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DENSITY OF NOETHER-LEFSCHETZ LOCI OF POLARIZED IRREDUCIBLE
HOLOMORPHIC SYMPLECTIC VARIETIES AND APPLICATIONS

GIOVANNI MONGARDI AND GIANLUCA PACIENZA

ABsTRACT. In this note we derive from deep results due to Clozel-Ullmo the density of Noether-
Lefschetz loci inside the moduli space of marked (polarized) irreducible holomorphic symplectic
(IHS) varieties. In particular we obtain the density of Hilbert schemes of points on projective
K3 surfaces and of projective generalized Kummer varieties in their moduli spaces. We present
applications to the existence of rational curves on projective deformations of such varieties, to
the study of relevant cones of divisors, and a refinement of Hassett’s result on cubic fourfolds
whose Fano variety of lines is isomorphic to a Hilbert scheme of 2 points on a K3 surface. We
also discuss Voisin’s conjecture on the existence of coisotropic subvarieties on IHS varieties and
relate it to a stronger statement on Noether-Lefschetz loci in their moduli spaces.

1. INTRODUCTION

Recently Markman and Mehrotra [MaMe, Theorems 1.1 and 4.1] and Anan’in and Verbitsky [AV]
have shown the density, in the corresponding moduli spaces, of Hilbert schemes of points on a
K3 surface and of generalized Kummer varieties. The first purpose of this note is to check that
the corresponding statement in the polarized case holds true. It turns out that a more general
polarized density statement can be deduced without much effort from deep results contained in
ICU]. Precisely, we have the following (see Section 2 for all the relevant definitions and Section 3,
Theorem [B.13] for a slightly more general statement).

Theorem 1.1. Let X be an irreducible holomorphic symplectic variety with A = H?*(X,7Z) and
H a primitive ample line bundle on it. Let 9)?9\ be a connected component of the moduli space of
My marked polarized deformations of (X,H). Let N C A be a sub-lattice of signature (m,n),
with m < 1. Let us denote by ®n be connected the Noether-Lefschetz locus of points t € 93?9\ such
that N C Pic(X;). Suppose that ba(X) —rank(N) > 3. Then, if not empty, the locus D is dense
mn 93?9\ with respect to the euclidean topology.

Notice that as we require N C Pic(X) and the signature of the Beauville-Bogomolov quadratic
form on Pic(X) is (1,rk Pic(X) — 1), the condition on the signature of N is a necessary one. By
taking the sub-lattice generated by the exceptional class we immediately deduce the following.

Corollary 1.2. Let A be a K3 lattice (respectively a generalized Kummer lattice). Let MY be
a connected component of Ma containing a marked Hilbert scheme of n-points on a K3 surface
(respectively a marked generalized Kummer variety). Let h € A be a class with square (h,h) > 0
and consider the locus WZL C 9)?9\ of points where the class h remains algebraic and belongs to
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the positive cone. The locus in 9)?;; consisting of marked pairs (X, ) such that X is birational to

the Hilbert scheme S™ for some projective K3 surface S (respectively to a generalized Kummer
variety K, (A), for some abelian surface A) is dense in ?J)TZL (in the euclidean topology).

Although largely expected to be true we believe that these density statements can be very useful
in practice. For this reason we think it is convenient to have a general density result such as
Theorem B.13] that can be easily applied in very different geometrically meaningful contexts. As
an illustration of this we present several applications and hope that others will follow. The
first one concerns the existence of special subvarieties of IHS varieties. Precisely we discuss the
existence of coisotropic subvariety with constant cycle orbits (see Section 4 for the definitions
and the motivation), predicted by a conjecture by Voisin [Voil5|. Using Theorem [I.T] we observe
that to prove a strengthtening of this conjecture it is sufficient to check it on a Noether-Lefschetz
sublocus in the moduli space (see again Section 4, and in particular Theorem 2] for the precise
statements).

As a by-product of our approach we then provide a proof of the existence of primitive rational
curves whose Beauville-Bogomolov dual lies in (a multiple of) any ample linear system on de-
formations of Hilbert schemes of points on a K3 surface, respectively of generalized Kummer
varieties. The primitivity of the curve appears to be significant in light of the recent preprint
[OSY] where the authors show that it is not always possible to rule a divisor with rational curves
of primitive class. The existence of primitive rational curves has already found an application in

[MO].

We further prove that the density statement obtained in Theorem yields a refinement of
a result due to Hassett. Namely we show the density, among special cubic fourfolds of any
discriminant d, of those whose Fano varieties of lines are birational to an Hilbert square of a K3
of fixed degree.

Then we turn to cones of nef divisors on THS varieties and deduce from the shape of these cones
on certain dense subloci in the moduli space the same information on the whole moduli space.
This was first observed in [BHTV2| for deformations of Hilbert schemes of points on K3’s and
works the same for deformations of generalized Kummer varieties.

Finally as a by-product of our Theorem B3] (see Corollary BT for the precise statement) we
obtain the density of moduli spaces of sheaves on a K3 (or on an abelian surface) inside the
Noether-Lefschetz locus of THS of K3 (or generalized Kummer)-type possessing a non-zero
isotropic class. This is one of the key steps in [Mat17] where Matsushita proves a famous conjecture
about the numerical characterization of the existence of a (rational) lagrangian fibration for IHS
manifolds of K3/ (or generalized Kummer)-type.

Acknowledgments. We wish to thank O. Benoist, B. Hassett, E. Macri and M. Verbitsky for
useful conversations at different stages of this work. We also thank Qizheng Yin for pointing out
several inaccuracies in the first version of the paper.

2. PRELIMINARIES

For the basic theory of irreducible holomorphic symplectic (IHS) manifolds we refer the reader
to [Be83l [Huy99]. Let X be an IHS manifold and let A be a lattice such that H?(X,7Z) = A. A
marking ¢ of X is an isometry ¢ : H?(X,7Z) = A. A marked IHS manifold is a pair (X, ), where
X is a IHS manifold and ¢ a marking of X. A symplectic form on X will be denoted by ox. The
square of a class a € H?(X,7) with respect to the Beauville-Bogomolov quadratic form on X will

be denoted by a?.
2



Recall that the the positive cone €x is the connected component of the cone of positive classes
(with respect to the Beauville-Bogomolov quadratic form) containing a Kéhler class. Let 9)?9\ be
the connected component of the moduli space of marked IHS manifolds containing (X, ¢). Let
O = Gry (A ®R) be the period domain, which is parametrised by positive oriented two planes
inside A ® R. Let

p:?m?\—>QA

be the period map, where p(X, ¢) is the positive oriented plane generated by ¢(ox + Tx) and
ip(cx—0x). Let h € A be a class of positive square and consider the sublattice h*. Let ;1 C Qx
be the set of periods orthogonal to h, which is isomorphic to €, 1 := Gr?&(hl ®R). Let 9)?;; be
the set {(Y, 1) € MY, such that =1 (h) € Cy}.

