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On an inverse boundary value problem for a

nonlinear time harmonic Maxwell system

Cătălin I. Cârstea∗

Abstract

This paper considers a class of nonlinear time harmonic Maxwell
systems at fixed frequency, with nonlinear terms taking the form
X (x, | ~E(x)|2) ~E(x), Y (x, | ~H(x)|2) ~H(x), such that X (x, s), Y (x, s)
are both real analytic in s. Such nonlinear terms appear in nonlinear
optics theoretical models. Under certain regularity conditions, it can
be shown that boundary measurements of tangent components of the
electric and magnetic fields determine the electric permittivity and
magnetic permeability functions as well as the form of the nonlinear
terms.

MSC(2000): 35R30, 35F60

1 Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary. The (macroscopic)
Maxwell’s equations for the electromagnetic field in a material filling the
domain Ω, without (macroscopic) densities of charge or current, are



























∇×~E = −∂t ~B, ∇× ~H = ∂t ~D,

∇· ~D = 0, ∇· ~B = 0,

~D = ǫ~E + ~PNL(~E),

~B = µ ~H + ~MNL( ~H).

(1)

For a linear medium, ~PNL(~E) = ~MNL( ~H) = 0, and the system takes the
familiar form that has been studied extensively both from the point of view
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of the forward problem and also of the inverse problem. Nonlinear effects
have been observed in practice, as (for example) the extensive literature
on nonlinear optics indicates. As an example, see [12], [11], [15], where
nonlinearities of the kind appearing in this paper are put forward.

We will consider time-harmonic fields of the form1

~E(t, x) = ~E(x)e−iωt + ~E∗(x)eiωt, ~H(t, x) = ~H(x)e−iωt + ~H∗(x)eiωt, (2)

where ω > 0 will be a given fixed frequency. At high frequency, the system
(1) may be taken to reduce to

{

∇×~E(x) = iωµ(ω, x) ~H(x) + Y (ω, x, | ~H(x)|2) ~H(x),

∇× ~H(x) = −iωǫ(ω, x) ~E(x)− X (ω, x, | ~E(x)|2) ~E(x).
(3)

A common model is that of a Kerr-type nonlinearity:

X (x, | ~E(x)|2) ~E(x) = a(x)| ~E(x)|2 ~E(x). (4)

The inverse problem for a model in which both X and Y have this form has
been investigated in [1]. However, more realistic models feature a saturation
effect for X when the field intensity is high (see [12], [11]). One example,
given in [15], is

X (x, | ~E(x)|2) ~E(x) =
a(x)| ~E(x)|2

1 + b(x)| ~E(x)|2
~E(x). (5)

A more complicated model is deduced in [11].
In this paper it will be assumed that X (x, s), Y (x, s) are analytic in s,

having expansions at zero

X (x, s) =
∞
∑

k=1

ak(x)s
k, Y (x, s) =

∞
∑

k=1

bk(x)s
k, (6)

and
ǫ, µ ∈ C5(Ω), ak, bk ∈ C1(Ω) (7)

Re ǫ,Re µ > λ > 0, (8)

||ǫ||W 5,∞(Ω), ||µ||W 5,∞(Ω) < M < ∞, (9)

∞
∑

k=1

(

||ak||W 1,∞(Ω) + ||bk||W 1,∞(Ω)

)

sk < Ms, ∀ 0 < s < s0, (10)

1The ∗ denotes complex conjugation.
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∞
∑

k=1

k
(

||ak||W 1,∞(Ω) + ||bk||W 1,∞(Ω)

)

sk−1 < M, ∀ 0 < s < s0, (11)

∞
∑

k=2

k(k − 1)
(

||ak||L∞(Ω) + ||bk||L∞(Ω)

)

sk−2 < M, ∀ 0 < s < s0, (12)

where λ, M , s0 are positive constants.
A note on notation: in order to make equations easier to read, the ex-

plicit dependence on x of various quantities will be suppressed. For example,
X (| ~E|2) will stand for X (x, | ~E(x)|2) or X (·, | ~E(·)|2).

