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Abstract

In this paper, we study an age-structured model which has strong biological

background about mosquito plasticity. Firstly, we prove the existence of

solutions and the comparison principle for a generalized system. Then, we

prove the existence of the optimal control for the best harvesting. Finally,

we establish necessary optimality conditions.

1 Introduction

Throughout the human history, people have always been combating against many

infectious diseases, such as malaria, dengue, yellow and Chikungunya fever, en-

cephalitis and the diseases have caused uncounted mortality of mankind. Dur-

ing the past decades, many researchers studied the pathology of these infectious

diseases and tried to control the transmission of them. One of the most stud-

ied diseases is malaria, which is mainly transmitted by Anopheles gambiae and

Anopheles funestus, the main vectors [7]. As the statistical data show, malaria

affects more than 100 tropical countries, placing 3.3 billion people at risk [24]

and the life of one African child’s life is taken by malaria every minute [25]. To

reduce human’s suffering from malaria, people have been seeking efficient ways

to control the malaria transmission for many years. In the past decades, the con-

trol of malaria has made slow but steady progress and the overall mortality rate

has dropped by more than 25% since 2000 [19]. The main strategies of control-

ling malaria are insecticide treated nets (ITNs) and indoor residual spraying (IRS)

[7, 13, 19, 24]. However, the effectiveness of these strategies depends on the sus-

ceptibility of the vector species to insecticides and their behaviours, ecology and

population genetics.
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ITNs and IRS are efficient ways against the main vectors of malaria in Africa.

However, the resistance of mosquitoes to insecticides forces them to adapt their

behaviours to ensure their survival and reproduction. Especially, they can adapt

their bitting behaviour from night to daylight [21]. This new behavioural patterns

lead to a resurgence of malaria morbidity in several parts of Africa [22]. Thus,

new methods are desired to replace the traditional strategies.

In this work, we are going to model mosquito population adaption and study

the optimal control problem. We consider a linear model describing the dynamics

of a single species population with age dependence and spatial structure as follows



Dp − δ∆p + µ(a)p = u(a, t, x)p, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x p(a, t, 0) = ∂x p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†) × (0, 24),
(1.1)

where Qa† = (0, a†) × (0, T ) × (0, 24) and

Dp(a, t, x) = lim
ε→0

p (a + ε, t + ε, x) − p (a, t, x)

ε

is the directional derivative of p with respect to direction (1, 1, 0) . For p smooth

enough, it is easy to know that

Dp =
∂p

∂t
+
∂p

∂a
.

Here, p(a, t, x) is the distribution of individuals of age a ≥ 0 at time t ≥ 0 and

bitting at time x ∈ [0, 24], a† means the life expectancy of an individual and T is a

positive constant. As we announced, the mosquitoes can adapt their bitting time.

Thus, we set their adapting model to be a ∆ diffusion with a diffusive coefficient δ.

Moreover, β(a) and µ(a) denote the natural fertility-rate and the natural death-rate

of individual of age a, respectively. In fact, the new generation is also able to adapt

the bitting time in order to maximize its fitness. Let η be the maximum bitting time

difference which the new generation can reach and we model the adaption of the

new generation by a kernel K as defined as below

K(x, s) =


(x − s)2e−(x−s)2

, s ∈ (0, 24),

0, else.

The control function u(a, t, x) represents the insecticidal effort, such as the use of

ITNs and RIs.
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In our paper, the main goal is to prove that there exists an optimal control u in

limited conditions, that is, u is bounded by two functions ς1 and ς2 such that the

insecticidal efficiency reaches the best. Since the control function u is negative, it

means that we can deal with the following optimal problem

(OH) Maximize

−
∫

Qa†

u(a, t, x)pu(a, t, x)dtdxda

 ,

subject to u ∈ U,

U = {u(a, t, x) ∈ L2(Qa†)| ς1(a, t, x) ≤ u(a, t, x) ≤ ς2(a, t, x) a.e. in Qa†},

where ς1, ς2 ∈ L∞(Qa†), ς1(a, t, x) ≤ ς2(a, t, x) ≤ 0 a.e. in Qa† and pu is the

solution of system (1.1). Here, we say that the control u∗ ∈ U is optimal if

∫

Qa†

u∗(a, t, x)pu∗(a, t, x)dtdxda ≤

∫

Qa†

u(a, t, x)pu(a, t, x)dtdxda,

for any u ∈ U. The pair (u∗, pu∗) is an optimal pair and

∫

Qa†

u∗pu∗dtdxda is the

optimal value of the cost functional.

