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Abstract. In this paper, we prove two congruences on the double sums of the super
Catalan numbers (named by Gessel), which were recently conjectured by Apagodu.
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1 Introduction

It is well-known that the Catalan numbers
1 2n
n+1\n
are integers and occur in various counting problems. We refer to [9] for many differ-
ent combinatorial interpretations of the Catalan numbers. The closely related central
binomial coefficients are given by (2:) for n € N.

Both Catalan numbers and central binomial coefficients possess many interesting arith-
metic properties. Sun and Tauraso [11] proved that for primes p > 5,
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where <5) denotes the Legendre symbol. Recently, Mattarei and Tauraso [7] showed that
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(2:) = (1 —42)F  (mod p), (1.1)
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where ¢ is a power of an odd prime p. For more congruence properties on these numbers

we refer to [6L[10L12].
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In 1874, E. Catalan observed that the numbers

2m\ (2n

S(myn) = Lz)l) (n?f;)l)
are integers. Since S(1,n)/2 coincides with C,,, these numbers S(m,n) are named super
Catalan numbers by Gessel [5]. These numbers should not confused with the Schroder—
Hipparchus numbers, which are sometimes also called super Catalan numbers. Some
interpretations of S(m,n) for some special values of m have been studied by several
authors (see, e.g., [ILI4,[8]). It is still an open problem to find a general combinatorial

interpretation for the super Catalan numbers.
Our interest concerns the following two conjectures by Apagodu [2, Conjecture 2].

Conjecture 1.1 (Apagodu) For any odd prime p, we have
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In Section 2, we provide a proof of (I3 which makes use of a combinatorial identity.
Theorem 1.2 The congruence (IL3) is true.
We prove (L)) by establishing the following congruence.

Theorem 1.3 For any prime p > 5, we have
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(i + )86, §) = _2 (%’) (mod p). (1.5)
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From (L3) and (L3), we deduce (I4) for p > 5. It is routine to check that (L4]) also
holds for p = 3.
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2 Proof of Theorem 1.2

In order to prove Theorem [[.2] we need the following identity.

Lemma 2.1 For any non-negative integer n, we have
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where C}, denotes the kth Catalan number.



Proof. Applying the multi-Zeilberger algorithm [3], we find that the left-hand side of (2.1I)
satisfies the recurrence:

—18(n+1)s(n) +3(2n —5)s(n+ 1) + 2(5n + 6)s(n +2) + (5 + 2n)s(n + 3) = 0.

It is routine to check that the right-hand side of (2.I]) also satisfies this recurrence and
both sides of (2.1]) are equal for n =0, 1, 2. O

Proof of (L3). Let n = 21, We split the double sum on the left-hand side of (L3) into
four pieces:

$S1=2_20) S=3 3 () Si=3 > () Si=3 3 ()

For (2;) =0 (mod p) for n +1 < ¢ < 2n, we have S; = 0 (mod p). By the symmetry
14> j, we get Sy = S3. It follows that

p—1 p—1 (21) (2j
ZAY]

~—

=51 +25 (mod p). (2.2)

() =co () =0 (l) moan o

Thus,
S 25300 s,
e g ()]
=_ (g) + (—21)" _(—1)" ki:ock (%)kﬂ (mod p), (2.4)

where we utilize (2:) = (—1)" (mod p) in the last step.
Since Cy =0 (mod p) for n +1 <k < 2n — 1, we have

n 3 k+1 2n 3 k+1 3 2n+1
Sa(-h) =xal(-i) - ()




Using the Fermat’s little theorem and
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we arrive at
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Fori4+j<nand1<j<n,

S
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=0 (mod p),

and so the summand on the right-hand side of (2.7)) is congruent to 0 modulo p.
On the other hand, fori+j7>n+1and 1 <j <mn,
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It follows from (2.3]) and (2.8)) that
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Substituting (2.9)) into ([2.7) gives

825303 (1) o)
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= (—12)" — (—4)".
Thus,
— (P _ /4y
Sy = (3) (—1)" (mod p). (2.10)
The proof of (3] follows from (2.2), (2.6) and (210). O

3 Proof of Theorem

Lemma 3.1 For any non-negative integer n, we have
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Proof. By the multi-Zeilberger algorithm [3], we obtain the recurrence for the left-hand
side of (B.1)):

— 6(n + 1)(581n + 793)s(n) + (8180 — 6653n — 9936)s(n + 1)
+ (2166n° + 34740 + 2898)s(n + 2) + (2n + 5)(251n + 92)s(n + 3) = 0.

It is easy to verify that the right-hand side of (B.1) also satisfies the above recurrence and

both sides of (B.1]) are equal forn=0,1,2. O
Proof of (LT). Let n = 5=, In a similar way,
p—1 p—1 (21) (2j)
(t+J) 7 =51 +25  (mod p), (3.2)
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where we make use of (2:) = (—1)" (mod p) in the last step.

Since (2:) =0 (mod p) for n+ 1 < k < 2n, we have

k=0

Substituting (3.4]) into ([B.3]) gives

S = g (5) 41" (mod p)

On the other hand, by (2.9) we have
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where we set i@ — n — ¢ in the last step. Note that
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Substituting (3.7) into (B.0) and making elementary calculation gives
—12)"(10n — 3) + (—4)"(3 — 6n
= CL =D L CPG6) (
It follows that
n_S(P
Sy =2(—1)" — 2 (—) (mod p). (3.8)
3\3
Combining (3.2), (35) and ([B.8]), we complete the proof of (LHl). O
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