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Abstract

This paper presents an age structured problemmodelling mosquito blood-feeding

plasticity in a natural environment. We first investigate the analytical asymp-

totic solution through studying the spectrum of an operator A which is the

infinitesimal generator of a C0-semigroup. Indeed, the study of the spectrum of

A per se is interesting. Additionally, we get the existence and nonexistence of

nonnegative steady solutions under some conditions.

Keywords: blood-feeding behaviour, infinitesimal generator, asymptotic

behaviour

1. Introduction

Malaria is an infectious disease caused by a species of parasite that belongs

to the genus Plasmodium. This pathology affects millions of people over the

world, being predominant in equatorial region, e.g., Amazon rainforest, sub-

saharan Africa and South East Asia. The Plasmodium is transmitted by female5
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Anopheles mosquitoes when they bite and, thus, feed on human blood. Control

mechanims acting on disease dynamics take into account the behaviourally char-

acteristics of mosquito population, such as anthrophagy, endophily, endophagy,

physiological susceptibility to pyrethroids, and night-biting preference. The re-

cent reports on Malaria transmission shown that the long-term use of residual10

spraying (IRs) and insecticide-treated nets (ITNs) has been driving mosquito

physiological and behavioural resistance. Many mosquito species exhibit high

levels of phenotypic plasticity that can be expressed on host preference, biting

activity, etc. Such heritable phenotypic plasticity allows individuals mosquitoes

to flexibly adapt their behaviour according to the environmental conditions.15

The development of a crepuscular, outdoor feeding phenotype among anophe-

line population has been observed in areas of intensive use of IRs and ITNs.

This adjust on biting time can jeopardize the sucesseful of Malaria control and

promotes parasite evolution [11]. Hence, researches on the population dynamics

of mosquitoes become essential.20

In this paper, we propose a partial differential equation system to model the

plasticity of mosquitoes in a natural environment, namely without any interven-

tion of human activities, such as IRs and ITNs. Let p(a, t, x) be the distribution

of individual mosquitoes of age a ≥ 0 at time t ≥ 0 and biting activity at time

x ∈ [0, 24]. The introduction of the variable x in the system has the objective of

illustrate mosquito biting behaviour, which will be of great importance in the

following research on mosquitoes control. Let a† be the life expectancy of an

individual mosquito and T be a positive constant. Let β(a) ≥ 0 be the natu-

ral fertility-rate which is bounded, nonnegative and measurable on [0, a†], and

µ(a) ≥ 0 be the natural mortality-rate of mosquitoes of age a. The new genera-

tion of mosquitoes can adapt to ensure its survival and reproduction, changing

the biting time in order to maximize its fitness. This is modeled by the kernel

function K(x, s) in the renewal equation. The parameter η is the maximum

difference on biting time that the new generation can reach. Mosquitoes can

change their biting time up to a diffusive coefficient δ. Thus, the evolution of
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the distribution p(a, t, x) is governed by the system





Dp− δ∆xp+ µ(a)p = 0, (a, t, x) ∈ Qa†
,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).

(1)

where Qa†
= (0, a†)× (0, T )× (0, 24), ∆xp(a, t, x) = ∂xxp(a, t, x), the kernel

K(x, s) =






(x− s)2e−(x−s)2 , s ∈ (0, 24),

0, else,

andDp(a, t, x) is the directional derivative of p with respect to direction (1, 1, 0),

that is,

Dp(a, t, x) = lim
ε→0

p (a+ ε, t+ ε, x)− p (a, t, x)

ε
.

For smooth enough p, it is obvious that

Dp =
∂p

∂t
+
∂p

∂a
.

Notice that in our model, the boundary condition is assumed to be peri-

odic and the fertility term is nonlocal with the kernel K(x, s). In fact, both

Dirichlet boundary condition and local fertility term are very popular in math-

ematical modeling, such as dynamics population models of a single species with

age dependence and spatial structure. We now review some known results about25

such models, that is, replacing the periodic boundary condition and the fertil-

ity term by the Dirichlet condition and

∫ a†

0

β(a)p(a, t, x)da respectively. Chan

and Guo [6] considred this model in the semigroup framework, by setting the

fertility-rate β and the mortality-rate µ being independent of the space variable

x. They identified the infinitesimal generator and studied its spectral proper-30

ties, which could be used to get the asymptotic behavior of the solutions. Then,

Guo and Chan [9] removed the independence setting of β, µ and got the asymp-

totic expression of the solution by analyzing the spectrum of the infinitesimal
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generator. We also refer to the works of Langlais [15], for the study of the

long-time behaviour of the model where β and µ depend on the distribution p.35

The controllability problems on this model are also very attractive. Ainseba

and Aniţa [3, 5] studied the local exact controllability of such model with the

Dirichlet boundary condition and the local fertility term. The control problem

with Neumann boundary condition can be referred to [1, 2].