Let us recall some history about the optimal control researches. Since 1985

when Brokate [6] first proposed the optimal control of the population dynamical

system with an age structure, it has been widely concerned and extensively studied

by more and more researchers in the past few years. It is worth mentioning that

the researches of Gurtin and Murphy [10, 11] about the optimal harvesting of

age-structured populations provide an important basis for subsequent researches

of the optimal control problem. As is well known, the optimal harvesting problem

governed by nonlinear age dependent population dynamics with diffusion was

considered by Aniţa [3], where he mainly discussed the impact of the control

in homogeneous Neuman boundary conditions. For more rich results about the

optimal control of an age structure with non-periodic boundary conditions, one

can refer to [4, 5, 8, 26] and references cited therein. Note that the above results

are about nonperiodic boundary conditions.

However, we have seen from the practical significance of biology that it is ad-

vantageous to consider age-structured models with periodic boundary conditions

and nonlocal birth processes. We would like to refer to [1, 20] for some studies

about the optimal control problem with periodic boundary conditions. We also re-

fer to [2, 14, 15, 16] as reviewing references of the optimal control problem. Let us

now mention some of our work about other aspects of system (1.1) with periodic

boundary conditions and nonlocal birth processes. In [17], large time behaviour

3



of the solution for such age-structured population model was considered. More-

over, we considered the local exact controllability of such age-structured problem

in [18]. In this work, we study the optimal control of system (1.1).

From the biological point of view (one can refer to [9, 12, 23]), we make the

following hypotheses throughout this paper:

(J1) µ(a) ∈ L∞
loc

((0, a†)),

∫ a†

0

µ(a)da = +∞ and µ(a) ≥ 0 a.e. in (0, a†);

(J2) β(a) ∈ L∞((0, a†)), β(a) ≥ 0 a.e. in (0, a†);

(J3) p0(a, x) ∈ L2((0, a†) × (0, 24)), p0(a, x) ≥ 0 a.e. in (0, a†) × (0, 24).

Now we state our main results.

Theorem 1.1 For any u ∈ U, there exists a unique solution pu(a, t, x) ∈ L2(Qa†)

of the system (1.1).

Theorem 1.2 Problem (OH) admits at least one optimal pair (u∗, p∗).

Theorem 1.3 Let (u∗(a, t, x), p∗(a, t, x)) be an optimal pair for (OH) and q(a, t, x)

be the solution of the following system



Dq + δ∆q − µ(a)q + β(a)

∫ x+η

x−η

K(x, s)q(0, t, s)ds = −u∗q − u∗, (a, t, x) ∈ Qa† ,

q(a, t, 0) = q(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂xq(a, t, 0) = ∂xq(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

q(a†, t, x) = 0, (t, x) ∈ (0, T ) × (0, 24),

q(a, T, x) = 0, (a, x) ∈ (0, a†) × (0, 24).
(1.2)

Then, one has

u∗(a, t, x) =

{
ς1(a, t, x), if q(a, t, x) > −1,

ς2(a, t, x), if q(a, t, x) < −1.

This paper is organized as follows. In Section 2, we prove the existence of

solutions and the comparison result for a linear model which is (1.1) in general

settings. Section 3 is devoted to the proof of the existence of an optimal control of

system (1.1) by Mazur’s Theorem. Section 4 focuses on the necessary optimality

conditions.
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2 Preliminaries

In this section, we study some properties of the following system, which is (1.1)

in general settings,



Dp − δ∆p + µ(a, t, x)p = f (a, t, x), (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x p(a, t, 0) = ∂x p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†) × (0, 24),
(2.1)

where β, p0 are under the assumptions (J2), (J3), µ and f satisfy

µ(a, t, x) ∈ L∞loc([0, a†) × [0, T ] × [0, 24]), µ(a, t, x) ≥ 0 a.e. in Qa† , (2.2)

f (a, t, x) ∈ L2(Qa†), f (a, t, x) ≥ 0 a.e. in Qa† .

