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ON NILPOTENT GENERATORS OF THE LIE ALGEBRA sl,

ALISA CHISTOPOLSKAYA

ABSTRACT. Consider the special linear Lie algebra s, (K) over an infinite field of charac-
teristic different from 2. We prove that for any nonzero nilpotent X there exists a nilpotent
Y such that the matrices X and Y generate the Lie algebra sl, (K).

1. INTRODUCTION

It is an important problem to find a minimal generating set of a given algebra. This
problem was studied actively for semisimple Lie algebras. In 1951, Kuranishi [4] observed
that any semisimple Lie algebra over a field of characteristic zero can be generated by two
elements. Twenty-five years later, Ionescu [3] proved that for any nonzero element X of a
complex or real simple Lie algebra G there exists an element Y such that the elements X
and Y generate the Lie algebra G. In the same year, Smith [5] proved that every traceless
matrix of order n > 3 is the commutator of two nilpotent matrices. These results imply
that the special linear Lie algebra sl,, can be generated by three nilpotent matrices. In 2009,
Bois [2] extended Kuranishi’s result to algebraically closed fields of characteristic different
from 2 and 3.

In this paper we obtain an analogue of lonescu’s result for nilpotent generators of the
Lie algebra sl,,.

Theorem 1. Let K be an infinite field of characteristic different from 2. For any nonzero
nilpotent X there exists a nilpotent Y such that the matrices X and Y generate the Lie
algebra sl, (K).

Our interest to this subject was motivated by the study of additive group actions on affine
spaces, see [1, Theorem 5.17]. In a forthcoming publication we plan to extend Theorem 1
to arbitrary simple Lie algebras.

The author is grateful to her supervisor Ivan Arzhantsev for posing the problem and
permanent support.

2. MAIN RESULTS

Let K be an infinite field with char K # 2. A set of elements Ay, ..., A, (\; € K) is called
consistent if the following conditions hold:
(2) \; # 0 for all 4;
(4) i—= XN =X —Nonlyfori=j, k=lori=k, j=I
Condition (1) defines (n — 1)-dimensional subspace W C K". Conditions (2)-(4) define
linear inequalities on W whose set of solutions is nonempty. For example, if char K = 0, a
set \;, =21 fori=1,....,n—1and A\, =1 — 2" is consistent.
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A diagonal matrix A = diag(ay, ..., a,,) is called consistent if aqy, ..., a,, is a consis-
tent set.

Lemma 1. Let T be a consistent matriz and A be a matrix with nonzero entries outside
the principal diagonal. Then T and A generate the Lie algebra sl,(K).

Proof. Consider the following matrices:
Alz[T,A], Ai:[T7Ai,1], i:2,...,n2—n.

Note that all matrices A; have zeroes on the principal diagonal and are linearly independent.
Indeed, if we consider the coordinates of these matrices in the basis of n? — n matrix units,
up to scalar multiplication of columns, we come to a Vandermonde matrix with nonzero
determinant.

Hence, the matrices A; form a basis of the space of n X n-matrices with zeroes on the
principal diagonal. This means that the subalgebra generated by T and A contains all
matrix units Ej;, i # j. Since E;; — Ej; = [Ei;, Eji], it follows that this subalgebra is sl,, (K).

O
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Lemma 2. Let C be a diagonal matriz with pairwise distinct nonzero entries on the prin-
cipal diagonal. Then C' can be represented as C = A + B with A and B being nilpotent
matrices, TkA = 1, and all entries of A are nonzero.

Proof. Let V' be an n-dimensional vector space over K. Let us fix a basis ey,...,e, in V
and consider linear operators given by matrices in this basis.

For a non-degenerate matrix C' = diag(cyy, .. ., ¢un), let us consider the following set of
vectors:

€1 €n

€1 €n
Vi =t e, Vg = b — Uy =

ci Can ey ot

Again using a Vandermonde matrix we obtain that vy, ..., v, form a basis in V. Moreover,
we have C(v;41) = v; for all i = 1,...,n — 1. Let us define the operator B as follows:
B(v) =0, B(vig1) =v; fori=1,...,n—1,and let A=C — B.

Let us check that A and B satisfy the conditions of Lemma 2. Indeed, B is nilpotent
and rkA = 1, because A(v;) =0 for i =1,...,n— 1. Since trA = 0, A is also nilpotent. It

is only left to show that in the basis ey, ..., e, all entries of A are nonzero. All columns of
A are proportional to the column (c¢q1, ..., ¢y ), because tkA = 1 and A(e; + -+ e,) =
c11€1 + -+ + ¢pnen. Finally, we have A(e;) # 0, because the vectors vg, vs, ..., v, €; are
linearly independent and wvs, vs, ..., v, is a basis of KerA. U

Lemma 3. For each nilpotent matriz N with tkN = 1 there exists a nilpotent matriz M
such that N and M generate sl,(K).