The restricted period map from DJIZL to Q1 is surjective, by and generically injective
(this is a direct consequence of Verbitski’s global Torelli theorem [Ver|, as the positive cone €y
coincides with the cone of Kéhler classes for very general (Y, ) € WZL’ see [Mar2, Theorem 2.2,
item (2) and (4)], [Mar2, Proposition 5.3] and Corollaries 5.7 and 7.2]). A version of

global Torelli that we will use is the following.

Theorem 2.1 ([Huyl1], Corollary 6.2). Two IHS manifolds X and X' are bimeromorphic if and
only if there exists a Hodge isometry ¢ : H*(X,Z) — H?(X',Z) which is composition of maps
induced by isomorphisms and parallel transport.

The local complex structure of WZL is given by the local deformation space Def (Y, 1 ~!(h)) which
parametrizes deformations of Y where the class 1/~ (h) remains algebraic. We have a natural quo-
tient map Q,1 — Q1 /Mon?(A, h) := .%,, where Mon?(A, k) is the subgroup of the monodromy
group Mon?(A) C O(A) of parallel transport operators fixing the class h € A. Such groups have
been determined for manifolds of K3 or Kummer type in [Marl] and [Mon2]. This quotient
map induces a quotient map EIRZL — Z;, and moreover the space %), is quasi-projective as proven

in [GriHSI10, Thm. 3.7).

Remark 2.2. In the following, we will sometimes work with the local deformation space
Def(X, 4L (1)),

Using the Torelli theorems above, plus the study of the monodromy group one gets (cf. [Mar2]
Theorem 1.10]) that its quotient by the group Mon? (X, h) can be considered as an euclidean open
subset of the algebraic space .#,. Therefore algebraic families like the Hilbert scheme are well
defined in this local setting.

For our purposes it will be relevant also to use deformations of pairs (X, [C]), where X is IHS and
C' is a curve on it, therefore we will make frequent use of the following duality, induced by the
quadratic form on H?(X): we embed Hy(X,Z) into H?(X,Z) by the usual embedding of lattices
AV — A ® Q (that is, we use the intersection pairing between H? and Hs to see an element [C]
of the latter as the form [C] - —). We call D the dual divisor to a primitive curve C' € H?(X,Q)
if D = aC for a positive integer ¢ and D is primitive. Conversely, we call C' the dual curve
to a primitive divisor D if C' = D/div(D), where div(D) is the positive generator of the ideal
D - H%(X,Z).

3. DENSITY OF NOETHER-LEFSCHETZ LOCI

Let A be a lattice of signature (3,n), n > 2 and let h € A be an element of positive square. Let

L be bt and let t € L be a element of negative square. Let G C O(A) be a subgroup of finite
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index of the orthogonal group O(A). Let Qp, := Gr9 (2, L ® R) be the Grassmannian of positive
oriented two planes, which is the period domain associated to the lattice L. Notice that

Gri (2, L ®R) = SO(2,n),502)xS0(n)

(see e.g. [Verl Sections 1.7 and 2.4]). In this section, we will prove that the set of periods
orthogonal to an element in the G orbit of ¢ is dense. In particular, we will apply this result when
A = H?(X,Z) for some IHS manifold X. This density result in the non polarized setting (that is,
inside Q) := Gry, (2,A ® R)), was proved by Anan’in and Verbitsky:

Proposition 3.1 (Proposition 3.2 and Remark 3.12 [AV]). Let T' be a lattice of signature (m,r),
m > 3 and r > 1. Let I" be a group of finite index in O(T) and let T be an element of T
Let Gry" (2,T @ R) be the Grassmannian of positive oriented two planes. The set of elements in
Gry, (2,T®R) orthogonal to an element in the orbit of T by the group I is dense in Gr{, (2, T&R).

In our situation, one could work with this result and extend it to the polarized case as is done in
a special case in [Matl7, Lemma 3.6], however it is more convenient for us to adopt an algebraic
approach using powerful results of Clozet and Ullmo [CU]. Instead of working with the period
domain Qp, let us work with a quotient of it by an arithmetic subgroup I' (which, in practice,
will be the group of isometries of A fixing h or a finite index subgroup of it like the monodromy
group). This variety is isomorphic to

nS0(2,1),50(2)xS0(n)-

The appropriate language to use the aforementioned results is that of Shimura varieties, which is
rather separate from the subject of this paper, therefore we will keep it as simple as possible. For
the interested reader, a good reference on the topic is [Mil]. A Shimura variety is obtained from
a Shimura datum, which amounts to the following by [Mil, Proposition 4.8]:

Definition 3.2. A Shimura datum (G, D) consists of the following:

o A semisimple algebraic group G defined over Q of non compact type,

e A Hermitian symmetric domain D,

o An action of G(R)™ on D defined by a surjective homomorphism G(R)™ — Hol(D)" with
compact kernel.

In our setting the datum will be (SO(2,n),SO(2,n)/(s0(2)x50(n))) With the obvious action of G
on D, so that the kernel is SO(2) x SO(n).

Definition 3.3. A connected Shimura variety is defined by the inverse system of quotients T'\D,
where T runs over arithmetic subgroups of G*(Q)* whose pre image in G(Q)T is a congruence
subgroup

So, for the purpose of density, a statement on the Shimura variety associated to D then works, by
continuity of the quotient maps giving the inverse system, on all quotients of D by commensurable
arithmetic subgroups. We will be interested in special Shimura subvarieties, which are those
usually called of Hodge type as they are related to variations of Hodge substructures, see [Mool
Proposition 2.8].

Definition 3.4. Given a Shimura datum (G, D), a datum (H, D) defines a Shimura subvariety
of Hodge type if

e (H,Dy) is a Shimura datum and H C G
e There is a closed immersion between the Shimura varieties associated to the above Shimura
data.



Under the above hypothesis, all connected components of the closed immersion are of Hodge type.
Moreover, such a subvariety will be called strongly special if there is no intermediate parabolic
subgroup between H and G.

Not all varieties of Hodge type have this form, but these suffice for our purposes by [Mod, Remark
2.6].

Remark 3.5. In our situation, we want to consider the Shimura variety associated to the datum

(50(2,n),50(2,n) (s0(2)xSO(n)))

and the divisors where a specific class A is kept algebraic, which are associated to the datum

(Stab(N), SO(2,n — 1) /(s0(2)xSO(—1)))>

where the symmetric domain is given by the orthogonal to A. Notice that the group Stab()) is
actually maximal parabolic in SO(2,n), so that these divisors of Hodge type are actually strongly
special.