Especially, we prove that there exists a unique solution of system (2.1) and the

comparison principle for system (2.1).

Before going further, we need an auxiliary lemma, which can be proved by

following the proof of [3, Lemma A2.7].

Lemma 2.1 For any y0(x) ∈ L2(0, 24), g(t, x) ∈ L2((0, T ) × (0, 24)), there ex-

ists a unique solution y(t, x) ∈ L2((0, T ); H1(0, 24)) ∪ L2
loc

((0, T ); H2(0, 24)) of the

following system



∂y

∂t
(t, x) − δ∆y(t, x) = g(t, x), (t, x) ∈ (0, T ) × (0, 24),

y(t, 0) = y(t, 24), t ∈ (0, T ),

y′(t, 0) = y′(t, 24), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, 24).

Remark 2.1 It is known that there exists an orthogonal basis {ϕ j} j∈N ⊂ L2(0, 24)

and {λ j} ⊂ R
+, λ0 = 0, λ j → +∞ as j→ +∞ such that



−∆ϕ j(x) = λ jϕ j(x), in (0, 24),

ϕ j(0) = ϕ(24),

ϕ′
j
(0) = ϕ′

j
(24).

We can replace the basis in the proof of [3, Lemma A2.7] by our {ϕ j} j∈N and follow

the same proof to get Lemma 2.1.

Let us first deal with the case when µ satisfies
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(A) µ ∈ L∞(Qa† ), µ(a, t, x) ≥ 0 a.e. in Qa† .

Lemma 2.2 For any fixed f (a, t, x) ∈ L2(Qa†), b(t, x) ∈ L2((0, T ) × (0, 24)), there

exists a unique solution pb(a, t, x) ∈ L2(Qa†) of the following system



Dp − δ∆p + µ(a, t, x)p = f (a, t, x), (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x p(a, t, 0) = ∂x p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

p(0, t, x) = b(t, x), (t, x) ∈ (0, T ) × (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†) × (0, 24),

(2.3)

where µ is under (A).

Proof. Fix any q(a, t, x) ∈ L2(Qa†), we first prove that the following system has a

unique solution pb,q(a, t, x),



Dp − δ∆p + µq = f , (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x p(a, t, 0) = ∂x p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

p(0, t, x) = b(t, x), (t, x) ∈ (0, T ) × (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†) × (0, 24).

(2.4)

Let S be an arbitrary characteristic line of equation

S = {(a0 + s, t0 + s); s ∈ (0, α)},

where (a0, t0) ∈ {0} × (0, T ) ∪ (0, a†) × {0} and (a0 + α, t0 + α) ∈ {a†} × (0, T ) ∪

(0, a†) × {T } and define



p̃(s, x) = p(a0 + s, t0 + s, x), (s, x) ∈ (0, α) × (0, 24),

q̃(s, x) = q(a0 + s, t0 + s, x), (s, x) ∈ (0, α) × (0, 24),

f̃ (s, x) = f (a0 + s, t0 + s, x), (s, x) ∈ (0, α) × (0, 24),

µ̃(s, x) = µ(a0 + s, t0 + s, x), (s, x) ∈ (0, α) × (0, 24).

(2.5)

According to Lemma 2.1, the following system admits a unique solution p̃ ∈

L2((0, α); H1(0, 24)) ∩ L2
loc((0, α); H2(0, 24)),



∂ p̃

∂s
− δ∆p̃ = f̃ − µ̃q̃, (s, x) ∈ (0, α) × (0, 24),

∂x p̃(s, 0) = ∂x p̃(s, 24), s ∈ (0, α),

p̃(s, 0) = p̃(s, 24), s ∈ (0, α),

p̃(0, x) =

{
b(t0, x), a0 = 0, x ∈ (0, 24),

p0(a0, x), t0 = 0, x ∈ (0, 24).

(2.6)
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In fact, multiplying the first equation of system (2.6) by p̃ and integrating on

(0, s) × (0, 24), one has

‖p̃(s)‖2
L2(0,24)

≤ ‖p̃(0)‖2
L2(0,24)

+ ‖ f̃ − µ̃q̃‖2
L2((0,α)×(0,24))

+

∫ s

0

‖p̃(τ)‖2
L2(0,24)

dτ.

