monoid with identity 1 and set of idempotents E. A structure 〈A; s〉s∈S
of the language LS = {s | s ∈ S} is a (left) S-act if s1(s2a) = (s1s2)a and 1a = a for
all s1, s2 ∈ S and a ∈ A. An S-act 〈A; s〉s∈S we will denote by SA. All S-acts, treated
in the article, are left S-acts.

Let SA, SB be S-acts. We call a ∈ A an act-regular element if there exists a
homomorphism ϕ : SSa −→ SS such that ϕ(a)a = a. An S-act SA is called regular if
all its elements are act–regular. If for elements a ∈ A and b ∈ B there is an isomorphism
f : SSa → SSb such that f(a) = b then we will write SSa →̃ SSb.

Note that the union of all regular subacts of an S-act is also a regular subact. The
union of all regular subacts of an S-act SS we will denote by SR. Hereinafter, we
assume that R 6= ∅.

A semigroup T is called linearly ordered if for all a, b ∈ T either Ta ⊆ Tb or Tb ⊆ Ta.
A monoid S is called regularly linearly ordered if for all a ∈ R a semigroup Sa is linearly
ordered.

We will distinguish the symbols of set-theoretic inclusion ⊂ and ⊆ .

2. Primitive normal Classes of Regular Acts

We will use the following remark without references to it.

Remark 2.1. For all a ∈ S, e, f ∈ E we have
1) aS ⊆ eS ⇐⇒ ea = a;
2) Sa ⊆ Se ⇐⇒ ae = a.

Theorem 2.2. An S-act SA is primitive normal if and only if for any pairwise disjoint
finite sets of indexes I, J,K, any si, lj, r

1

k, r
2

k ∈ S (i ∈ I, j ∈ J, k ∈ K), ā1, ā2, ā3 ∈ A,
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|ā1| = |ā2| = |ā3| = n, if
(1)

SA |=
∧

i∈I

siā1(li) = siā2(li) ∧
∧

j∈J

tj ā2(lj) = tj ā3(lj) ∧
∧

k∈K

∧

m∈{1,2,3}

r1kām(lk) = r2kām(lk),

where 0 6 li, lj , lk 6 n− 1, then there exists b̄ ∈ A such that |b̄| = n and

(2) SA |=
∧

i∈I

siā3(li) = sib̄(li) ∧
∧

j∈J

tj b̄(lj) = tj ā1(lj) ∧
∧

k∈K

r1k b̄(lk) = r2kb̄(lk).

Proof. Necessity. Let SA be a primitive normal S-act and (1) hold for some pairwise
disjoint finite sets of indexes I, J,K, some si, lj, r

1

k, r
2

k ∈ S (i ∈ I, j ∈ J, k ∈ K) and
ā1, ā2, ā3 ∈ A, |ā1| = |ā2| = |ā3| = n. We put

Φ(x̄, ȳ) ⇌ ∃ū(
∧

i∈I

six̄(li) = siū(li) ∧
∧

j∈J

tjū(lj) = tj ȳ(lj)∧

∧
∧

k∈K

r1kx̄(lk) = r2kx̄(lk) ∧
∧

k∈K

r1kū(lk) = r2kū(lk) ∧
∧

k∈K

r1kȳ(lk) = r2kȳ(lk)),

where |x̄| = |ū| = |ȳ| = n. By a condition ā1 ∈ Φ(A, ā1) and ā1, ā3 ∈ Φ(A, ā3). Since
the S-act SA is primitive normal then ā3 ∈ Φ(A, ā1) that is the condition (2) holds.

Sufficiency. Let Ψ(x̄, ȳ) be a primitive formula,

Ψ(x̄, ȳ) ⇌ ∃ūΘ(x̄, ȳ, ū),

where

Θ(x̄, ȳ, ū) ⇌
∧

〈i,j〉∈I1

s1i x̄(li) = t1j x̄(lj) ∧
∧

〈i,j〉∈I2

s2i x̄(li) = t2j ū(lj) ∧
∧

〈i,j〉∈I3

s3i ū(li) = t3j ū(lj)∧

∧
∧

〈i,j〉∈I4

s4i ū(li) = t4j ȳ(lj) ∧
∧

〈i,j〉∈I5

s5i ȳ(li) = t5j ȳ(lj) ∧
∧

〈i,j〉∈I6

s6i ȳ(li) = t6j x̄(lj),

ski , t
k
j ∈ S (〈i, j〉 ∈ Ik, 1 6 k 6 6). We will show that SA is a primitive normal S-act.

