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Gastineau-Hills’ quasi-Clifford algebras
and plug-in constructions for Hadamard
matrices

Paul C. Leopardi

Abstract. The quasi-Clifford algebras as described by Gastineau-Hills
in 1980 and 1982, should be better known, and have only recently been
rediscovered. These algebras and their representation theory provide
effective tools to address the following problem arising from a plug-in
construction for Hadamard matrices: Given λ, a pattern of amicability
/ anti-amicability, with λj,k = λk,j = ±1, find a set of n monomial
{−1, 0, 1} matrices D of minimal order such that

DjD
T
k − λj,kDkD

T
j = 0 (j 6= k).
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1. Introduction

The work of Gastineau-Hills on quasi-Clifford algebras [5, 6] should be better
known. In particular, as at April 2018, his paper on the subject [6] had
only four citations other than self-citations, according to Google, [3, 12, 16,
22], and only one of these [16] discusses quasi-Clifford algebras and their
representation theory to any depth.

Since the quasi-Clifford algebras are a fundamental and natural gen-
eralization of the Clifford algebras, these algebras, or some subset of them,
as well as their representation theory, have been rediscovered or partially
rediscovered a number of times. The rediscoveries include

• da Rocha and Vaz’ extended Clifford algebras [2] which are doubled real
Clifford algebras, including the simplest case of a quasi-Clifford algebra
that is not itself a Clifford algebra;

• Rajan and Rajan’s extended Clifford algebras [20, 21], which are a sub-
set of the special quasi-Clifford algebras; and
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• Marchuk’s extended Clifford algebras [16], which correspond to the spe-
cial quasi-Clifford algebras over the field of real numbers.

The partial rediscoveries include near misses, such as the rediscoveries of the
finite groups generated by the basis elements of the quasi-Clifford algebras,
and their representations:

• The finite groups generated by the basis elements of the quasi-Clifford
algebras are signed groups and have real monomial representations of
the order of a power of two [1].

• The non-abelian extensions of C2 by Ck2 as classified by de Launey and
Flannery’s Theorem 21.2.3 [3, Section 21.2] and the finite groups gener-
ated by the basis elements of the quasi-Clifford algebras are connected
by their relationship to the finite groups generated by the basis elements
of Clifford algebras. The correspondence between the two deserves fur-
ther investigation. See in particular, Lam and Smith’s classification of
the finite groups generated by the basis elements of Clifford algebras
[11]. See also the classifications given by de Launey and Smith [4].

The original application of quasi-Clifford algebras and their representa-
tion theory was to systems of orthogonal designs [5, 6, 22]. The current paper
applies quasi-Clifford algebras and their representation theory to the study of
some plug-in constructions for Hadamard matrices described by the author
in 2014 [12]. The key question addressed is: Given λ, a pattern of amicability
/ anti-amicability, with λj,k = λk,j = ±1, find a set of n monomial {−1, 0, 1}
matrices D of minimal order such that

DjD
T
k − λj,kDkD

T
j = 0 (j 6= k).

Specifically, this paper contains a new proof of Theorem 5 of [12] that answers
Question 1 of that paper.

The remainder of the paper is organized as follows. Section 2 outlines
Gastineau-Hills’ theory of quasi-Clifford algebras. Section 3 revises the plug-
in constructions for Hadamard matrices. Section 4 uses the theory of real
Special quasi-Clifford algebras to address questions related to those construc-
tions.

2. Quasi-Clifford algebras

Humphrey Gastineau-Hills fully developed the theory of quasi-Clifford alge-
bras in his thesis of 1980 [5] and published the key results in a subsequent
paper [6]. The paper describes the theory of quasi-Clifford algebras in full
generality for fields of characteristic other than 2. This paper uses only the
properties of quasi-Clifford algebras over the real field, and after giving the
general definition, this section presents a summary of Gastineau-Hills’ con-
structions and results in this case.
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Definition 1. [6, (2.1)] Let F be a commutative field of characteristic not 2,
m a positive integer, (κi), 1 6 i 6 m a family of non-zero elements of F , and
(δi,j), 1 6 i 6 j 6 m a family of elements from {0, 1}. The quasi-Clifford, or
QC, algebra C = CF [m, (κi), (δi,j)] is the algebra (associative, with a 1) over
F on m generators α1, . . . , αm, with defining relations

α2
i = κi, αjαi = (−1)δi,jαiαj (i < j) (1)

(where κi of F is identified with κi times the 1 of C).