We are interested in the ways on which Guo and Chan [6, 9] studied the40

asymptotic behaviour of the population model in [6, 9] throught the analysis of

the spectrum of the infinitesimal generator and using some positive semigroup

theories. In this paper, we mainly focus on the asymptotic behavior in Section

2. The key step for our paper is to find, for any initial p0(a, x) ∈ D(A), the

asymptotic expression p(a, t, x).45

Before presenting our results, we introduce some usefull notations. Consider

X = L2((0, a†)× (0, 24)) with the usual norm, and the operator A : X −→ X

defined as

Aφ(a, x) = −
∂φ(a, x)

∂a
+ δ∆φ(a, x) − µ(a)φ(a, x), ∀φ(a, x) ∈ D(A), (2)

where

D(A) = {φ(a, x)|φ,Aφ ∈ X,φ(a, 0) = φ(a, 24), ∂xφ(a, 0) = ∂xφ(a, 24),

φ(0, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)φ(a, s)dsda}. (3)

From the definition of the operator A, the system (1) can be transformed into

an evolutionary equation on the space X :





dp(a, t, x)

dt
= Ap(a, t, x),

p(a, 0, x) = p0(a, x).

For the following notations, we can refer to Marek [16, p.609] and Clement

[7] for instance. If A is a linear operator from X into X , then ρ(A) denotes the

resolvent set of A, that is, ρ(A) is the set of all complex numbers λ for which

(λI − A)−1 is a bounded automorphism of A (let R(λ,A) = (λI − A)−1 called

4



the resolvent operator), where I denotes the identity operator. The complement

of ρ(A) in the complex plane is the spectrum of A, and it is denoted by σ(A).

We denote by γ(A) the spectral radius of A, that is,

γ(A) = sup{|λ| : λ ∈ σ(A)}.

If A is an infinitesimal generator of a C0-semigroup T (t) on the space X , the

spectral bound s(A) can be denoted by

s(A) = sup{|λ| : Reλ ∈ σ(A)}.

And the growth bound of the semigroup T (t) can be shown as

ω(A) = inf
t>0

1

t
log ‖T (t)‖L2((0,a†)×(0,24)) = lim

t→+∞

1

t
log ‖T (t)‖L2((0,a†)×(0,24)).

Let a† be a finite positive number. From the biological point of view ad-

dressed in [10, 12, 21], we assume the following assumptions throughout this

paper:50

(J1) µ(a) ∈ L1
loc([0, a†)) and

∫ a†

0

µ(ρ)dρ = ∞;

(J2) β(a) ∈ L∞((0, a†)), mes{a|a ∈ [0, a†], β(a) > 0} > 0;

(J3) p0(a, x) ∈ L∞((0, a†)× (0, 24)), p0(a, x) ≥ 0.

The following theorems are the main results of our paper and they will be

proved in the following sections.55

Theorem 1.1. For any initial p0(a, x) ∈ D(A), the semigroup solution of (1)

has the following asymptotic expression:

p(a, t, x) =eλ0te−λ0aT (0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)

∫ a

0

e−λ0(a−σ)
T (σ, a)

p0(σ, s)dsdadσ + o(e(λ0−ǫ)t),

where λ0, Cλ0and T (τ, s) will be defined in Section 2.

5



The steady state of our model is very important, especially for our further

researches about the control problem. The steady state of (1) is denoted by ps,

and should be a solution of





∂aps(a, x)− δ∆ps(a, x) + µ(a)ps(a, x) = 0, (a, x) ∈ (0, a†)× (0, 24),

ps(a, 0) = ps(a, 24), a ∈ (0, a†),

∂xps(a, 0) = ∂xps(a, 24), a ∈ (0, a†),

ps(0, x) =
∫ a†

0
β(a)

∫ x+η

x−η
K(x, s)ps(a, s)dsda, x ∈ (0, 24).

(4)

Furthermore, ps(a, x) satisfies

ps(a, x) ≥ 0 a.e. (a, x) ∈ (0, a†)× (0, 24). (5)

Theorem 1.2. Consider (4) with λ0 satisfying Theorem 1.1.

(1) If λ0 > 0, then there is no nonnegative solution of (4) satisfying (5).

(2) If λ0 = 0, then there exists infinitely many nontrivial solutions of (4)

satisfying (5). Furthermore, for any nonzero steady state ps(a, x), there

exists ρ0 > 0 such that

ps(a, x) ≥ ρ0 > 0, a.e. (a, x) ∈ (0, a1)× (0, 24),

where a1 ∈ (0, a†).