Suppose that ā2 ∈ Ψ(A, ā1), ā2, ā3 ∈ Ψ(A, ā4) and ā1, ā2, ā3, ā4 ∈ A. Then

(3) SA |= Θ(ā2, ā1, b̄21) ∧Θ(ā2, ā4, b̄24) ∧Θ(ā3, ā4, b̄34)

for some b̄21, b̄24, b̄34 ∈ A. It is enough to show that ā3 ∈ Ψ(A, ā1). From (3) we have

(4) SA |=
∧

〈i,j〉∈I1

s1i ā3(li) = t1j ā3(lj) ∧
∧

〈i,j〉∈I5

s5i ā1(li) = t5j ā1(lj);

(5) SA |=
∧

〈i,j〉∈I2

t2j b̄21(lj) = s2i ā2(li) = t2j b̄24(lj);

(6) SA |=
∧

〈i,j〉∈I4

s4i b̄24(li) = t4j ā4(lj) = s4i b̄34(li);

(7) SA |=
∧

〈i,j〉∈I3

s3i b̄km(li) = t3j b̄km(lj);

(8) SA |=
∧

〈i,j〉∈I6

s6i ā1(li) = t6j ā2(lj) = s6i ā4(li) = t6j ā3(lj)
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for all 〈k,m〉 ∈ {〈2, 1〉, 〈2, 4〉, 〈3, 4〉}. The conditions of Theorem and (5), (6), (7) imply

SA |=
∧

〈i,j〉∈I2

t2j b̄34(lj) = t2j b̄(lj) ∧
∧

〈i,j〉∈I4

s4i b̄(li) = s4i b̄21(li) ∧
∧

〈i,j〉∈I3

s3i b̄(li) = t3j b̄(lj)

for some b̄ ∈ A. Using this and (3) we have

SA |=
∧

〈i,j〉∈I2

s2i ā3(li) = t2j b̄(lj) ∧
∧

〈i,j〉∈I4

s4i b̄(li) = t4j ā1(lj) ∧
∧

〈i,j〉∈I3

s3i b̄(li) = t3i b̄(li).

This one, (4) and (8) imply SA |= Θ(ā3, ā1, b̄), that is ā3 ∈ Ψ(A, ā1). So we have proved
that SA is a primitive normal S-act. �

Proposition 2.3. [4] Let SA be an S-act, a ∈ A. An element a is act-regular if and
only if there exists an idempotent e ∈ R such that SSa →̃ SSe.

Proposition 2.4. [5] If the class R of regular S-acts is axiomatizable then
R =

⋃
{eiR | 1 6 i 6 n} for some n > 1, ei ∈ R, e2i = ei (1 6 i 6 n).

Lemma 2.5. Let the class R of regular S-acts is axiomatizable and primitive normal.
Then R is a regularly linearly ordered monoid.

Proof. Assume that Sc 6⊆ Sb and Sb 6⊆ Sc for some b, c ∈ Sa a ∈ R. There exists
e ∈ E such that SSa →̃ SSe. Let SSei (1 6 i 6 3) be the pairwise disjoint copies of

S-act SSe, Θ be a congruence of S-act
3⊔

i=1

SSei generated by {〈ce1, ce2〉, 〈be2, be3〉}. Let

SA denote an S-act
3⊔

i=1

SSei/Θ, d/Θ denote a Θ-class of d ∈
3⊔

i=1

Sei. Let

Φ(x, y) ⇋ ∃u(bu = x ∧ cu = y).

Hence

SA |= Φ(be1/Θ, ce1/Θ) ∧ Φ(be2/Θ, ce1/Θ) ∧ Φ(be2/Θ, ce3/Θ).

Since the class R is primitive normal then SA |= Φ(be1/Θ, ce3/Θ). Let u0 ∈
3⊔

i=1

Sei

such that SA |= bu0/Θ = be1/Θ ∧ cu0/Θ = ce3/Θ. Then be1/Θ, ce3/Θ ∈ Su0/Θ. But
be1/Θ = {be1}, ce3/Θ = {ce3} and S-acts SSe1, SSe3 do not intersect. A contradiction.

�

Lemma 2.6. Let S be a commutative monoid, the class R of regular S-acts is axiom-
atizable and primitive normal. Then for any idempotents e, f ∈ R either Se ⊆ Sf or
Sf ⊆ Se.

Proof. Suppose that Se 6⊆ Sf and Sf 6⊆ Se for some idempotents e, f ∈ R. Note that
ef ∈ E. If Sef = Sf then ef = fef = f , that is Sf ⊆ Se, a contradiction. Hence
Sef ⊂ Sf . Similarly Sef = Sfe ⊂ Se. Let

Φ(x, y) ⇋ ∃u(eu = ex ∧ fu = fy).