The main result we want to use is the following:

Theorem 3.6. [CUL Theorem 4.6] Let . be a Shimura variety and let ., be a sequence of
strongly special Shimura subvarieties. Then there exists a subsequence /5, and a strongly special
Shimura subvariety ./ which contains every -/, and coincides with their euclidean closure.

As a consequence of this we have the following.

Proposition 3.7. Let A’ be a lattice of signature (3,n), n > 1 and let h € A be a class of
positive square. Let L' := h and let A\ € A’ be a class which is not in the O(A')-orbit of h. Let
Q= Gry (2,L' ®R) be its period domain. Let G C O(N') be a group of finite index. Then the
set Da x of periods orthogonal to an element in the orbit GX is dense in Qp.

Proof. Let T' be the subgroup of G fixing h, then we have a continuos map
T QL/ — thp =T\ QL’-

Notice that Zq ) is saturated in the fibres of this map, that is 7'('_1(71'(.@@7)\)) = 9 . Therefore,
it is enough to prove density in %), r. For every element of o € G/I', we can define a I'-orbit of
an element \,, where )\, is the projection of g\ in L’ for some representative g € G of a. Notice
that A\, depends on the choice of a representative g of «, but we will be considering all possible
representatives. We can consider the associated divisors Zr », which are (associated to) strongly
special Shimura subvarieties as stated before. All points of them correspond to h-polarized Hodge
structures such that the period is orthogonal to an element in the G orbit of A\, hence their union
is the locus we are considering.

Notice that G/I" is an infinite set as it is commensurable to the integral part of O(3,n)/0(2,n).
Moreover also the I" orbits of all A, are infinite, as the pairing g(h, g\) takes infinitely many values
(which implies that the square ¢()\,) takes infinitely many values). Therefore we have infinitely
many divisors of the form %r,,. By Theorem the closure of the infinite union of all the
divisors Zr , can only be contained in a (strongly special) Shimura subvariety By dimension
reasons it has to coincide with the whole space, hence our claim. ]

Remark 3.8. Notice that, when G = Mon?(A) and T' = Mon?(A, h), the space .}, 1 coincides
with the (connected) moduli space of polarized IHS manifolds considered in [GriHS10].

Proposition 3.7 can then be applied to prove density of the Noether-Lefschetz loci, whose definition
is recalled below.
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Definition 3.9. Let X be an IHS manifold, with ¢ : H*(X,Z) = A an isometry, and H a
primitive ample line bundle on X. Let L C A be a sub-lattice of signature (2,m) with m > 2
such that H € L*. Let My be the moduli space of marked polarized deformations of (X, H). Let
,’m% C MA be a connected component of the moduli space parametrizing marked polarized THS
deformations (X, Hy, 1) of (X, H, @) such that the period of X; lies in L. Let N C A be a sub-
lattice of signature (a,b) with a <1 and let us denote by D the locus of t € S)ﬁ% such that there
exists a primitive embedding N C Pic(Xy). Then Dy is called a Noether-Lefschetz locus.

Remark 3.10. Let A be the K3 lattice. Consider P := (2d), for some integer d > 2 and
N := (—2). Then Dy parametrizes projective K3 surfaces of degree 2d possessing a —2-curve
(without requiring a given intersection between the —2-curve and the polarization).

Remark 3.11. The existence of a primitive embedding N C Pic(X}) is equivalent to the existence
of a g € O(A) (or in a finite index subgroup G C O(A)) such that ¢, *(g- N) C Pic(Xy).

Remark 3.12. Notice that the manifolds appearing in ® y have periods contained in the sublocus
of the period domain of dimension at least

rank(L) — rank(V) — 2.

Therefore, by the surjectivity of the period map restricted to each connected component of the
moduli space [Huy99]|, the locus @y is clearly non empty if the above number is positive.

We are now ready to state and prove our main density result.

Theorem 3.13. Keep notation as in Definition [329. Suppose that N is of signature (a,b), with
a <1 and that we have rank(A) — rank(N) > 3. Then, if not empty, the Noether-Lefschetz locus
D is dense in ,’m%.

As noticed in the Introduction, the condition on the signature of IV is a necessary one.

Proof of Theorem [Z13 Let N ® Q = (l1,...,lqys), where [; L [; for i # j, [; € A. Moreover,
we can suppose that all [; apart for [; have negative square. By the condition on the rank of N
and its signature, notice that N+ C A has signature at least (2,1). Let G be any group of finite
index inside O(A). We will prove the result by induction on a + b. For a + b = 1, this is precisely
the content of Proposition 3.7l Let us consider the lattices M, = (l1,...,l.) and let G, be the
stabilizer in G of M,. For every class [a] of G/G, and every representative o € [a], we have a
different projection R, , of «- M, inside L. Notice again (as in the proof of Proposition B7) that
the R, ,’s depend on the choice of the representative but we will consider all possible choices. Let
Ao = Rr%a C L. By the inductive step, periods in the union

UaEGAr,a

are dense in )7, therefore it suffices to prove that, for any «, periods in A, , orthogonal to an
element in the G/G,41 orbit of M, are dense. What we are considering is the union of loci of
the form

D11 p:={P€Qn,,, P L gM, for some g € Gsuch that [g] = 5}.

Here, f € G/Gr41. These loci are either divisors in Qy, , or they are empty if R, is not
negative definite. As (I,,1) = M- C M, is negative definite, this locus is empty if and only
if Qp, , was already empty. Therefore the density statement we want is precisely the content of
Proposition B.7 with A = Mﬂ-, L = Ajo, A = l;41 and group G/G,, which has finite index in
O(M;+) and we are done.

O



Remark 3.14. As made clear in the proof the statement of the theorem holds for G = O(A),
but the analogous density statement holds for any finite index subgroup of it, like the group of
monodromy operators (which has finite index by [Verl Theorem 1.16], see also [Huyll, Remark
6.7]).

The above theorem has some nice consequences also in the K3 case, as an example it can be
used to prove that Kummer K3 surfaces obtained from an abelian surface of polarisation (1,d)
are dense in the moduli space of degree 2e polarized K3 surfaces, for any d and e. Notice the
following simpler case.

Example 3.15. Let .%#; be the moduli space of degree 4 K3 surfaces. We denote its elements
by (S, H), where H is a nef divisor. By the above theorem, the subset of polarized K3 surfaces
(S’,L’) with a nef class H' of square 4, and an additional —2 curve F such that H' - E = 0 are
dense in .%;. However, notice that the polarization H might not be a combination of H' and E,
as the proof of 3.7 uses rational periods. Here, N =4® —2, P =4 and L = U%2 @ Eg(—1)?> ®© —4.

