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Abstract

Recently, the lp-norm regularization minimization problem (P λ
p ) has attracted

great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem
(P λ

p ) is nonconvex and non-Lipschitz for all p ∈ (0, 1), and there are not many
optimization theories and methods are proposed to solve this problem. In
fact, it is NP-hard for all p ∈ (0, 1) and λ > 0. In this paper, we study two
modified lp regularization minimization problems to approximate the NP-
hard problem (P λ

p ). Inspired by the good performance of Half algorithm and
2/3 algorithm in some sparse signal recovery problems, two iterative thresh-
olding algorithms are proposed to solve the problems (P λ

p,1/2,ǫ) and (P λ
p,2/3,ǫ)

respectively. Numerical results show that our algorithms perform effectively
in finding the sparse signal in some sparse signal recovery problems for some
proper p ∈ (0, 1).
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1. Introduction

During the last decade, the lp-norm regularization minimization prob-
lem has attracted great attention in compressed sensing [1, 2, 3, 4, 5]. In
mathematics, it can be modeled into the following minimization problem

(P λ
p ) min

z∈Rn

{

‖Az − b‖22 + λ‖z‖pp
}

(1)

for some λ ∈ (0,+∞) and p ∈ (0, 1), where A ∈ R
m×n is a real matrix of

full row rank with m ≪ n, b ∈ R
m is a nonzero real column vector and

‖z‖pp =
∑n

i=1 |zi|p for any z ∈ R
n. We can see that as p → 0, the problem

(P λ
p ) tends to the l0-norm regularization minimization problem

(P λ
0 ) min

z∈Rn

{

‖Az − b‖22 + λ‖z‖0
}

, (2)

where ‖z‖0 denotes the number of nonzero components of z, and the iterative
hard thresholding algorithm (Hard algorithm)[6] has been proposed for solv-
ing the l0 regularization minimization problem (P λ

0 ). In addition, as p → 1,
the problem (P λ

p ) tends to the l1-norm regularization minimization problem

(P λ
1 ) min

z∈Rn

{

‖Az − b‖22 + λ‖z‖1
}

, (3)

where ‖z‖1 =
∑n

i=1 |zi|, and zi represents the i-th component of vector z.
As the compact convex relaxation of the NP-hard problem (P λ

0 ), there are
many efficient methods (e.g., see [7, 8, 9, 10, 11]) being proposed for solving
the l1-norm regularization minimization problem (P λ

1 ). It is obvious that
the problem (P λ

p ) is intermediate between the l0-norm regularization mini-
mization problem (P λ

0 ) and the l1-norm regularization minimization problem
(P λ

1 ) for any p ∈ (0, 1), because of the relationship

lim
p→0+

n
∑

i=1,zi 6=0

|zi|p = ‖z‖0 and lim
p→1

n
∑

i=10

|zi|p = ‖z‖1. (4)

Unfortunately, the problem (P λ
p ) is a nonconvex and non-Lipschitz min-

imization problem. There are not many optimization theories on analyzing
this type of problems and it is NP-hard for all p ∈ (0, 1) and λ > 0 (see
[1]). At present, the most direct way to solve the problem (P λ

p ) is that the
iterative thresholding algorithm only when p = 1/2, 2/3 (see [2, 3]). In fact,
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the corresponding thresholding functions for the problem (P λ
p ) are in closed

form only for p = 1/2, 2/3. Xu et al.[2] and Cao et al.[3] have shown that the
problem (P λ

p ) could be fast solved by the iterative l1/2 thresholding algorithm
(Half algorithm) and iterative l2/3 thresholding algorithm (2/3 algorithm),
and the computational complexity of these two iterative algorithms are all
O(mn). A major drawback of the iterative thresholding algorithm for the
problem (P λ

p ) is that the closed form iterative thresholding for the problem
(P λ

p ) available only at p = 1/2, 2/3.
In this paper, we propose a modified ℓp-norm to replace the nonconvex

and non-Lipschitz lp norm ‖x‖pp given by

n
∑

i=1

|zi|θ
(|zi|+ ǫi)θ−p

(5)

for all p ∈ (0, 1), where θ > 0 and ǫi > 0. With the change of parameter
ǫi > 0, we have

lim
ǫi→0+

|zi|θ
(|zi|+ ǫi)θ−p

= |zi|p, (6)

and the modified ℓp-norm (6) approximates the lp-norm of vector z:

lim
ǫi→0+

n
∑

i=1

|zi|θ
(|zi|+ ǫi)θ−p

= ‖z‖pp. (7)