So

SR |= Φ(e, e) ∧ Φ(f, f) ∧ Φ(f, e).

Since the class R is primitive normal then SR |= Φ(e, f). Let u0 ∈ R such that

SR |= e = eu0 ∧ f = fu0. Then e, f ∈ Su0. Hence by Lemma 2.5 either Se ⊆ Sf or
Sf ⊆ Se, but that contradicts to assumption. �
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Theorem 2.7. Let S be a commutative monoid and the class R of regular S-acts is
axiomatizable. The class R is primitive normal if and only if a semigroup R is linearly
ordered.

Proof. Necessity. Let the class R is primitive normal. We will show that a semigroup
R is linearly ordered. Since the class R is axiomatizable then by Proposition 2.4
R =

⋃
{eiR | 1 6 i 6 m} for some m > 1 and idempotents ei ∈ R (1 6 i 6 m).

As sf = fsf ∈ fR for all s ∈ S then fR = Sf , where f ∈ R ∩ E. So in view of
commutativity of a monoid S and by Lemma 2.6 R = eR = Se for some idempotent
e ∈ R. Thus by Lemma 2.5 R is a linearly ordered semigroup.

Sufficiency. Let SA ∈ R, I, J,K be the pairwise disjoint finite sets of indexes,
si, lj , r

1

k, r
2

k ∈ S (i ∈ I, j ∈ J, k ∈ K), ā1, ā2, ā3 ∈ A, |ā1| = |ā2| = |ā3| = n and
(1) holds, where 0 6 li, lj, lk 6 n − 1. By Proposition 2.3 there exists the tuples of
idempotents ē1, ē2, ē3 ∈ R such that |ē1| = |ē2| = |ē3| = n and SSāi(j) →̃ SSēi(j) for
all i, j, 0 6 i 6 3, 0 6 j 6 n − 1. Then āi(j) = ēi(j)āi(j) for all i, j, 0 6 i 6 3,
0 6 j 6 n− 1.

We will construct a tuple b̄ such that (2) holds.
Let us fix l ∈ {0, 1, . . . , n−1}. We put Il = {i ∈ I | li = l}, Jl = {j ∈ J | lj = l}. Let

1 6 k 6 3. Since by the condition the set {Sd | Sd ⊆ Sek(l)} is linearly ordered under
the inclusion, then there exist sk, tk ∈ S such that Sskek(l) = max{Ssiek(l) | i ∈ Il}
and Stkek(l) = max{Stjek(l) | j ∈ Jl}. Hence for all i ∈ Il and j ∈ Jl there are rki ∈ S
and rkj ∈ S such that siēk(l) = rki s

kēk(l) and tj ēk(l) = rkj t
kēk(l), so siāk(l) = rki s

kāk(l)

and tj āk(l) = rkj t
kāk(l).

Assume that

(9) Sē1(l) ⊆ Sē2(l) and Sē3(l) ⊆ Sē2(l),

that is ēk(l) = ē2(l)ēk(l) and āk(l) = ē2(l)āk(l) for all k, 1 6 k 6 3. Since the
semigroup Sē2(l) is linearly ordered, without loss of generality we can suppose that
Sē1(l) ⊆ Se3(l), i.e. ē1(l) = ē1(l)ē3(l). Assume that St2ē2(l) ⊆ Ss2ē2(l), i.e.
t2ē2(l) = r2s2ē2(l) for some r2 ∈ S. Let j ∈ Jl. Then tj ē2(l) = r2j t

2ē2(l) = r2j r
2s2ē2(l)

and tj ā2(l) = r2j r
2s2ā2(l). So in view (1) we have

tj ā3(l) = tjā2(l) = r2j r
2s2ā2(l) = r2j r

2s2ā1(l) = r2j r
2s2ē2(l)ā1(l) = tj ē2(l)ā1(l) = tj ā1(l),

that is tjā3(l) = tj ā1(l). We put b̄(l) = ā3(l). If Ss2ē2(l) ⊆ St2ē2(l) then in the same
way we have b̄(l) = ā1(l).