1.1 The forward problem

We will say that a vector field belongs to Lp(Ω), W s,p(Ω), etc. if each com-
ponent belongs to those respective spaces. Let

W s,p
div (Ω) =

{

~A ∈ W s,p(Ω) : ∇· ~A ∈ W s,p(Ω)
}

, (13)

with the natural choice of norms. If ~n is the outer unit normal to ∂Ω, let

TW s,p(∂Ω) =
{

~A ∈ W s,p(∂Ω) : ~n · ~A = 0
}

, (14)

TW s,p
div(∂Ω) =

{

~A ∈ TW s,p(∂Ω) : div( ~A) ∈ W s,p(∂Ω)
}

, (15)

where div( ~A) is the divergence associated with the metric induced on the

boundary by the Euclidean metric of R3. For a smooth vector field ~A on Ω,
let

t( ~A) = −~n× (~n× ~A|∂Ω), (16)

i.e. the component tangential to the boundary of the restriction of ~A. t

clearly extends to a bounded operator from W s,p(Ω) to TW s−1/p,p(∂Ω). Let

W 1,p
b (Ω) = t

−1
(

TW
1−1/p,p
div (∂Ω)

)

, with the norm

|| ~A||W 1,p
b (Ω) = || ~A||W 1,p(Ω) + ||t( ~A)||

TW
1−1/p,p
div (∂Ω)

. (17)

Finally, let

W 1,p
D (Ω) = t

−1(0), || · ||W 1,p
D (Ω) = || · ||W 1,p(Ω). (18)

Before discussing the inverse problem a well-posedness result for the for-
ward problem is necessary. In section 2 it will be proven that:
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Theorem 1.1. For 3 < p ≤ 6 there exists a discrete set Σ ⊂ C and a con-
stant m > 0 such that if ω 6∈ Σ and ~f ∈ TW

1−1/p,p
div (∂Ω), ||~f ||

TW
1−1/p,p
div (∂Ω)

< m

there exists a unique solution U = ( ~E, ~H) ∈ W 1,p
b (Ω)×W 1,p

b (Ω) of the system
{

∇×~E = iωµ ~H + Y (| ~H|2) ~H,

∇× ~H = −iωǫ ~E − X (| ~E|2) ~E,
(19)

such that t( ~E) = ~f and

|| ~E||W 1,p
b (Ω) + || ~H||W 1,p

b (Ω) ≤ C||~f ||
TW

1−1/p,p
div (∂Ω)

, (20)

where C > 0 is a constant that does not depend on ~f .

The proof of this result follows from estimates for the linear system ob-
tained in [1] and a standard contraction principle argument.

1.2 The inverse problem

An inverse boundary value problem consists of the question of determining
the interior physical properties of a possibly non-homogeneous object from
measurements taken on the boundary of the object. A fundamental sub-
problem is the question of uniqueness: if two objects of the same shape give
the same boundary measurement data, does it follow that their (relevant)
physical properties are identical in the interior?

For time-harmonic electromagnetic fields in media in which (3) applies,
in light of Theorem 1.1 we can then define the set of boundary measurements

Bǫ,µ,F =
{

(t( ~E), t( ~H)) ∈ TW
1−1/p,p
div (∂Ω) × TW

1−1/p,p
div (∂Ω)

: ( ~E, ~H) is a solution of (3)
}

. (21)

In section 3 we prove that

Theorem 1.2. Suppose (ǫ, µ,F ) and (ǫ, µ,F ) are as above, ω 6∈ Σ∪Σ′, and
Bǫ,µ,F = Bǫ′,µ′,F ′. Then (ǫ, µ,F ) = (ǫ′, µ′,F ′).

The inverse boundary value problem has been studied extensively in the
linear case. See for example [18], [4], [13], [14], [3], [2], [10], [21] etc. Unique-
ness results similar to Theorem 1.2 for nonlinear equations have been ob-
tained in [9], [8], [16], [19], [7], [6], [5], [17] using a linearization method.
Here we will follow an idea from [1] and use the asymptotics in a small

parameter t of solutions of (3) with boundary data t( ~E) = t ~f in order to
inductively prove uniqueness for the coefficients of the nonlinearity. We will
also need to use certain special solutions, so called geometric optics (CGO)
solutions, which we construct following the method in [2].
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2 The forward problem

2.1 Preliminaries

The existence and uniqueness of W 1,p solutions to the linear Maxwell system,
for p > 2, has been investigated in [1]. First we quote an existence result for
the boundary value problem for the homogeneous system:

Theorem 2.1 (see [1, Theorem 3.1]). For 2 ≤ p ≤ 6 there exists a discrete

set Σ ⊂ C such that if ω 6∈ Σ and ~f ∈ TW
1−1/p,p
div (∂Ω) there exists a unique

solution ( ~E, ~H) ∈ W 1,p
b (Ω)×W 1,p

b (Ω) of the system

{

∇×~E = iωµ ~H,

∇× ~H = −iωǫ ~E,
(22)

such that t( ~E) = ~f and

|| ~E||W 1,p
b (Ω) + || ~H||W 1,p

b (Ω) ≤ C||~f ||
TW

1−1/p,p
div (∂Ω)

, (23)

where C > 0 is a constant that does not depend on ~f .