Proof. Let T be a consistent matrix, A and B be matrices from Lemma 2. It follows from
Lemma 1 that A and B generate sl,(K). All nilpotent matrices of rank 1 are conjugate,
i.e. for any nilpotent N with rkN = 1 there exists C' € GL,(K) such that N = CAC~'.
Moreover, if A and B generate s[,(K) and C € GL,(K), then N and CBC~! also generate
sl,(K). This completes the proof. O

Lemma 4. Let V' be a finite-dimensional vector space over an arbitrary field K. Then a set
of collections consisting of ordered n linearly independent vectors is open in the Zariski
topology on V.
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Proof. We fix a basis of V. For every set {vy,...,v, | vy € V} let us build a matrix
consisting of n rows and dimV" columns such that [-th row consists of the coordinates of v;.
It is only left to notice that vy,...,v, are linearly independent if and only if there is at
least one nonzero minor of order n. 0

Lemma 5. For any given matriz B a set of matrices X such that B and X generate sl,,(K)
is open in the Zariski topology on sl (K).

Proof. For any given matrix B and a variable X let us consider a set of all matrices that
can be obtained from B and X by means of the Lie bracket [, ]:

Com(X, B) ={X, B, [X, B], [B, X|, [X, [X, B]], B, [X, B]|, [[X, B], X],...}

Let us enumerate all the matrices from Com(X, B) in some order independent of X. For ex-
ample, we put Com; (X) = X, Comy(X) = B, Coms(X) = [X, B], Comy(X) = [X, [X, B]],
Coms(X) = [B, [X, B]],...

Obviously, a subalgebra of sl,(K) generated by X and B is a linear span of elements of
Com(X, B). Let I be an arbitrary set of indices i1, ...,i,2_; and let M; be a set of matrices
X such that Com;, (X),...,Com; , (X) are linearly independent. Let us construct a map

150, (K) — (sL,(K))""" by the rule X — (Comy, (X),...,Com, , (X)).

It is defined by polynomials. Let us look at ordered collections consisting of n? — 1 linearly
independent matrices. According to Lemma 4, a set compiled from all such collections is
open in the Zariski topology on (sl,(K))"”~'. Then the preimage of this set under ¢; is
open. Lemma 5 follows from the fact that a set of matrices X such that B and X generate
sl,(K) is a union of all possible M;. O

Lemma 6. For any matric A = Z’Z:ll a;Fiii1, ap = 1, there exists a nilpotent matrix B
such that A and B generate s, (K).

Proof. Lemma 3 implies that there exists a nilpotent matrix By such that Ei5 and B
generate sl,(K). Consider all matrices of the form

n—1
X = E Tia; Eyiqq.
i=1

Obviously, matrices X and A are conjugate if x; # 0 for all i. According to Lemma 5, there
is a polynomial F'(zq,...,x,_1) such that the following conditions hold:

(1) F(1,0,...,0) £0;

(2) F(xy,...,2,-1) # 0 = By and X generate sl,(K).

Since I is a nonzero polynomial, there exists a set of nonzero numbers \q, ..., \,_; such that
F(A, ..., A1) # 0. It implies that matrices By and Xy = E?;ll Nia; F;i 1 generate s, (K).
The fact that A and X, are conjugate completes the proof. O

Proof of Theorem 1. For any non-degenerate nilpotent linear operator X there exists a basis
such that the matrix of X in this basis has the following form:

n—1
A= ZaiEii+17 a; = 1.
i=1
In other words, if X is a nonzero nilpotent matrix, there exists C' € GL,(K) such that

A =CXC™ ' It follows from Lemma 6 that there exists a nilpotent matrix B such that A
and B generate sl,(K). Thus, X and C~!'BC generate s, (K). O
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3. EXAMPLES AND PROBLEMS

Let us give two examples with specific pairs of nilpotent matrices generating sl,(K).
Matrices from the first example generate sl,(K) over an infinite field K of arbitrary char-
acteristic except for n = 4 if char K = 2.

