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THE EXTRA-NICE DIMENSIONS

R. OSET SINHA, M. A. S. RUAS, R. WIK ATIQUE

Abstract. We define the extra-nice dimensions and prove that the subset of
locally stable 1-parameter families in C∞(N × [0, 1], P ), also known as pseudo-
isotopies, is dense if and only if the pair of dimensions (dimN, dimP ) is in the
extra-nice dimensions. This result is parallel to Mather’s characterization of the
nice dimensions as the pairs (n, p) for which stable maps are dense. The extra-
nice dimensions are characterized by the property that discriminants of stable
germs in one dimension higher haveAe-codimension 1 hyperplane sections. They
are also related to the simplicity of Ae-codimension 2 germs. We give a sufficient
condition for any Ae-codimension 2 germ to be simple and give an example of a
corank 2 codimension 2 germ in the nice dimensions which is not simple. Then
we establish the boundary of the extra-nice dimensions. Finally we answer a
question posed by Wall about the codimension of non-simple maps.

1. Introduction

Around the middle of last century Whitney formulated the concept of stability
of smooth maps and characterized stable singularities in dimensions (n, p) with
p ≥ 2n, (n, 2n − 1), (2, 2) showing that in these cases stable maps are dense in
the space of C∞ maps. He then conjectured that this holds in any pair (n, p).
Thom showed that this is not the case (see [34]) by giving an example in (9, 9)
of a singularity which appears generically in a 1-parameter family of maps. This
singularity has Ae-codimension 1 and is not simple. A germ is simple if there are
only a finite number of orbits nearby, therefore, in the pair of dimensions (9, 9)
not all maps can be approximated by stable maps and so the stable maps are not
dense. He then conjectured that topologically stable maps are always dense and
this was proved by Mather ([20]).

In his well known series of papers about stability of C∞ maps Mather showed
that the set of stable maps f : Nn → P p is dense in C∞

pr (N,P ) (proper C
∞ maps)

with the Whitney strong topology if and only if the pair of dimensions (n, p) is
in the nice dimensions ([18]), which he determined completely in [19]. Mather
gave a stratification of the set Jk(n, p) of k-jets of smooth maps by K -orbits and
characterized stability in terms of transversality of the jet extension of the map
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to this stratification. More precisely, he defined the nice dimensions as the pairs
(n, p) such that there exists a Zariski closed K -invariant set Π(n, p) in Jk(n, p),
for sufficiently high k, of codimension bigger than n such that its complement in
Jk(n, p) is the union of finitely many K -orbits.

When the pair (n, p) is in the nice dimensions and the source manifold N is com-
pact, an important problem in the applications of singularity theory to differential
topology is the characterization of the simplest existing paths between two stable
maps. A 1-parameter family F : N × [0, 1] → P connecting two non-equivalent
stable maps always intersects the set of non stable maps for a finite number of
values of the parameter, the bifurcation points. The classification of singularities
of bifurcation points in generic families of maps is a fundamental step in results on
elimination of singularities, which is still an active field of research ([15], [1]), and
on various results about the topology of the space of smooth maps such as work by
J. Cerf ([3]) or K. Igusa ([14]) or even Vassiliev’s theory of topological invariants
([35]).

We say that a family F : N× [0, 1] → P is a locally stable family if Ft : N → P is
a stable map for all t ∈ [0, 1] except possibly for a finite number of values {t1, . . . , tk}
and the non-stable singularities of Fti are a finite number of points xj ∈ N, and
the map (F, t) : N × [0, 1] → P × [0, 1] is a locally Ae-versal unfolding of Fti for all
non-stable points xj. This definition implies that the non-stable singularities of Fti

are A-finitely determined and their Ae-codimension is equal to 1.
In this paper we obtain a parallel result to Mather’s characterization of the nice

dimensions. First we define the extra-nice dimensions as the pairs (n, p) where there
exists a smallest Zariski closed A -invariant set Λ(n, p) in Jk(n, p), for sufficiently
high k, of codimension greater than n + 1 whose complement is a finite number
of A -orbits. Then we prove that the subset of stable 1-parameter families in
C∞(N×[0, 1], P ) is dense if and only if the pair (n, p) is in the extra-nice dimensions.

In the nice dimensions all the Ae-codimension 1 singularities are simple (see
Proposition 3.4). Goryunov ([9]), Cooper, Mond and Wik Atique ([4]) and Hous-
ton ([12]) studied the classification of germs and multigerms of Ae-codimension
1, corank 1. A recent work by Oset Sinha, Ruas and Wik Atique ([26]) defined
operations that allow the classification of Ae-codimension 2 multigerms in the nice
dimensions and a natural question arises: are all of these simple? In Section 3
we prove that all corank 1 Ae-codimension 2 monogerms in (n, p) are simple when
(n + 1, p + 1) is in the nice dimensions. We give a sufficient condition for any
Ae-codimension 2 germ to be simple. This condition is related to stable germs in
one dimension higher having Ae-codimension 1 hyperplane sections. We also give
an example of a corank 2 codimension 2 germ in the nice dimensions which is not
simple.

In Section 4 we define the extra-nice dimensions, we relate them to the simplicity
of Ae-codimension 2 germs and we characterize them by stable germs in one dimen-
sion higher having Ae-codimension 1 hyperplane sections (the sufficient condition
in Section 3). In Section 5 we determine the boundary of the extra-nice dimensions
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completely. Figure 1 shows this boundary and compares it to the boundary of the
nice dimensions. In Section 6 we characterize the extra-nice dimensions by the
density of locally stable 1-parameter families.

Section 2 establishes the necessary notation and basic results. Finally, in Section
7, we answer a question posed by Wall about the codimension of non-simple maps.
We define further refinements of the nice dimensions and give an example in the
equidimensional case of a stratification in terms of increasing codimension of the
subset of non-simple maps.

Acknowledgements: The authors thank J. J. Nuño-Ballesteros for spotting errors
in previous versions of the manuscript and T. Nishimura for helpful discussions,
both helping to improve the presentation of the results.

2. Notation

We consider map-germs f : (Kn, S) → (Kp, 0), where K = R or K = C, and
S ⊂ K

n a finite subset. For simplicity, we will say that f is smooth if it is smooth
(i.e. C∞) when K = R or holomorphic when K = C. We denote by On = OKn,S

and Op = OKp,0 the rings of smooth function germs in the source and target
respectively, by Mn and Mp the maximal ideals of On and Op respectively and by
θn = θKn,S and θp = θKp,0 the corresponding modules of vector field germs. The
module of vector fields along f will be denoted by θ(f). Associated with θ(f) we
have two morphisms tf : θn → θ(f), given by tf(χ) = df ◦ χ, and wf : θp → θ(f),
given by wf(η) = η ◦ f . Let f∗ : Op → On be the induced map of f given by
composition with f on the right. Let G = Ae,A ,Ke,K . The G -tangent space
and the G -codimension of f are defined respectively as

TAef = tf(θn) + wf(θp), Ae-cod(f) = dimK

θ(f)

TAef
,

TA f = tf(Mnθn) + wf(Mpθp), A -cod(f) = dimK

Mnθ(f)

TA f
,

TKef = tf(θn) + f∗Mpθ(f), Ke-cod(f) = dimK

θ(f)

TKef
,

TK f = tf(Mnθn) + f∗Mpθ(f), K -cod(f) = dimK

Mnθ(f)

TK f
.

It follows from Mather’s infinitesimal stability criterion [16] that a germ is stable
if and only if its Ae-codimension is 0. We refer to Wall’s survey paper [36] and
Nuño-Ballesteros and Mond book [23] for general background on the theory of
singularities of mappings.

There are some relations between the different codimensions. One between the
A -codimension and the Ae-codimension due to L. Wilson [38] (a proof can be
found in [29]):

Ae-cod(f) = A -cod(f) + r(p− n)− p,
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if f has finite Ae-codimension and is not stable, where r = |S| is the number of
branches. And another one between the K -codimension and the Ke-codimension,
which can be found in [36]:

Ke-cod(f) = K -cod(f) + r(p− n).

We say that f : (Kn, 0) → (Kp, 0) has corank r if df(0) has rank minn, p− r.
We say that f has finite singularity type or it is K -finite if Ke-cod(f) < ∞.

Another remarkable result of Mather is that f has finite singularity type if and
only if it admits an s-parameter stable unfolding (see [36]). We recall that an
s-parameter unfolding of f is another map-germ

F : (Kn ×K
s, S × {0}) → (Kp ×K

s, 0)

of the form F (x, λ) = (fλ(x), λ) and such that f0 = f .
Along the paper, we use the notation of small letters x1, . . . , xn, λ1, . . . , λr for the

coordinates in K
n×K

r and capital letters X1, . . . ,Xp,Λ1, . . . ,Λr for the coordinates
in K

p ×K
r.

A multigerm f = {f1, . . . , fr} : (Kn, S) → (Kp, 0) with S = {x1, . . . , xr}
is simple if there exists a finite number of A -classes such that for every un-
folding F : (Kn × K

s, S × {0}) → (Kp × K
s, 0) with F (x, λ) = (fλ(x), λ) and

f0 = f there exists a sufficiently small neighbourhood U of S × {0} such that
for every (y1, λ), . . . , (yr, λ) ∈ U where F (y1, λ) = . . . = F (yr, λ) the multigerm
fλ : (Kn, {y1, . . . , yr}) → (Kp, fλ(yi)) lies in one of those finite classes.

Definition 2.1. Let f : (Kn, S) → (Kp, 0) be a smooth map-germ. A vector field
germ η ∈ θp is called liftable over f , if there exists ξ ∈ θn such that df ◦ ξ = η ◦ f
(i.e., tf(ξ) = wf(η)). The set of vector field germs liftable over f is denoted by
Lift(f) and is an Op-submodule of θp.