If all δi,j = 1 we have a Clifford algebra corresponding to some non-
singular quadratic form on Fm [10]. If in addition each κi = ±1 we have
the Special Clifford algebras studied by Kawada and Imahori [9], Porteous
[17, 18] and Lounesto [15] amongst others.

Theorem 1. [6, (2.3)] The QC algebra C of Definition 1 has dimension 2m as
a vector space over F , and a basis is {αǫ11 . . . αǫmm , ǫi = 0 or 1}.

This paper concentrates on the QC algebras for which each κi = ±1.
Gastineau-Hills call such algebras Special quasi-Clifford, or SQC, algebras.

Also, from this point onwards, the field F is the real field R, and Gasti-
neau-Hills’ key theorems and constructions are summarised for this case.
Additionally, the real Special Clifford algebras are referred to simply as Clif-
ford algebras, and the notation of Porteous [17, 18] and Lounesto [15] is used
for these algebras and their representations.

Gastineau-Hills [6] uses the notation [α1, . . . , αm] for the QC algebra
generated by α1, . . . , αm, and the following notation for two special cases. In
the case of a single generator, Cb := [β] where β2 = b. For a pair of anti-
commuting generators, Qc,d := [γ, δ] where γ2 = g, δ2 = d. This notation
yields the following isomorphisms between these low dimensional real SQC
algebras and their corresponding Clifford algebras [6, (2.2)].

C−1 ≃ R0,1 ≃ C,

C1 ≃ R1,0 ≃ 2R, (2)

Q−1,−1 ≃ R0,2 ≃ H,

Q−1,1 ≃ R1,1 ≃ R(2),

Q1,−1 ≃ R1,1 ≃ R(2),

Q1,1 ≃ R2,0 ≃ R(2).

Gastineau-Hills first decomposition theorem in the special case of real
SQC algebras is as follows.

Theorem 2. [6, (2.7)] Any real SQC algebra C[m, (κi), (δi,j)] = [α1, . . . , αm]
is expressible as a tensor product over R:

C ≃ Cb1 ⊗ . . .⊗ Cbr ⊗Qc1,d1 ⊗ . . .⊗Qcs,ds

= [β1]⊗ . . .⊗ [βr]⊗ [γ1, δ1]⊗ . . .⊗ [γs, δs] (3)

where r, s > 0, r + 2s = m, and each bi, cj , dk is ±1.
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Each βi, γj , δk (where β2
i = bi, γ

2
j = cj , δ

2
k = dk and all pairs commute

except δiγi = −γiδi, 1 6 i 6 s) is, to within multiplication by ±1, one of
the basis elements αǫ11 . . . αǫmm of C. Conversely each αǫ11 . . . αǫmm is, to within
division by ±1, one of

βθ11 . . . βθrr γ
φ1

1 δψ1

1 . . . γφs

s δψs

s

(each θi, φj, ψk = 0 or 1). Thus the latter 2r+2s = 2m elements form a new
basis of C, and {βi, γj , δk} is a new set of generators.

Here the tensor product ⊗ is the real tensor product of real algebras,
as per Porteous [17].

Gastineau-Hills [6] goes on to investigate the Wedderburn structure of
the real SQC algebras by first determining the centre of each algebra, and
then determining the irreducible representations.

Lemma 1. [6, (2.8)] The centre of C = [β1]⊗ . . .⊗ [βr]⊗ [γ1, δ1]⊗ . . .⊗ [γs, δs]
(βi, γj , δk as in Theorem 2) is the 2r-dimensional subalgebra [β1]⊗ . . .⊗ [βr].