We also need the following result for the inhomogeneous system:

Theorem 2.2 (see [1, Theorem 3.2]). For 2 ≤ p ≤ 6 exists a discrete set

Σ ⊂ C such that if ω 6∈ Σ and ~Je, ~Jm ∈ W 0,p
div (Ω), ~n · ~Je|∂Ω, ~n · ~Jm|∂Ω ∈

W 1−1/p,p(∂Ω), there exists a unique solution ( ~E, ~H) ∈ W 1,p
D (Ω)×W 1,p

b (Ω) of
the system

{

∇×~E = iωµ ~H + ~Jm,

∇× ~H = −iωǫ ~E − ~Je,
(24)

such that

|| ~E||W 1,p
b (Ω) + || ~H||W 1,p

b (Ω) ≤ C
(

|| ~Je||W 0,p
div (Ω) + || ~Jm||W 0,p

div (Ω)

+||~n · ~Je|∂Ω||W 1−1/p,p(∂Ω) + ||~n · ~Jm|∂Ω||W 1−1/p,p(∂Ω)

)

, (25)

where C > 0 is a constant that does not depend on ~Je, ~Jm.

Under the conditions of Theorem 2.2, we will write

(

~E
~H

)

= Gǫ,µ(

(

~Jm

~Je

)

). (26)
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It is a corollary of Theorem 2.2 that Gǫ,µ is bounded from W 1,p(Ω)×W 1,p(Ω)
to W 1,p

D (Ω)×W 1,p
b (Ω).

For the sake of simplifying notation let:

U =

(

~E
~H

)

, Lǫ,µ =

(

∇× −iωµ
iωǫ ∇×

)

, F (U) =

(

Y (| ~H|2) ~H

−X (| ~E|2) ~E

)

. (27)

Then equation (3) can be written

Lǫ,µU = F (U). (28)

Given ~f ∈ TW
1−1/p,p
div (∂Ω), let

U0 =
(

~E0
~H0

)t
∈ W 1,p

b (Ω)×W 1,p
b (Ω) (29)

be the solution given in Theorem 2.1. Then a solution of (3) with the bound-

ary condition t( ~E) = ~f would be a fixed point of the operator

T~f ,ǫ,µ(U) = U0 + Gǫ,µ(F (U)). (30)

2.2 Existence of solutions

From now we will only consider p > 3. Then W 1,p(Ω) ⊂ L∞(Ω) and there
exists a constant c > 0 such that

||U||L∞(Ω) ≤ c||U||W 1,p(Ω), ∀ U =

(

~E
~H

)

∈ W 1,p(Ω). (31)

Lemma 2.1. Suppose U,U′ ∈ W 1,p(Ω), and ||U||W 1,p(Ω), ||U||W 1,p(Ω) ≤
s0
c
,

then

‖F (U)− F (U′)‖W 1,p(Ω)

≤ C
(

||U||2W 1,p(Ω) + ||U′||2W 1,p(Ω)

)

||U−U′||W 1,p(Ω), (32)

where C > 0 does not depend on U and U′.

Proof. Suppose U =
(

~E ~H
)t
, U′ =

(

~E ′ ~H ′
)t
. Consider the difference

X (| ~E|2) ~E − X (| ~E ′|2) ~E ′ = X (| ~E|2)( ~E − ~E ′) +
(

X (| ~E|2)− X (| ~E ′|2)
)

~E ′.

(33)
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Note that

|X (x, | ~E(x)|2)| ≤

∞
∑

k=1

||ak||L∞(Ω)|| ~E||2kL∞(Ω) ≤ M || ~E||2W 1,p(Ω), (34)

|(DxX )(x, | ~E(x)|2)| ≤ M || ~E||2W 1,p(Ω), (35)

|(∂sX )(x, | ~E(x)|2)| ≤
∞
∑

k=1

k||ak||L∞(Ω)|| ~E||
2(k−1)
L∞ ≤ M. (36)

Therefore
∥

∥

∥
X (| ~E|2)( ~E − ~E ′)

∥

∥

∥

Lp(Ω)
≤ C|| ~E||2W 1,p(Ω)||

~E − ~E ′||Lp(Ω). (37)

Also, since

Dx[X (| ~E|2)( ~E − ~E ′)] = X (| ~E|2)Dx( ~E − ~E ′)

+ (DxX )(| ~E|2)( ~E − ~E ′) + 2Re ( ~E∗ ·Dx
~E)(∂sX )(| ~E|2)( ~E − ~E ′) (38)

and
∥

∥

∥
X (| ~E|2)Dx( ~E − ~E ′)