Therefore, the lp-norm regularization minimization problem transformed by
the modified ℓp-norm (6) could be written as the following minimization
problem

(P λ
p,θ,ǫ) min

z∈Rn

{

‖Az − b‖22 + λ

n
∑

i=1

|zi|θ
(|zi|+ ǫi)θ−p

}

(8)

for all p ∈ (0, 1). In particular, we do claim that the problem (P λ
p,θ,ǫ) matches

the following special version

(P λ
p,1/2,ǫ) min

z∈Rn

{

‖Az − b‖22 + λ
n

∑

i=1

|zi|1/2
(|zi|+ ǫi)1/2−p

}

(9)

for θ = 1/2, and

(P λ
p,2/3,ǫ) min

z∈Rn

{

‖Az − b‖22 + λ

n
∑

i=1

|zi|2/3
(|zi|+ ǫi)2/3−p

}

(10)
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for θ = 2/3.
Throughout this paper, we just consider the special problems (P λ

p,1/2,ǫ)

and (P λ
p,2/3,ǫ) for all p ∈ (0, 1), and extend the aforementioned well-known

Half algorithm and the 2/3 algorithm [2, 3] to solve these two problems. The
outline of this paper is as follows. In Section 2, some preliminary results used
in this paper are given. In Section 3, we propose two iterative thrsholding
algorithms to solve the problems (P λ

p,1/2,ǫ) and (P λ
p,2/3,ǫ) respectively. In Sec-

tion 4, we conduct some numerical experiments to show the performance of
our algorithm. Some conclusion remarks are presented in Section 5.

2. Preliminaries

In this section, we give some crucial preliminary results that are used in
this paper.

Lemma 1. (see [2]) For any fixed λ > 0 and β, r ∈ R, suppose that

h1/2,λ(r) , argmin
β∈R

{

(β − r)2 + λ|β|1/2
}

, (11)

then the operator h1/2,λ(r) can be expressed by

h1/2,λ(r) =

{

f1/2,λ(r), if |r| > 3
√
54
4
λ2/3;

0, if |r| ≤ 3
√
54
4
λ2/3.

(12)

where

f1/2,λ(r) =
2

3
r
(

1 + cos
(2π

3
− 2

3
arccos

(λ

8

( |r|
3

)−3/2)))

. (13)

Lemma 2. (see [3]) For any fixed λ > 0 and β, r ∈ R, suppose that

h2/3,λ(r) , argmin
β∈R

{

(β − r)2 + λ|β|2/3
}

, (14)

then the operator h2/3,λ(r) can be expressed by

h2/3,λ(r) =

{

f2/3,λ(r), if |r| > 4
√
48
3
λ3/4;

0, if |r| ≤ 4
√
48
4
λ3/4.

(15)
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where

f2/3,λ(r) =
1

8

(

|Φ2/3,λ(r)|+
√

2|r|
|Φ2/3,λ(r)|

− |Φ2/3,λ(r)|2
)3

sign(r) (16)

and

Φ2/3,λ(r) =
2√
3
λ1/4

(

cosh
(1

3
arccosh

(27

16
λ−3/2r2

)))1/2

. (17)

Definition 1. ([12]) The nonincreasing rearrangement of the vector x ∈ R
n

is the vector ⌈x⌋ ∈ R
n for which

⌈x⌋1 ≥ ⌈x⌋2 ≥ · · · ≥ ⌈x⌋n ≥ 0

and there is a permutation π : [n] → [n] with ⌈x⌋i = |xπ(i)| for all i ∈ [n].

3. Two iterative thresholding algorithms for solving problem (P λ
p,θ,ǫ

)

In this section, we propose two iterative thresholding algorithms, namely,
1/2− ǫ algorithm (θ = 1/2) and the 2/3− ǫ algorithm (θ = 2/3), to solve the
problems (P λ

p,1/2,ǫ) and (P λ
p,2/3,ǫ) respectively. Moreover, we also provide some

convergence analysis for our methods. We should declare that the study of
the 1/2−ǫ algorithm and the 2/3−ǫ algorithm proposed below are motivated
by the well-known Half algorithm and 2/3 algorithm proposed in Xu et al.
[2] and Cao et al. [3].

3.1. The 1/2− ǫ algorithm for solving the problem (P λ
p,1/2,ǫ)

In the subsection, we propose the 1/2− ǫ algorithm to solve the problem
(P λ

p,1/2,ǫ) for all p ∈ (0, 1). Before the analytic expression of the 1/2− ǫ algo-
rithm, we should derive the closed form representation of the optimal solution
to the problem (P λ

p,1/2,ǫ), which underlies the algorithm to be proposed.