(3) If λ0 < 0, then only trivial solutions ps of (4) satisfying (5) exist, that is

ps(a, x) = 0 a.e. (a, x) ∈ (0, a†)× (0, 24).

The rest of this paper is organized as follows. In Section 2, we make some60

preparations which are necessary in what follows and we prove that A is an in-

finitesimal generator of a C0-semigroup T (t). In section 3, we get the asymptotic

behavior of (1) by analyzing the spectrum of the semigroup T (t). Many abstract

theories about semigroups used in this section can be referred to [7, 23, 19]. Ac-

cording to the asymptotic behaviour, we investigate the existence of steady65

states in Section 4.
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2. Preliminaries

In this section, we give some auxiliary lemmas as a preparation for our main

results that will be derived later. In fact, we have to prove that A is an infinites-

imal generator of a C0-semigroup T (t).70

At the beginning of this section, we study the following system





Dp− δ∆xp+ µ(a)p = 0, (a, t, x) ∈ Qa†
,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) = C

∫ a†

0

β(a)p(a, t, x)da, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),

(6)

where C can be any constant. Defining the operator F : X → X as:

Fφ(a, x) = −
∂φ(a, x)

∂a
+ δ∆φ(a, x) − µ(a)φ(a, x), ∀φ(a, x) ∈ D(F), (7)

where

D(F) = {φ(a, x)|φ,Aφ ∈ X,φ(a, 0) = φ(a, 24), ∂xφ(a, 0) = ∂xφ(a, 24),

φ(0, x) = C

∫ a†

0

β(a)φ(a, x)da},

we can rewrite (6) as




dp(a, t, x)

dt
= Fp(a, t, x),

p(a, 0, x) = p0(a, x).

Define an operator

Fλ =

∫ a†

0

Cβ(a)e−λae−
∫

a

0
µ(ρ)dρeBada, (8)

where the operator B : L2((0, 24)) −→ L2((0, 24)) is defined as

Bu(x) = δ∆u(x),

for u(x) satisfying 



u(0) = u(24),

u′(0) = u′(24).
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Lemma 2.1. The operator F defined by (7).

(1) F has a real dominant eigenvalue λ̃0, that is, λ̃0 is greater than any real parts

of the eigenvalues of F.

(2) For the operator F
λ̃0
, 1 is an eigenvalue with an eigenfunction φ0(x). Fur-75

thermore, γ(F
λ̃0
) = 1.

Proof. (1) We denote by (λi, φi)i≥0 the eigenvalues and the eigenfunctions of

the following problem




− δ∆φi(x) = λiφi(x), x ∈ (0, 24),

φi(0) = φi(24),

∂xφi(0) = ∂xφi(24),

where
∫ 24

0 φ2i (x)dx = 1, i ≥ 0, and φ0(x) > 0 with x ∈ (0, 24). It is obvious

that λ0 = 0 and φ0(x) is a fixed positive constant. We also assume that 0 =80

λ0 < λ1 ≤ λ2 ≤ · · · .

Let F be the operator in L2(0, a†) defined as

Fφ(a) = −
dφ(a)

da
− µ(a)φ(a), ∀φ ∈ D(F ),

where

D(F ) = {φ(a)|φ, Fφ ∈ L2(0, 24), φ(0) = C

∫ a†

0

β(a)φ(a)da}.

Let {λ̂j}j≥0 be the eigenvalues of F , that is, the solutions of the following

equation

1− C

∫ a†

0

β(a)e−λ̂ja−
∫

a

0
µ(ρ)dρda = 0. (9)

We assume that λ̂0 > Reλ̂1 ≥ Reλ̂2 ≥ · · · , even if it means re-arrange λ̂j .

Now, we divide two steps to consider the following equation

(λI− F)φ = ψ, ∀ψ ∈ X. (10)

Step 1, for any i, j ≥ 0, λ+ λi 6= λ̂j , define

φ(a, x) =
∞∑

i=0

R(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x),

8



where 〈ψ(a, x), φi(x)〉 =
∫ 24

0 ψ(a, x)φi(x)dx, R(λ, F ) = (λI−F )−1, the resolvent

operator of F . Firstly, we prove that φ(a, x) ∈ X is well defined. Since F is the

infinitesimal generator of a bounded strongly continuous semigroup from [20],

there exist constants M , ω > 0 such that

‖R(λ, F )‖ ≤
M

Reλ− ω
, for Reλ > ω.