When K = C and f has finite singularity type, we always have the inclusion
Lift(f) ⊆ Derlog(∆(f)), where ∆(f) is the discriminant of f (i.e., the image of non
submersive points of f) and Derlog(∆(f)) is the submodule of θp of vector fields
which are tangent to ∆(f). Moreover, we have the equality Lift(f) = Derlog(∆(f))
in case f has finite Ae-codimension (see [5, 23]).

Definition 2.2. Let h : (Kn, S) → (Kp, 0) be a map-germ with a 1-parameter
stable unfolding H(x, λ) = (hλ(x), λ). Let g : (Kq, 0) → (K, 0) be a function-
germ. Then, the augmentation of h by H and g is the map AH,g(h) given by
(x, z) 7→ (hg(z)(x), z). A map which is not an augmentation is called primitive.

In Theorem 4.4 in [11] it is proved that

Ae-cod(AH,g(h)) ≥ Ae-cod(h)τ(g)

where τ is the Tjurina number of the function g. Equality is reached if g is quasi-
homogeneous or H is a substantial unfolding (see [11]). In this paper we will only
use the particular case when g is a Morse function and so Ae-cod(AH,g(h)) =
Ae-cod(h).
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Following Mather in [17] if f : (Kn, 0) → (Kp, 0) has finite singularity type then
there is a stable germ F : (Kn+s, 0) → (Kp+s, 0) and a germ of an immersion
i : (Kn, 0) → (Kp+s, 0), i ⋔ F, such that f is the pull-back of F by i in the diagram:

(Kn+s, 0)
F

−−−−→ (Kp+s, 0)
x i

x

(Kn, 0)
f

−−−−→ (Kp, 0)

Any germ f is a pull-back of a stable s-parameter unfolding F by the natural
inclusion i. Damon ([5], for K = C) and Houston ([11], for K = R) proved that
Ae-cod(f) = K∆(F ),e-cod(i), where

K∆(F ),e-cod(i) = dimKNK∆(F ),e(i) = dimK

θ(i)

ti(θp) + i∗ Lift(F )
.

Furthermore, if L : (Kp+s, 0) −→ (Ks, 0) is such that L◦i = 0, then Ae-cod(f) =∆(F )

Ke-cod(L), where

∆(F )Ke-cod(L) = dimKN∆(F )Ke(L) = dimK

θ(L)

tL(Lift(F )) + L∗Msθ(L)
.

When s = 1 we say that L defines the hyperplane section f of F . Besides, to
obtain a hyperplane section of Ae-codimension 1 it is sufficient to consider the 1-jet
of L (see for example [22]). Also notice that if F is minimal, ∆(F )Ke-cod(L) = 1 if
and only if Mp+1θ(L) ⊂ tL(Lift(F )) + L∗Msθ(L).

3. On simplicity of codimension 2 germs in the nice dimensions

We need the following characterisation of the openness of an A -orbit in the
K -orbit.

Theorem 3.1. ([32],[33]) Let f : (Kn, 0) → (Kp, 0) be a K -finite germ and let
{v1, . . . , vr} be a basis for

N :=
θ(f)

TAef + f∗Mpθ(f)
.

The A -orbit of f is open in the K -orbit if and only if fivj ∈ TA f , i = 1, . . . , p
and j = 1, . . . , r (mod f∗M 2

p θ(f)).

If f is stable, the A -orbit is open in the K -orbit.
The A -orbit is open in the K -orbit if and only if TA f = TK f , so A -cod(f) =

K -cod(f). By the formulas relating the G -codimension to the Ge-codimension in
the previous section, this is equivalent to Ae-cod(f) = Ke-cod(f)− p, so basically,
a non stable germ has the A -orbit open in the K -orbit if and only if there is no
stable germ in the K -orbit before the versal unfolding.
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Example 3.2. The germ (x5 + yx, y) has Ae-codimension 3 but admits a 2-
parameter stable unfolding, so its A -orbit is not open in the K -orbit. However,
(x5+ yx+x7, y) has Ae-codimension 2 and its A -orbit is open in the K -orbit (see
[28]).

In Subsection 3.9 we will see an example of a K -orbit which does not admit an
open A -orbit.

The germs of Ae-codimension 1 and corank 1 in the nice dimensions are well
known and are hyperplane linear sections of stable germs. We review them here
for sake of completeness. The case of hyperplane sections of stable corank 2 germs
in (n, n+ 1) has been studied in [8].

Proposition 3.3. Let F : (Kn+1, 0) −→ (Kp+1, 0) be a stable corank 1 germ, (n, p)
nice dimensions. Then there exists f : (Kn, 0) −→ (Kp, 0) obtained by a hyperplane
section of F such that Ae-cod(f) = 1.

Proof. Suppose first that F is minimal.
1) Case n ≥ p. Let g0 : (Km, 0) → (K, 0) be a simple function singularity of

type Ak, Dk, E6, E7 or E8, and let ϕ1 = 1, ϕ2, . . . , ϕµ be a homogeneous basis for
On

Jg0
where ϕµ is the unique highest weight term. Then, by [17], the map germs

G : (Km ×K
µ−1, 0) → (K×K

µ−1, 0) given by

G(x, u2, . . . , uµ) = (g0(x) +

µ∑

i=2

uiϕi, u2, . . . , uµ)

are stable minimal corank 1 germs. Moreover, any stable minimal corank 1 germ is
A -equivalent to one of such germs. The section uµ = 0 defines an Ae-codimension
1 section, see [9].

2) Case n < p. By [17], any stable minimal corank 1 germ is A -equivalent to
G : (Kn ×K, 0) → (Kp ×K, 0) given by

G(u1, . . . , ul−1, v1, . . . , vl−1, w11, w12, . . . , wrl, y, λ) = (u1, . . . , ul−1, v1, . . . , vl−1,

w11, w12, . . . , wrl, y
l+1 +

l−1∑

i=1

uiy
i, yl+2 +

l−1∑

i=1

viy
i + λyl,

l∑

i=1

w1i, . . . ,
l∑

i=1

wri, λ),

where r = p − n − 1 and l is such that l + 1 is the multiplicity of the germ and
n = l(r+2)−1. In particular, when p+1 = n+2, then r = 0 and so n+1 = 2l is even,
which means that there is no stable minimal germ G : (Kn × K, 0) → (Kp × K, 0)
when n + 1 is odd ([4]). The section λ = 0 defines an Ae-codimension 1 section,
see [12].

Now let F be A -equivalent to G. Then there exist germs of diffeomorphisms
φ : (Kn × K, 0) −→ (Kn × K, 0) and ψ : (Kp × K, 0) −→ (Kp × K, 0) such that
ψ ◦F = G◦φ. By Lemma 6.1 in [25] dψ(Lift(F )) = ψ∗(Lift(G)). Suppose L defines
a hyperplane section of G of Ae-codimension 1. We have

t(L ◦ ψ)(Lift(F )) + 〈L ◦ ψ〉θ(L ◦ ψ) = tL(ψ∗(Lift(G))) + 〈L ◦ ψ〉θ(L ◦ ψ) =



THE EXTRA-NICE DIMENSIONS 7

ψ∗(tL(Lift(G)) + 〈L〉θ(L)) = ψ∗(Mp+1θ(L)) = Mp+1θ(L ◦ ψ)

by linearity of L. Therefore L ◦ ψ defines a hyperplane section of F of Ae-
codimension 1.

If F is not minimal, then F is A -equivalent to IdKr×F ′ where F ′ : (Kn−r, 0) −→
(Kp−r, 0) is minimal. So there exists an Ae-codimension 1 hyperplane section f ′ :
(Kn−r−1, 0) −→ (Kp−r−1, 0) of F ′. If we augment f ′ by the function φ(x1, . . . , xr+1) =
x21 + . . . + x2r+1 we obtain a germ f : (Kn, 0) −→ (Kp, 0) of Ae-codimension 1. �

From the normal forms showed above all corank 1 Ae-codimension 1 germs in
the nice dimensions are simple. We give here a proof of this fact for any corank.

Proposition 3.4. If a pair (n, p) is in the nice dimensions then all Ae-codimension
1 germs in that pair are simple.

Proof. Let f : (Kn, 0) −→ (Kp, 0) be an Ae-codimension 1 germ.
Recall from [4] and [11] that f is either primitive or a quadratic augmentation,

that is, an augmentation of a primitive Ae-codimension 1 germ h : (Kn−l, 0) −→
(Kp−l, 0) by a Morse function g.

For germs of Ae-codimension 1, the A -orbit is open in its K -orbit if and only if
the germ is primitive (see [13] or [33]). In fact, if f is primitive then its miniversal
unfolding F is minimal. We have

dim
θ(f)

tf(θn) + wf(θp)
= 1

and therefore

dim
θ(f)

tf(θn) + wf(θp) + f∗Mpθ(f)
≤ 1.

This dimension cannot be 0 because F is minimal, therefore tf(θn) + wf(θp) +
f∗Mpθ(f) ⊂ tf(θn) +wf(θp) and so, by Theorem 3.1, the A -orbit of f is open in
the K -orbit of f , i.e. A -cod(f) = K -cod(f). Suppose f is non simple, then there
must be a modal stratum Y with codJk(n,p)(Y ) ≤ A -cod(f) − 1 = Ae-cod(f) +

n− 1 = n. So we cannot find a subset of Jk(n, p) with codimension greater than n
whose complement is a finite union of K -orbits and this contradicts the fact that
we are in the nice dimensions.

When f is an augmentation then f is A -equivalent to AH,g(z)(h) whereH(x, λ) =
(hλ(x), λ) is the versal unfolding of the primitive germ h and g is a Morse function.
Therefore (x, z, u) 7→ (hg(z)+u(x), z, u) is a versal unfolding of f and f can be
deformed only in a finite number of A -classes. �

Proposition 3.5. Let F : (Kn × K, 0) −→ (Kp × K, 0) be a stable minimal germ,
the following are equivalent:

i) There exists f : (Kn, 0) −→ (Kp, 0) such that F is a versal unfolding of f
and its A -orbit is open in its K -orbit.

ii) There exists f (unfolded by F ) which is a primitive Ae-codimension 1 germ.
iii) There exists an immersion i : (Kp, 0) → (Kp × K, 0) such that i∗(F ) is an

Ae-codimension 1 germ.
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iv) There exists a linear map L : Kp × K −→ K such that Mp+1 is contained
in L(Lift(F )) + 〈L〉.