∥

∥

∥

Lp(Ω)
≤ M || ~E||2W 1,p(Ω)||Dx( ~E − ~E ′)||Lp(Ω), (39)

∥

∥

∥
(DxX )(| ~E|2)( ~E − ~E ′)

∥

∥

∥

Lp(Ω)
≤ M || ~E||2W 1,p(Ω)||

~E − ~E ′||Lp(Ω), (40)

∥

∥

∥
2Re ( ~E∗ ·Dx

~E)(∂sX )(| ~E|2)( ~E − ~E ′)
∥

∥

∥

Lp(Ω)

≤ 2M || ~E||L∞(Ω)||Dx
~E||Lp(Ω)|| ~E − ~E ′||L∞(Ω)

≤ 2c2M || ~E||2W 1,p(Ω)||
~E − ~E ′||W 1,p(Ω), (41)

it follows that
∥

∥

∥
X (| ~E|2)( ~E − ~E ′)

∥

∥

∥

W 1,p(Ω)
≤ C|| ~E||2W 1,p(Ω)||

~E − ~E ′||W 1,p(Ω). (42)

In order to estimate the second term in (34), let ~Et = ~E ′ + t( ~E − ~E ′).
Then

X (| ~E|2)− X (| ~E ′|2) =

1
∫

0

∂sX (| ~Et|
2)2Re ( ~E∗

t · (
~E − ~E ′)) dt. (43)
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We have, for q = p or q = ∞, that

∥

∥

∥
∂sX (| ~Et|

2)2Re ( ~E∗

t · (
~E − ~E ′))

∥

∥

∥

Lq(Ω)
≤ C|| ~Et||W 1,p(Ω)|| ~E − ~E ′||W 1,p(Ω)

≤ C(|| ~E||W 1,p(Ω) + || ~E ′||W 1,p(Ω))|| ~E − ~E ′||W 1,p(Ω) (44)

Now

Dx

[

∂sX (| ~Et|
2)2Re ( ~E∗

t · (
~E − ~E ′))

]

= (Dx∂sX )(| ~Et|
2)2Re ( ~E∗

t ·(
~E− ~E ′))

+ ∂sX (| ~Et|
2)2Re (Dx

~E∗

t · (
~E − ~E ′))

+ ∂sX (| ~Et|
2)2Re ( ~E∗

t ·Dx( ~E − ~E ′))

+ ∂2
sX (| ~Et|

2)4Re ( ~E∗

t · (
~E − ~E ′))Re ( ~E∗

t ·Dx
~Et). (45)

Using the same type of estimates as above, we can obtain that
∥

∥

∥
(Dx∂sX )(| ~Et|

2)2Re ( ~E∗

t · ( ~E − ~E ′))
∥

∥

∥

Lp(Ω)
≤ C|| ~Et||L∞(Ω)|| ~E − ~E ′||Lp(Ω),

(46)
∥

∥

∥
∂sX (| ~Et|

2)2Re (Dx
~E∗

t · (
~E − ~E ′))

∥

∥

∥

Lp(Ω)
≤ C|| ~Et||W 1,p(Ω)|| ~E − ~E ′||L∞(Ω),

(47)
∥

∥

∥
∂sX (| ~Et|

2)2Re ( ~E∗

t ·Dx( ~E − ~E ′))
∥

∥

∥

Lp(Ω)
≤ C|| ~Et||L∞(Ω)|| ~E − ~E ′||W 1,p(Ω),

(48)

∥

∥

∥
∂2
sX (| ~Et|

2)4Re ( ~E∗

t · (
~E − ~E ′))Re ( ~E∗

t ·Dx
~Et)
∥

∥

∥

Lp(Ω)

≤ C|| ~Et||
2
L∞(Ω)||

~Et||W 1,p(Ω)|| ~E − ~E ′||L∞(Ω)

≤ C|| ~Et||W 1,p(Ω)|| ~E − ~E ′||L∞(Ω). (49)

Putting these together with (43) it follows that

∥

∥

∥

(

X (| ~E|2)− X (| ~E ′|2)
)

~E ′

∥

∥

∥

W 1,p(Ω)

≤ C
(

|| ~E||2W 1,p(Ω) + || ~E ′||2W 1,p(Ω)

)

|| ~E − ~E ′||W 1,p(Ω). (50)

Equations (33), (37), (50) imply

∥

∥

∥
X (| ~E|2) ~E − X (| ~E ′|2) ~E ′

∥

∥

∥

W 1,p(Ω)

≤ C
(

|| ~E||2W 1,p(Ω) + || ~E ′||2W 1,p(Ω)

)

|| ~E − ~E ′||W 1,p(Ω). (51)