Then by a lemma from Bellman (see in Appendix) we get

‖p̃(s)‖2
L2(0,24)

≤ C(‖p̃(0)‖2
L2(0,24)

+ ‖ f̃ − µ̃q̃‖2
L2((0,α)(0,24))

)eα, ∀s ∈ [0, α] (2.7)

Now let us denote

pb,q(a0 + s, t0 + s, x) = p̃(s, x), (s, x) ∈ (0, α) × (0, 24)

for any characteristic line S . It follows from Lemma 2.1 and (2.7) that pb,q ∈

L2(S ; H1(0, 24))∩ L2
loc(S ; H2(0, 24)) for almost any characteristic line S , and pb,q

satisfies


Dpb,q − δ∆pb,q + µ(a, t, x)q = f (a, t, x), (a, t, x) ∈ Qa† ,

pb,q(a, t, 0) = pb,q(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x pb,q(a, t, 0) = ∂x pb,q(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

pb,q(0, t, x) = b(t, x), (t, x) ∈ (0, T ) × (0, 24),

pb,q(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†) × (0, 24).

(2.8)

Now we show that pb,q(a, t, x) ∈ L2(Qa†). It is known that there exists an

orthonormal basis {ϕ j} j∈N ⊂ L2(0, 24) and {λ j} ⊂ R
+, λ0 = 0, λ j → +∞ as

j→ +∞ such that 

−∆ϕ j(x) = λ jϕ j(x), in (0, 24),

ϕ j(0) = ϕ(24),

ϕ′
j
(0) = ϕ′

j
(24).

Then, one has that

f (a, t, x) − µ(a, t, x)q =

∞∑

j=1

v j(a, t)ϕ j(x), in L2(0, 24), a.e. (a, t) ∈ (0, a†) × (0, T ),

b(t, x) =

∞∑

j=1

b j(t)ϕ j(x), in L2(0, 24), a.e. t ∈ (0, T ),

p0(a, x) =

∞∑

j=1

p
j

0
(a)ϕ j(x), in L2(0, 24), a.e. a ∈ (0, a†).

Furthermore, pb,q(a, t, x) has the following expression

pb,q(a, t, x) :=

∞∑

j=1

p
j

b,q
(a, t)ϕ j(x), in L2(0, 24) a.e. (a, t) ∈ (0, a†) × (0, T ).
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By substituting it into (2.8), one gets that p
j

b,q
(a, t) satisfies



Dp
j

b,q
+ λ jδp

j

b,q
= v j(a, t), (a, t) ∈ (0, a†) × (0, T ),

p
j

b,q
(a, t)ϕ j(0) = p

j

b,q
(a, t)ϕ j(24), (a, t) ∈ (0, a†) × (0, T ),

p
j

b,q
(a, t)ϕ

′

j
(0) = p

j

b,q
(a, t)ϕ

′

j
(24), (a, t) ∈ (0, a†) × (0, T ),

p
j

b,q
(0, t) = b j(t), t ∈ (0, T )

p
j

b,q
(a, 0) = p

j

0
(a), a ∈ (0, a†).

One can follow the computation of Lemma 4.1 in Aniţa [3, p.113 − 114] and get

that pb,q(a, t, x) ∈ L2(Qa†) satisfies

‖pb,q‖
2
L2(Qa†

)
≤ eT (‖p0‖

2
L2((0,a†)×(0,24))

+ ‖b‖2
L2((0,T )×(0,24))

+ ‖ f − µq‖2
L2(Qa†

)
). (2.9)

For an arbitrary q(a, t, x) ∈ L2(Qa†), we have obtained that system (2.4) has

a solution pb,q ∈ L2(Qa†). Let us set a mapping Π : L2(Qa†) → L2(Qa†) by

Π(qi(a, t, x)) = pb,qi
(a, t, x). Take any two functions q1, q2 ∈ L2(Qa†) and then

pb,q1
− pb,q2

satisfies



D(pb,q1
− pb,q2

) − δ∆(pb,q1
− pb,q2

) + µ(q1 − q2) = 0, (a, t, x) ∈ Qa† ,

(pb,q1
− pb,q2

)(a, t, 0) = (pb,q1
− pb,q2

)(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x(pb,q1
− pb,q2

)(a, t, 0) = ∂x(pb,q1
− pb,q2

)(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

(pb,q1
− pb,q2

)(0, t, x) = 0, (t, x) ∈ (0, T ) × (0, 24),

(pb,q1
− pb,q2

)(a, 0, x) = 0, (a, x) ∈ (0, a†) × (0, 24).
(2.10)

By the result of (2.9), one has

‖pb,q1
− pb,q2

‖2
L2(Qa†

)
≤ eT (‖µ(q1 − q2)‖2

L2(Qa†
)
), in L2(Qa†).