Proof. i) if and only if ii) can be found in [33] or [13]. Notice that since F is
minimal, the K -codimension of F (and of f) must be n + 1. If the A -orbit of f
is open in its K -orbit, then f has A -codimension n+ 1 and thus Ae-codimension
1. ii) if and only if iii) is trivial by Damon’s Theorem on transverse fibre squares
and the fact that F is minimal. iii) if and only if iv) follows directly from Damon’s
result Ae-cod(f) =∆(F ) Ke-cod(L) and the fact that i(Kp) = L−1(0). �

Theorem 3.6. Let (n+1, p+1) be nice dimensions. All corank 1 Ae-codimension
2 germs in (n, p) are simple.

Proof. Suppose we have a corank 1 germ f : (Kn, 0) −→ (Kp, 0) with Ae-codimension
2 which is not simple. Let X denote the A -orbit of f . Then codJk(n,p)(X) =

A -cod(f) = n+2 and the codimension of the modal stratum Y is codJk(n,p)(Y ) ≤
A -cod(f)− 1 = Ae-cod(f) + n− 1 = n+ 1.

Suppose f does not admit a 1-parameter stable unfolding, then f is primitive.
We know that

dim
θ(f)

tf(θn) + wf(θp)
= 2

and therefore

dim
θ(f)

tf(θn) + wf(θp) + f∗(Mp)θ(f)
≤ 2.

Since f does not admit a 1-parameter stable unfolding this dimension cannot be
1, therefore it must be 2. This implies that tf(θp) + wf(θn) + f∗(Mp)θ(f) ⊂
tf(θp) + wf(θn) and by Theorem 3.1 the A -orbit is open in the K -orbit, so the
codimension of the K -orbit is equal to n+ 2. Since the codimension of the modal
stratum is n + 1 we have a 1-parameter family of K -orbits of codimension n + 2.
So in (n + 1, p + 1) we have modality of K -orbits of codimension n + 2, which
contradicts that (n+ 1, p + 1) are nice dimensions.

Now suppose f admits a 1-parameter stable unfolding F : (Kn × K, 0) −→
(Kp × K, 0). By Proposition 3.3, there exists f ′ in the same K -orbit such that
Ae-cod(f

′) = 1. So codJk(n,p)(X
′) = n+1, where X ′ denotes the A -orbit of f ′. As

the codimension of the A -orbit of f ′ is greater than or equal to the codimension
of the modal stratum, then f ′ is not simple, which contradicts Proposition 3.4.

�

Notice that in the above proof the hypothesis of corank 1 is only used to ensure
the existence of Ae-codimension 1 hyperplane sections so the above result can be
rephrased as

Proposition 3.7. Let (n + 1, p + 1) be nice dimensions. If all stable germs
F : (Kn+1, 0) −→ (Kp+1, 0) admit a codimension 1 hyperplane section, then all
codimension 2 germs f : (Kn, 0) −→ (Kp, 0) are simple.
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We believe that the results in this section hold also for multigerms, but in this
paper we are concerned only with monogerms.

3.1. An example of a corank 2 codimension 2 germ which is not simple.
From Theorem 3.6 in order to find Ae-codimension 2 non simple germs we have
two possibilities, either it has corank greater than 1, or it is has corank 1 and is
just below the boundary of the nice dimensions. In the latter case it must come
from a section of an Ae-codimension 1 non simple germ in the boundary of the nice
dimensions and must have A -orbits open in the K -orbits.

From Proposition 3.5 it follows that a stable germ F : (Kn+1, S) −→ (Kp+1, 0)
admits an Ae-codimension 1 hyperplane section if and only if there exists a linear
map L such that Mp+1 ⊂ L(Lift(F )) + 〈L〉.

Consider the stable germ F3,3 : (K
6, 0) → (K6, 0) given by

F3,3(x, y, u1, u2, u3, u4) = (x3+y3+u1x+u2y+u3x
2+u4y

2, xy, u1, u2, u3, u4) = (X,Y,U1, ..., U4).

Lemma 3.8. Lift(F3,3) is generated by

η1,2,3 =




3X
2Y
2U1

2U2

U3

U4



,




2U1U2 + 6Y 2 + 4U3U4Y
X

−3U2U3 − 5U4Y
−3U1U4 − 5U3Y

−4U2

−4U1



,




4
3U2Y
−1

9U3Y
X + 1

9U1U3

−5
3U4Y

−2
3U1 +

2
9U

2
3

−2Y




η4,5,6 =




4
3U1Y
−1

9U4Y
−5

3U3Y
X + 1

9U2U4

−2Y
−2

3U2 +
2
9U

2
4



,




5
3U4Y

2 + 1
9U2U3Y

(−2
9U1 +

2
27U

2
3 )Y

−4
3U2Y + 2

9U
2
1 − 2

27U1U
2
3

−2Y 2 − 2
9U3U4Y

X + 5
9U1U3 −

4
27U

3
3

−1
3U3Y



,




5
3U3Y

2 + 1
9U1U4Y

−2
9U2Y + 2

27U
2
4Y

−2Y 2 − 2
9U3U4Y

−4
3U1Y + 2

9U
2
2 − 2

27U
2
4U2

−1
3U4Y

X + 5
9U2U4 −

4
27U

3
4



.

Proof. F3,3 is a free divisor so Lift(F3,3) is generated by 6 vector fields. The Euler
vector field is clearly liftable and the other 5 are all linearly independent and liftable
by the following lowerable vector fields:

ξ2 =




u2 + y2 + u4y
u1 + x2 + u3x

−3u2u3 − 5u4xy
−3u1u4 − 5u3xy

−4u2
−4u1



, ξ3 =




−1
3x

2 − 1
9u3x

1
3xy

x3 + y3 + u1x+ u2y + u3x
2 + u4y

2 + 1
9u1u3

−5
3u4xy

−2
3u1 +

2
9u

2
3

−2xy



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ξ4 =




1
3xy

−1
3y

2 − 1
9u4y

−5
3u3xy

x3 + y3 + u1x+ u2y + u3x
2 + u4y

2 + 1
9u2u4

−2xy
−2

3u2 +
2
9u

2
4



,

ξ5 =




−1
3x

3 − 1
9u3x

2 + (−2
9u1 +

2
27u

2
3)x

1
3x

2y + 1
9u3xy

−4
3u2xy +

2
9u

2
1 −

2
27u1u

2
3

−2x2y2 − 2
9u3u4xy

x3+y3+u1x+u2y+u3x
2+u4y

2 + 5
9u1u3 −

4
27u

3
3

−1
3u3xy




ξ6 =




1
3xy

2 + 1
9u4xy

−1
3y

3 − 2
9u2y −

1
9u4y

2 + 2
27u

2
4y

−2x2y2 − 2
9u3u4xy

−4
3u1xy +

2
9u

2
2 −

2
27u

2
4u2

−1
3u4xy

x3+y3+u1x+u2y+u3x
2+u4y

2 + 5
9u2u4 −

4
27u

3
4




�

Therefore, there does not exist L such that M6 ⊂ L(Lift(F3,3))+ 〈L〉 and so F3,3

does not admit a codimension 1 hyperplane section.

Theorem 3.9. The corank 2 germ f : (R5, 0) → (R5, 0) given by

f(x, y, u1, u2, u4) = (x3 + y3 + u1x+ u2y + (−λu4 − u24)x
2 + u4y

2, xy, u1, u2, u4),

with λ 6= 0,−1, has Ae-codimension 2 and is not simple.

Proof. The idea is to use Damon’s Theorem relating Ae-codimension and V Ke-
codimension where V is the discriminant of F3,3. By integrating the linear parts of
the vector fields in Lift(F3,3) we obtain the linear parts of diffeomorphisms in V K ,
which are:

η1 = (e3αX, e2αY, e2αU1, e
2αU2, e

αU3, e
αU4),

η2 = (X,Y + αX,U1, U2, U3 − 4αU2, U4 − 4αU1),

η3 = (X,Y,U1 + αX,U2, U3, U4 − 2αY ),

η4 = (X,Y,U1;U2 + αX,U3 − 2αY,U4 − 2/3αU2),

η5 = (X,Y,U1, U2, U3 + αX,U4),

η6 = (X,Y,U1, U2, U3, U4 + αX).

Let L : (R6, 0) → R and suppose j1L(X,Y,U1, U2, U3, U4) = aX + bY + cU1 +
dU2 + eU3 + fU4. If f 6= 0, by using η2, . . . , η6 we can fix a = b = c = d = 0,
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and by using η1 we get j1L = U3 + λU4 where λ is a modulus. A complete 2-
transversal is given by U2

4 when λ 6= −1 since M 2
6 ⊂ TV K1L+sp{U2

4}+M 3
6 where

TV K1L = tL(Lift1(F3,3)) +L∗M1O6 and Lift1(F3,3) is the space of vector fields in
Lift(F3,3) with zero 1-jet (see [2]). Rescaling we set L = U3 + λU4 + U2

4 . If λ 6= 0,
this germ has V Ke-codimension 2 and is not simple, so the Ae-codimension of f is
2 and it is not simple. �

By Proposition 3.5, this is an example of a K -orbit which does not admit an
open A -orbit.

4. The extra-nice dimensions

Mather gave a stratification of the set Jk(n, p) of k-jets of smooth mappings
by K -orbits. This induces a partition of Jk(N,P ) by K -orbit bundles. Mather
characterized stability in terms of transversality of the k-jet extension jkf : N →
Jk(N,P ) to this stratification. He showed that there exists a smallest Zariski
closed K k-invariant set Πk(n, p) in Jk(n, p) such that its complement in Jk(n, p)
is the union of finitely many K k-orbits. The codimension of Πk(n, p) decreases as
k increases. Moreover, there exists a big enough k for which the codimension of
Πk(n, p) attains its minimum. For this k the codimension of the bad set Π(n, p)
is denoted by σ(n, p.) When σ(n, p) > n, then the k-jet of a generic map does
not meet the set Π(n, p) and therefore it is transversal to Mather’s stratification
in Jk(N,P ) and hence it is stable. He defined the nice dimensions as the pairs
(n, p) such that σ(n, p) > n. See [6] for the notion of semi-nice dimensions, where
2-modality of K -orbits appears.