A similar estimate holds for the Y component of F .
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Since F (0) = 0, Lemma 2.1 has the corollary

Corollary 2.1. If U ∈ W 1,p(Ω), and ||U||W 1,p(Ω) ≤
s0
c
, then

‖F (U)‖W 1,p(Ω) ≤ C||U||3W 1,p(Ω). (52)

Proof of Theorem 1.1. Applying Lemma 2.1 and it’s corollary together with
Theorems 2.1 and 2.2 we can show that the operator T~f ,ǫ,µ defined in (30) is

a contraction on a sufficiently small ball in W 1,p
D (Ω)×W 1,p

b (Ω), of radius m,
and therefore has a fixed point.

In the following discussion we will assume that m is chosen so that if
||~f ||

TW
1−1/p,p
div (∂Ω)

< m, then

||U0||W 1,p(Ω) <
m

2
, (53)

and if ||U||W 1,p(Ω) < m, then

||Gǫ,µ(F (U))||W 1,p(Ω) <
m

2
. (54)

2.3 Asymptotics

For U ∈ W 1,p(Ω) =

(

~E
~H

)

, define

Fk(U) =

(

bk| ~H|2k ~H

−ak| ~E|2k ~E

)

, (55)

so F (U) =
∑

∞

k=1 Fk(U).

Let t be a small parameter. For ~f ∈ TW
1−1/p,p
div (∂Ω), let ~f t = t ~f . Also, let

Ut =

(

~Et

~H t

)

be the solution of Lǫ,µU
t = F (Ut) with boundary data t( ~Et) =

~f , and let Ut
0 =

(

~Et
0

~H t
0

)

be the solution of Lǫ,µU
t
0 = 0 with the same boundary

data. Set Ut
k = T k

~f,ǫ,µ
(Ut

0), k = 1, 2, . . .. For |t| < m/||~f ||
TW

1−1/p,p
div (∂Ω)

, since

T~f ,ǫ,µ is a contraction,

||U t
k||W 1,p(Ω) ≤ m and Ut

k → Ut in W 1,p(Ω), as k → ∞. (56)

Observe that Ut
0 = tU0. Define

Vt
1 =

(

~Bt
1

~At
1

)

= Ut
1 −Ut

0 = Gǫ,µ(F (Ut
0)), (57)
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Vt
k =

(

~Bt
k

~At
k

)

= Ut
k −Ut

k−1 = Gǫ,µ

(

F (Ut
k−2 +Vt

k−1)− F (Ut
k−2)

)

. (58)

Then
Vt

1 = t3Gǫ,µ(F1(U0)) + t5Gǫ,µ(F2(U0)) + · · · , (59)

Vt
2 = Gǫ,µ(F1(tU0 +Vt

1)− F1(tU0)) + · · ·

= Gǫ,µ(t
2

(

b1| ~H0|
2 ~Bt

1 + 2 ~H0Re ( ~H0 · ~B
t∗
1 )

−a1| ~E0|
2 ~At

1 − 2 ~E0Re ( ~E0 · ~A
t∗
1 )

)

) + · · · = O(t5) (60)

and so on.

Lemma 2.2.
||Vt

k||W 1,p(Ω) = O(t2k+1), as t → 0. (61)

Proof. Follows easily by induction.

Lemma 2.3.

||Ut −Ut
k||W 1,p(Ω) = O(t2k+3), as t → 0. (62)

Proof. Let ut
k = Ut −Ut

k. Then

ut
k = Gǫ,µ(F (Ut

k + ut
k)− F (Ut

k−1))

= Gǫ,µ(F (Ut
k + ut

k)− F (Ut
k)) + Gǫ,µ(F (Ut

k)− F (Ut
k−1))

=
(

T~f,ǫ,µ(U
t
k + ut

k)− T~f ,ǫ,µ(U
t
k)
)

+Vt
k+1. (63)

Since for small enough t, T~f,ǫ,µ is a contraction, the first term on the right
hand side may be absorbed into the left hand side and applying Lemma 2.2,
the result follows.

Notice that the terms multiplying t2k+1 are the same for all Ut
k′ with

k′ ≥ k. Define then

Wk =
1

(2k + 1)!
∂2k+1
t Ut

k

∣

∣

∣

∣

t=0

. (64)

A useful observation is that

Wk = Gǫ,µ(

(

bk| ~H0|
2kH0

−ak| ~E0|
2kE0

)

) +
(

terms constructed from {al, bl}
k−1
l=1 and U0

)

,

(65)
so

Lǫ,µWk =

(

bk| ~H0|
2kH0

−ak| ~E0|
2kE0

)

+
(

terms constructed from {al, bl}
k−1
l=1 and U0

)

.