Remark 1. [6, (2.9)] The converse of Theorem 2 is obviously also true: any
algebra of the form (3) is a QC algebra. Indeed, regarded as an algebra on the
generators {βi, γj , δk}, C of the form (3) is the QC algebra C[r+2s, (κi), (δi,j)]
where κ1, . . . , κr+2s = b1, . . . , br, c1, d1, . . . cs, ds, respectively, and all δi,j = 0
except δr+2i−1,r+2i = 1 for 1 6 i 6 s.

Theorem 3. [6, (2.10)] The class of SQC algebras over R is the smallest class
which is closed under tensor products over R and which contains the Clifford
algebras. It is the smallest class which is closed under tensor products over
R and contains the algebras Cb, Qc,d (b, c, d = ±1). The Clifford algebras are
the QC algebras with 1- or 2-dimensional centres (general QC algebras can
have 2r-dimensional centres, r any non-negative integer).

Theorem 4. [6, (2.11)] Every real SQC algebra C[m, (κi), (δi,j)] is semi-simple.

Remark 2. [6, (3.2)] There are irreducible representations of Cb, Qc,d (b, c, d =
±1) in which β, γ, δ are each represented by monomial {−1, 0, 1} matrices.

Remark 3. [6, (3.3)] Following from (2) the decomposition of a real SQC
algebra takes (possibly after reordering the factors) the form:

C = [α1, . . . , αm]

≃ 2R⊗ . . .⊗ 2R⊗ C⊗ . . .⊗ C⊗H⊗ . . .⊗H⊗ R(2)⊗ . . .⊗ R(2) (4)

≃ [β1]⊗ . . .⊗ [βr]⊗ [γ1, δ1]⊗ . . .⊗ [γs, δs]

where each βi, γj , δk is plus or minus a product of the αi, and conversely each
αi is plus or minus a product of the βi, γj , δk. In general, each of 2R, C, H,
R(2) may appear zero or more times in the tensor product (4).

We now come to a well known lemma used in the representation theory
of real and complex Clifford algebras.
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Lemma 2. [6, (3.4)] [17, Prop. 10.44] [18, Prop. 11.9]
(i) C⊗ C ≃ 2R⊗ C ≃ 2C.
(ii) C⊗H ≃ C⊗ R(2) ≃ C(2).
(iii) H⊗H ≃ R(2)⊗ R(2) ≃ R(4).

Remark 3 and the repeated application of Lemma 2 lead to the following
result.

Theorem 5. [6, (3.7)]
The Wedderburn structure of a real SQC algebra C[m, (κi), (δi,j)] as a

direct sum of full matrix algebras over division algebras is (depending on
m, (κi), (δi,j)) one of

(i) 2rR(2s),

(ii) 2r−1

C⊗ R(2s), or

(iii) 2rH⊗ R(2s−1),
where in each case r + 2s = m, and 2r is the dimension of the centre.

Conversely (as in Remark 1) any such algebra (i), (ii) or (iii) is an SQC
algebra C[r + 2s, (κi), (δi,j)] with respect to certain generators. Also (as in
Theorem 3) the subclass of algebras with structures (i), (ii) or (iii) for which
r 6 1 is precisely the class of algebras isomorphic to Clifford algebras on
r + 2s generators.

Corollary 3. [6, (3.8)] In case (i) of Theorem 5 there are 2r inequivalent
irreducible representations, of order 2s; in case (ii) 2r−1 of order 2s+1, and
in case (iii) 2r of order 2s+1. Any representation must be of order a multiple
of (i) 2s, (ii) 2s+1, (iii) 2s+1 respectively.

As a result of the well-known constructions that lead to Remark 2,
Gastineau-Hills establishes the following result.

Theorem 6. [6, (3.10)] Each representation of a real SQC algebra
C[m, (κi), (δi,j)] on generators (αi) is equivalent to a matrix representation in
which each αi corresponds to a monomial {−1, 0, 1} matrix, which is therefore
orthogonal.