As a consequence of Proposition 3.4, the fact that Mather’s bad set has codi-
mension greater than n means that one can detect lack of simplicity at the Ae-
codimension 1 level. Take also into account that K -orbits of codimension less than
or equal to n have stable representatives of A -codimension less than or equal to n
(i.e. there is an open A -orbit in the K -orbit). If we want to refine this definition
to detect lack of simplicity in the Ae-codimension 2 level we must consider bad
sets of codimension greater than n+ 1. Furthermore, since A -orbits of non stable
germs may or may not be open in their K -orbit, we must consider stratification
by A -orbits instead of K -orbits. This leads to the following

Definition 4.1. The pair (n, p) is said to be in the extra-nice dimensions if, for
large enough l, there is a Zariski closed A -invariant subset Λ of J l(n, p), of codi-
mension greater than n+ 1, whose complement is a finite union of A -orbits.

It follows from the definition that

Proposition 4.2. If (n, p) is in the extra-nice dimensions then all Ae-codimension
2 germs are simple.
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Proof. Suppose we have an Ae-codimension 2 non simple germ. Then there is a
1-parameter family of A -orbits of codimension n + 2, so we cannot find and A -
invariant subset Λ of J l(n, p), of codimension greater than n+1, whose complement
is a finite union of A -orbits. �

The converse of Proposition 4.2 is not true as we shall see in a further example
(Proposition 5.8).

The subset Λ in the definition can be constructed containing all non-simple A -
orbits and all A -orbits of codimension greater than or equal to n + 2. In order
to be in the extra-nice dimensions, the codimension of this set must be greater
than or equal to n + 2 (see Section 6, Proposition 6.2). It is not contained and it
does not contain Mather’s bad set, because in a K -orbit of codimension less than
or equal to n there can be an infinite number of simple A -orbits (for example,
augmentations), and in order to have finite A -orbits in the complement of our bad
set Λ we must include in Λ some of these A -orbits (i.e. we include the ones of
codimension greater than or equal to n+ 2). In Remark 5.3 we compare Mather’s
bad set and ours for some examples.

The previous definition is well defined because there is an estimate (depending
on n and p) for the degree of determinacy of Ae-codimension 1 germs. Namely,
results by Mather and Gaffney which can be found in [36] and [23] state that if

A -cod(f) = d then M
(rp+d)2

n θ(f) ⊂ TA f , where r is the number of branches, and
if M k+1

n θ(f) ⊂ TA f then f is (2k + 1)-A -determined. Combining this we have
that f is (2((rp + d)2 − 1) + 1)-A -determined. So for monogerms we obtain that
if Ae-cod(f) = i, then f is (2(p + n + i)2 − 1)-A -determined, in particular any
Ae-codimension 1 (and therefore A -codimension n+1) germ f : (Rn, 0) → (Rp, 0)
is (2(p + n+ 1)2 − 1)-A -determined.

Proposition 4.3. If the pair (n, p) is in the extra-nice dimensions, then (n+1, p+
1) is in the nice dimensions (in particular, (n, p) is nice dimensions too).

Proof. By definition there exists an A -invariant subset Λ of J l(n, p), of codimension
greater than n+1, whose complement is a finite union of A -orbits. For each one of
those A -orbits, consider the K -orbit which contains it. We therefore have a finite
number of K -orbits of codimension less than or equal to n+ 1 which may include
some A -orbits which were originally in Λ. The complement of this finite number
of K -orbits is included in Λ, and therefore the codimension of this complement
is greater than n + 1. This complement contains all the K -orbits of codimension
greater than or equal to n + 2 and is Zariski closed. In conclusion, there exists a
K -invariant subset Λ′ of codimension greater than n+1 such that its complement
is a finite number of K -orbits. The codimensions of these strata are the same in
(n+ 1, p + 1) and so (n+ 1, p + 1) is in the nice dimensions. �

This means that if (n+1, p+1) is not in the nice dimensions, then (n, p) is not
in the extra-nice dimensions.

It is obvious from the definition of nice dimensions that if a pair (n+1, p+1) is
in the nice dimensions, then (n, p) is in the nice dimensions, since the codimension
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of K -orbits is invariant under unfoldings. However, this is not so obvious for the
extra-nice dimensions:

Proposition 4.4. If the pair (n + 1, p + 1) is in the extra-nice dimensions, then
(n, p) is in the extra-nice dimensions.

Proof. Suppose that (n, p) is not in the extra-nice dimensions. Then, for any Zariski
closed A -invariant subset Γ of J l(n, p) of codimension greater than n + 1, its
complement is an infinite number of A -orbits.

Let Γ be the union of all the A -orbits of codimension greater than or equal to
n + 2. If the codimension of Γ is greater than or equal to n + 2, since it is an
A -invariant set, its complement is an infinite number of A -orbits. On the other
hand, the complement of Γ is the union of all A -orbits of codimension less than or
equal to n+ 1. In the nice dimensions there are a finite number of stable and Ae-
codimension 1 orbits, therefore we have a contradiction. Hence, the codimension of
Γ must be less than or equal to n+1. This means that there is a Zarisky open set
in Γ foliated by an infinite number of A -orbits of the same codimension (greater
than n+ 1, i.e. Ae-codimension greater than 1).

If these infinite A -orbits are contained in a single K -orbitX then codJk(n,p)X ≤

codJk(n,p) Γ ≤ n + 1. Therefore the K -orbit has a stable germ F : (Kn+1, 0) →

(Kp+1, 0) which is a 1-parameter stable unfolding of the germs of the A -orbits.
By augmenting these germs by F and a Morse function we obtain a stratum of
codimension less than or equal to n+1 of germs of Ae-codimension greater than 1
in (n+ 1, p + 1), and so (n + 1, p + 1) is not extra-nice dimensions.

If no single K -orbit contains the infinite A -orbits, there is a stratum of codimen-
sion equal to the codimension of Γ with modality of K -orbits. This implies that
(n+1, p+1) cannot be nice dimensions. Therefore, by Proposition 4.3, (n+1, p+1)
is not extra-nice dimensions. �

Remark 4.5. The above proof implies that if a pair (n, p) is in the nice dimensions
but not in the extra-nice dimensions, then there exists a K -orbit which contains
a stratum of codimension less than or equal to n+ 1 of non-simple germs. In fact,
the codimension is equal to n+ 1 (see Section 7).

Theorem 4.6. If the pair (n, p) is in the extra-nice dimensions then every stable
germ F : (Kn+1, 0) → (Kp+1, 0) admits a hyperplane Ae-codimension 1 section
f : (Kn, 0) → (Kp, 0). The converse is true if (n+1, p+1) is in the nice dimensions.

Proof. 1) Firstly we are going to prove that if (n, p) is in the extra-nice dimensions
then every stable germ F : (Kn+1, 0) → (Kp+1, 0) of K -codimension n+ 1 admits
a hyperplane section of Ae-codimension 1.

Suppose that there exists a stable germ F : (Kn+1, 0) → (Kp+1, 0) of K -
codimension n+1 which does not admit an Ae-codimension 1 hyperplane section.
Then there exists a k > 1 and a section f ′ : (Kn, 0) → (Kp, 0) of Ae-codimension
k such that all sections of F have Ae-codimension greater than or equal to k.
Therefore the A -orbit of f ′ is not open in its K -orbit, so the union of a (k − 1)-
parameter family of A -orbits of codimension n+ k is a Zariski open subset of the
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K -orbit. Then this K -orbit is a codimension n+1 subset of J l(n, p) which is not
a finite union of A -orbits of minimal codimension, so there does not exist a subset
of codimension greater than n + 1 such that its complement is a finite number of
A -orbits, contradicting the fact that (n, p) is in the extra-nice dimensions.

Lets consider now F : (Kn+1, 0) → (Kp+1, 0) a stable germ of K -codimension

n−r, r ≥ 0. Then F is a trivial unfolding of a minimal stable germ F̃ : (Kn−r, 0) →
(Kp−r, 0). As (n, p) is in the extra-nice dimensions hence, by Proposition 4.4, (n−r−
1, p−r−1) also is and we can apply the above argument to find an Ae-codimension

1 hyperplane section f̃ of F̃ . Then the augmentation of f̃ is an Ae-codimension 1
hyperplane section of F (see [4]).

2) Suppose that (n, p) is not in the extra-nice dimensions. Following the proof
of Proposition 4.4 there exists Γ of codimension less than or equal to n+1 with an
open Zariski subset foliated by infinite A -orbits of codimension greater than n+1.

If no single K -orbit contains the infinite A -orbits, there is a stratum of codi-
mension equal to the codimension of Γ with modality of K -orbits, contradicting
the fact that that (n+1, p+1) is nice dimensions. Therefore, there exists a K -orbit
which contains the infinite A -orbits. This K -orbit has codimension less than or
equal to n+ 1, therefore there exists a stable germ F : (Kn+1, 0) → (Kp+1, 0) (not
necessarily minimal) such that all non stable hyperplane sections f of F are not
A -simple. Then by Proposition 3.4 Ae-cod(f) > 1.

�

In order to determine when a pair (n, p) is in the extra-nice dimensions, by
Theorem 4.6, we need to know the stable germs (Kn+1, 0) → (Kp+1, 0), so we
describe Mather’s procedure to obtain the normal forms for all stable germs. Start

with a germ f0 : (K
s, 0) → (Kt, 0) of rank 0 and find a basis {φ1, . . . , φd} of Mnθ(f0)

TKef0
.