(66)
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3 The inverse problem

Suppose Bǫ,µ,F = Bǫ′,µ′,F ′ . For any ~f ∈ TW
1−1/p,p
div (∂Ω) let U0 =

(

~E0

~H0

)

,

U′

0 =

(

~E ′

0
~H ′

0

)

, Wk =

(

~Ek

~Hk

)

, W′

k =

(

~E ′

k
~H ′

k

)

be the constructed as in the

previous sections using the two sets of coefficients respectively. Then we
have

t( ~E0) = t( ~E ′

0) =
~f, t( ~H0) = t( ~H ′

0), (67)

t( ~Ek) = t( ~E ′

k) = 0, t( ~Hk) = t( ~H ′

k), k = 1, 2, . . . . (68)

An immediate consequence is that

{(t( ~E0), t( ~H0)) ∈ TW
1−1/p,p
div (∂Ω) × TW

1−1/p,p
div (∂Ω) : Lǫ,µ

(

~E0

~H0

)

= 0}

= {(t( ~E ′

0), t(
~H ′

0)) ∈ TW
1−1/p,p
div (∂Ω)× TW

1−1/p,p
div (∂Ω) : Lǫ′,µ′

(

~E ′

0
~H ′

0

)

= 0}.

(69)

It is a known result then (e.g. see [14], or [2]) that ǫ = ǫ′ and µ = µ′. It
follows that U0 = U′

0.
Suppose then that {al, bl}

k−1
l=1 = {a′l, b

′

l}
k−1
l=1 . We will show that then ak =

a′k and bk = b′k. Theorem 1.2 will follow by induction.

3.1 An integral identity

For two vector fields ~A and ~B, we have

∫

∂Ω

(~n× ~A) · ~B =

∫

Ω

(∇× ~A) · ~B − ~A · (∇× ~B). (70)

Let u0 =

(

~e0
~h0

)

be a solution of Lǫ,µu0 = 0. Using (66) we get

∫

∂Ω

(~n× ~Ek) · ~h0 =

∫

Ω

iωµ ~Hk · ~h0 + bk| ~H0|
2k ~H0 · ~h0 + iωǫ ~Ek · ~e0

+

∫

Ω

(

terms constructed from {al, bl}
k−1
l=1 , U0, and u0

)

, (71)

11



∫

∂Ω

(~n× ~Hk) · ~e0 = −

∫

Ω

iωǫ ~Ek · ~e0 + ak| ~E0|
2k ~E0 · ~e0 + iωµ ~Hk · ~h0

+

∫

Ω

(

terms constructed from {al, bl}
k−1
l=1 , U0, and u0

)

. (72)

Then

∫

∂Ω

(~n× ~Ek) · ~h0 + (~n× ~Hk) · ~e0 =

∫

Ω

bk| ~H0|
2k ~H0 · ~h0 − ak| ~E0|

2k ~E0 · ~e0

+

∫

Ω

(

terms constructed from {al, bl}
k−1
l=1 , U0, and u0

)

. (73)

Subtracting the corresponding identities for the components ofW′

k and using
(68) we have

Ik(U0, u0) =

∫

Ω

(bk − b′k)|
~H0|

2k ~H0 · ~h0 − (ak − a′k)|
~E0|

2k ~E0 · ~e0 = 0, (74)

which holds for any u0, U0 solutions of the homogeneous linear equation.

Let uj =

(

~ej
~hj

)

∈ W 1,p
b (Ω) ×W 1,p

b (Ω) all satisfy Lǫ,µuj = 0, j = 1, 2, 3,

then
Ik(t1u1 + t2u2 + t3u3, u0) = 0, ∀t1, t2, t3 ∈ C. (75)

The left hand side of this identity is a polynomial in t1, t2, t3, t
∗

1, t
∗

2, t
∗

3, so the
coefficient of each independent monomial must vanish. In particular, the
coefficient of t1t

k
2t

∗k
3 must be zero. The vanishing quantity is

∫

Ω

(bk − b′k)
[

~h0 · ~h1(~h2 · ~h
∗

3)
k + k~h0 · ~h2(~h1 · ~h

∗

3)(
~h2 · ~h

∗

3)
k−1
]

−

∫

Ω

(ak − a′k)
[

~e0 · ~e1(~e2 · ~e
∗

3)
k + k~e0 · ~e2(~e1 · ~e

∗

3)(~e2 · ~e
∗

3)
k−1
]

= 0 (76)