Recalling that λi → ∞ as i → ∞, there is N such that Re(λ + λi) > ω when

i > N . Then, one can compute that

∞∑

i=0

‖R(λ+ λi, F )〈ψ(a, x), φi(x)〉‖
2

≤

N∑

i=0

‖R(λ+ λi, F )〈ψ(a, x), φi(x)〉‖
2

+

[
M

Re(λ+ λN )− ω

]2 ∞∑

i=N+1

‖〈ψ(a, x), φi(x)〉‖

≤
N∑

i=0

‖R(λ+ λi, F )〈ψ(a, x), φi(x)〉‖
2 +

[
M

Re(λ+ λN )− ω

]2
‖ψ‖2

<∞.

It implies that φ(a, x) ∈ X is well defined. Secondly, we prove φ(a, x) is a

solution of (10). For any n > 0,

(λI − F)
n∑

i=0

R(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)

=

n∑

i=0

[λR(λ + λi, F )〈ψ(a, x), φi(x)〉φi(x) − FR(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)]

=

n∑

i=0

[λR(λ + λi, F )〈ψ(a, x), φi(x)〉φi(x) − FR(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)

−R(λ+ λi, F )〈ψ(a, x), φi(x)〉δ∆φi(x)]

=

n∑

i=0

((λ + λi)I− F )R(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)

=
n∑

i=0

〈ψ(a, x), φi(x)〉φi(x)

→ψ(a, x), n→ ∞.
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Since F and ∆ are both closed operators on X , one can infer that F is closed.

Hence, (λI− F)φ = ψ, that is, φ(a, x) is a solution of (10). Furthermore, it can

be shown that φ is the unique solution of (10), and thus λ ∈ ρ(F), the resolvent

set of F and

R(λ,F)ψ =

∞∑

i=0

R(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x).

Step 2, for some i, j such that λ+ λi = λ̂j , it is easy to check that

φ(a, x) = e−(λ+λi)a−
∫

a

0
µ(ρ)dρφi(x)

satisfies (λI− F)φ = 0, that is, λ = λ̂j − λi ∈ σ(F). In particular, λ̃0 = λ̂0 − λ0

is the dominant eigenvalue of F, with eigenfunction

φ
λ̃0
(a, x) = e−λ̂0−

∫
a

0
µ(ρ)dρφ0(x).

It is easy to check that Cφ0(x) is the eigenfunction of the eigenvalue 1 of

F
λ̃0
, where λ̃0 = λ̂0 − λ0. Let any φ(x) ∈ L2(0, 24) be expanded as

φ(x) =

∞∑

i=0

αiφi(x).

Then,

F
λ̃0
φ(x) =

∞∑

i=0

αi

∫ a†

0

Cβ(a)e−λ̃0ae−
∫

a

0
µ(ρ)dρeBaφi(x)da

=

∞∑

i=0

αi

∫ a†

0

Cβ(a)e−(λ̃0+λi)ae−
∫

a

0
µ(ρ)dρdaφi(x).

Since λi ≥ λ0 and then λ̃0 + λi ≥ λ̂0, it follows from (9) that

∫ a†

0

Cβ(a)e−(λ̃0+λi)ae−
∫

a

0
µ(ρ)dρda ≤ 1.

Thus, γ(F
λ̃0
) = 1. �

Following the proof of lemma 1 in [9] carefully, we can get the following

lemma:85
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Lemma 2.2. For any 0 ≤ s0 < a+, there exists a unique mild solution u(s,x),

0 ≤ τ ≤ a+ − s0 to the evolution equation on X for any initial function φ(x) ∈

L2((0, 24)) 



∂u(s,x)
∂s

= (−µ(s0 + s) + B)u(s, x),

u(τ, x) = φ(x),

where the operator B0 is considered to be the Laplace operator with periodic

boundary condition. Define solution operators of the initial value problem by

T (s0, τ, s)φ(x) = u(s, x), ∀φ(x) ∈ L2((0, 24)),

then T (s0, τ, s)φ(x) is a family of uniformly linear bounded compact positive

operators on X and is strongly continuous about τ ,s. Furthermore,

T (s0, τ, s) = e−
∫

s

τ
µ(s0+ρ)dρeB(s−τ),

where eBs is the positive analytic semigroup generated by the operator B.

Proof. The proof is similar as that of lemma 1 in [9], so we omit the details

here. �

Lemma 2.3. The operator A defined by (2) and (3) is the infinitesimal gener-

ator of a C0-semigroup T (t) on the space X.90

Proof. First note that a C0-semigroup T (t) implies that there exists a constant

ω and M ≥ 1, so that

‖T (t)‖ ≤Meωt, ∀t ≥ 0.

Our strategy here is to apply the generalized Hille-Yoside Theorem (refer to

Theorem 8.2.5 of [22] and Corrollary 3.8 of [18]), that is, to prove: (i) A is

closed and D(A) = X ; (ii) for any λ > ω, λ ∈ ρ(A), and

‖Rn(λ,A)‖ ≤
M

(λ− ω)n
, n = 1, 2, 3 · · · .