Then, F : (Ks+d, 0) → (Kt+d, 0) given by

F (x, u1, . . . , ud) = (f0(x) +

d∑

i=1

uiφi(x), u1, . . . , ud)

is stable. Furthermore, any stable germ can be obtained by this procedure.
By Proposition 3.3, all stable corank 1 germs admit an Ae-codimension 1 hyper-

plane section, so we need to study simple germs f0 of corank at least 2. The rank
0 germs f0 have been classified by several authors such as Mather, Arnol’d, Giusti,
Wirthmüller, Damon, du Plessis, Wall and Gibson. A good account can be found
in the book by du Plessis and Wall [7].

In the following discussion of simple algebras of corank greater than 1, there are
two of corank 2 which play a special role:

Bp,q = (xp + yq, xy), B′
p,q = (xp, yq, xy).

Notice that B′
p,q is obtained from Bp,q by adding its jacobian.
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4.1. Algebras. We describe the algebras by the number of variables and genera-
tors. We only list the least degenerate ones (which will be enough for our purpose
as we will see in the next section).

Case n ≥ p:

(1) With 1 generator and any number of variables: Ak, Dk, E6, E7 and E8,
which are of corank 1.

(2) With 2 generators and 2 variables: Bp,q. The stable germs in these algebras
are in (p+ q, p+ q).

(3) With 2 generators and 3 variables: Pp,q = Bp,q + (z2, 0). The stable germs
in these algebras are in (p+ q + 2, p + q + 1).

(4) With 2 generators and more than 3 variables there are no simple algebras.
For example, the simplest algebra of corank 2 with 4 variables is (x2+ y2+
z2, y2+z2+λw2) (non-simple because there are 4 quadratics), whose stable
germ is in (9, 7) and (8, 6) is the boundary of the nice dimensions.

(5) With more than 2 generators: there are no simple algebras.

Case n < p:

(1) With 2 variables: (B′
p,q, 0, . . . , 0) whose stable germs are in (2p + 2q − 2 +

k(p + q − 2), 2p + 2q − 1 + k(p + q − 1)) and (Bp,q, 0, . . . , 0) whose stable
germs are in (p+ q + k(p+ q − 1), p+ q+ k(p+ q)), where k is the number
of zeros.

(2) With 3 variables.
(a) With 4 generators: f(x, y, z) = (x2 − y2, y2 + z2, xz, yz). The stable

germ is in (12, 13). If we add k zeros the stable germ is in (12+9k, 13+
10k).

(b) With 5 generators: f(x, y, z) = (x2 − y2, y2 + z2, xy, xz, yz) which
is obtained from P2,2 by adding its jacobian. The stable germ is in
(15, 17). If we add k zeros the stable germ is in (15 + 12k, 17 + 13k).

(c) With 6 generators: f(x, y, z) = (x2, y2, z2, xy, xz, yz). The stable germ
is in (18, 21).If we add k zeros the stable germ is in (18+15k, 21+16k).

(d) With more than 6 generators they are obtained from the above ones
by adding zeros.

(3) With 4 variables the stable germs are in the boundary of the nice dimen-
sions.

5. The boundary of the extra-nice dimensions

Many of the calculations which did not make it to the final version of this article
were either done or double-checked using an algorithm implemented in the com-
puter package Singular developed by Hernandes, Miranda and Peñafort-Sanchis in
[10]. The calculations which appear in this section have been done by hand unless
otherwise stated.

5.1. The case n = p. In Theorem 3.9 we obtain a non-simple Ae-codimension
2 germs in (5, 5) of type B3,3. By Proposition 3.7 this means that there exists a
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stable germ in (6, 6) which does not admit a hyperplane section of Ae-codimension
1. Therefore, by Theorem 4.6, (5, 5) is not in the extra-nice dimensions. Since
(5, 5) is in the nice dimensions we have the converse of Theorem 4.6, so to establish
the boundary of the extra-nice dimensions we must verify if all stable germs in
(5, 5) admit hyperplane sections of Ae-codimension 1. Taking into account the
adjacencies of discrete algebra types we only have to investigate the stable germ in
B3,2:

F3,2(x, y, u1, u2, u3) = (x3+y2+u1x+u2y+u3x
2, xy, u1, u2, u3) = (X,Y,U1, U2, U3).

Lemma 5.1. Lift(F3,2) is generated by

η1 =




6X
5Y
4U1

3U2

2U3



, η2 =




4U3Y + 2U1U2

X
−5Y − 3U2U3

−3U1

−4U2



, η3 =




4
3U2Y

−1
9U3Y

X + 1
9U1U3

−5
3Y

−2
3U1 +

2
9U

2
3




η4 =




3
2U1Y

−1
4U2Y

−2U3Y
X + 1

4U
2
2

−5
2Y



, η5 =




5
3Y

2 + 1
9U2U3Y

(−2
9U1 +

2
27U

2
3 )Y

−4
3U2Y + 2

9U
2
1 − 2

27U1U
2
3

−2
9U3Y

X + 5
9U1U3 −

4
27U

3
3




Proof. F3,2 is a free divisor so Lift(F3,2) is generated by 5 vector fields. The Euler
vector field is clearly liftable and the other 4 are all linearly independent and liftable
by the following lowerable vector fields:

ξ2 =




y + u2
x2 + u1 + u3x
−5xy − 3u2u3

−3u1
−4u2



, ξ3 =




−1
3x

2 − 1
9u3x

1
3xy

x3 + y2 + u1x+ u2y + u3x
2 + 1

9u1u3
−5

3xy
−2

3u1 +
2
9u

2
3




ξ4 =




1
2xy

−1
2y

2 − 1
4u2y

−2u3xy
x3 + y2 + u1x+ u2y + u3x

2 + 1
4u

2
2

−5
2xy



, ξ5




−1
3x

3 − 1
9u3x

2 + (−2
9u1 +

2
27u

2
3)x

1
3x

2y + 1
9u3xy

−4
3u2xy +

2
9u

2
1 −

2
27u1u

2
3

−2
9u3xy

x3+y2+u1x+u2y+u3x
2+ 5

9u1u3 −
4
27u

3
3




�

Proposition 5.2. When n = p, (5, 5) is the boundary of the extra-nice dimensions.

Proof. It remains to prove the existence of a hyperplane section of Ae-codimension
1 of F3,2. Let L : K5 → K be given by L(X,Y,U1, U2, U3) = U3. Then M5 ⊂
L(Lift(F3,2)) and by Proposition 3.5 iv), F3,2 admits a hyperplane section of Ae-
codimension 1, so (4, 4) is in the extra-nice dimensions. �
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Remark 5.3. The pair (5, 5) is in the nice dimensions but not in the extra-nice
dimensions. In J l(5, 5) for a sufficiently high lMather’s bad set Π(5, 5) is a codimen-
sion 6 K -invariant set given by Π(5, 5) = A6 ∪B3,3. Its complement is composed
by the K -orbits Ai, i = 1, . . . , 5, B2,2 and B3,2, all of which have a stable represen-
tative in (5, 5). In the K -orbit of B3,3 there is a 1-parameter family of A -orbits of
Ae-codimension 2 (i.e. A -codimension 7) which is dense in the K -orbit (Theorem
3.9). Therefore we cannot find an A -invariant set of codimension greater than or
equal to 7 such that the complement is a finite number of A -orbits, and hence
(5, 5) is not in the extra-nice dimensions.

On the other hand, in (4, 4) the set Π(4, 4) is a codimension 5 K -invariant set in
J l(4, 4) given by Π(4, 4) = A5 ∪B3,2. Its complement is composed by the K -orbits
Ai, i = 1, . . . , 4 and B2,2. Both K -orbits A5 and B3,2 have an open A -orbit. Let
Λ be the union of the closure of the complement of these open orbits in A5 and
B3,2 and of all the A -orbits of codimension greater than or equal to 6 in all the
K -orbits. This is a codimension 6 A -invariant subset such that the complement
of it is a finite number of A -orbits and hence (4, 4) is in the extra-nice dimensions.

5.2. How to go from (n, p) (n ≤ p) to (n, p + 1) by adding a 0 component.
Let f0 : (K

n, 0) −→ (Kp, 0), n ≤ p, be a K -finitely determined map-germ. Suppose
On

〈f0〉
∼= K{σ0, . . . , σr}, where σ0 = 1. When n = p we shall consider σr = J(f0).

Let f : (Kn, 0) −→ (Kp+1, 0) be given by f = (f0, 0).
Let F0 : (K

n+k, 0) −→ (Kp+k, 0) be a minimal stable unfolding of f0, F0(x, u1, . . . , uk) =

(F̃ (x, u), u).
Let F : (Kn+k+r, 0) −→ (Kp+k+r+1, 0) be a minimal stable unfolding of f given

by F (x, u,w) = (F̃ (x, u), u, Z(x,w), w) where Z(x,w) =
∑r

i=1 σi(x)wi. We denote
the coordinates in target by (X,U,Z,W ).

We have that

dF =




∂F̃1

∂x1
· · · ∂F̃1

∂xn

∂F̃1

∂u1
· · · ∂F̃1

∂uk
0 · · · 0

...
∂F̃p

∂x1
· · · ∂F̃p

∂xn

∂F̃p

∂u1
· · · ∂F̃p

∂uk
0 · · · 0

0 0 1 · · · 0 0 · · · 0
...
0 0 0 · · · 1 0 · · · 0
∂Z
∂x1

· · · ∂Z
∂xn

0 0 σ1 · · · σr
0 0 0 · · · 0 1 · · · 0
...
0 0 0 · · · 0 0 · · · 1




Proposition 5.4. Let π1 : (Kp+k+r+1, 0) −→ (Kp+k, 0) be the natural projection.
Then Lift(F0) = π1(Lift(F )|Z=W=0).
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Proof. It is immediate that Lift(F0) ⊃ π1(Lift(F )|Z=W=0). Only write dF (ξ) =
η ◦ F , take Z = W = 0 and project ξ into the first n + k coordinates and η into
the first p+ k coordinates.