3.2 CGO solutions for the linear Maxwell system

CGO solutions for the linear Maxwell system have been constructed in many
past works. The method given here is due to [13], [14]. We will mostly follow
the construction as given in [2], summarizing the results when the argument
proceeds identically and giving more detail when not. We show that

12



Proposition 3.1. There exists a constant C(ρ, ||ǫ||W 5,∞(Ω), ||µ||W 5,∞(Ω)) > 0

such that if ~ζ ∈ C3, ~ζ · ~ζ = ω2,

|~ζ| > C(ρ, ||ǫ||W 5,∞(Ω), ||µ||W 5,∞(Ω)), (77)

then there exist solutions U =

(

~E
~H

)

of Lǫ,µU = 0 such that

~E = ei
~ζ·x

(

σeǫ
−1/2

~ζ

|ζ |
+ ~re

)

, (78)

~H = ei
~ζ·x

(

σhµ
−1/2

~ζ

|ζ |
+ ~rh

)

, (79)

||~re||L∞(Ω), ||~rh||L∞(Ω) = O(|~ζ|−1), (80)

and σe, σh ∈ {0, 1}.

Let α = log ǫ, β = log µ, and In be the identity matrix in dimension n.
Suppose that

X =









h
~H
e
~E









(81)

satisfies the equation
(P + V )X = 0, (82)

where

P =
1

i









∇·
∇ −∇×

∇·
∇ ∇×









, (83)

V =
1

i









iωµ (∇α)·
iωµI3 (∇α)
(∇β)· iωǫ

(∇β) iωǫI3









. (84)

Observe that if e and h vanish, then( ~E, ~H) is a solution of

{

∇×~E = iωµ ~H,

∇× ~H = −iωǫ ~E.
(85)
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Let

Y =

(

µ1/2I4
ǫ1/2I4

)

X, κ = ωµ1/2ǫ1/2, (86)

W = κI8 +
1

2i









(∇α)·
(∇α) (∇α)×

(∇β)·
(∇β) −(∇β)×









. (87)

Then
(P +W )Y = 0. (88)

Note that
(P +W )(P −W t) = −△ +Q, (89)

where

Q =
1

2









(△α)
2(∂i∂jα)ij − (△α)I3

(△β)
2(∂i∂jβ)ij − (△β)I3









−









(κ2 − 1
4
(∇α · ∇α))I4

−2i(∇κ)·
−2i(∇κ)

−2i(∇κ)·
−2i(∇κ)

(κ2 − 1
4
(∇β · ∇β))I4









. (90)

If Z is a solution of
(−△+Q)Z = 0, (91)

then Y = (P − W t)Z is a solution to (88). We would like to construct
solutions of (91) that are of the form

Z(~ζ, x) = ei
~ζ·x(L(~ζ) +R(~ζ, x)), ~ζ ∈ C

3. (92)

To do so, first extend the coefficients ǫ, µ to R3 so that ǫ−1, µ−1 ∈ C5
0 (R

3).
Then ω2I8+Q ∈ C3

0(R
3). Let ρ > 0 be such that supp (ω2I8+Q) is contained

in the ball of radius ρ. We can prove the following

Lemma 3.1 (compare to [2, Lemma 8]). There exist a C(ρ) > 0 such that

for any L ∈ C8, ~ζ ∈ C3 with ~ζ · ~ζ = ω2 and

|~ζ| > C(ρ)||ω2I8 +Q||L∞(R3), (93)

there exists
Z = ei

~ζ·x(L+R) (94)
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a solution of (91) in R3, Z ∈ W 3,2(Ω) and with

||R||W 3,2(Ω) ≤
1

|~ζ|
C(ρ)|L| ||ω2 +Q||W 3,∞(R3). (95)

Proof. We only need to show that such an R exists. The equation it need to
satisfy is

(−△− 2i~ζ · ∇)R + (ω2I8 + Q)R = −(ω2I8 +Q)L. (96)

We would like to, in a certain sense, invert (−△ − 2i~ζ · ∇). For some
−1 < δ < 0, define the spaces

L2
δ(R

3) =
{

f : ||f ||L2
δ
= ||(1 + |x|2)δ/2f ||L2(R3) < ∞

}

, (97)

W s,2
δ (R3) =

{

f : ||f ||W s,2
δ

= ||(1 + |x|2)δ/2f ||W s,2(R3) < ∞
}

. (98)

There exists (see, for example, [20, Corollary 2.2])G~ζ : W
s,2
δ+1(R

3) → W s,2
δ (R3)

such that (−△− 2i~ζ · ∇)G~ζφ = φ and

||G~ζφ||W s,2
δ (R3) ≤

1

|~ζ|
C(δ)||f ||W s,2

δ+1
(R3) (99)

The equation R should satisfy can then be written as

(I8 +G~ζ(ω
2I8 +Q))R = −G~ζ(ω

2I8 +Q)L. (100)

We can choose the constant C(ρ) in (93) so that

||G~ζ(ω
2I8 +Q)R||W 3,2

δ (R3) ≤
1

2
||R||W 3,2

δ (R3), (101)

in which case there exists a solution

R = −
(

I8 +G~ζ(ω
2I8 +Q)

)

−1

G~ζ(ω
2I8 +Q)L, (102)

and it satisfies the estimate (106).