For any λ, µ ∈ (0,∞), p ∈ (0, 1) and z, y ∈ R
n, let

C1/2
λ (z) = ‖Az − b‖22 + λ

n
∑

i=1

|zi|1/2
(|zi|+ ǫi)1/2−p

, (18)

C1/2
λ,µ (z, y) = µ‖Az − b‖22 + λµ

n
∑

i=1

|zi|1/2
(|yi|+ ǫi)1/2−p

− µ‖Az − Ay‖22 + ‖z − y‖22
(19)

and
Bµ(z) = z + µA⊤(b− Az). (20)
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Lemma 3. For any λ, µ ∈ (0,∞) and p ∈ (0, 1), if z̃ = (z̃1, z̃2, · · · , z̃n)⊤ is a

local minimizer to C1/2
λ,µ (z, y), then

z̃i = 0 ⇔ |[Bµ(y)]i| ≤ t1/2,λµ/(|yi|+ǫi)1/2−p (21)

and

z̃i = f1/2,λµ/(|yi|+ǫi)1/2−p([Bµ(y)]i) ⇔ |[Bµ(y)]i| > t1/2,λµ/(|yi|+ǫi)1/2−p , (22)

where [Bµ(y)]i represents the i-th component of vector Bµ(y), and t1/2,λµ/(|yi|+ǫi)1/2−p

and f1/2,λµ/(|yi|+ǫi)1/2−p are obtained by replacing λ with λµ/(|yi|+ ǫi)
1/2−p in

t1/2,λ and f1/2,λ, respectively.

proof. We notice that, C1/2
λ,µ (z, y) can be rewritten as

C1/2
λ,µ (z, y) = ‖z − (y − µATAy + µAT b)‖22 + λµ

n
∑

i=1

|zi|1/2
(|yi|+ ǫi)1/2−p

+ µ‖b‖22

+‖y‖22 − µ‖Ay‖22 − ‖y − µATAy + µAT b‖22

= ‖z − Bµ(y)‖22 + λµ

n
∑

i=1

|zi|1/2
(|yi|+ ǫi)1/2−p

+ µ‖b‖22 + ‖y‖22 − µ‖Ay‖22

−‖Bµ(y)‖22.

This implies that minimizing C1/2
λ,µ (z, y) for any fixed λ, µ ∈ (0,∞) and y ∈ R

n

is equivalent to

min
z∈Rn

{

‖z −Bµ(y)‖22 + λµ

n
∑

i=1

|zi|1/2
(|yi|+ ǫi)1/2−p

}

, (23)

i.e.,

min
z∈Rn

{

n
∑

i=1

(

(zi − [Bµ(y)]i)
2 + λµ

|zi|1/2
(|yi|+ ǫi)1/2−p

)}

. (24)

Noting that the summation of equation (25) is separable; hence, solving
equation (25) is equivalent to solving the following n subproblem, for i ∈
[1, 2, · · · , n],

min
z∈Rn

{

(zi − [Bµ(y)]i)
2 + λµ

|zi|1/2
(|yi|+ ǫi)1/2−p

}

. (25)

Therefore, the proof is completed by Lemma 1. �

6



Theorem 1. For any λ, µ ∈ (0,∞), if z∗ = (z∗1 , z
∗
2 , · · · , z∗n)⊤ is an optimal

solution to the problem (P λ
p,θ,ǫ) and µ satisfies 0 < µ < 1

‖A‖2
2

, then

z∗i =

{

f1/2,λµ/(|z∗i |+ǫi)1/2−p([Bµ(z
∗)]i), if |[Bµ(z

∗)]i| > t1/2,λµ/(|z∗i |+ǫi)1/2−p ;

0, if |[Bµ(z
∗)]i| ≤ t1/2,λµ/(|z∗i |+ǫi)1/2−p .

