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Abstract. In this paper, we prove two congruences on the double sums of the super
Catalan numbers (named by Gessel), which were recently conjectured by Apagodu.
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1 Introduction

It is well-known that the Catalan numbers

Cn =
1

n+ 1

(

2n

n

)

are integers and occur in various counting problems. We refer to [9] for many differ-
ent combinatorial interpretations of the Catalan numbers. The closely related central
binomial coefficients are given by

(

2n
n

)

for n ∈ N.
Both Catalan numbers and central binomial coefficients possess many interesting arith-

metic properties. Sun and Tauraso [11] proved that for primes p ≥ 5,

p−1
∑

k=0

(

2k

k

)

≡

(p

3

)

(mod p2),

p−1
∑

k=0

Ck ≡
3

2

(p

3

)

−
1

2
(mod p2),

where
(

·

p

)

denotes the Legendre symbol. Recently, Mattarei and Tauraso [7] showed that

q−1
∑

k=0

(

2k

k

)

xk
≡ (1− 4x)

q−1

2 (mod p), (1.1)

q−1
∑

k=0

Ckx
k+1

≡
1− (1− 4x)

q+1

2

2
− xq (mod p), (1.2)

where q is a power of an odd prime p. For more congruence properties on these numbers
we refer to [6, 10, 12].
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In 1874, E. Catalan observed that the numbers

S(m,n) =

(

2m
m

)(

2n
n

)

(

m+n

m

)

are integers. Since S(1, n)/2 coincides with Cn, these numbers S(m,n) are named super
Catalan numbers by Gessel [5]. These numbers should not confused with the Schröder–
Hipparchus numbers, which are sometimes also called super Catalan numbers. Some
interpretations of S(m,n) for some special values of m have been studied by several
authors (see, e.g., [1, 4, 8]). It is still an open problem to find a general combinatorial
interpretation for the super Catalan numbers.

Our interest concerns the following two conjectures by Apagodu [2, Conjecture 2].

Conjecture 1.1 (Apagodu) For any odd prime p, we have

p−1
∑

i=0

p−1
∑

j=0

S(i, j) ≡
(p

3

)

(mod p), (1.3)

p−1
∑

i=0

p−1
∑

j=0

(3i+ 3j + 1)S(i, j) ≡ −7
(p

3

)

(mod p). (1.4)

In Section 2, we provide a proof of (1.3) which makes use of a combinatorial identity.

Theorem 1.2 The congruence (1.3) is true.

We prove (1.4) by establishing the following congruence.

Theorem 1.3 For any prime p ≥ 5, we have

p−1
∑

i=0

p−1
∑

j=0

(i+ j)S(i, j) ≡ −
8

3

(p

3

)

(mod p). (1.5)

From (1.3) and (1.5), we deduce (1.4) for p ≥ 5. It is routine to check that (1.4) also
holds for p = 3.

2 Proof of Theorem 1.2

In order to prove Theorem 1.2, we need the following identity.

Lemma 2.1 For any non-negative integer n, we have

n
∑

i=0

n
∑

j=0

(−4)i+j

(

n

i

)(

n

j

)

(

i+j

i

) =
(−3)n(2n− 1)

4(n+ 1)
+

4n
(

2n
n

)

(

1

2
−

n
∑

k=0

Ck

(

−
3

4

)k+1
)

, (2.1)

where Ck denotes the kth Catalan number.
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Proof. Applying the multi-Zeilberger algorithm [3], we find that the left-hand side of (2.1)
satisfies the recurrence:

−18(n + 1)s(n) + 3(2n− 5)s(n+ 1) + 2(5n+ 6)s(n+ 2) + (5 + 2n)s(n+ 3) = 0.

It is routine to check that the right-hand side of (2.1) also satisfies this recurrence and
both sides of (2.1) are equal for n = 0, 1, 2. �

Proof of (1.3). Let n = p−1
2
. We split the double sum on the left-hand side of (1.3) into

four pieces:

S1 =

n
∑

i=0

n
∑

j=0

(·), S2 =

n
∑

i=0

2n
∑

j=n+1

(·), S3 =

2n
∑

i=n+1

n
∑

j=0

(·), S4 =

2n
∑

i=n+1

2n
∑

j=n+1

(·).