The following lemma is a restatement of a result in [2]:

Lemma 3.2 (see [2, Proposition 9]). There exists a constant C(ρ, ||ǫ −

1||W 5,∞(R3), ||µ− 1||W 5,∞(R3)) > 0 such that if ~ζ ∈ C
3, ~ζ · ~ζ = ω2,

|~ζ| > C(ρ, ||ǫ− 1||W 5,∞(R3), ||µ− 1||W 5,∞(R3)), (103)
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L =
1

|~ζ|











~ζ · ~a

ω~b
~ζ ·~b
ω~a











, ~a,~b ∈ C3, (104)

then there exists
Z = ei

~ζ·x(L+R) (105)

a solution of (91) in R3, Z ∈ W 3,2(Ω) and with

||R||W 3,2(Ω) ≤
1

|~ζ|
C(ρ)|L| ||ω2 +Q||W 3,∞(R3). (106)

Additionally, Y = (P −W t)Z solves (P +W )Y = 0 and is of the form

Y =









0

µ1/2 ~H
0

ǫ1/2 ~E









. (107)

Under the conditions of the previous lemma, we get

~E = ei
~ζ·x

(

ǫ−1/2
~ζ · ~a

|~ζ|
~ζ + ~re

)

, (108)

~H = ei
~ζ·x

(

µ−1/2
~ζ ·~b

|~ζ|
~ζ + ~rh

)

. (109)

For σe, σh ∈ {0, 1}, choose

~a = σe

~ζ∗

|~ζ|2
, ~b = σh

~ζ∗

|~ζ|2
. (110)

Then

~E = ei
~ζ·x

(

σeǫ
−1/2

~ζ

|ζ |
+ ~re

)

, (111)

~H = ei
~ζ·x

(

σhµ
−1/2

~ζ

|ζ |
+ ~rh

)

, (112)

and, applying the previous lemma and Sobolev embedding

||~re||L∞(Ω), ||~rh||L∞(Ω) = O(|~ζ|−1). (113)
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3.3 Proof of the main theorem

Let ξ ∈ R
3. WLOG, ξ = ξ1e1. Let ~ζj = αj + iβj ∈ C

n, j = 0, 1, 2, 3,

βj = (−1)j
(

τ 2 + ξ21/4
)1/2

e3, (114)

α0 =
ξ1
2
e1 − (ω2 + τ 2)1/2e2, (115)

α1 =
ξ1
2
e1 + (ω2 + τ 2)1/2e2, (116)

α2 = α3 = −
ξ1
2
e1 − (ω2 + τ 2)1/2e2. (117)

Then
~ζj · ~ζj = ω2, |~ζj|

2 = 2τ 2 + ω2 + ξ21/4. (118)

For sufficiently large τ > 0, let

~ej = ei
~ζj ·x(σeǫ

−1/2|~ζj|
−1~ζj + rej) (119)

~hj = ei
~ζj ·x(σhµ

−1/2|~ζj|
−1~ζj + rhj) (120)

be the special solutions given by Proposition 3.1.
Note that

~ζ0 · ~ζ1 = −ω2 − 2τ 2, ~ζ2 · ~ζ
∗

3 = 2τ 2 + ω2 + ξ21/4, (121)

~ζ0 · ~ζ2 = 2τ 2 + ω2, ~ζ1 · ~ζ3 = −ω2. (122)

Then
~e0 · ~e1(~e2 · ~e

∗

3)
k = −σe|ǫ|

−kǫ−1 exp(iξ · x) + O(τ−1), (123)

~e0 · ~e2(~e1 · ~e3)(~e2 · ~e
∗

3)
k−1 = O(τ−1), (124)

where O(τ−1) is to be understood in the sense of L∞(Ω) norms. Choosing
σe = 1, σh = 0 and taking the limit τ → ∞ in (76), we get

(

ak − a′k
|ǫ|kǫ

χΩ

)

∧

(ξ) = 0, ∀ξ ∈ R
3. (125)

This implies ak = a′k. By an identical argument it follows that bk = b′k. This
concludes the induction step.
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