3. Plug-in constructions for Hadamard matrices

A recent paper of the author [12] describes a generalization of Williamson’s
construction for Hadamard matrices [23] using the real monomial representa-
tion of the basis elements of the Clifford algebra Rm,m. (Recall that Rp,q is the
real universal Clifford algebra of the 2p+q dimensional real quadratic space
Rp,q, with p+q anticommuting generators, e{−q}, . . . , e{−1}, e{1}, . . . e{p} with

e2{k} = −1 if k < 0, e2{k} = 1 if k > 0, and that Rm,m ≃ R(2m), the algebra

of real matrices with 2m rows and 2m columns [12, 15, 17].)
Briefly, the general construction uses some

Ak ∈ {−1, 0, 1}n×n, Bk ∈ {−1, 1}b×b, k ∈ {1, . . . , n},
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where the Ak are monomial matrices, and constructs

H :=

n∑

k=1

Ak ⊗Bk, (H0)

such that

H ∈ {−1, 1}nb×nb and HHT = nbI(nb), (H1)

i.e. H is a Hadamard matrix of order nb. The paper [12] focuses on a special
case of the construction, satisfying the conditions

Aj ∗Ak = 0 (j 6= k),

n∑

k=1

Ak ∈ {−1, 1}n×n,

AkA
T
k = I(n),

AjA
T
k + λj,kAkA

T
j = 0 (j 6= k), (5)

BjB
T
k − λj,kBkB

T
j = 0 (j 6= k),

λj,k ∈ {−1, 1},
n∑

k=1

BkB
T
k = nbI(b),

where ∗ is the Hadamard (element-by-element) matrix product. (That is,
(M ∗N)i,j :=Mi,jNi,j for all pair of matrices M,N of the same shape.)

If, in addition, we stipulate that A2
j = κj = ±1 for j from 1 to n, we

can now recognize that the n matrices A1 to An are also the images, under
a real representation of order n, of the generators of a real special quasi-
Clifford algebra, with λj,k = κjκk(−1)1+δj,k . Thus n must be a power of 2
large enough for this representation to exist, or a multiple of such a power.

In Section 3 of the paper [12], it is noted that the Clifford algebra
R(2m) ≃ Rm,m has a canonical basis consisting of 4m real monomial matrices
with the following properties:

Pairs of basis matrices either commute or anticommute. Basis matrices
are either symmetric or skew, and so the basis matrices Aj , Ak satisfy

AkA
T
k = I(2m), AjA

T
k + λj,kAkA

T
j = 0 (j 6= k), λj,k ∈ {−1, 1}. (6)

Additionally, for n = 2m, we can choose a transversal of n canonical
basis matrices that satisfies conditions (5) on the A matrices,

Aj ∗Ak = 0 (j 6= k),

n∑

k=1

Ak ∈ {−1, 1}n×n. (7)
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4. Special quasi-Clifford algebras applied to the plug-in
constructions

The properties of the real SQC algebras yield an alternate proof of Theorem
5 of [12], and provide an answer to the question of whether the order of the B
matrices used in that proof can be improved [12, Question 1]. That theorem
is restated here as a proposition.

Proposition 1. [12, Theorem 5] If n is a power of 2, the construction (H0)
with conditions (5) can always be completed, in the following sense. If an
n-tuple of A matrices which produce a particular λ is obtained by taking a
transversal of canonical basis matrices of the Clifford algebra Rm,m, an n-
tuple of B matrices with a matching λ can always be found.

Proof.

1. For some sufficiently large order b, form an n-tuple (D1, . . . , Dn) of
{−1, 0, 1}monomial matrices whose amicability / anti-amicability graph
is the edge-colour complement of that of (A1, . . . , An). To be precise,

DjD
T
k − λj,kDkD

T
j = 0 (j 6= k),

where λ is given by (6). This can be done because D1, . . . , Dn are the
images of generators of some real SQC algebra C, and therefore b can be
taken to be the order of an irreducible real representation of C, which,
by Corollary 3 is a power of 2.

2. Since b is a power of 2, we can find a Hadamard matrix S of order
b. The Sylvester Hadamard matrix of order b will do. The n-tuple
(D1S, . . . , DnS) of {−1, 1} matrices of order b has the same amicability
/ anti-amicability graph as that of (D1, . . . , Dn).