Let (9) be wrong. Then without loss of generality we can suppose that

Sē3(l) ⊆ Sē1(l) and Sē2(l) ⊆ Sē1(l),

that is ēk(l) = ē1(l)ēk(l) and āk(l) = ē1(l)āk(l) for all k, 1 6 k 6 3.
Assume that St1ē1(l) ⊆ Ss1ē1(l), that is t1ē1(l) = r1s1ē1(l) for some r1 ∈ S. Let

j ∈ Jl. Then tj ē1(l) = r1j t
1ē1(l) = r1j r

1s1ē1(l) and tj ā1(l) = r1j r
1s1ā1(l). Hence using

(1) we get

tj ā3(l) = tjā2(l) = tj ē1(l)ā2(l) = r1j r
1s1ē1(l)ā2(l) = r1j r

1s1ā2(l) = r1j r
1s1ā1(l) = tj ā1(l),

that is tjā3(l) = tj ā1(l). We set b̄(l) = ā3(l).
Suppose that Ss1ē1(l) ⊆ St1ē1(l), that is s1ē1(l) = r1t

1ē1(l) for some r1 ∈ S. Let
i ∈ Il. Then siē1(l) = r1i s

1ē1(l) = r1i r1t
1ē1(l). So using (1) we get

siā3(l) = siē1(l)ā3(l) = r1i r1t
1ē1(l)ā3(l) = r1i r1t

1ē1(l)ā2(l) =
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= siē1(l)ā2(l) = siā2(l) = siā1(l),

that is siā3(l) = siā1(l). We set b̄(l) = ā1(l).
Therefore the tuple b̄ such that (2) holds is construct. �

The following example shows that the condition of commutativity of monoid S in
Theorem 2.7 is essentially.

Let S = {e1, e2} ∪ T ∪ {1}, where T is a semigroup with {a, b} generators and
ab2 = ab, ba2 = ba defining relationships. Binary operation on S is defined in the
following way: sei = ei, eit = ei for all i ∈ {1, 2}, s ∈ S, t ∈ T ; 1 is an unit element. It
is easy to check that S is a monoid under the operation and E = {e1, e2, 1}. Note that
Sei = {ei} for all i ∈ {1, 2}. Since ba2 = ba and ba 6= b then the assertion SSa →̃S S ·1
is false. Since a2 6= a and aei = ei then the assertion SSa →̃S Sei is false for all i,
i ∈ {1, 2}. In the same way it is shown the falsity of the assertion SSb →̃S S · 1 and

SSb →̃S Sei (i ∈ {1, 2}).
So R = {e1, e2}. It is clear that the semigroup R is not linearly order. For all S-act

SA ∈ R, a ∈ A and s ∈ S we have sa = a, that is any regular S-act is represent as
a coproduct of one-element S-acts. Hence the class R is axiomatizable and primitive
normal.

3. Antiadditive Classes of Regular Acts

The axiomatizable classes of regular S-acts were investigated in [6]. Particularly in
that work there was proved the following proposition.

Proposition 3.1. If the class R of regular S-acts is axiomatizable then
R =

⋃
{eiR | 1 6 i 6 n} for some n > 1, ei ∈ R, e2i = ei (1 6 i 6 n).

This statement implies

Corollary 3.2. If the class R of regular S-acts is axiomatizable, monoid S is com-
mutative and R will be a linearly order semigroup then R = eR for some idempotent
e ∈ R.

Throughout T will denote a theory of the axiomatizable primitive normal class R of
regular S-acts, S will be a commutative monoid and R is a linearly order semigroup.

A proof of following Lemma is a modification of a proof of Lemma 2 in [2].

Lemma 3.3. Let Φ(x0, x̄) be a conjunction of atomic formulas, x̄ = 〈x1, . . . , xn〉. Then
there is a formula Ψ(x̄), which is a conjunction of atomic formulas, s, t ∈ S and i,
0 6 i 6 n, such that in theory T

Φ(x0, x̄) ≡ Ψ(x̄) ∧ txi = sx0.

Proof. By Corollary 3.2 there exists an idempotent e ∈ R such that R = eR. Then

(10) T ⊢ ∀x(x = ex).

Let Φ(x0, x̄) be a conjunction of atomic formulas, x̄ = 〈x1, . . . , xn〉. We will prove
Lemma by the induction on a number k of atomic subformulas of formula Φ(x0, x̄)
containing a variable x0. Suppose that

Φ(x0, x̄) ⇋ Ψ1(x0, x̄) ∧ t1xi = s1x0,
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where Ψ1(x0, x̄) is a conjunction of atomic formulas, s1, t1 ∈ S, 0 6 i 6 n. On the
suggestion of the induction

Ψ1(x0, x̄) ≡ Ψ2(x̄) ∧ t2xj = s2x0

for some formula Ψ2(x̄), which is a conjunction of atomic formulas, some s2, t2 ∈ S and
j, 0 6 j 6 n. In view of linearly order of a semigroup R we have either Ss1e ⊆ Ss2e
or Ss2e ⊆ Ss1e. Let for example Ss1e ⊆ Ss2e. Then there exists r ∈ S such that
s1e = rs2e. Hence in view of (10) we have

Φ(x0, x̄) ≡ Ψ2(x̄) ∧ t2xj = s2x0 ∧ t1xi = s1x0 ≡

≡ Ψ2(x̄) ∧ rt2xj = t1xi ∧ t2xj = s2x0.