Now let ξ0 = (ξ10(x, u), . . . , ξ
n+k
0 (x, u)) ∈ θn+k and η0 = (η10(X,U), . . . , ηp+k

0 (X,U)) ∈
θp+k such that dF0(ξ0) = η0 ◦ F0.

We have that

dF (ξ0, 0, . . . , 0) = (η10 ◦ F0, . . . , η
p+k
0 ◦ F0, λ(x, u,w), 0, . . . , 0)

where λ(x, u,w) =
∑n

i=1 ξ
i
0
∂Z
∂xi
.

Since
O{(x,u,w)}

〈F0, w〉
∼= K{σ0, . . . , σr}, it follows from the Preparation Theorem that

there exist functions ai = ai(x, u,w) such that

λ(x, u,w) =

r∑

i=0

ai(F0, w)σi(x).

Now let ζ = (ξ10 , . . . , ξ
n+k
0 ,−a1(F0, w), . . . ,−ar(F0, w)) ∈ θn+k+r and

η = (η10 , . . . , η
p+k
0 , a0(X,U,W ),−a1(X,U,W ), . . . ,−ar(X,U,W )). Then, dF (ζ) =

η ◦ F , that is, η ∈ Lift(F ), and π1(η|Z=W=0) = η0. �

Lemma 5.5. The vectors ηZWj
= Zσj

∂
∂Z

+ Z ∂
∂Wj

∈ θp+k+r+1, j = 1, . . . , r, and

ηWiWj
=Wiσj

∂
∂Z

+Wi
∂

∂Wj
∈ θp+k+r+1, i, j = 1, . . . , r, belong to Lift(F ).

Proof. Write ξZwj
= Z ∂

∂wj
∈ θn+k+r and ξwiwj

= wi
∂

∂wj
∈ θn+k+r, i, j = 1, . . . , r.

Then wF (ηZWj
) = tF (ξZwi

) and wF (ηWiWj
) = tF (ξwiwj

). �

Theorem 5.6. If F0 admits a hyperplane Ae-codimension 1 section then F also
does. The converse is true if the image of the set of linear part of vector fields in
Lift(F ) by π2 is a subset of MZ,W θ(π2), where π2 : (Kp+k+r+1, 0) −→ (Kr+1, 0) is
the projection π2(X,U,Z,W ) = (Z,W ).

Proof. Let h0 : (Kp+k, 0) → (K, 0) be a linear function such that h0 = 0 defines
the Ae-codimension 1 hyperplane section of the discriminant V0 ⊂ (Kp+k, 0) of F0,
that is, h0 has V0

Ke-codimension 1. Then th0(Lift(F0)) + 〈h0〉 ⊃ Mp+k.

Let h : (Kp+k+r+1, 0) → (K, 0) be given by h(X,U,Z,W ) = h0(X,U) +Wr. We
are going to prove that h = 0 defines an Ae-codimension 1 hyperplane section of
the discriminant V ⊂ (Kp+k+r+1, 0) of F , that is, h has V Ke-codimension 1.

As F0 and F are both minimal stable unfoldings, all liftable vector fields in both
cases vanish at zero.

Using notation from the previous lemma, it follows that 〈th(ηZWr), th(ηWiWr)〉 ⊇
〈Z,W 〉Op+k+r+1

. So th(Lift(F )) ⊇ 〈Z,W 〉Op+k+r+1
.

It remains to prove that Xi, Uj ∈ th(Lift(F )) + 〈h〉, i = 1, . . . , n; j = 1, . . . , k.
From hypothesis Xi, Uj ∈ th0(Lift(F0)) + 〈h0〉. So, there exists η0i (X,U) ∈

Lift(F0) such that Xi = th0(η
0
i )+αh0, i = 1, . . . , n. It follows from Proposition 5.4

that there exists ηi ∈ Lift(F ), such that π(ηi(X,U, 0, 0)) = η0i (X,U). Now, from the
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definitions of h and h0, th(ηi)+ 〈Z,W 〉Op+k+r+1
= th0(η

0
i )+ 〈Z,W 〉Op+k+r+1

. Then,
Xi ∈ th(Lift(F )) + 〈h〉, i = 1, . . . , n. Similar arguments hold for Uj , j = 1, . . . , k.
Therefore h has V Ke-codimension 1.

Conversely, let h : (Kp+k+r+1, 0) → (K, 0) be a linear function such that h = 0 de-
fines an Ae-codimension 1 hyperplane section of the discriminant V ⊂ (Kp+k+r+1, 0)
of F. Then th(Lift(F )) + 〈h〉 ⊃ Mp+k+r+1.

Since h is linear we can write h(X,U,Z,W ) = h0(X,U) + h1(Z,W ). It fol-
lows from the derivative of F above that π2(Lift(F )) ∩ MX,Uθ(π2) = ∅. There-
fore h0 6= 0 and Xi, Uj ∈ h0(Lift(F )) + 〈h0〉, for all i = 1, . . . , n, j = 1, . . . , k.
Now from Proposition 5.4 and as π2(Lift(F )) ⊂ MZ,Wθ(π2), we actually have
Xi, Uj ∈ h0(Lift(F0)) + 〈h0〉, for all i = 1, . . . , n, j = 1, . . . , k, that is, h0 has

V0
Ke-codimension 1. �

5.3. The case n = p − 1. First we consider B′
3,3 whose stable germ is F ′

3,3 :

(K10, 0) → (K11, 0) given by F ′
3,3(x, y, u1, u2, u3, v1, v2, v3, w1, w2) = (x3 + u1x +

u2y + u3y
2, y3 + v1x + v2y + v3x

2, xy + w1x + w2y, u, v, w). In her PhD thesis at
Warwick University under the supervision of David Mond, Mirna Gómez-Morales
studied the existence of hyperplane sections of Ae-codimension 1 for all stable
germs in the algebra B′

p,q ([8]). She showed that the stable germ F ′
3,2 of type B′

3,2

has an Ae-codimension 1 hyperplane section but B′
3,3 does not, therefore (9, 10)

is not in the extra-nice dimensions. Their method is the following. Consider
L : (K11, 0) → (K, 0) be a linear polynomial given by L(X1, . . . ,X11) = a1X1 +
. . . + a11X11. Given an immersion i : (K10, 0) → (K11, 0), such that L ◦ i =
0, by Damon’s Theorem we have that Ae-cod(i

∗(F ′
3,3)) = KVe-cod(i) =V Ke-

cod(L), where V is the discriminant of F ′
3,3. Let MF ′

3,3
(X1, . . . ,X11) be the matrix

whose entries correspond to the linear parts in X1, . . . ,X11 of the generators of
tL(Derlog(∆(F ′

3,3))) + 〈L〉θ(L). Then

MF ′

3,3
(X1, . . . ,X11) = (X1, . . . ,X11) ·NF ′

3,3
(a1, . . . , a11).

Therefore, Ae-cod(i
∗(F ′

3,3)) = 1 if and only if the rank of NF ′

3,3
is 11. In fact, the

same argument proves that Ae-cod(i
∗(F ′

3,3)) = k if and only if the rank of NF ′

3,3
is

12− k for k ≥ 1.

Lemma 5.7. The linear parts of the generators of Lift(F ′
3,3) are
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η1 = 3X ∂
∂X

+ 3Y ∂
∂Y

+ 2Z ∂
∂Z

+ 2U1
∂

∂U1
+ 2U2

∂
∂U2

+ U3
∂

∂U3
+ 2V1

∂
∂V1

+2V2
∂

∂V2
+ V3

∂
∂V3

+W1
∂

∂W1
+W2

∂
∂W2

,

η2 = 3X ∂
∂Z

− 3V2
∂

∂V3
+ 3U1

∂
∂W1

+ 4U2
∂

∂W2
,

η3 = 3Y ∂
∂Z

− 3U1
∂

∂U3
+ 4V1

∂
∂W1

+ 3V2
∂

∂W2
,

η4 = 9X ∂
∂U1

+ 3V1
∂

∂V3
+ 3Z ∂

∂W1
+ 2U1

∂
∂W2

,

η5 = 3Y ∂
∂U1

− 3Z ∂
∂U3

+ V1
∂

∂W2
,

η6 = 3X ∂
∂U2

− 3U2
∂

∂U3
+ Z ∂

∂W2
,

η7 = X ∂
∂U3

,

η8 = 3U2
∂

∂U3
+ 9Y ∂

∂V2
+ 2V2

∂
∂W1

+ 3Z ∂
∂W2

,

η9 = 3Y ∂
∂V1

− 3V1
∂

∂V3
+ Z ∂

∂W1
,

η10 = 3X ∂
∂V2

− 3Z ∂
∂V3

+ U2
∂

∂W1
,

η11 = 3Y ∂
∂V3

+X ∂
∂W2

,

η12 = X ∂
∂W1

, η13 = Y ∂
∂W1

, η14 = Y ∂
∂W2

,

where (X,Y,Z,U1, U2, U3, V1, V2, V3,W1,W2) are the coordinates of the target.

Proof. η1 is the Euler vector field and lowerable vector fields for the remaining ones
are

ξ2 = −u2
∂
∂x

+ x2 ∂
∂y

− 3v2
∂

∂v3
+ 3u1

∂
∂w1

+ 4u2
∂

∂w2
,

ξ3 = 3y2 ∂
∂x

− v1
∂
∂y

− 3u1
∂

∂u3
+ 4v1

∂
∂w1

+ 3v2
∂

∂w2
,

ξ4 = (−3x2 − 2u1)
∂
∂x

+X ∂
∂u1

+ 3v1
∂

∂v3
+ 3Z ∂

∂w1
+ 2u1

∂
∂w2

,

ξ5 = −v1
∂
∂x

+ 3Y ∂
∂u1

− 3Z ∂
∂u3

+ v1
∂

∂w1
,

ξ6 = −xy ∂
∂x

+ 3X ∂
∂u2

− 3u2
∂

∂u3
+ z ∂

∂w2
,

ξ7 = X ∂
∂u3

,

ξ8 = (−3y2 − 2v2)
∂
∂y

+ 3u2
∂

∂u3
+ 9Y ∂

∂v2
+ 2v2

∂
∂w1

+ 3Z ∂
∂w2

,

ξ9 = (−v1x− xy) ∂
∂y

+ 3Y ∂
∂v1

− 3v1
∂

∂v3
+ Z ∂

∂w1
,

ξ10 = −u2
∂
∂y

+ 3X ∂
∂v2

− 3Z ∂
∂v3

+ u2
∂

∂w1
,

ξ11 = −x2y ∂
∂y

+ 3Y ∂
∂v3

+X ∂
∂w2

,

ξ12 = X ∂
∂w1

, ξ13 = Y ∂
∂w1

, ξ14 = Y ∂
∂w2

,

whereX = x3+u1x+u2y+u3y
2, Y = y3+v1x+v2y+v3x

2 and Z = xy+w1x+w2y.
�

The next result shows a counterexample of the converse of Proposition 4.2.