3. The n-tuple of Hadamard matrices (B1, . . . , Bn) = (D1S, . . . , DnS) of
order b satisfies conditions (5) on the B matrices, and completes the
construction (H0).

�

The theory of SQC algebras is described by Gastineau-Hills [5, 6] with
enough detail to enable a concrete construction of the type given in the proof
of Proposition 1 to be carried out for any given pattern of amicability /
anti-amicability λ, and any arbitrary assignment κ of squares of generators.

For example, consider the cases where all of the A matrices are pairwise
amicable, that is λj,k = −1 for j 6= k. We thus require an n-tuple of mutually
anti-amicable {−1, 0, 1} matrices (D1, . . . , Dn).

Consider the generators β−q, . . . , β−1, β1, . . . , βp where p+ q = n, β2
j =

κj , with κj = −1 if j < 0, κj = 1 if j > 0, and

βjβk + κjκkβkβj = 0.

Thus generators whose squares have the same sign anticommute, and gen-
erators whose squares have opposite signs commute. For any real monomial
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representation ρ, we have

ρ(βj)
T = κjρ(βj),

so that

ρ(βj)ρ(βk)
T = κkρ(βj)ρ(βk) = −κjρ(βk)ρ(βj) = −ρ(βk)ρ(βj)

T .

Thus any representation gives a set of mutually anti-amicable matrices.

We have split the set of n generators into disjoint subsets of size p
and q, where the generators within each subset pairwise anti-commute, and
each pair of generators, where one is taken from each subset, commute. The
whole set of generators thus generates the algebra Rp,0⊗R0,q, whose faithful
representations are given by Table 1.

q →

p 0 1 2 3 4 5 6 7 8

0 R C H 2H H(2) C(4) R(8) 2R(8) R(16)
1 2R 2C 2H 4H 2H(2) 2C(4) 2R(8) 4R(8) 2R(16)
2 R(2) C(2) H(2) 2H(2) H(4) C(8) R(16) 2R(16) R(32)
3 C(2) 2C(2) C(4) 2C(4) C(8) 2C(8) C(16) 2C(16) C(32)
4 H(2) C(4) R(8) 2R(8) R(16) C(16) H(16) 2H(16) H(32)
5 2H(2) 2C(4) 2R(8) 4R(8) 2R(16) 2C(16) 2H(16) 4H(16) 2H(32)
6 H(4) C(8) R(16) 2R(16) R(32) C(32) H(32) 2H(32) H(64)
7 C(8) 2C(8) C(16) 2C(16) C(32) 2C(32) C(64) 2C(64) C(128)

8 R(16) C(16) H(16) 2H(16) H(32) C(64) R(64) 2R(128) R(256)

Table 1. Tensor Products of real Clifford algebras Rp,0 ⊗ R0,q.

Algebra Faithful Irreducible
Representation Dimension

R2,0 ⊗ R0,0 R(2) 2
R1,0 ⊗ R0,1

2C 2
R0,0 ⊗ R0,2 H 4

Table 2. Tensor Products of real Clifford algebras with p+
q = 2.

The relevant representations and the dimensions of the corresponding
irreducible real monomial representations for p + q = 2, 4 and 8 are given
by Tables 2 to 4 respectively. Due to the periodicity of 8 of real represen-
tations of real Clifford algebras, in general, for n = 2m, for m > 2, there
exists a real special quasi-Clifford algebra with an irreducible real monomial
representation of order 2n/2−1 containing n pairwise anti-amicable {−1, 0, 1}
matrices.
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Algebra Faithful Irreducible
Representation Dimension

R4,0 ⊗ R0,0 H(2) 8
R3,0 ⊗ R0,1

2C(2) 4
R2,0 ⊗ R0,2 H(2) 8
R1,0 ⊗ R0,3

4H 4
R0,0 ⊗ R0,4 H(2) 8

Table 3. Tensor Products of real Clifford algebras with p+
q = 4.