For all the known deformation types of holomorphic symplectic varieties we have several interesting
dense Noether-Lefschetz subloci. We start with Hilbert scheme of points on K3 surfaces and
generalized Kummer varieties:

Proof of Corollary[L2. Let (X, H) be a polarized manifold of K3[-type. Let N := (—2(n — 1))
be a rank one lattice. Then, by Theorem the Noether-Lefschetz locus ®n of N is dense in
the deformation of (X, H) (of course this follows also immediately from [CU]). We now claim
that all points in ® y correspond to IHS varieties birational to Hilbert schemes of points. We can
choose a specific embedding of N into A := H?(X,Z) such that N+ is unimodular. With such
a choice, elements in the Noether-Lefschetz locus have the same Hodge structure of an Hilbert
scheme of points on a K3 surface S, where S is the only K3 with the Hodge structure of N-.
Thus, if instead of the O(A) orbit of N we take the Mon?(A) orbit of it, by Remark 14 and the

version of Global Torelli given in Theorem 2.1 we get our claim.

The same proof works, mutatis mutandis, also for generalized Kummer varieties. O

The above result, in the non polarized case, is the content of [MaMe].

Remark 3.16. In the proof of the non polarized case by Markman and Mehrotra [MaMe], the
authors prove additionally that the locus of actual Hilbert schemes (and not manifolds birational
to them) is dense in moduli. Their proof is based on the fact that, for general non projective
Hilbert schemes, there are no different birational models of it. In the projective case this is false
in general, e.g. take the Hilbert square of a degree two K3 and the Mukai flop on the plane it
contains.

The following result can be proven with the use of Theorem B.I3in a way analogous to Corollary
[C2] unless the moduli spaces considered are zero dimensional. We also present a different proof.

Corollary 3.17. Let A be a lattice either isomorphic to the second cohomology group of a Hilbert

scheme of n points on a K3 or to a that of generalized Kummer. Let L C A a sub-lattice of

signature (1,m) with m > 2 and let My, be the moduli space of manifolds deformation equivalent

to the Hilbert scheme of n points on a K3 or a generalized Kummer which contain primitively

L+ inside their Picard lattice. Suppose My, is not empty. Then the locus of My, corresponding to

moduli spaces of sheaves (or their Albanese fibre) on a K3 surface (respectively abelian) is dense.
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Proof. By (see also [Ca83]) points MY corresponding to projective IHS are dense in
M. Now let 9JTOL C M be a irreducible component corresponding to marked projective
IHS (X, ¢, hx) such that ¢(hyx) = h, for a given positive class h € A. Apply Theorem to
L' := (L*,h)*, and N := (—2(n — 1)) (as in Corollary [L2). This proves the density of Hilbert
schemes and a fortiori that of moduli spaces of sheaves on K3 surfaces. As usual the same proof
works for generalized Kummer varieties. O

Alternative proof of Corollary[317 Let us consider the period domain Q,, where L := P inside
the appropriate lattice A (either U3 @ Fg(—1)?@ (—2n+2) or U@ (—2n —2)). We have a natural
(surjective) period map from My to Q. By a classical results [Vbook, Proposition 17.20] the
locus corresponding to manifolds with maximal Picard rank is dense in €17, and so is its preimage
in My. Let Y be any of these maximal Picard rank manifolds. Regardless of the deformation
class, the Picard lattice N := Pic(Y) has rank at least 5 and the discriminant group NV/N is
a finite group with length at most three by elementary lattice theory (its complement in A has
a discriminant group with at most two generators). Therefore, by [Nikl Corollary 1.13.5], we
have that N = U @ N’ for some N’. By [Add, Proposition 4] and [MW], Proposition 2.3|, this
actually implies that these manifolds are moduli spaces of sheaves (or Albanese fibres of them)
on a surface. Indeed, the condition in the above cited result is that a specific lattice containing
Pic(Y') contains a copy of U, and clearly this is our case. U

Example 3.18. Let X be a manifold deformation equivalent to O’Grady’s ten dimensional man-
ifold. Let H C Pic(X) be a primitive positive class. Then the locus of manifolds birational to
a moduli space of sheaves on a K3 surface is dense in the deformations of (X, H). This holds
because such resolutions have an extra algebraic class given by the exceptional divisors, hence
Proposition B.1 applies to the parallel transport of this class on X. The equivalent statement
holds for the six dimensional O’Grady’s manifold. Here, N = (—6) (for a specific choice of an

embedding in A = U3 @ Eg(—1)? @ Ay(—1).

Corollary B.IT is interesting in its own, as many of the applications of density results so far only
use it (or at least, can work with it). In the following paragraphs we present two such examples
which seem particularly important to us.

3.1. Mori cones. The goal of the section is to provide an alternative proof of the main result of
[BHT], namely the description of the Mori cone of any projective deformation of a K 3. Notice
that the strategy we follow here was already presented in [BHTV2|. This strategy could not work
due to the lack of the suitable density result. We find it interesting to describe it again, as it can
analogously lead to the description of the Mori cone of the projective deformations of the O’Grady
examples as soon as the Mori cone is known for these (see [MZ] for important progress in this
direction). We take the occasion to notice that an analogous statement holds for deformations of
generalized Kummers.

The precise result is the following.

Theorem 3.19 ([BHT], Theorem 1, for the K3["-type). Let (X, hx) be a polarized IHS of K3 -
type (respectively of generalized Kummer type). The Mori cone of X has the same description
of the Mori cone of a K3 (resp. of a generalized Kummer), namely the Mori cone of Xin
H?(X, R)qiq is generated by classes in the positive cone and the image under 6 of the following

{a € INXalg :a? > =2 (respectively a® > 0),|(a,v)| < v%/2, (hx,a) > 0}.

We refer the reader to [BHT] for the relevant definition. Here we want only to stress the role of
density in the proof. We recall the following important deformation theoretic result.
8



Proposition 3.20 ([BHTV2|, Proposition 5). Let X be a projective IHS. Let R C X be an extremal
rational curve of negative square. Consider a projective family m : 2~ — B over a connected curve
B with 7=1(b) = X, for a certain b € B, such that the class [R] remains algebraic in the fibers of
7. The the specialization of R in m'(by) remains extremal for all but finitely many by € B.

Proof of Theorem[3.19. The fact that the above classes are actually in the Mori cone does not
depend on density. See [BHT] p. 948] for its proof.