Proposition 5.8. Any hyperplane section of F ′
3,3 has Ae-codimension greater than

2.

Proof. Analyzing the linear parts of Lift(F ′
3,3) we can see that the rank of NF ′

3,3
is

8 so the best possible hyperplane section has Ae-codimension 4. �

This means that in (9, 10) all Ae-codimension 2 germs are simple, but (9, 10) is
not in the extra-nice dimensions.

Proposition 5.9. When n = p − 1, (9, 10) is the boundary of the extra-nice di-
mensions.
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Proof. We must analyze corank 2 stable germs in (9, 10). These are given by the
algebra type (B3,2, 0). By Lemma 5.1, F3,2 admits an Ae-codimension 1 hyperplane
section, and by Theorem 5.6 the stable germ for (B3,2, 0) admits a section too. Since
(9, 10) is in the nice dimensions, by the converse of Theorem 4.6, (8, 9) is in the
extra-nice dimensions. �

5.4. The case n < p − 1. Up to now we have at the boundary of the extra-nice
dimensions (5,5) and (9,10). These two pairs of dimensions lie in the line of equation
5n − 4p − 5 = 0 in the (n, p)-plane. In fact, we can generalise this to include the
case n < p− 1:

Proposition 5.10. If n ≤ p the boundary of the extra-nice dimensions is given by
5n− 4p− 5 = 0, p ≥ 5.

Proof. Let F0 : (K10, 0) → (K11, 0) be the minimal stable germ in B′
3,3 algebra

and F : (K10+4k, 0) → (K11+5k, 0) be the minimal stable germ in (B′
3,3, 0, . . . , 0)

where k is the number of zeros. Following notation of section 5.2 we have σ1 = x,
σ2 = y, σ3 = x2, σ4 = y2 and Z(x, y, w1, w2, w3, w4) = w1x + w2y + w3x

2 + w4y
2.

Therefore, ∂Z/∂x = w1 + 2w3x and ∂Z/∂y = w2 + 2w4y. So one can see that F
satisfies the conditions of Theorem 5.6. As F0 does not admit a hyperplane section
of Ae-codimension 1 then by Theorem 5.6 F does not. If F0 : (K6, 0) → (K6, 0)
is the minimal stable germ in B3,3 algebra and F : (K6+5k, 0) → (K6+6k, 0) is
the minimal stable germ in (B3,3, 0, . . . , 0) where k is the number of zeros, then
similarly F does not admit a hyperplane section of Ae-codimension 1 since σ1 = x,
σ2 = y, σ3 = x2, σ4 = y2.

Let now F0 : (K8, 0) → (K9, 0) be the minimal stable germ in B′
3,2 algebra and

F : (K8+3k, 0) → (K9+4k, 0) be the minimal stable germ in (B′
3,2, 0, . . . , 0) where k

is the number of zeros. We have Z(x, y, w1, w2, w3) = w1x+w2y+w3x
2. Therefore,

∂Z/∂x = w1+2w3x and ∂Z/∂y = w2. So one can see that F satisfies the conditions
of Theorem 5.6. As F0 admits a hyperplane section of Ae-codimension 1 then by
Theorem 5.6 F does. Similarly if F0 : (K5, 0) → (K5, 0) is the minimal stable
germ in B3,2 algebra and F : (K5+4k, 0) → (K5+5k, 0) is the minimal stable germ in
(B3,2, 0, . . . , 0) where k is the number of zeros, then similarly F admits a hyperplane
section of Ae-codimension 1.

Suppose p = n+ ℓ. We have:
algebra k stable germ hyperplane section

(B3,3, 0, . . . , 0) k = ℓ (6 + 5ℓ, 6 + 6ℓ) (5 + 5ℓ, 5 + 6ℓ)
(B′

3,3, 0, . . . , 0) k = ℓ− 1 (6 + 4ℓ, 6 + 5ℓ) (5 + 4ℓ, 5 + 5ℓ)

(B3,2, 0, . . . , 0) k = ℓ (5 + 4ℓ, 5 + 5ℓ) (4 + 4ℓ, 4 + 5ℓ)
(B′

3,2, 0, . . . , 0) k = ℓ− 1 (5 + 3ℓ, 5 + 4ℓ) (4 + 3ℓ, 4 + 4ℓ)

In conclusion, all the pairs of dimensions of sections of stable germs correspond-
ing to algebras Bp,q or B′

p,q (or these two with zeros added) with p + q ≤ 5 lie in
the extra-nice dimensions. The ones corresponding to Bp,q or B′

p,q (or these two
with zeros added) with p+ q ≥ 6 are not in the extra-nice dimensions.
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Therefore (5 + 4ℓ, 5 + 5ℓ) is in the boundary of the extra-nice dimensions and
belongs to the line 5n − 4p − 5 = 0. The sections of stable germs corresponding
to algebras with 3 or more variables lie to the right of this line and are not in the
extra-nice dimensions.

�

5.5. The case n = p + 1. Consider the simplest corank 2 algebra in this setting
and its stable unfolding P2,2 : (K

6, 0) → (K5, 0) given by

P2,2(x, y, z, u1, u2, u3) = (x2 + y2 + z2 + u1x+ u2y, xy + u3z, u1, u2, u3).

Lemma 5.11. The generators of Lift(P2,2) are

η1 =




2X
2Y
U1

U2

U3



, η2 =




6Y U1 − 2U2U
2
3

−Y U2 + 2U1U
2
3

−8Y
4X + U2

2 + 4U2
3

−U2U3



, η3 =




4Y U3 + 3U1U2U3

2XU3 + 2U2
3

−4U2U3

−4U1U3

2Y




η4,5 =




6Y U2 − 2U1U
2
3

−Y U1 + 2U2U
2
3

4X + U2
1 + 4U2

3

−8Y
−U1U3



,




4(X2 − 12Y 2 − 6Y U1U2 + U2
3 (5X + 3U2

1 + 3U2
2 ))

−8XY − 16Y U2
3 − 9U1U2U

2
3

2XU1 + 36Y U2 − 14U1U
2
3

36Y U1 + 2XU2 − 14U1U
2
3

−10XU3 − 2U3
3




Proof. The discriminant (image of critical points set) V of P2,2 is a free divisor so
Derlog(V ) is generated by 5 vector fields. In order to obtain them we calculate the
order 5 minors of the differential and eliminate the variables x, y, z from the ideal
generated by 2x2 − 2y2 + u1x − u2y, u1u3 + 2U3x − 2yz, u2u3 − 2u3y − 2xz,X −
(x2 + y2 + z2 + u1x+ u2y), Y − (xy + u3z) (the first three are the minors). Using
the computer package Singular we obtain the defining equation of V. Again using
Singular we can compute with syzygies the generators of Derlog(V ). It can be seen
that all of them are linearly independent and liftable. �

Notice that there are only 4 vector fields with non zero linear parts.

Proposition 5.12. When n = p + 1, (5, 4) is the boundary of the extra-nice di-
mensions.

Proof. Analyzing the vector fields in Lemma 5.11 and by Proposition 3.5 iv), P2,2

does not admit a hyperplane section of Ae-codimension 1, so (5, 4) is not in the
extra-nice dimensions. In fact, it does not admit an Ae-codimension 2 section
either. Since P2,2 is the simplest corank 2 algebra in (n + 1, n) and (5, 4) is in
the nice dimensions, by the converse of Theorem 4.6, (4, 3) is in the extra-nice
dimensions and so (5, 4) is the boundary of the extra-nice dimensions. �
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5.6. The case n > p+1. From the discussion of the algebras, we know that there
are no rank 0 simple algebras in this case. Here the boundary of the nice dimensions
is given by the non simple Ae-codimension 1 section of the stable unfolding of the
simplest rank 0 germ for each case (n+ k, n), k > 2.

In the case (n+ 2, n) this algebra is (x2 + y2 + z2, y2 + λz2 +w2), whose stable
unfolding is in (9, 7) and the boundary of the nice dimensions is (8, 6). By Proposi-
tion 4.3 (7, 5) is not in the extra-nice dimensions. Since there are no stable corank
2 germs in (7, 5) (or below) the boundary of the extra-nice dimensions is (7, 5).

On the other hand, for (n+k, n) with k > 2, the boundary of the nice dimensions
is given by the non simple Ae-codimension 1 section of the stable unfolding of
x3 + y3 + z3 + λxyz + Σk

i=1w
2
i , whose stable unfolding is in (10 + k, 8), and so

this boundary is (9 + k, 7). By Proposition 4.3 (8 + k, 6) is not in the extra-nice
dimensions. Since there are no stable corank 2 germs in (8 + k, 6) (or below) the
boundary of the extra-nice dimensions is (8+k, 6). We remark that in (8+k, 6) there
may be a non simple Ae-codimension 2 corank 1 germ obtained as a section (by a
codimension 2 plane) of the stable unfolding of the germ x3+y3+z3+λxyz+Σk

i=1w
2
i .

5.7. Diagram of the boundary. From all the above discussions we can draw
the boundary of the extra-nice dimensions and compare it to the boundary of the
nice dimensions. In Figure 1 the dotted line represents the boundary of the nice
dimensions and the continuous line is the boundary of the extra-nice dimensions.