For
(

2i
i

)

≡ 0 (mod p) for n + 1 ≤ i ≤ 2n, we have S4 ≡ 0 (mod p). By the symmetry
i ↔ j, we get S2 = S3. It follows that

p−1
∑

i=0

p−1
∑

j=0

(

2i
i

)(

2j
j

)

(

i+j

i

) ≡ S1 + 2S2 (mod p). (2.2)

Note that for 0 ≤ i ≤ n,

(

2i

i

)

= (−4)i
(

−
1
2

i

)

≡ (−4)i
(

n

i

)

(mod p). (2.3)

Thus,

S1

(2.3)
≡

n
∑

i=0

n
∑

j=0

(−4)i+j

(

n

i

)(

n

j

)

(

i+j

i

) (mod p)

(2.1)
=

(−3)n(2n− 1)

4(n+ 1)
+

4n
(

2n
n

)

(

1

2
−

n
∑

k=0

Ck

(

−
3

4

)k+1
)

≡ −

(p

3

)

+
(−1)n

2
− (−1)n

n
∑

k=0

Ck

(

−
3

4

)k+1

(mod p), (2.4)

where we utilize
(

2n
n

)

≡ (−1)n (mod p) in the last step.
Since Ck ≡ 0 (mod p) for n+ 1 ≤ k ≤ 2n− 1, we have

n
∑

k=0

Ck

(

−
3

4

)k+1

≡

2n
∑

k=0

Ck

(

−
3

4

)k+1

− C2n

(

−
3

4

)2n+1

(1.2)
≡

1− 4
p+1

2

2
−

(

−
3

4

)p

− Cp−1

(

−
3

4

)p

(mod p).
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Using the Fermat’s little theorem and

Cp−1 =

(

2p−2
p−1

)

p
=

(

2p−1
p−1

)

2p− 1
≡ −1 (mod p),

we arrive at

n
∑

k=0

Ck

(

−
3

4

)k+1

≡ −
3

2
(mod p). (2.5)

Substituting (2.5) into (2.4) gives

S1 ≡ 2(−1)n −
(p

3

)

(mod p). (2.6)

Note that

S2 =
n
∑

i=0

2n
∑

j=n+1

(

2i
i

)(

2j
j

)

(

i+j

i

) =
n
∑

i=0

n
∑

j=1

(

2i
i

)(

2j+2n
j+n

)

(

i+j+n

i

) . (2.7)

For i+ j ≤ n and 1 ≤ j ≤ n,
(

2j+2n
j+n

)

(

i+j+n

i

) ≡ 0 (mod p),

and so the summand on the right-hand side of (2.7) is congruent to 0 modulo p.
On the other hand, for i+ j ≥ n+ 1 and 1 ≤ j ≤ n,

(

2j+2n
j+n

)

(

i+j+n

i

) =
i!

(n+ j)!
·
(2n+ 2) · · · (2n+ 2j)

(2n+ 2) · · · (i+ j + n)

≡
i!

(n+ j)!
·

(2j − 1)!

(i+ j − n− 1)!
(mod p). (2.8)

It follows from (2.3) and (2.8) that

(

2i
i

)(

2j+2n
j+n

)

(

i+j+n

i

) ≡
(−4)i

(

j−1
n−i

)(

2j
j

)

2
(

n+j

j

) (mod p).

Since

(

n+ j

j

)

≡

(

−
1
2
+ j

j

)

=

(

2j
j

)

4j
(mod p),

we have
(

2i
i

)(

2j+2n
j+n

)

(

i+j+n

i

) ≡
(−1)i · 4i+j ·

(

j−1
n−i

)

2
(mod p). (2.9)

4



Substituting (2.9) into (2.7) gives

S2 ≡
1

2

n
∑

j=1

4j
n
∑

i=0

(−4)i
(

j − 1

n− i

)

(mod p)

=
(−4)n

2

n
∑

j=1

4j
n
∑

i=0

(

j − 1

i

)(

−
1

4

)i

(i → n− i)

= 2(−4)n
n
∑

j=1

3j−1

= (−12)n − (−4)n.