(26)

proof. By condition 0 < µ < 1
‖A‖2

2

, we can get that

C1/2
λ,µ (z, z

∗) = µ
{

‖Az − b‖22 + λ

n
∑

i=1

|zi|1/2
(|z∗i |+ ǫi)1/2−p

}

+
{

‖z − z∗‖22 − µ‖Az −Az∗‖22
}

≥ µ
{

‖Az − b‖22 + λ
n

∑

i=1

|zi|1/2
(|z∗i |+ ǫi)1/2−p

}

≥ µC1/2
λ (z∗)

= C1/2
λ,µ (z

∗, z∗)

for any z ∈ R
n. This implies that z∗ is a local minimizer of C1/2

λ,µ (z, z
∗) as

long as z∗ is an optimal solution to the problem (P λ
p,1/2,ǫ). Combined with

Lemma 3, we finish the proof. �

Next, we present an iterative thresholding algorithm for solving the prob-
lem (P λ

p,1/2,ǫ) for all p ∈ (0, 1) based on the above theoretical analysis.

With the thresholding representation (26), the 1/2− ǫ algorithm for solv-
ing the regularization problem (P λ

p,1/2,ǫ) can be naturally defined as

zk+1
i = h1/2,λµ/(|zki |+ǫi)1/2−p([Bµ(z

k)]i), k = 0, 1, 2, · · · , (27)

where Bµ(z
k) = zk + µA⊤(b − Azk), and h1/2,λµ/(|zki |+ǫi)1/2−p is obtained by

replacing λ with λµ/(|zki |+ ǫi)
1/2−p in h1/2,λ.

In general, the quality of the solution to a regularization problem depends
seriously on the setting of the regularization parameter λ > 0. Suppose that
the vector z∗ of sparsity r is the optimal solution of the regularization problem
(P λ

p,1/2,ǫ). In 1/2− ǫ algorithm, we set

λ =
8(⌈Bµ(z

k)⌋r+1)
3/2(⌈zk⌋r+1 + ⌈ǫ⌋r+1)

1/2−p

√
54µ

(28)
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in each iteration, where ⌈⌋ is defined in Definition 1, and ⌈Bµ(z
k)⌋i (⌈zk⌋i,

⌈ǫ⌋i) represents the i-th component of vector ⌈Bµ(z
k)⌋ (⌈zk⌋, ⌈ǫ⌋) for all

i ∈ [1, 2, · · · , n]. When doing so, the 1/2− ǫ algorithm will be adaptive and
free from the choice of regularization parameter.

Algorithm 1 : The 1/2− ǫ algorithm

Initialize: Choose x0 ∈ R
n, ǫi > 0, λ0 > 0, µ0 = 1−η

‖A‖2
2

(η ∈ (0, 1)) and

p ∈ (0, 1);
k = 0;
while not converged do

Bµ(z
k) = zk + µA⊤(b− Azk);

λ = 8(⌈Bµ(zk)⌋r+1)3/2(⌈zk⌋r+1+⌈ǫ⌋r+1)1/2−p
√
54µ

, µ = µ0;

t = t1/2,λµ/(|zki |+ǫi)1/2−p =
3
√
54
4
(λµ/(|zki |+ ǫi)

1/2−p)2/3;
for i = 1 : n

1. |[Bµ(z
k]i| > t, then zk+1

i = f1/2,λµ/(|zki |+ǫi)1/2−p([Bµ(z
k]i)

2. |[Bµ(z
k]i| ≤ t, then zk+1

i = 0
k → k + 1;
end while
return: zk+1

Remark 1. It is worth emphasizing that the 1/2−ǫ algorithm reduces to the
Half algorithm[2] when we set p = 1/2.

In the following, we provide some convergence analysis for the 1/2 − ǫ
algorithm under some specific conditions.

Theorem 2. Let {zk} be the sequence generated by the 1/2 − ǫ algorithm
with the step size µ satisfying 0 < µ < 1

‖A‖2
2

. Then

1) The sequence {zk} is a minimization sequence, and the sequence {C1/2
λ (zk)}

converging to C1/2
λ (z∗), where z∗ is a limit point of minimization se-

quence {zk};

2) The sequence {zk} is asymptotically regular, i.e., limk→∞ ‖zk+1−zk‖22 = 0;

3) Any accumulation point of the sequence {zk} is a stationary point of the
problem (P λ

p,1/2,ǫ).
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proof. The proof of above theorem follows from the fact that the step size
µ satisfying 0 < µ < 1

‖A‖2
2

and a similar argument as used in the proof of [2,

Theorem 3]. �

3.2. The 2/3− ǫ algorithm for solving the problem (P λ
p,2/3,ǫ)

In the subsection, we propose the 2/3− ǫ algorithm to solve the problem
(P λ

p,2/3,ǫ) for all p ∈ (0, 1).