6. Locally stable 1-parameter families are dense in the extra-nice

dimensions

In analogy to Mather’s characterization of the nice dimensions as those where
stable maps are dense, we characterize the extra-nice dimensions as those where
stable 1-parameter families are dense. Let N be a compact manifold.

Definition 6.1. Let F : N × [0, 1] → P be a family such that (F, t) : N ×
[0, 1] → P × [0, 1] is a stable map. Then F is a locally stable 1-parameter family
if Ft : N → P is a stable map for all t ∈ [0, 1] except for possibly a finite number
of values {t1, . . . , tk} and the non-stable singularities of Fti are a finite number of
points xj ∈ N, such that the map (F, t) : N×[0, 1] → P×[0, 1] is a locally Ae-versal
unfolding of Fti for all non-stable points xj .

From this definition it follows that Fti : (N,xj) → (P,Fti(xj)) has Ae-codimension
1. Locally stable 1-parameter families are known as pseudo-isotopies in [3] or [14].

Suppose that (n, p) is in the nice dimensions. We define a stratification of
Jk(n, p) by A -orbits. Let Λ(n, p) = {σ ∈ Jk(n, p)/ A k-codimension of σ ≥ n+2}.
Λ(n, p) is an algebraic set, hence it admits an A k-invariant stratification. The set
Jk(n, p)\Λ(n, p) has a finite stratification by A -orbits of codimension less than or
equal to n+1 (i.e. orbits of germs of Ae-codimension less than or equal to 1). Since
this stratification is A -invariant it induces an stratification S(N,P ) of Jk(N,P ).
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Figure 1.

Lemma 6.2. Let (n, p) be in the nice dimensions. (n, p) is in the extra-nice di-
mensions if and only if the set Λ(n, p) has codimension bigger than or equal to
n+ 2.

Proof. If the codimension of Λ(n, p) is less than or equal to n+1, then it is foliated
by infinite A -orbits and you cannot find a subset of codimension greater than n+1
such that its complement is a finite number of A -orbits. The “if” part is trivial
by definition since in the nice dimensions there are a finite number of A -orbits of
codimension less than or equal to n+ 1. �
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Consider a 1-parameter family F : N × [0, 1] → P and consider the partial jet
extension

jk1F : N × [0, 1] → Jk(N,P )

given by jk1F (x, t) = jkFt(x).

Lemma 6.3. If F : N × [0, 1] → P is a locally stable 1-parameter family then jk1F
is transverse to the stratification S(N,P ). The converse holds if (n, p) is in the
extra-nice dimensions.

Proof. First of all, the Versality Theorem 3.3 in [36] (or 4.1.4 in [23]) says that an
unfolding (F, t) of f is locally Ae-versal if and only if TAe(f) + Sp{∂F

∂t
} = θ(f).

Based on this it can be seen (Theorem 4.1.11 in [23] or Proposition 2.2 in [37] for
K -equivalence) that (F, t) is locally Ae-versal if and only if jk1F is transversal to
the A -orbit of f .

If F is a locally stable 1-parameter family, by definition (F, t) is an Ae-versal
unfolding of Fti at the points where it has non stable singularities (and these are
of Ae-codimension 1 only). By the above result this means that jk1F is transversal
to all A -orbits of codimension less than or equal to n+ 1. Since F does not have
singularities of Ae-codimension greater than 1 for any t, jk1F is also transversal to
Λ(N,P ). Therefore, jk1F is transversal to the stratification S(N,P ).

Conversely, if (n, p) is in the extra-nice dimensions, Λ(N,P ) has codimension
greater than or equal to n+2, so transversality to the stratification S(N,P ) means
that jk1F is transversal to all A -orbits of codimension less than or equal to n + 1
and avoids Λ(N,P ). Therefore, (F, t) unfolds versally all the Fti which have non
stable singularities of Ae-codimension 1. Since N is compact the points xj where
Fti is non stable are finite, so F is a locally stable 1-parameter family. �

Theorem 6.4. Let N and P be manifolds of dimension n and p, with (n+1, p+1)
nice dimensions. The subset of locally stable 1-parameter families in C∞(N ×
[0, 1], P ) is dense if and only if (n, p) is in the extra-nice dimensions.

Proof. The pair (n, p) is in the extra-nice dimensions if, by definition, there exists a
bad set Λ(n, p) ⊂ Jk(n, p) of codimension greater than n+1 such that its comple-
ment is a finite number of A -orbits. This set induces a bad set Λ(N,P ) in Jk(N,P )
of codimension greater than n+1. Thus, for a generic family F ∈ C∞(N×[0, 1], P ),
jk1F (N × [0, 1]) ∩ Λ(N,P ) = ∅. By Thom’s transversality theorem, the set of fam-
ilies F such that jk1F is transversal to any A -orbit of codimension less than or
equal to n + 1 is also a residual set. Since there are finite A -orbits of codimen-
sion less than or equal to n + 1, the set of families F such that their partial jet
extension is transverse to S(N,P ) is a finite intersection of residual sets and so is
residual. Equivalently, by Lemma 6.3, the set of locally stable 1-parameter families
in C∞(N × [0, 1], P ) is dense.

Now suppose (n, p) is not in the extra-nice dimensions. Then the codimension
of Λ(N,P ) is less than or equal to n + 1. In Section 5, for any (n, p) in the
boundary of the extra-nice dimensions such that (n+ 1, p + 1) is nice dimensions,
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we construct a stable germ F̃ in (n + 1, p + 1) such that any section of it f0 is

not simple and such that F̃ = (F, t) is a 1-parameter stable unfolding of f0. By
taking a trivial unfolding of these stable germs we obtain stable germs with this
property in any pair of dimensions outside the extra-nice dimensions. Considering
one of the sections of these stable germs in (n, p) and its deformation F , F is
clearly not a locally stable 1-parameter family but jk1F (N × [0, 1]) ∩ Λ(N,P ) 6= ∅
and jk1F is transversal to S(N,P ). There is a sufficiently small neighbourhood of
F in C∞(N × [0, 1], P ) such that any G in that neighbourhood satisfies that jk1G
is transversal to S(N,P ) and jk1G(N × [0, 1])∩Λ(N,P ) 6= ∅. Therefore, there is an
open set of non locally stable 1-parameter families and so the set of locally stable
1-parameter families is not dense. �

A summary of our main results in Theorems 4.6 and 6.4 we have the following

Corollary 6.5. Let (n + 1, p + 1) be in the nice dimensions. The following are
equivalent

i) (n, p) is in the extra-nice dimensions,
ii) codJk(n,p)Λ(n, p) ≥ n+ 2,

iii) the subset of locally stable 1-parameter families in C∞(N × [0, 1], P ) is
dense,

iv) every stable germ F : (Kn+1, 0) → (Kp+1, 0) admits a hyperplane Ae-
codimension 1 section f : (Kn, 0) → (Kp, 0).

7. Codimension of non-simple germs

In this section we answer partially a question posed by Wall to the first author
during his talk at the workshop on ”Singularities in Generic Geometry and Appli-
cations IV” held in Edinburgh in 2013: what is the codimension of the non-simple
germs?

Let NS denote the A -invariant subset of J l(n, p) composed of all non A -simple
orbits. If (n, p) is in the nice dimensions, by Proposition 3.4, all Ae-codimension
1 germs are simple, so if a germ is not simple its Ae-codimension is at least 2
(A -codimension n + 2). Therefore codJ l(n,p)(NS) ≥ n + 1. Similarly, from the

definition of the extra-nice dimensions, if (n, p) is in the extra nice dimensions,
then codJ l(n,p)(NS) ≥ n + 2. In fact, if (n, p) is in the nice dimensions but not

in the extra-nice dimensions, Remark 4.5 shows that codJ l(n,p)(NS) ≤ n + 1, so

codJ l(n,p)(NS) = n+ 1.
This naturally leads to the following definition

Definition 7.1. The pair (n, p) is said to be in the ∆m-nice dimensions if, for large
enough k, there is an A -invariant subset Λ of J l(n, p), of codimension greater than
n+m, whose complement is a finite union of A -orbits.

∆1-nice dimensions are the extra-nice dimensions and ∆0-nice dimensions are
the nice dimensions. With this definition, if (n, p) is in the ∆m-nice dimensions
but not in the ∆m+1-nice dimensions, then codJ l(n,p)(NS) = n+m+ 1.
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Example 7.2. In the case n = p, the Thom-Levine example in the introduction
is an example in the boundary of the ∆0-nice dimensions of an Ae-codimension
1 germ which is not simple. It has corank 3. Inside the ∆0-nice dimensions all
Ae-codimension 1 germs are simple.

From Theorem 3.9 we have an example in the boundary of the ∆1-nice dimen-
sions of an Ae-codimension 2 germ which is not simple. It has corank 2. Inside the
∆1-nice dimensions all Ae-codimension 2 germs are simple.

From [32] and [24] we know that if n ≥ 3, then a germ f : (Kn, 0) → (Kn, 0) with
m0(f) ≥ n+3 is not simple. In fact, in (3, 3) we find the germ (x, y, z6 + yz2+xz)
which has Ae-codimension 3 and is not simple with 1 modal parameter. It has
corank 1. From [28] and [30] we know that all Ae-codimension 3 germs in (2, 2) are
simple. This means that (3, 3) is the boundary of the ∆2-nice dimensions. Inside
the ∆2-nice dimensions all Ae-codimension 3 germs are simple.

Finally, in (2, 2) there is an Ae-codimension 4 germ which is not simple. It can
be found in [28], (x, xy + y6 ± y9 + αy9). Since in (1, 1) all germs are simple, this
means that (2, 2) is the boundary of the ∆3-nice dimensions. In fact, (2, 2) is the
boundary of the ∆m-nice dimensions for m ≥ 3!

So we get a stratification of the n = p dimensions by (9, 9) ⊃ (5, 5) ⊃ (3, 3) ⊃
(2, 2).
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