(i) One can compute that

〈Aφ(a, x), φ(a, x)〉 ≤ N

∫ a†

0

β2(a)da〈φ(a, x), φ(a, x)〉, (11)
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for some constants N > 0, which also implies that A is an m-dissipative operator

when λ ∈ ρ(A) for all sufficiently large λ > 0. In fact, if this claim holds, A is a

closed operator, and combining with the m-dissiptiveness of A, we know that,

for all sufficiently large λ, (A− λI) is dissipative and R(I− (A− λI)) equals the

whole space X . Thus from Theorem 4.6 in [18], it follows that D(A − λI) is95

dense in X and so is D(A), since X is a Hilbert space.

(ii) Now, we prove that λ ∈ ρ(A) for all sufficiently large λ > 0. In order to

do this, we deal with the following equation

(λI− A)φ(a, x) = ψ(a, x), ∀ψ ∈ X,

that is,






∂φ(a,x)
∂a

= −(λ+ µ(a))φ(a, x) + δ∆φ(a, x) + ψ(a, x),

φ(0, x) =
∫ a†

0 β(a)
∫ x+η

x−η
K(x, s)φ(a, s)dsda.

Let T (0, τ, s) = T (τ, s) = e−
∫

s

τ
µ(ρ)dρeB(s−τ) and by Lemma 2.2, one has

φ(a, x) = e−λa
T (0, a)φ(0, x) +

∫ a

0

e−λ(a−δ)
T (δ, a)ψ(δ, x)dδ,

and

φ(0, x)−

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)e−λa
T (0, a)φ(0, s)dsda

=

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)

∫ a

0

e−λ(a−δ)
T (δ, a)ψ(δ, s)dδdsda. (12)

Then define the operator Bλ : L2((0, 24)) → L2((0, 24)) by

Bλ(φ(x)) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)e−λa
T (0, a)φ(s)dsda. (13)

Here, notice that Bλ(φ(x)) is nonlocal in x with φ(x), since the part of the op-

eration Bλ on φ(x) is the integral
∫ x+η

x−η
K(x, s)T (0, a)φ(s)ds. This is different

of [6] and [9], whose related operators are local. Therefore, λ ∈ ρ(A) if and only

if 1 ∈ ρ(Bλ). Furthermore, it follows from (12) and (13) that

φ(0, x) =(I− Bλ)
−1

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)

∫ a

0

e−λ(a−δ)
T (δ, a)ψ(δ, s)dδdsda,

12



and

R(λ,A)ψ(a, x) =e−λa
T (0, a)(I− Bλ)

−1

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)

∫ a

0

e−λ(a−δ)

T (δ, a)ψ(δ, s)dδdsda+

∫ a

0

e−λ(a−δ)
T (δ, a)ψ(δ, x)dδ. (14)

By the definitions of K(x, s) and T (0, a), we can show that

‖Bλ‖ ≤ ‖

∫ a†

0

β(a)e−λae−
∫

a

0
µ(ρ)dρeBada‖,

which implies that

lim
λ→+∞

‖Bλ‖ = 0.

Hence, for all sufficiently large λ > 0, (I − Bλ)
−1 exists and is bounded. Thus

1 ∈ ρ(Bλ) which is equivalent to λ ∈ ρ(A).

From (11) , one can obtain after some computations that

‖Rn(λ,A)‖ ≤
M

(λ− ω)n
, n = 1, 2, 3 · · · .

This completes the proof. �

3. Asymptotic behavior100

In this section, we study the asymptotic behavior of solutions of (1) by analyzing

the spectrum of the semigroup. It means that we will prove Theorem 1.1.

Now, we state the asymptotic expression which indicates the asymptotic

behavior.

Theorem 3.1. (1) For the eigenvalues of the operator A, there is only one real105

eigenvalue λ0 which is algebraically simple and is larger than any real part

of the other eigenvalues.

(2) The semigroup T (t) has the asymptotic expression

T (t)φ(a, x) =eλ0te−λ0aT (0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)

∫ a

0

e−λ0(a−δ)

T (δ, a)φ(δ, s)dδdsda+ o(e(λ0−ε)t)

where Cλ0 = lim
λ→λ0

(λ − λ0)(I − Bλ)
−1 and ε is any positive number such

that σ(A) ∩ {λ|λ0 − ε ≤ Reλ ≤ λ0} = λ0 holds.

13



Proof. (1) It will be done in two steps: (i) prove that A has only one real110

eigenvalue λ0 and λ0 is larger than any real part of the other eigenvalues; (ii)

prove that λ0 is algebraically simple by showing T (t) is compact for t ≥ a†.