Lemma is proved. �

The proof of following Lemma coincides exactly with the proof of Lemma 3 in [2].

Lemma 3.4. Let Φ(x̄) be not always-false primitive formula, x̄ = 〈x1, . . . , xn〉. Then
there exists the formula Φ0(x̄), which is a conjunction of atomic formulas, and the
primitive formulas Φi(xi), 1 6 i 6 n, such that in theory T

Φ(x̄) ≡ Φ0(x̄) ∧
∧

16i6n

Φi(xi).

Lemma 3.5. Let ā ∈ C, Φ(x̄, ȳ, z̄, ā) be a primitive formula which defines on the
infinite generalized primitive set X a binary operation + : x̄+ ȳ = z̄. Then the set X
is not a group under this operation.

Proof. Let ā ∈ C, Φ(x̄, ȳ, z̄, ā) be a primitive formula defining a structure of group
relative to a binary operation +, X∗ be a basis, α be a generative equivalence of the
generalized primitive set X , |ā| = |ū|. By Lemma 3.4 in the theory T

Φ(x̄, ȳ, z̄, ū) ≡ Φ0(x̄, ȳ, z̄, ū) ∧ Φ1(x̄) ∧ Φ2(ȳ) ∧ Φ3(z̄) ∧ Φ4(ū)

for some formulas Φ0(x̄, ȳ, z̄, ū), Φ1(x̄), Φ2(ȳ), Φ3(z̄), Φ4(ū), where Φ0(x̄, ȳ, z̄, ū) is a
conjunction of atomic formulas, Φ1(x̄), Φ2(ȳ), Φ3(z̄), Φ4(ū) are the primitive formulas.
By Lemma 3.3 there exist the formula Ψ(x̄, ȳ, ū), ti, si ∈ S and w̄ = 〈w1, . . . , wn〉,
where wi ∈ x̄ ∪ ȳ ∪ z̄ ∪ ū, 1 6 i 6 n, such that Ψ(x̄, ȳ, ū) is a conjunction of atomic
formulas and in the theory T

Φ0(x̄, ȳ, z̄, ū) ≡ Ψ(x̄, ȳ, ū) ∧Θ(x̄, ȳ, z̄, ū),

where

Θ(x̄, ȳ, z̄, ū) ⇋
∧

16i6n

tizi = siwi.

Let b̄, c̄ ∈ X∗, 0̄/α be a null element of the group X . Suppose that tizi = sixj

is an atomic subformula of the formula Θ(x̄, ȳ, z̄, ū). Since 0̄/α + b̄/α = b̄/α then
tib̄(i) = si0̄(j). Since

(11) 0̄/α + c̄/α = c̄/α+ 0̄/α = c̄/α.

then tic̄(i) = si0̄(j) = sic̄(j). So tib̄(i) = sic̄(j). Suppose tizi = siyj is an atomic
subformula of the formula Θ(x̄, ȳ, z̄, ū). Since

(12) b̄/α + 0̄/α = b̄/α,
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then tib̄(i) = si0̄(j). If tizi = sizj is an atomic subformula of the formula Θ(x̄, ȳ, z̄, ū),
then (11) implies the equality tib̄(i) = siā(j). Moreover from (11) and (12) we have

C |= Ψ(c̄, 0̄, ā) ∧ Φ1(c̄) ∧ Φ2(0̄) ∧ Φ3(b̄) ∧ Φ4(ā).

Hence c̄/α + 0̄/α = b̄/α, that is c̄/α = b̄/α and |X| = 1. Contradiction. �

Lemma 3.5 implies

Theorem 3.6. If S is a commutative monoid, the class R of regular S-acts is axiom-
atizable and primitive normal then the class R is antiadditive.

By Theorems 2.7, 3.6 and definition of antiadditive class we have

Corollary 3.7. Let S be a commutative monoid and the class R of regular S-acts is
axiomatizable. Then the following conditions are equivalent:

1) the class R is primitive normal;
2) the class R is antiadditive;
3) the semigroup R is linearly order.
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