For the other inclusion, consider the rank 2 sublattice P ¢ H?((K3)[",Z) generated by h and
by the dual class RY (or rather its saturation). As in Definition let L := Pt and inside

the connected component S)ﬁ% containing (X, hx) consider a general connected curve B passing
through (X, hx).

By Proposition an extremal rational curve with negative square remains extremal on the
generic point of B. The generic point of B corresponds to a moduli space of sheaves on a
projective K3 surface, as by Theorem moduli spaces of sheaves on projective K3 surfaces
are dense in 93?%, hence in B. By [BM|, Theorem 12.2], the statement holds for moduli spaces of
sheaves on projective K3 surfaces and the desired inclusion follows. The proof works wverbatim if
X is a projective deformation of a generalized Kummer by replacing [BM| Theorem 12.2| with
[Yosl Proposition 3.36]. O

3.2. Lagrangian fibrations. It is conjectured that a non-trivial integral and primitive movable
(resp. nef) line bundle L on a 2n-dimensional IHS manifold X with ¢x(L) = 0 induces a ra-
tional (resp. regular) Lagrangian fibration. Precisely we should have that L is base-point-free,
h%(X,L) = n + 1 and the morphism

X - PH(X,L)Y

is surjective, with connected Lagrangian fibers. Several important results have been obtained
in recent years on this problem. Matsushita [Mat99l [Mat01] first proved that the image B of
a morphism f from such an X must be a Q-factorial, klt n-dimensional Fano variety of Picard
number 1 and f is a Lagrangian fibration, as soon as B is normal and 0 < dim(B) < 2n. The fact
that B must be the projective space was proved later by Hwang, under the stronger assumption
that B is smooth. Bayer-Macrl [BM|, Theorem 1.5| (resp. Yoshioka [Yos, Proposition 3.36])
proved the conjecture for moduli spaces of Gieseker stable sheaves on a projective K3 (respectively
abelian) surface. Independently Markman [Mar3] Theorem 1.3] proved the conjecture for a general
deformation X of a (K3)[". Markman’s result can be extended to any deformation of a (/3)r
thanks to a result due to Matsushita [Mat15] insuring that if an irreducible holomorphic symplectic
manifold X admits a Lagrangian fibration, then X can be deformed preserving the Lagrangian
fibration. Later Matsushita [Mat17, Corollary 1.1] proved that if X is a deformation of (K3)™
or of a generalized Kummer, any non-trivial integral and primitive line bundle L with gx (L) =0
such that ¢; (L) belongs to the birational Kahler cone of X, induces a rational Lagrangian fibration
over the projective space. His proof uses, among other things three main ingredients: Lagrangian
fibrations deform well in moduli [Mat15]; the conjecture holds on moduli spaces (by [BM], Theorem
1.5] and [Yos, Proposition 3.36]); moduli spaces are dense in the Hodge locus of [c1(L)]. The
latter is now proved in [Matl7, Lemma 3.6] and can as well be obtained as a particular case of our
Corollary BI7l Notice that the non-emptyness follows from Markman [Mar3| for deformations of
K 3" and Wieneck [Wie] for deformations of generalized Kummers.
9



4. EQUIVALENT CONJECTURES

Let X be a 2n-dimensional IHS projective variety. The Chow group C'Hy(X) of 0-cycles is non
representable by Mumford’s theorem (cf. [Vbookl Chapitre 22]). Nevertheless, by the Bloch-
Beilinson conjecture, the C'Hy(X) should have an inner structure under the form of a decreasing
filtration Fpp = FpzCHo(X) satisfying some axioms (see [Vbook, Chapitre 23]). While this
conjecture appears to be out of reach, Beauville, inspired by the multiplicative splitting on the
Chow ring of abelian varieties [B86] and by the case of K3 surfaces [BV], suggested in [BOT] to
investigate an interesting consequence of a (conjectural) splitting of this filtration, called “weak
splitting property”. This property consists in the injectivity of the cycle-class map when restricted
to the sub-algebra generated by classes of divisors. This conjecture of Beauville gave rise to several
works in the last years [VoiO8] [Voil2l [FerT1l [Ful [Rie, [Latl [FLVL [SYZL [SY] [Yin]. Very recently cf.
[Voil5], Voisin developed a different approach to the study of the filtration F 5 and its conjectural
splitting. For any integer 1 <1¢ < n, she considers

Si(X):{r e X :dimO, > i},

where O, is the orbit of x under rational equivalence. Notice that a subvariety Y of such an
orbit is a constant cycle subvariety of X (cf. [Huyld4]), i.e. a subvariety whose points are all
rationally equivalent in X. Using Mumford’s theorem, one can show that any of the (possibly
countably many) irreducible components of S;(X) has dimension < 2n — 4. Then Voisin defines
S;CHy(X) € CHp(X) to be the subgroup generated by classes of points in S;(X). In this way
she obtains a descending filtration SeC Hy(X) on CHy(X) and she conjectures that it should be
opposite to the Bloch-Beilinson filtration and thus provides a splitting of it, in the sense that, for
any ¢t =1,...,n
S;CHy(X) = CHy(X)/FEy T CHy(X).

In this direction an important réle is played by the following

Conjecture 4.1 ([Voil5|, Conjecture 0.4). Let X be a 2n-dimensional holomorphic symplectic
variety. For any i =1,...,n there exists a component Z of S;(X) of maximal dimension 2n — i.

She then observed that if Conjecture E] holds (and if of course the Bloch-Beilinson filtration
exists), then the map
S;CHy(X) — CHo(X)/F2s 1 CHy(X)

is surjective. Back to Conjecture [l Voisin observed that if Z C S;(X) has maximal dimension
2n — 1 then Z is swept by i-dimensional constant cycle subvarieties, which are the orbits O, of
its points z € Z. Conjecture 1] has been proved in the following cases: for i = 2 and X a very
general double EPW sextic, [Ferll]; for ¢ = n and X having a Lagrangian fibration ([Linl5al);
for a generalized Kummer and any ¢ ([LinI5b]); for the Fano variety of line on a cubic 4fold and
the LLSV 8fold and any possible 4, [Voil5]; for moduli spaces of stable objects on a K3 surface,
[SYZ]; for i = 1 when X is deformation equivalent to the punctual Hilbert scheme of a K3 surface
(respectively when X is deformation equivalent to a generalized Kummer) in [CP] (resp. in [MP]).

To state our results, let us first define the following:

Definition 4.2. Let X be an [HS projective variety, let H be a divisor of positive square on X
and let Z C X be a subvariety of pure codimension i.

(1) Z is called a Voisin coisotropic subvariety if Z C S;(X).

(i1) A Voisin coisotropic subvariety Z C X s said to have RCC orbits if the orbits O, of its
points with respect to rational equivalence are rationally chain connected.