Obviously, when T is small enough, pb,q(a, t, x) is a contraction mapping with

respect to q(a, t, x). Consequently, there exists a unique solution pb of system

(2.3) for sufficient small T . However, one can extend T by following previous

steps for t ∈ (T, 2T ). Thus, system (2.3) has a unique solution pb ∈ L2(Qa†). �

One can follow the same idea of the proof of [3, Lemma 4.1.2] to get the

following Lemma.

Lemma 2.3 For any b1(t, x), b2(t, x) ∈ L2((0, T ) × (0, 24)), 0 ≤ b1(t, x) ≤ b2(t, x)

a.e. in (0, T ) × (0, 24), one has

0 ≤ pb1
(a, t, x) ≤ pb2

(a, t, x), a.e. in Qa† ,

where pb1
(a, t, x) and pb2

(a, t, x) are the solutions of system (2.3) under (A) with

b1(a, t, x) and b2(a, t, x) respectively.
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Lemma 2.4 There exists a unique solution p(a, t, x) ∈ L2(Qa†) of system (2.1)

under (A).

Proof. Let us define an operator F : L2((0, T )× (0, 24))→ L2((0, T )× (0, 24)) by

(Fb)(t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)pb(a, t, s)dsda, a.e. in (0, T ) × (0, 24).

For any fixed bi ∈ L2((0, T ) × (0, 24)) (i = 1, 2), let pb1
, pb2

∈ L2(Qa†) be the

solutions of system (2.1) with b1(a, t, x), b2(a, t, x) respectively. Let v(a, t, x) =

pb1
(a, t, x) − pb2

(a, t, x) and then v(a, t, x) satisfies



Dv − δ∆v + µ(a, t, x)v = 0, (a, t, x) ∈ Qa† ,

v(a, t, 0) = v(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂xv(a, t, 0) = ∂xv(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

v(0, t, x) = b1(t, x) − b2(t, x), (t, x) ∈ (0, T ) × (0, 24),

v(a, 0, x) = 0, (a, x) ∈ (0, a†) × (0, 24).

(2.11)

Then it follows by the computation of Lemma 4.1 in Aniţa [3, p.116] that

∫ T

0

e−λt‖v(t)‖2
L2((0,a†)×(0,24))

dt ≤
1

λ

∫ T

0

e−λt‖b1(t) − b2(t)‖2
L2(0,24)

dt

for any λ > 0. Consider L2((0, T ) × (0, 24)) with the norm

‖b‖ =

(∫ T

0

e−λt‖b(t)‖2
L2(0,24)

dt

)2

, for any b ∈ L2((0, T ) × (0, 24)).

Then one has

‖Fb1 −Fb2‖
2

=

∫ T

0

e−λt‖

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)(pb1
(a, t, s) − pb2

(a, t, s))dsda‖2
L2(0,24)

dt

≤C

∫ a†

0

β2(a)da

∫ T

0

e−λt‖v(t)‖2
L2((0,a†)×(0,24))

dt

≤
C

λ

∫ a†

0

β2(a)da‖b1 − b2‖
2,

where C is an appropriate positive constant related to K(x, s). One can choose

λ large such that λ > C

∫ a†

0

β2(a)da and then F is a contraction mapping on

L2((0, T ) × (0, 24)) with the norm ‖ · ‖. This completes the proof. �

From Lemma 2.4, one gets that the operator F is a contraction mapping.