(i) Define

E = {φ ∈ L2([0, 24])|

∫ x+η

x−η

K(x, s)φ(s)ds ≥ Cφ(x)},

where C > 0 is a sufficiently small constant.

Recall Fλ in (8) and denote the restrictions of Bλ, Fλ on E by Bλ,Fλ

respectively. Then from (13) and (8),

Bλ ≥ Fλ.

Given any nonnegative function φ(x), ψ(x) ∈ L2([0, 24]), both not identical to

zero, then from [4] and [17], 〈eBaφ, ψ〉 > 0 for all a > 0. From the expression of

Bλ and K(x, s), it follows that

〈Bλφ, ψ〉 > 0, for all real λ > 0. (15)

Furthermore, if φ(x) ∈ E, from assumption (J1), (J2) and the expression of

Fλ, we know that

〈Bλφ, ψ〉 ≥ 〈Fλφ, ψ〉 > 0, for all real λ > 0.

From Lemma 2.1, there is a λ̃0 such that γ(F
λ̃0
) = 1 and 1 is an eigenvalue

of F
λ̃0

with the eigenfunction φ0(x). Remembering that φ0(x) is a positive

constant, it is easy to check that φ0(x) ∈ E, even if it means reducing C.

Hence, F
λ̃0
φ0 = F

λ̃0
φ0 = φ0, which implies γ(F

λ̃0
) ≥ 1. Moreover, since

γ(F
λ̃0
) ≤ γ(F

λ̃0
) = 1, one obtains that γ(F

λ̃0
) = 1. Therefore we conclude

that

γ(B
λ̃0
) ≥ γ(B

λ̃0
) ≥ γ(F

λ̃0
) = 1.

On the other hand, limλ→+∞ γ(Bλ) = 0 and hence by continuity there exists

a real λ0 such that γ(Bλ0) = 1. Since Bλ0 is a compact positive operator, by

Krein-Rutman Theorem there exists a nonnegative φλ0(x) ∈ L2(0, 24) such that

Bλ0φλ0 (x) = φλ0 (x), (16)

14



i.e., σ(Bλ0 ) 6= ∅. Since (15), the operator Bλ is semi-nonsupporting. From

Theorem 4.3 of [16], we learn that γ(Bλ) is strictly monotone decreasing with115

respect to real λ. This is equivalent to the uniqueness of the real eigenvalue of

operator A. That is, σ(A) 6= ∅.

When λ > λ0 and γ(Bλ) < γ(Bλ0) = 1, (I − Bλ)
−1 exists and is positive,

and hence R(λ,A) is positive from (14). Thus, λ0 is larger than any real part

of the other eigenvalues.120

(ii) Integrating along the characteristic, we obtain

p(a, t, x) =






T (a− t, 0, t)p0(a− t, x), a ≥ t,

T (0, 0, a)

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)p(a, t− a, s)dsda, a < t.

When t ≥ a†,

T (t)φ(a, x) = T (0, 0, a)

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)[T (t− a)φ](a, s)dsda.

Let φn weakly converge to φ in X . By the compactness of T (0, 0, a), one has

‖T (0, 0, a)

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)[T (t− a)(φn − φ)](a, s)dsda‖L2([0,24]) → 0.

On the other hand,

‖T (0, 0, a)

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)[T (t− a)(φn − φ)](a, s)dsda‖L2([0,24])

≤ ‖T (0, 0, a)‖‖

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)[T (t− a)(φn − φ)](a, s)dsda‖L2([0,24])

≤M‖φn − φ‖L2([0,24])

is bounded. Using the dominant convergence theorem, we get lim
n→∞

‖T (t)(φn −

φ)‖ = 0; that is, T (t)φn converge strongly to T (t)φ. Thus, T (t) is compact.

By the results of [7], the semigroup T (t) generated by A, is a positive semi-

group and

λ0 = s(A) = ω0(A)

where s(A), ω0(A) denote the spectral bound of A and the growth bound of the

semigroup T (t) respectively. Since T (t) is compact, it is known from [7] that

15



ωess(A) = −∞. Furthermore, from Theorem 9.10 in [7], it is easy to get that

λ0 = {λ|Reλ = s(A)}.

It means that λ0 is a pole of the resolvent of R(λ,A). Thus, γ(Bλ0) = 1

is a pole of R(λ,Bλ0 ). Moreover, by (15), one obtains that Bλ0 is a non-125

semisupporting operator. Since Theorem 1 in [19], one can obtain that γ(Bλ0) =

1 is an algebraically simple eigenvalue of Bλ0 . This is equivalent of λ0 being an

algebraically simple eigenvalue of A.