(iii) If a Voisin coisotropic subvariety Z C X has RCC orbits, these are called of type m(H"),
for a certain integer m > 0, if, for a general point z € Z, any two points of O, are
connected by a chain of rational curves of class m(H").

10



Here, the curve class H" is the class H/div(H) under the embedding Hs(X,Z) — H?*(X,Q) given
by lattice duality, and the divisibility div(H) is the positive generator of H - H(X,Z).

The aim of this section is to relate (a strengthening of) Conjecture [l to an existence conjecture
on Noether-Lefschetz loci.

The main tools will be Theorem and an easy, yet useful density principle which we state
and prove below. This principle simply says that to prove the existence of Voisin’s coisotropic
subvariety with (good) RCC orbits of a given type it is sufficient to have existence on a dense
subset of the relevant moduli spaces.

To make things precise we introduce some terminology and notations. Given a polarized IHS
variety (X, h) we will consider the moduli space of genus zero stable maps Mo(X, [h]") of class
[h]Y € Ho(X,Z). If M is an irreducible component of M(X, [h]Y) we will denote by C' — M the
universal curve above it and consider the natural evaluation morphism ev : C' — X.

Theorem 4.3. Let 1 < k < n be an integer. Suppose there exists a subset ® C DJIZL which 1s
dense with respect to the euclidean topology and such that for allt € ©:

(i) there exists an irreducible component My of the moduli space of genus zero stable maps
Mo(Xy, [he]Y) of dimension 2n — 2 and
(ii) the image of evaluation morphism evy : Cy — Xy has dimension 2n — k.

Then any X in ,’m;; contains a Voisin coisotropic subvariety Z of codimension k with RCC orbits
of type (a multiple of) [hx]V.

Definition 4.4. The RCC orbits ruled by rational curves verifying items (i) and (ii) of Theorem
[£.3 will be called good.

Remark 4.5. Using e.g. [OSY] Proposition 2.1] one can check that the RCC orbits of Voisin’s
coisotropic subvarieties of type H, where H is a primitive divisor, are good.

Example 4.6. Let (S, H) be a very general K3 surface of degree 4 and let C' € |2H| be a general
curve with only 5 nodes as singularities (that is, a curve of geometric genus 4). Let R be the
rational curve inside SP! given by a g% on the normalization of C. Its class is 2H" — 875 and, as
we let the curve C and the linear series on it vary, we obtain exactly a 8 dimensional family of
such curves, which can be proven analogously to [KLM2l Prop. 3.6] using the fact that, under
suitable generality assumptions, the curve normalization of C' is a Brill-Noether general curve by
[CEGK]| Cor. 8.5]. Therefore, the locus Z they cover is a Voisin’s coisotropic subvariety of type
2(HY — 4715) with good RCC orbits.

Proof of Theorem [{.3 In order to prove the theorem it is sufficient to prove that given any holo-
morphic symplectic variety X in SIRZL the conclusion holds on (a contractible open subset of) the
subset B := Def(X);. of the Kuranishi space Def(X) of deformations of X parametrizing those
where the class of h remains algebraic. We will first show it on an open subset U C B and then
derive the conclusion on the whole B.

Let w : 2" — B be the universal family. Consider the relative moduli space of genus zero stable
maps .#o(2 /B, [h]Y). By abuse of notation we denote by [h]" the class of the section of the
local system R*"~27,7 whose value at the point b € B is the class in Ha(X3,Z) dual to ;! (h).
By hypothesis .# (2 /B, [h]") has dense image in the base B. Since it is a scheme of finite type,
there exists an irreducible component .# dominating the base and such that the restrictions .#,
over the points t € ® contain the components M; given by the hypothesis of the theorem. Denote

by € — .# the universal curve and by ev : 4 — 2 the evaluation morphism over B.
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Consider the set
Bpag := {b € B : .#), is reducible}.
By [FGAe, Théoréme 9.7.7] we have either

(a) B\ Bpuq contains an open subset ;
or
(b) Bpagq contains an open subset.

In case (a), let U" C (B \ Bpag) be the open subset. By definition for all b € U’ we have that .,
is irreducible.

Inside U’ consider the open sublocus U of points b where the rank of the evaluation morphism
evy, restricted to 4, is maximal and the dimension of .Z); is constant. By density U ND # 0.
Therefore we have that

dim(.#),) = dim(M;) = 2n — 2
and

rk(evy) = 2n — k.

Set Zp := evy(%6)y). By dimension count, for all b € U, through the general point of Z, we have a
k-dimensional RCC subvariety (contained in Zp) and the theorem is proved over U in this case.

In case (b), one proceeds mutatis mutandis in a similar way.

In both cases by construction any two points of Z; can be joined by a rational curve of the same
class.

To conclude the proof of the theorem, let Xy in Def(X),. \ U. Let T' C Def(X), . be a curve
passing through X and not contained in Def(X);. \ U. Up to shrinking 7" we may suppose that
(T \ [Xo]) € U. Define Zy C Xy to be the limit, for ¢t € (T \ [Xy]), of the subvarieties Z; C X}
having dimension 2n — k and covered by k-dimensional RCC subvarieties, whose existence has
been shown before. Let zg € Zy be a point and {z; € Xt}te(T\[Xo]) a set of points converging to
it. Let I} C X3 be a k-dimensional RCC subvariety containing x; and let Fyy be the limit of the
Fys. It is RCC, as limit of RCC’s. Therefore also X contains a (2n — k)-dimensional subvariety
Zy C X which is covered by k-dimensional RCC subvarieties and the theorem is proved.

O

We state the following conjectures, the first one being a slight strengthening of Voisin’s original
conjecture.

Conjecture 4.7. Let X be a 2n-dimensional IHS projective variety. For any i = 1,...,n there
exists a primitive positive divisor H;, a positive integer m; > 0 and a codimension i Voisin’s
coisotropic subvariety Z; C X with good RCC orbits of type m;(H;)".

The advantage of coisotropic subvarieties with RCC orbits is that we control easily their degen-
erations, while fixing the type allows to deal with a parameter space (of stable genus zero maps)
which will be of finite type.

Remark 4.8. The recent preprint [OSY] shows that in certain cases the integers m; can be strictly
greater than one.

Conjecture 4.9. Let 9)?;; be the moduli space of polarized deformations of a projective THS

variety X, Oy C My the Noether-Lefschetz locus corresponding to a lattice N such that be(X) —
12



rank(N) > 3 and U C Dy a dense subset. Then, for every t € U and every 1 < i < dim(X)/2,
there exist an integer m > 0 and a codimension © Voisin’s coisotropic subvariety Z;; C X with
good RCC orbits of type m(Hy;)Y, where Hy € Pic(X) is the primitive polarization such that

oi(Hy) = h.