For any λ, µ ∈ (0,∞), p ∈ (0, 1) and z, y ∈ R
n, let

C2/3
λ (z) = ‖Az − b‖22 + λ

n
∑

i=1

|zi|2/3
(|zi|+ ǫi)2/3−p

(29)

and

C2/3
λ,µ (z, y) = µ‖Az − b‖22 + λµ

n
∑

i=1

|zi|2/3
(|yi|+ ǫi)2/3−p

− µ‖Az − Ay‖22 + ‖z − y‖22.

(30)
Similar argument as the generation of 1/2−ǫ algorithm, the 2/3−ǫ algorithm
for solving the problem (P λ

p,2/3,ǫ) can be defined as

zk+1
i = h2/3,λµ/(|zki |+ǫi)2/3−p([Bµ(z

k)]i), k = 0, 1, 2, · · · , (31)

where Bµ(z
k) = zk + µA⊤(b − Azk), and h2/3,λµ/(|zki |+ǫi)2/3−p is obtained by

replacing λ with λµ/(|zki |+ ǫi)
2/3−p in h2/3,λ.

In 2/3− ǫ algorithm, we set the regularization parameter λ as

λ =
3
√
44(⌈Bµ(z

k)⌋r+1)
4/3(⌈zk⌋r+1 + ⌈ǫ⌋r+1)

2/3−p

9
√
484µ

(32)

in each iteration.
Similar argument as the Theorem 2, the sequence {Xk} generated by

the 2/3 − ǫ algorithm is a minimization sequence and asymptotically regu-
lar. Moreover, any accumulation point of {Xk} is a stationary point of the
problem (P λ

p,2/3,ǫ). Its proof also follows from the fact that the step size µ

satisfying 0 < µ < 1
‖A‖2

2

and a similar argument as used in the proof of [2,

Theorem 3].

Remark 2. If we set p = 2/3, the 2/3 − ǫ algorithm reduces to the 2/3
algorithm [3].

9



Algorithm 2 : The 2/3− ǫ algorithm

Initialize: Choose x0 ∈ R
n, ǫi > 0, µ0 =

1−η
‖A‖2

2

(η ∈ (0, 1)) and p ∈ (0, 1);

k = 0;
while not converged do

Bµ(z
k) = zk + µA⊤(b− Azk);

λ =
3
√
44(⌈Bµ(zk)⌋r+1)4/3(⌈zk⌋r+1+⌈ǫ⌋r+1)2/3−p

9
√
484µ

, µ = µ0;

t = t2/3,λµ/(|zki |+ǫi)2/3−p =
4
√
48
3
(λµ/(|zki |+ ǫi)

2/3−p)3/4;
for i = 1 : n

1. |[Bµ(z
k]i| > t, then zk+1

i = f2/3,λµ/(|zki |+ǫi)2/3−p([Bµ(z
k]i)

2. |[Bµ(z
k]i| ≤ t, then zk+1

i = 0
k → k + 1;
end while
return: zk+1

4. Numerical experiments

In this section, we first present numerical results of the 1/2 − ǫ algo-
rithm and 2/3 − ǫ algorithm for some sparse signal recovery problems and
then compare them with some state-of-art methods including iterative hard
thresholding algorithm (Hard algorithm)[6], iterative soft thresholding algo-
rithm (Soft algorithm)[7], Half algorithm [2] and 2/3 algorithm [3] in some
sparse recovery problems. We generate a measurement matrix A ∈ R

m×n

with entries independently drawn by random from a Gaussian distribution,
N (0, 1). To show the success rate of these algorithms in the recovery of the
sparse signals with the different sparsity for a given measurement matrix
A ∈ R

m×n, we randomly generate sparse vectors z0 ∈ R
n and generate vec-

tors b by b = Az0. Therefore, we know the sparsest solution to the linear
system b = Az0. In our experiments, the stopping criterion is defined as

‖zk+1 − zk‖2
‖zk‖2

≤ Tol

where zk+1 and zk are numerical results from two continuous iterative steps
and Tol is a small given number (we set Tol = 10−8). The success is measured
by computing the relative error (RE):

RE =
‖z∗ − z0‖2

‖z0‖2

10



to indicate a perfect recovery of the original sparse vector z0, and the success
is declared when RE ≤ 10−4. Moreover, we adapt ǫ at each iteration as a
function of the current guess zk, and set

ǫi = max{γ|[µA⊤(b−Azk)]i|, 10−3}, γ = 0.7.

In all of our experiments, we repeat 20 tests and present average results. The
experiments are all performed on a Lenovo-PC with an Intel(R) Core(TM)
i7-6700 CPU @3.40GHZ with 16GB of RAM running Microsoft Windows 7.