Moreover, combined with Lemma 2.3, one can follow the rest of the proof of [3,

Lemma 4.1.1] to get the following comparison principle for (2.1).
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Lemma 2.5 If pi(i ∈ 1, 2) are the solutions of the following systems



Dpi − δ∆pi + µi(a, t, x)pi = fi, (a, t, x) ∈ Qa† ,

pi(a, t, 0) = pi(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x pi(a, t, 0) = ∂x pi(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

pi(0, t, x) =

∫ a†

0

βi(a)

∫ x+η

x−η

K(x, s)pi(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

pi(a, 0, x) = p0i(a, x), (a, x) ∈ (0, a†) × (0, 24),

where µ1 ≥ µ2, f1 ≤ f2, β1 ≤ β2, p01 ≤ p02 and µ1, µ2 satisfy (A), then

0 ≤ p1(a, t, x) ≤ p2(a, t, x) a.e. in Qa† .

By referring to the proof of [3, Theorem 4.1.3, Theorem 4.1.4] for the case

when µ(a, t, x) satisfies (2.2), one can define

µN(a, t, x) = min{µ(a, t, x),N}, for any N ∈ N+,

and denote pN(a, t, x) to be the solution of system (2.1) with µN . Passing to the

limit as N → +∞ for pN(a, t, x), one can get the solution of system (2.1). Then by

the results of Lemma 2.4 and Lemma 2.5, we can get the following lemma.

Lemma 2.6 There is a unique solution p(a, t, x) ∈ L2(Qa†) of system (2.1) with µ

satisfying (2.2). If pi(i ∈ 1, 2) are the solutions of system (2.1) with µ1, f1, β1, p01

and µ2, f2, β2, p02 respectively (µ1, µ2 satisfy (2.2)) and µ1 ≥ µ2, f1 ≤ f2, β1 ≤ β2,

p01 ≤ p02, then

0 ≤ p1(a, t, x) ≤ p2(a, t, x) a.e. in Qa† .

According to Lemma 2.6 , we obtain the result of Theorem 1.1 directly.

3 Existence of an optimal control

In this section, our main job is to obtain the existence of an optimal control of

(1.1) by Mazur’s Theorem, that is, we prove Theorem 1.2.

Proof of Theorem 1.2. Let Ψ : U → R+ be defined by

Ψ(u) =

∫

Qa†

u(a, t, x)pu(a, t, x)dtdxda.

Then by the definition of u(a, t, x), we have

∫

Qa†

ς1(a, t, x)p(a, t, x)dtdxda ≤ Ψ(u) ≤ 0,

10



where p(a, t, x) is a solution of system (1.1) with u ≡ 0, µ ≡ 0, β = ‖β(a)‖L∞(0,a†),

p0 = ‖p0‖L∞((0,a†)×(0,24)), that is,


Dp − δ∆p = 0, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x p(a, t, 0) = ∂x p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

p(a, 0, x) = p0, (a, x) ∈ (0, a†) × (0, 24).
(3.1)

Thus, we can assume that

d = inf
u∈U
Ψ(u),

and there exists a sequence {uN} ∈ U,N ∈ N∗ such that

d ≤ Ψ(uN) < d +
1

N
,

Ψ(uN)→ d. (3.2)

Since the result of Lemma 2.6, one obtains

0 ≤ puN (a, t, x) ≤ p(a, t, x) a.e. in Qa† .

Thus there exists a subsequence which still be denoted by {uN} such that

puN → p∗ weakly in L2(Qa† ).

By Mazur’s Theorem, one has that ∀ǫ > 0, there exists λN
i
≥ 0,

∑kN

i=N+1
λN

i
= 1

such that

‖p∗ −

kN∑

i=N+1

λN
i pui‖L2(Qa†

) ≤ ǫ,

where kN ≥ N + 1. Now we denote

p̃N(a, t, x) =

kN∑

i=N+1

λN
i pui(a, t, x),

therefore,

p̃N → p∗ in L2(Qa†).

Now we consider the sequence {̃uN} of controls {ui}. Here ũN(a, t, x) is defined

by

ũN(a, t, x) =



∑kN

i=N+1
λN

i
ui(a, t, x)pui(a, t, x)

∑kN

i=N+1
λN

i
pui

(a, t, x), i f

kN∑

i=N+1

λN
i pui
, 0,

ς1(a, t, x), i f

kN∑

i=N+1

λN
i pui = 0.