Conjecture 4.10. Let DJIZL be the moduli space of polarized deformations of a projective IHS
variety X, O C My the Noether-Lefschetz locus corresponding to a lattice N such that ba(X) —
rank(N) > 3 and U C Dy a dense subset. Then, for every t € U, for every divisor P, € Pic(X})
of positive square and every 1 < i < dim(X)/2, there exist an integer m; > 0 and a codimension
i Voisin’s coisotropic subvariety Z; C X with good RCC orbits of type m;(P;)Y.

Conjecture 4.11. Let sm; be the moduli space of polarized deformations of a projective IHS
variety X. Then, for every t € DJTZL, for every positive divisor P, € Pic(Xy) and every 1 <

i < dim(X)/2, there exist an integer m; > 0 and a codimension i Voisin’s coisotropic subvariety
Zyi C X with good RCC orbits of type m;(Py)".

Theorem 4.12. Let X be a projective IHS variety with by(X) > 4. Then the 4 above conjectures

7 79 [£-10 and [{I]) are equivalent.

Proof of Theorem [[.13 Clearly, Conjecture . ITlimplies Conjecture &-I0lwhich implies Conjecture
Let us show that Conjecture implies Conjecture 71 Manifolds in the Noether-Lefschetz
locus ® y are dense in the moduli space DJIZL by Theorem As Conjecture holds on Dy
we can apply Theorem [3]to obtain Conjecture 7 Finally, let us prove that the first Conjecture
implies the last. Again, this is a simple corollary of Theorem Indeed, let H € Pic(X) be any
primitive positive class and let (Y, Hy) be a very general deformation of (X, H). By Conjecture
BT we have a rational curve of class mH" which connects any two points in a general fibre of a
codimension ¢ coisotropic variety. As (Y, Hy) is very general, the only curve classes are given by
the multiples of Hy and thus we can apply Theorem to obtain the result for (X, H). O

5. EXISTENCE OF RATIONAL CURVES VIA DENSITY

In this section we will use linear series on surfaces to construct a dense set of points corresponding
to THS containing a rational curve for the moduli spaces of pairs of deformations of K3 type
or generalized Kummer varieties type. By Theorem 3] this will be enough to prove that all
such IHS contain a rational curve whose Beauville-Bogomolov dual class is (a multiple of) the
polarization. The result of this section is the following:

Theorem 5.1. Let (X, H) be a polarized manifold of K3 type or of Kummer type, with H
ample and primitive. Then there exists a rational curve whose class is dual to |H]|.

As it is convenient when working with this deformation classes, we will use the index € € {0, 1}
to distinguish between them. Therefore in the following S, and Sg[n] will be a K3 surface and its
Hilbert scheme of n points when € = 0 or an abelian surface and its generalized Kummer when
e =1. When H C S, is a divisor, we will denote with {H} the connected component of Hilb(S,)

containing |H|. We will use nodal curves, therefore we use the following result from [CK] and

Proposition 5.2. Let (S, H) be a general polarized K3 or abelian surface of genus p := pa(H).
Let § and n be integers satisfying 0 < § < p —2e and n+ € > 2. Then the following hold:

(i) There exists a gl . on the normalization of a curve in {H} with § nodes as singularities
if and only if

(5.1) (52(1(])—5—6—(n—1+26)(04+1)),
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where

52 o=l =Tyl

(ii) whenever nonempty, the scheme of these linear series is equidimensional of dimension
min{p — 4,2(n — 1 +¢€)}.

We have a natural map from the gl L. on the curve to the Hilbert scheme S (n+el which, up to

translation, lands in Se[n}. The class of this rational curve RE™° in Se[n} is computed in [KLM2|
Lemma 3.3] and is equal to H — (p—d+n—14¢)7,, where 7, is the class of a fibre of the exceptional
divisor 2A,, of the Hilbert-Chow morphism. Let e = GCD(2n—2+4e,p—d+n—1+¢), f = (p—9
and d = (2n — 2 + 4e)/e. Then the class dH — fA,, is the class of a divisor whose dual curve is
Ry,

Let us construct enough curves to obtain a dense subset of all moduli spaces of pairs: Let g =p—4§
be the geometric genus and let &k = g—e modulo 2(n—1+2¢) be in the interval [0, 2(n—1+2¢)—1].

Let o« = (g — € — k)/(2n — 2 + 4¢) and let 0,y be w(a —1) + ko

Proposition 5.3. Keep notation as above, then for all g > n, all r € N and all pairs (Se, H)
of genus g 4+ 1 + Omin there exists a curve in {H} with §pm + r nodes, geometric genus g and

[

a gl on its normalization such that the associated rational curve Ry, . +v in S has class

H—((9g—€)+ (n—1+2¢))7, and square (2r — 2 + 2¢) — 7("261:2;5))2

min

Proof. The existence statement is clear, as « is as in (5.2)) and &y, is the minimal number of

nodes satisfying (B.]), therefore this is a direct consequence of Prop. If we write the genus of

(S,H) as (g — € — k) + 1 + Omin + € + k, standard algebraic computations give us that

(g+e+n—1)2)—k> n—1+2e—2k
A(n — 1+ 2¢) 4

g+ Omin = €.

Therefore the square of Ry s, . 4r is

(n—1+2¢—k)?
2(n — 1 + 2e)

4(Ryg.8i+r) = (21 = 2+ 2¢) —
U

From the class of the above curve, it is clear that the divisibility of the dual divisor Dy, s, . is
determined by the integer k: H — ((9 —€)+ (n—1+42¢))1, = H — (o +1/2)A,, — k1, = L — K'7y,
where L is a class in HQ(Se[n}) and —n + 1 —2e¢ < k' < n —1+ 2e. Hence the dual divisor has
divisibility ¢, where t is the order of k&’ modulo 2n — 2 + 4e.

Proposition 5.4. The set of pairs (Se[n],ngﬁmm) with Dy .5, . dual to the curves Ry, . +r of
Prop. [2.3, Dgrémm = 2d and div(Dgy,;,,..) =t is dense in all connected components of Maq .