4.1. Performance of 1/2− ǫ algorithm and 2/3− ǫ algorithm

In this subsection, we carry out a series of experiments to demonstrate
the performance of the 1/2 − ǫ algorithm and the 2/3 − ǫ algorithm for
some sparse signal recovery problems. In our experiments, we set m = 128,
n = 512.
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Figure 1: The comparison of the success rate for the 1/2− ǫ algorithm in the recovery of
a sparse signal with different parameter values p.

The graphs presented in Figure 1 and Figure 2 show the success rate of
1/2 − ǫ algorithm and 2/3 − ǫ algorithm in recovering the true (sparsest)
solution. From Figures 1 and 2, we can see that 1/2 − ǫ algorithm can
exactly recover the ideal signal until k is around 25 when p = 0.1, and
2/3− ǫ algorithm’s counterpart is around 17 when p = 0. As we can see, the
parameter p = 0.1 is the best strategy for the 1/2− ǫ algorithm, and the the
parameter p = 0 is the best strategy for the 2/3− ǫ algorithm.
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Figure 2: The comparison of the success rate for the 2/3− ǫ algorithm in the recovery of
a sparse signal with different parameter values p.

4.2. Compared with some state-of-art methods

In this subsection, we compare our algorithms (the 1/2− ǫ algorithm and
2/3−ǫ algorithm) with some state-of-art methods including Hard algorithm[6],
Soft algorithm[7], Half algorithm[2] and 2/3 algorithm[3] in some sparse re-
covery problems. In our experiments, we set p = 0.001 in the 1/2−ǫ algorithm
and the 2/3− ǫ algorithm, and set m = 256, n = 1024 to size the dimension
of the matrix A ∈ R

m×n and the length of the vector z0 ∈ R
n. Two different

cases in sparse recovery problems will be considered: exactly sparse signals
recovery in the noiseless case and exactly sparse signals recovery in the noise
case. In noiseless case, we generate vectors b by b = Az0, where A ∈ R

256×1024

is a measurement matrix with entries independently drawn by random from
a Gaussian distribution, N (0, 1), and z0 ∈ R

1024 is a randomly sparse vector
z0 ∈ R

1024. Turn to the noise case, we use the same matrix A, and generate
a random vector z0 with a prespecified cardinality of nonzeros. We compute
b = Az0 + e, where e ∈ N (0, σ) (σ = 10−5). Thus, the original vector z0
is a feasible solution and close to the optimal solution. Due to the presence
of noise, it becomes harder to accurately recover the original signal z0. The
graphs presented in Figure 3 and Figure 4 show the success rate of 1/2 − ǫ
algorithm (p = 0.1), 2/3 − ǫ algorithm (p = 0), Half algorithm, 2/3 algo-
rithm, Soft algorithm and Hard algorithm in recovering the true (sparsest)
solution. From Figure 3, we can see that the 1/2 − ǫ algorithm (p = 0.1)
can exactly recover the ideal signal until k is around 78, and the 2/3 − ǫ
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algorithm (p = 0) is around 70. The results in noise case are consistent with
the noiseless case. We can see that the 1/2− ǫ algorithm (p = 0.1) again has
the best performance in recovering the sparse signals in the six algorithms
with noise or not, and the 2/3 − ǫ algorithm (p = 0) performs the second
best.
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Figure 3: The success rate of six algorithms in the recovery of a sparse signal with different
sparsity (noiseless case).
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Figure 4: The success rate of six algorithms in the recovery of a sparse signal with different
sparsity (noise case).
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5. Conclusions

In this paper, we studied two modified lp-norm regularization minimiza-
tion problems (P λ

p,1/2,ǫ) and (P λ
p,2/3,ǫ) to approximate the NP-hard problem

(P λ
p ) for all p ∈ (0, 1). Inspired by the good performances of iterative l1/2

thresholding algorithm and iterative l2/3 algorithm in some sparse signal re-
covery problems, the 1/2− ǫ algorithm and 2/3− ǫ algorithm are generated
to solve the problems (P λ

p,1/2,ǫ) and (P λ
p,2/3,ǫ) for all p ∈ (0, 1). Numerical

results show that our algorithms perform effectively in finding the sparse
signals in some sparse signal recovery problems for some proper p ∈ (0, 1).
Moreover, the numerical results also show that the 1/2 − ǫ algorithm per-
forms the best in some sparse signal recovery problems compared with some
state-of-art methods, and the 2/3− ǫ algorithm performs the second best for
some proper p.
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