11



It is easy to check that ũN ∈ U. Thus, one learns that there exists a subsequence

{̃uN}N∈N∗ such that

ũN → u∗ weakly in L2(Qa† ).

Obviously, p̃N(a, t, x) is a solution of



Dp − δ∆p + µ(a)p = ũN(a, t, x)p, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x p(a, t, 0) = ∂x p(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†) × (0, 24).
(3.3)

Passing to the limit in (3.3), we get



Dp∗ − δ∆p∗ + µ(a)p∗ = u∗p∗, (a, t, x) ∈ Qa† ,

p∗(a, t, 0) = p∗(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂x p∗(a, t, 0) = ∂x p∗(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

p∗(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)p∗(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

p∗(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†) × (0, 24).

It means that p∗ is the solution of system (1.1) corresponding to u∗.

Therefore, we have

kN∑

i=N+1

λN
i Ψ(ui) =

kN∑

i=N+1

λN
i

∫

Qa†

ui(a, t, x)pui(a, t, x)dxdtda

=

∫

Qa†

ũN(a, t, x)p̃N(a, t, x)dxdtda

→

∫

Qa†

u∗(a, t, x)p∗(a, t, x)dxdtda

=Ψ(u∗).

Using (3.2) and the last equation, we can conclude that d = Ψ(u∗). �

4 Necessary optimality conditions

In this section, our goal is to obtain the necessary optimality conditions of (OH)

which is Theorem 1.3.

Proof of Theorem 1.3. First of all, we can get that system (1.2) has a unique

solution q(a, t, x) ∈ L2(Qa†) by the same method as in the proof of the existence

and uniqueness of solutions of system (1.1) in Section 2.
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Since (u∗, p∗) is an optimal pair for (OH), we have

∫

Qa†

u∗pu∗dtdxda ≤

∫

Qa†

(u∗ + ǫv)pu∗+ǫvdtdxda

for any ǫ > 0 small enough, arbitrary v(a, t, x) ∈ L∞(Qa†) such that

{
v(a, t, x) ≤ 0, if u∗(a, t, x) = ς2(a, t, x),

v(a, t, x) ≥ 0, if u∗(a, t, x) = ς1(a, t, x),

which implies

∫

Qa†

u∗
pu∗+ǫv − pu∗

ǫ
dtdxda +

∫

Qa†

vpu∗+ǫvdtdxda ≥ 0. (4.1)

Let zǫ(a, t, x) =
pu∗+ǫv(a,t,x)−pu∗ (a,t,x)

ǫ
, yǫ(a, t, x) = ǫzǫ(a, t, x), then yǫ(a, t, x) satisfies



Dyǫ − δ∆yǫ + µ(a)yǫ = u∗yǫ + ǫvpu∗+ǫv, (a, t, x) ∈ Qa† ,

yǫ(a, t, 0) = yǫ(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂xy
ǫ(a, t, 0) = ∂xy

ǫ(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

yǫ(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)yǫ(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

yǫ(a, 0, x) = 0, (a, x) ∈ (0, a†) × (0, 24).

Multiplying the first equation by yǫ and integrating on Qt = (0, a†)×(0, t)×(0, 24),

one obtains

‖yǫ(t)‖2
L2((0,a†)×(0,24))

≤ C

∫ t

0

‖yǫ(s)‖2
L2((0,a†)×(0,24))

ds + ǫ

∫

Qt

|v|pu∗+ǫv|yǫ |dsdxda.

Then by the result of Lemma 2.6 and Bellman’s Lemma (see in Appendix), we

get

‖yǫ(t)‖2
L2((0,a†)×(0,24))

≤ ǫ2

∫

Qa†

|v|2 p
2
dtdxda + (1 + C)

∫ t

0

‖yǫ(s)‖2
L2((0,a†)×(0,24))

ds

≤ ǫ2e(1+C)t

∫

Qa†

|v|2 p
2
dtdxda

where p(a, t, x) is a solution of system (3.1), t ∈ [0, T ] and C is a positive constant.

This implies that

yǫ → 0 in L∞(0, T ; L2((0, a†) × (0, 24))) as ǫ → 0+. (4.2)
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So the following convergence holds

pu∗+ǫv → pu∗ in L∞(0, T ; L2((0, a†) × (0, 24))) as ǫ → 0+.