Algebra Faithful Irreducible
Representation Dimension

R8,0 ⊗ R0,0 R(16) 16
R7,0 ⊗ R0,1

2C(8) 16
R6,0 ⊗ R0,2 R(16) 16
R5,0 ⊗ R0,3

4R(8) 8
R4,0 ⊗ R0,4 R(16) 16
R3,0 ⊗ R0,5

2C(8) 16
R2,0 ⊗ R0,6 R(16) 16
R1,0 ⊗ R0,7

4R(8) 8
R0,0 ⊗ R0,8 R(16) 16

Table 4. Tensor Products of real Clifford algebras with p+
q = 8.

Hurwitz-Radon theory. The following definition and proposition are taken
from the author’s recent paper on twin bent functions and Hurwitz-Radon
theory [14].

A set of real orthogonal matrices {A1, A2, . . . , As} is called a Hurwitz-
Radon family [7, 8, 19] if

1. ATj = −Aj for all j = 1, . . . , s, and
2. AjAk = −AkAj for all j 6= k.

The Hurwitz-Radon function ρ is defined by

ρ(24d+c) := 2c + 8d, where 0 6 c < 4.

As stated by Geramita and Pullman [7, Theorem A], Radon proved the fol-
lowing result [19].

Proposition 2. Any Hurwitz-Radon family of order N has at most ρ(N) − 1
members.

As an immediate consequence of this proposition, at most ρ(N) mono-
mial {−1, 0, 1} matrices can be mutually anti-amicable. The construction
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above in the case where all of the A matrices are pairwise amicable, n = 2m

and m > 2 corresponds to the case c = 3, d = 2m−3 − 1, since

4d+ c = 2m−1 + 4− 1 = n/2− 1,

2c + 8d = 8 + 2m − 8 = n.

5. Discussion

The construction used in the proof of Proposition 1 is a special case of the
construction (H0) with conditions (5). All of the low order cases investigated
so far have been of this form. This prompts two questions:

1. Are all instances of construction (H0) with conditions (5) given by the
special construction used in the proof of Proposition 1?

2. Must the order of the B matrices used in construction (H0) with con-
ditions (5) always be a power of 2?

Perhaps a deeper study of the representation theory of Gastineau-Hills quasi-
Clifford algebras could be used to address these questions.

Acknowledgements. Thanks to Jennifer Seberry, who supervised the PhD
thesis of Humphrey Gastineau-Hills, and brought his work to the attention
of the author. This work, including previous papers on this topic [12, 13, 14]
began in 2007 while the author was a Visiting Fellow at the Australian Na-
tional University; continued while the author was a Visiting Fellow and a Ca-
sual Academic at the University of Newcastle, Australia; and concluded while
the author was an employee of the Australian Government in the Bureau of
Meteorology, and also an Honorary Fellow of the University of Melbourne.

References

[1] R. Craigen. Signed groups, sequences, and the asymptotic existence of Hada-
mard matrices. J. Combin. Theory Ser. A, 71(2):241–254, (1995).

[2] R. da Rocha and J. Vaz. Extended Grassmann and Clifford algebras. Advances
in Applied Clifford Algebras, 16(2):103–125, Oct 2006.

[3] W. de Launey and D. D. L. Flannery. Algebraic design theory. Number 175
in Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, (2011).

[4] W. de Launey and M. J. Smith. Cocyclic orthogonal designs and the asymptotic
existence of cocyclic Hadamard matrices and maximal size relative difference
sets with forbidden subgroup of size 2. Journal of Combinatorial Theory, Series

A, 93(1):37–92, (2001).

[5] H. M. Gastineau-Hills. Systems of orthogonal designs and quasi-Clifford alge-

bras. PhD thesis, University of Sydney, (1980).

[6] H. M. Gastineau-Hills. Quasi-Clifford algebras and systems of orthogonal de-
signs. J. Austral. Math. Soc. Ser. A, 32(1):1–23, (1982).



Quasi-Clifford algebras and Hadamard matrices 11

[7] A. V. Geramita and N. J. Pullman. A theorem of Hurwitz and Radon and
orthogonal projective modules. Proceedings of the American Mathematical So-

ciety, 42(1):51–56, (1974).
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