(2) From (1), we have that σ(A) ∩ {λ|λ0 − ε ≤ Reλ ≤ λ0} = λ0, and T (t) is

a compact operator. Then from Theorem 5 of [23], there are constants C and

T0, such that

‖T (t)− T (t)Pλ0‖ ≤ Ce
(λ0−ǫ)t

, t ≥ T0,

where T (t) is the semigroup generated by A, Pλ0 is the mapping from X to Bλ0 ,

and Bλ0 is the eigenvalue space of λ0 of A. Furthermore,

T (t)φ = T (t)Pλ0φ+ o(e
(λ0−ǫ)t

). (17)

Since λ0 is an algebraically simple eigenvalue of A, then it is known from [13]

that

Pλ0φ = lim
λ→λ0

(λ− λ0)R(λ,A)φ. (18)

Combining (17) and (18),

T (t)φ = eλ0t lim
λ→λ0

(λ− λ0)R(λ,A)φ + o(e
(λ0−ǫ)t

).

Then, using the expression (14) of R(λ,A)φ,

T (t)φ(a, x) =eλ0te−λ0aT (0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)

∫ a

0

e−λ0(a−δ)
T (δ, a)

φ(δ, s)dδdsda + o(e(λ0−ε)t).

�

Remark 3.1. Here, we can see that Theorem 1.1 is a direct result of Theorem130

3.1, so the proof of Theorem 1.1 is complete.
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4. Existence of steady states

As for the steady states (4) satisfying (5), our main result is Theorem 1.2. In

this section, we prove Theorem 1.2 directly according to Theorem 3.1.

Proof. Firstly, let λ0 be as defined in Theorem 3.1. Then, we look for the135

steady states (4) in the following three cases according to the sign of λ0.

(1)When λ0 > 0, we argue this case by a contradiction. Assume that ps(a, x)

is a nonnegative solution of (4) satisfying (5). It is easy to see that ps(a, x) =

p(a, t, x) is also a solution of the following system






Dp(a, t, x)− δ∆p(a, t, x) + µ(a)p(a, t, x) = 0, (a, t, x) ∈ Qa†
,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = ps(a, x), (a, x) ∈ (0, a†)× (0, 24).

Then by a result of Theorem 1.1, one has the asymptotic expression

p(a, t, x) =eλ0te−λ0aT (0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)

∫ a

0

e−λ0(a−σ)
T (σ, a)p0(σ, s)dsdadσ + o(e(λ0−ǫ)t).

Thus,

‖ps(a, x)‖L2((0,a†)×(0,24)) = lim
t→+∞

‖p(a, t, x)‖L2((0,a†)×(0,24)) = +∞

which is a contradiction. Thus, there is no nonnegative solution of (4) satisfying

(5).

(2) When λ0 = 0, it means that 0 ∈ σ(A). From the definition of A, every

eigenfunction related to 0 and its multiplications by any constant are solutions140

of (4).

Recalling (16) from the proof of Theorem 3.1, there is a nonnegative function

φλ0(x) ∈ L2(0, 24) such that

Bλ0(φλ0 (x)) =

∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)e−λ0aT (0, a)φλ0 (s)dsda = φλ0 (x).
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By Lemma 2.2, one knows that T (0, a) is a bounded operator on X . Using

Cauchy-Schwarz inequality, for arbitrary x0 ∈ (0, 24), one obtains

|φλ0(x) − φλ0(x0)|

=

∣∣∣∣
∫ a†

0

β(a)

∫ x+η

x−η

K(x, s)e−λ0aT (0, a)φλ0(s)dsda

−

∫ a†

0

β(a)

∫ x0+η

x0−η

K(x0, s)e
−λ0aT (0, a)φλ0(s)dsda

∣∣∣∣

≤‖β(a)‖L∞(0,a†)

∣∣∣∣
∫ a†

0

∫ x+η

x−η

K(x, s)T (0, a)φλ0(s)dsda

−

∫ a†

0

∫ x0+η

x0−η

K(x0, s)T (0, a)φλ0(s)dsda

∣∣∣∣

≤‖β(a)‖L∞(0,a†)

∣∣∣∣
∫ a†

0

∫ x+η

x−η

(K(x, s)−K(x0, s))T (0, a)φλ0(s)dsda

∣∣∣∣

+ ‖β(a)‖L∞(0,a†)

∣∣∣∣
∫ a†

0

∫ x+η

x0−η

K(x0, s)T (0, a)φλ0(s)dsda

∣∣∣∣

+ ‖β(a)‖L∞(0,a†)