Recalling the definition of zǫ(a, t, x), one has that zǫ(a, t, x) satisfies



Dzǫ − δ∆zǫ + µ(a)zǫ = u∗zǫ + vpu∗+ǫv, (a, t, x) ∈ Qa† ,

zǫ(a, t, 0) = zǫ(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂xz
ǫ(a, t, 0) = ∂xz

ǫ(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

zǫ(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)zǫ(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

zǫ(a, 0, x) = 0, (a, x) ∈ (0, a†) × (0, 24).

Let hǫ(a, t, x) = zǫ(a, t, x) − z(a, t, x), where z(a, t, x) is a solution of the following

system



Dz − δ∆z + µ(a)z = u∗z + vpu∗ , (a, t, x) ∈ Qa† ,

z(a, t, 0) = z(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂xz(a, t, 0) = ∂xz(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

z(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)z(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

z(a, 0, x) = 0, (a, x) ∈ (0, a†) × (0, 24).

Following the above proof step by step, we can get that

‖hǫ(t)‖2
L2((0,a†)×(0,24))

≤ e(1+C)t

∫

Qa†

|v|2|yǫ |2dtdxda.

Using (4.2), one obtains

zǫ → z in L∞(0, T ; L2((0, a†) × (0, 24))) as ǫ → 0+.

Passing to the limit in (4.1), it follows
∫

Qa†

u∗zdtdxda +

∫

Qa†

vpu∗dtdxda ≥ 0, (4.3)

for arbitrary v(a, t, x) ∈ L∞(Qa†) such that

{
v(a, t, x) ≤ 0, if u∗(a, t, x) = ς2(a, t, x),

v(a, t, x) ≥ 0, if u∗(a, t, x) = ς1(a, t, x).

Multiplying the first equation of system (1.2) by z(a, t, x) and integrating on Qa† ,

we get
∫

Qa†

vpu∗qdtdxda =

∫

Qa†

u∗zdtdxda. (4.4)
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Combining (4.3) with (4.4), we learn that
∫

Qa†

vpu∗(q + 1)dtdxda ≥ 0, (4.5)

for arbitrary v(a, t, x) ∈ L∞(Qa†) such that

{
v(a, t, x) ≤ 0, if u∗(a, t, x) = ς2(a, t, x),

v(a, t, x) ≥ 0, if u∗(a, t, x) = ς1(a, t, x).

For any (a, t, x) ∈ Qa† , if pu∗(a, t, x) , 0 holds, we can conclude that

u∗(a, t, x) =

{
ς1(a, t, x), if q(a, t, x) > −1,

ς2(a, t, x), if q(a, t, x) < −1.

We now consider the set B = {(a, t, x) ∈ Qa† |p
u∗(a, t, x) = 0}. Take any function

w(a, t, x) ∈ L∞(Qa†) such that w(a, t, x) , 0 for (a, t, x) ∈ B and w(a, t, x) ≡ 0 for

(a, t, x) ∈ Qa† − B and u∗ + w ∈ U. Let z(a, t, x) = pu∗+w − pu∗ and then it satisfies



Dz − δ∆z + µ(a)z = u∗(a, t, x)z + w(a, t, x)z, (a, t, x) ∈ Qa† ,

z(a, t, 0) = z(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

∂xz(a, t, 0) = ∂xz(a, t, 24), (a, t) ∈ (0, a†) × (0, T ),

z(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)z(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24),

z(a, 0, x) = 0, (a, x) ∈ (0, a†) × (0, 24).

By the uniqueness result, one can infer that z(a, t, x) ≡ 0 a.e. in Qa† . This implies

that we can change u∗ in B with arbitrary values in [ς1(a, t, x), ς2(a, t, x)] and the

value of the related cost functional of (OH) remains the same. Then the conclusion

is obvious and the proof is complete. �

Appendix

We present here a well-known result of Bellman in [3].

Lemma (Bellman) If x ∈ C([a, b]), ψ ∈ L1(a, b), ψ(t) ≥ 0 a.e. t ∈ (a, b), M ∈ R

and for each t ∈ [a, b],

x(t) ≤ M +

∫ t

a

ψ(s)x(s)ds,

then

x(t) ≤ M exp

(∫ t

a

ψ(s)ds

)
.
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