Example 1. Let K be an infinite field and Aq, ..., A, (A; € K) be a set such that following
conditions hold:

(2) )\Z'Jrl #)\Z for all Z,
(3) )\Z'Jrl_)\i:)\kJrl_)\k OIlly fori:k;
4) M+--F+ M FOforall k=1,....,n— 1L

Such sets exist except for n = 4 if char K = 2 (in this case condition (1) implies Ayy — Ag3 =
Aog—A11). Let us denote by s the element A+ ...+ Ay and consider the following matrices:

010 0 0 ... 0 0 0

0 01 0 51 0 0 O
A= 0 B = :

0 00 1 0 Sn—2 0 0

000 0 0 0 s,-1 O

Let us show that A and B generate sl,,(K). Indeed, T' = [A, B] is a diagonal matrix with
the entries t;; = A;. Similarly to the proof of Lemma 1, we obtain that matrices T" and A
generate a subalgebra of sl,,(K') containing E;; 41 for i = 1,...,n—1. Since [Ey, Ey] = Ey,
this subalgebra contains all upper nil-triangular matrices. Similarly, T" and B generate a
subalgebra containing all lower nil-triangular matrices. Since Ej; — Ej; = [Ej;, Ej;], A and
B generate sl,(K).

79

Example 2. If char K = 0 and n is odd, then the matrices

010 0 000 . 0
0 01 0 000 0
M=|: : N=1l: 1
0 00 1 000 ...0
000 0 100 ... 0

generate sl,(K). Firstly let us consider the case K = C. It is possible to make a consistent
set from different complex n-th roots of unity, since if n is odd, a regular n-gon does not have
any parallel and equal sides/diagonals. Let T be a corresponding consistent matrix. It can
be represented as T' = A+ B, where A, B are the nilpotent matrices from Lemma 2. Using
notations of Lemma 2, in the basis vy, . .., v, the operators A and B have matrices N = Fj,,
and M = E?;ll E;iy1, respectively. Thus, M and N generate sl,(K). We conclude that
the set Com(M, N) from Lemma 5 contains n? — 1 linearly independent matrices. Since
linear independence of matrices does not depend on the ground field, the matrices M and

N generate sl,(Q) and sl,,(K), where K is an extension of the field Q.

Remark 1. If n is even, M and N do not generate s, (K).
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Let us look at the set of matrices

0 0 (=)™
A={Aesl,(K) | AC'+C'AT =0}, where C = O 1 g ()
-1 0 ... 0

If n > 3 then A is a proper subalgebra of sl,(K), and if n is even, we have M, N € A.

The proof of Theorem 1 implies that for any n > 1 there exists a number N such that
Theorem 1 holds for sl,,(K), |K| > N. It may be interesting to extend Theorem 1 to finite
fields and fields of characteristic 2.

Problem 1. What is the minimal generating set consisting of nilpotent matrices of the Lie
algebra sl,, over a finite field?

Problem 2. Does Theorem 1 hold for infinite field of characteristic 27
The following example shows that at least some conditions of Theorem 1 are necessary.

Example 3. Let Fy be the field Z/27Z. Let us show that for K = [Fy, Theorem 1 does not
hold. We claim that for the matrix Ej5 € sl3(F2) there does not exist a nilpotent matrix Y
such that Ei, and Y generate sl3(IFs).

Consider linear operators given by the matrices Fy5 and Y. If rkY = 1 then KerY and
KerE15 have nonempty intersection, hence the subalgebra generated by Eis and Y is not
sl3(IFy). Thus rkY = 2. Since all nilpotent matrices of rank 2 are conjugate in sl3(Fs),
we only have to check that there is no A of rank 1 such that A and B = Ej5 + Fos
generate sl3(IFy).

Since the first column and the last row of the matrix B are zero, the first column and
the last row of the matrix A are nonzero. It implies that azg; = 1. There are only 8
such matrices. Two matrices of these eight are persymmetric and we can split other six
matrices into pairs symmetric with respect to the antidiagonal matrices. Let X’ be a matrix
such that X and X’ are symmetric with respect to the antidiagonal. Since symmetry and
antisymmetry are the same in Fy and B = B’, we have [X, B]' = [X/, B]. Tt implies that
if X = X’ the subalgebra sl3(IFy) generated by X and B consists of matrices symmetric
with respect to the antidiagonal. Moreover, if X and B generate sl3(Fs), then X’ and B’
generate sl3(IFy). So it is only left to show that A and B do not generate sl3(Fy), where A
is one of the following three matrices:

1 10 1 01 0 00
Air=11 1 0}, A;=11 0 1], As3=1|1 0 0
1 10 1 01 1 00
Let us denote by A; the linear span of the matrices
110 010 111 1 01
110 001 0 01 1 01
110 000 001 011
and by A, the linear span of the matrices
1 01 010 111 1 00 011
1 01 001 111 001 001
1 01 000 010 001 0 00
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We have Ay, B € Ay and As, A3, B € Ay, and it is easy to verify directly that A; and A,
are subalgebras of s, (K).
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