Proof. We wish to consider the curves Ry . +r. As proven in [CP, Thm. 2.4] for Hilbert
schemes and [MP| Thm. 4.2| for Kummers, for every connected component of .#54; there exists
K €]-n+1—2en —1+4 2¢ and (S, H') polarized surface such that (Se[n},tH' + K'A) is in the
desired connected component of .#54,. Clearly, we can replace t H' with ¢tL for any L € H?(S [, Z)
with L? = H'? as tL + k' A will have the same monodromy invariant of tH’ + k’8. Therefore, for
any t,d and any connected component of .#544, there are r and S such that (Se, Dy ,5,,in) is in

the desired component, and this happens for countably many g > n + €. O
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Summing all of these, we are ready to prove Theorem .11

Proof. Let (X, H) be a polarized pair (of the appropriate deformation types) and let M C #5q
be its component of the moduli space of pairs. By Prop. 54l there is a dense subset of M whose
points have a family of rational curves of class dual to H. As the moduli space of stable rational
curves is closed, there are rational curves on every element of M. U

Remark 5.5. In [OSY] Corollary A.3] the authors discovered a numerical condition insuring, for
projective deformations of K3["s, the existence of a uniruled divisor ruled by rational curves hav-
ing primitive class. The condition is also necessary if the curves are irreducible (e.g. at the general
point in the corresponding moduli space). Nevertheless the numerical condition holds at most in
a finite number of cases in each dimension 2n (even letting the degree of the polarization vary).
Therefore in these sporadic cases, the primitive rational curves that we construct in Theorem [(.1]
must then cover coisotropic sub-varieties of codimension > 1.

For higher-dimensional subvarieties the deformation theory can either be understood in the smooth
case (cf. [LePal which generalizes the Lagrangian case, done in [Voi89]), but it is not sufficient to
conclude the existence for a general X, or it is very difficult to control in the singular case (see
[Le] for some partial results in this direction). Our hope is that, with some further work, this new
approach via density can be successfully used to obtain the existence of constant cycle isotropic
subvarieties of dimension > 2, a problem which seems to be a challenging one.

6. FANO VARIETIES OF LINES OF SPECIAL CUBIC FOURFOLDS

The goal of the section is to observe that it is possible to deduce immediately from Theorem [3.13]
a generalization of some results obtained by Hassett on the Fano variety of lines of special cubic
fourfolds. We need to recall the basic definitions and results.

A cubic fourfold is smooth cubic fourfold hypersurface in P°. We consider the coarse moduli
space € parametrizing cubic fourfolds. Following Hassett [Hass00] a cubic fourfold X is said to be
special if it contains an algebraic surface not homologous to a complete intersection. We collect
many of Hassett’s result in the following statement.

Theorem 6.1. (i) (see [Hass00, Theorem 3.1.2 and Proposition 3.2.4]) A cubic fourfold X
is special (of discriminant d) if and only if the lattice H*(X,7) N H*%(X) contains a
primitive lattice of rank 2 and discriminant d, which contains the class h?, where h denotes
the hyperplane class.

(i) (see [Hass00, Theorem 4.3.1]) Let d > 8 be an integer. The set €4 of special cubic fourfolds
of discriminant d is not empty iff d = 0,2(mod 6),
(ili) (see [Hass00, Theorem 3.2.3]) Assume d > 8 is an integer : d = 0,2(mod 6). Then the set

@, is an irreducible algebraic divisor of € .

On the other hand it is well known, thanks to Beauville and Donagi [BD85], Proposition 2|, that
the Fano variety of lines F'(X) on a cubic fourfold X is an IHS variety deformation equivalent to
the Hilbert scheme of two points on a K3 surface. Varying the cubic fourfold we get a complete
family of such deformations, i.e. a whole connected component of the relevant moduli space.

Moreover they showed (see [BD85, Proposition 4]) that the natural Abel-Jacobi map yields an
isomorphism of Hodge structures

HY(X,7Z) — H*(F(X),Z).
More precisely (see [BD85 Proposition 6]) we have an isomorphism of polarized Hodge structures

(6.1) HYX,Z)(-1)2 — H*(F(X),Z),
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where g is the class of the hyperplane section of F/(X) in the Pliicker embedding and H?(F(X),Z),
(respectively H*(X,Z)(—1);2) denotes the classes orthogonal to g (respectively the classes orthog-
onal to h? in H*(X,7Z) endowed with the opposite sign of the intersection form). Finally recall
that by Voisin [Voi86] we know that the natural period map for cubic fourfold is a open immersion.

The question is to understand when F'(X) is isomorphic to (and not only deformation of) the
Hilbert scheme of 2 points on a K3. Hassett proved the following necessary condition.

Proposition 6.2 (Proposition 6.1.3, [Hass00]). Assume that the Fano variety of a generic special
cubic fourfold of discriminant d is isomorphic to S? for some K3 surface S. Then there exist

positive integers m and a such that d = 27”2*'73”1.
a

Then he also obtained the following sufficient condition.

Theorem 6.3 (Theorem 6.1.4, [Hass00]). Assume that d = 2(m? +m + 1) where m is an integer
> 2. Then the Fano variety of a generic special cubic fourfold X of discriminant d is isomorphic
to S, where S is a K3 surface.

Our main result is the following.

Theorem 6.4. For every integer d such that the set €y of special cubic fourfolds of discriminant
d is not empty, those whose Fano variety of lines is birational to a K32, of a fized degree 2e,
are dense in the euclidean topology.

Proof. By Voisin’s Torelli theorem and the isomorphism of polarized Hodge structures (6.1]) we can
see €, as a divisor in the period domain Qy, where A = H?((K3)1?,Z). By [Hass00, Proposition
3.2.4], up to automorphisms fixing h?, there exists a unique primitive sublattice K ¢ H*(X,Z)
of rank 2 and discriminant d, which contains the class h2. Let K C H 2(F(X),Z) be its image
via the isomorphism (G.]). By Theorem [6] items (ii) and (iii), %y corresponds, via the period
map My — Qp, to the image of a connected component EDYOL, where L is (IN()l Now take
N ¢ H?*((K3)?,7Z) to be the rank 2 sublattice generated by the exceptional class ¢ and by a
class hg orthogonal to ¢ and of square 2ey. Notice that ®y is the locus of manifolds birational
to S, where S is a K3 surface having a positive class of degree 2ey. Then by Theorem BI3] the
(non-empty) set D is dense in MY and we are done. (]

Remark 6.5. In [DM| Proposition 5.18|, a similar density statement was proved, namely that
there are countable degrees 2e for a general K3 surface S such that S = F(X) for some cubic
fourfold X and these cubic fourfolds are dense in the euclidean topology. This result differs from
ours in two ways: it is stronger as the Fano of lines on these cubic fourfolds are actually isomorphic
to Hilbert schemes and not only birational, however it is at the same time weaker in the sense
that we can obtain density also by fixing a degree 2¢q for the K3 without letting it vary.

Remark 6.6. By Proposition [6.2] for all integers d # 2% the euclidian density given by
Theorem is the best result one can obtain.
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