∣∣∣∣
∫ a†

0

∫ x+η

x0+η

K(x0, s)T (0, a)φλ0(s)dsda

∣∣∣∣

≤‖β(a)‖L∞(0,a†)‖K(x, s)−K(x0, s)‖L2(x−η,x+η)‖T (0, a)φλ0(s)‖L2((0,a†)×(0,24))

+ ‖β(a)‖L∞(0,a†)

(∫ x+η

x0−η

|K(x0, s)|
2ds

) 1
2

‖T (0, a)φλ0(s)‖L2((0,a†)×(0,24))

+ ‖β(a)‖L∞(0,a†)

(∫ x+η

x0+η

|K(x0, s)|
2ds

) 1
2

‖T (0, a)φλ0(s)‖L2((0,a†)×(0,24))

≤C‖β(a)‖L∞(0,a†)‖K(x, s)−K(x0, s)‖L2(x−η,x+η)‖φλ0(s)‖L2(0,24)

+ C‖β(a)‖L∞(0,a†)

(∫ x+η

x0−η

|K(x0, s)|
2ds

) 1
2

‖φλ0(s)‖L2(0,24)

+ C‖β(a)‖L∞(0,a†)

(∫ x+η

x0+η

|K(x0, s)|
2ds

) 1
2

‖φλ0(s)‖L2(0,24)

→0, as x→ x0.

Thus, φλ0(x) is continuous about x. Then, from the proof of Lemma 2.3, it is

easy to check that

φ(a, x) = T (0, a)φλ0 (x)

is an eigenfunction of the eigenvalue λ0 = 0 of A. Therefore, the steady states
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are

ps(a, x) = cT (0, a)φλ0(x) ≥ 0, for any constant c > 0.

By a result of Lemma 2.2, we know that T (0, a) is strongly continuous with

respect to a. Hence, ps(a, x) is continuous about a, x in (0, a†)× (0, 24).

Consider smooth function v(a, x) such that v(a, x) = e
∫

a

0
µ(ρ)dρps(a, x) ≥ 0

a.e (a, x) ∈ (0, a†)× (0, 24). Then, from (4), v(a, x) satisfies






∂av − δ∆v = 0, (a, x) ∈ (0, a†)× (0, 24),

v(a, 0) = v(a, 24), a ∈ (0, a†),

∂xv(a, 0) = ∂xv(a, 24), a ∈ (0, a†),

v(0, x) =
∫ a†

0
β(a)

∫ x+η

x−η
K(x, s)e−

∫
a

0
µ(ρ)dρv(a, s)dsda, x ∈ (0, 24).

(19)

From the strong maximum principle, v(a, x) > 0 for (0, a†) × (0, 24). Then,

v(0, x) =
∫ a†

0
β(a)

∫ x+η

x−η
K(x, s)e−

∫
a

0
µ(ρ)dρv(a, s)dsda > 0 for x ∈ (0, 24). As-

sume by contradiction that v attains its minimum 0 at (a0, 0), that is, v(a0, 0) =

0 for some a0 ∈ (0, a†). Then, ∂av(a0, 0) = 0 and ∂xv(a0, 0) ≥ 0. Since

v(a, o) = v(a, 24) for a ∈ (0, a†), one has that v(a0, 24) = 0 and ∂av(a0, 24) = 0,

∂xv(a0, 24) ≤ 0. Since ∂xv(a, 0) = ∂xv(a, 24) for a ∈ (0, a†), we obtain that

∂xv(a0, 0) = ∂xv(a0, 24) = 0. Then, ∆v(a0, 0) = ∂xxv(a0, 0) > 0 since v(a, x) >

0 for (0, a†) × (0, 24). Thus, (∂av − δ∆v)(a0, 0) < 0 which is a contradiction

of the first equation of (19). So that, v(a, 0), v(a, 24) > 0 for a ∈ (0, a†). By

v(0, x) =
∫ a†

0 β(a)
∫ x+η

x−η
K(x, s)e−

∫
a

0
µ(ρ)dρv(a, s)dsda, one also has that v(0, 0),

v(0, 24) > 0. Therefore, we can conclude that for any a1 < a†,

ps(a, x) = e−
∫

a

0
µ(ρ)dρv(a, x) > 0, a.e. in [0, a1]× [0, 24]

since
∫ a

0
µ(ρ)dρ <∞ for a < a†. Finally, there exists ρ0 > 0 such that

ps(a, x) ≥ ρ0 > 0, a.e. (a, x) ∈ (0, a1)× (0, 24).

(3) When λ0 < 0, it follows from the arguments of (1) that

‖ps(a, x)‖L2((0,a†)×(0,24)) = lim
t→+∞

‖p(a, t, x)‖L2((0,a†)×(0,24)) = 0.
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Thus,

ps(a, x) = 0 a.e. (a, x) ∈ (0, a†)× (0, 24).

�
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