Thus,

S2 ≡

(p

3

)

− (−1)n (mod p). (2.10)

The proof of (1.3) follows from (2.2), (2.6) and (2.10). �

3 Proof of Theorem 1.3

Lemma 3.1 For any non-negative integer n, we have

n
∑

i=0

n
∑

j=0

(−4)i+j(i+ j)

(

n

i

)(

n

j

)

(

i+j

i

) = 16n(−3)n−1 +
8n4n
(

2n
n

)

n
∑

k=0

(

2k

k

)(

−
3

4

)k

. (3.1)

Proof. By the multi-Zeilberger algorithm [3], we obtain the recurrence for the left-hand
side of (3.1):

− 6(n + 1)(581n+ 793)s(n) + (818n2
− 6653n− 9936)s(n+ 1)

+ (2166n2 + 3474n+ 2898)s(n+ 2) + (2n+ 5)(251n+ 92)s(n+ 3) = 0.

It is easy to verify that the right-hand side of (3.1) also satisfies the above recurrence and
both sides of (3.1) are equal for n = 0, 1, 2. �

Proof of (1.5). Let n = p−1
2
. In a similar way,

p−1
∑

i=0

p−1
∑

j=0

(i+ j)

(

2i
i

)(

2j
j

)

(

i+j

i

) ≡ S1 + 2S2 (mod p), (3.2)

where

S1 =

n
∑

i=0

n
∑

j=0

(i+ j)

(

2i
i

)(

2j
j

)

(

i+j

i

) ,
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and

S2 =

n
∑

i=0

2n
∑

j=n+1

(i+ j)

(

2i
i

)(

2j
j

)

(

i+j

i

) .

By (2.3) and (3.1), we have

S1

(2.3)
≡

n
∑

i=0

n
∑

j=0

(−4)i+j(i+ j)

(

n

i

)(

n

j

)

(

i+j

i

) (mod p)

(3.1)
= 16n(−3)n−1 +

8n4n
(

2n
n

)

n
∑

k=0

(

2k

k

)(

−
3

4

)k

≡
8

3

(p

3

)

− 4(−1)n
n
∑

k=0

(

2k

k

)(

−
3

4

)k

(mod p), (3.3)

where we make use of
(

2n
n

)

≡ (−1)n (mod p) in the last step.

Since
(

2k
k

)

≡ 0 (mod p) for n+ 1 ≤ k ≤ 2n, we have

n
∑

k=0

(

2k

k

)(

−
3

4

)k

≡

2n
∑

k=0

(

2k

k

)(

−
3

4

)k
(1.1)
≡ 4

p−1

2 ≡ 1 (mod p). (3.4)

Substituting (3.4) into (3.3) gives

S1 ≡
8

3

(p

3

)

− 4(−1)n (mod p). (3.5)

On the other hand, by (2.9) we have

S2 =

n
∑

i=0

2n
∑

j=n+1

(i+ j)

(

2i
i

)(

2j
j

)

(

i+j

i

)

=
n
∑

i=0

n
∑

j=1

(i+ j + n)

(

2i
i

)(

2j+2n
j+n

)

(

i+j+n

i

)

(2.9)
≡

1

2

n
∑

j=1

4j
n
∑

i=0

(−4)i(i+ j + n)

(

j − 1

n− i

)

(mod p)

=
(−4)n

2

n
∑

j=1

4j
n
∑

i=0

(2n+ j − i)

(

j − 1

i

)(

−
1

4

)i

, (3.6)
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where we set i → n− i in the last step. Note that

n
∑

i=0

(2n+ j − i)

(

j − 1

i

)(

−
1

4

)i

= (2n+ j)

(

3

4

)j−1

− (j − 1)

n
∑

i=1

(

j − 2

i− 1

)(

−
1

4

)i

= (2n+ j)

(

3

4

)j−1

+
j − 1

4

(

3

4

)j−2

. (3.7)

Substituting (3.7) into (3.6) and making elementary calculation gives

S2 ≡
(−12)n(10n− 3) + (−4)n(3− 6n)

3
(mod p).

It follows that

S2 ≡ 2(−1)n −
8

3

(p

3

)

(mod p). (3.8)

Combining (3.2), (3.5) and (3.8), we complete the proof of (1.5). �
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