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NONLINEAR EQUATIONS WITH GRADIENT NATURAL GROWTH
AND DISTRIBUTIONAL DATA, WITH APPLICATIONS TO A
SCHRODINGER TYPE EQUATION

KARTHIK ADIMURTHI' AND NGUYEN CONG PHUC?

ABSTRACT. We obtain necessary and sufficient conditions with sharp constants on the
distribution o for the existence of a globally finite energy solution to the quasilinear equa-
tion with a gradient source term of natural growth of the form —A,u = |Vu|? 4+ o in a
bounded open set Q2 C R™. Here A,, p > 1, is the standard p-Laplacian operator defined
by Ayu = div (|[Vu[P"2Vu). The class of solutions that we are interested in consists of

functions u € W, *(Q) such that e** € W, *(Q) for some p > 0 and the inequality

PIVulPdxr < A VolPdx
® ®
Q Q

holds for all ¢ € C2°(€2) with some constant A > 0. This is a natural class of solutions at
least when the distribution o is nonnegative. The study of —A,u = |[Vu|?” + ¢ is applied
to show the existence of globally finite energy solutions to the quasilinear equation of
Schrodinger type —Apv = ovP™ v > 0in Q, and v = 1 on 9Q, via the exponential

_u
transformation u — v = er-1,

1. INTRODUCTION

The main goal of this paper is to address the solvability of quasilinear elliptic equations

with gradient nonlinearity of natural growth of the form

—Apu=|VuP+0o in Q,
u =20 on 0f),

(1.1)

in a bounded open set  C R". Here Ayu := div(|Vu[P=2Vu), p > 1, is the p-Laplacian

and the datum o is a distribution in 2. More generally, we also consider the equation

—div A(z,u, Vu) = B(z,u,Vu) + o in Q,
u =0 on 0f),

(1.2)
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where the principal operator div A(z,u, Vu) is a Leray-Lions operator defined on VVO1 P(Q)
and |B(z,u, Vu)| < |[VulP.

The precise assumptions on the nonlinearities A, B and the the precise definition of
solutions to (1.2) will be given in Section 2. Here we emphasize that in this paper we are
interested only in finite energy solutions u with zero boundary condition in the sense that
u € Wol P(Q). The energy space VVO1 P(Q) is defined as the completion of C2°(£2) under the
semi-norm [|V ()| 1»(q)-

As an application of the study of (1.1), we also obtain existence of finite energy solution

to the quasilinear Schrodinger type equation
(1.3) A= (p— DI PooPtin Q, v >0 in €, v =1 on 9N.

Equation (1.1) is a prototype for quasilinear equations with natural growth in the gradient
that has attracted a lot of attention in the past years. It can be viewed as a quasilinear
stationary version of a time-dependent viscous Hamilton-Jacobi equation, also known as
the Kardar-Parisi-Zhang equation, which appears in the physical theory of surface growth
23, 24].

As far as existence is concerned, the nonlinearity |VulP in (1.1) is considered “to have the
bad sign” and by now it is well-known that in order for (1.1) to have a solution the datum
o must be both small and regular enough. In particular, if ¢ is a nonnegative distribution
in Q (i.e., a nonnegative locally finite measure in 2), then a necessary condition for the first

equation in (1.1) to have a VV;?(Q) solution is that (see [20, 21, 22])

(1.4) / lp|Pdo < )\/ |[VoPdx  for all p € C°(Q),
Q Q

with A = (p — 1)?~1. Moreover, when o > 0 the nonlinear term itself also obeys a similar

Poincaré-Sobolev inequality
(1.5) / loP|Vul|Pdx < A/ |VplPde  for all ¢ € C°(£2),
Q Q

with A = pP.

Thus a natural space of solutions associated to (1.1) is the space S of functions u €
I/VO1 P(Q) such that (1.5) holds for some A > 0. The main question we wish to address here
is to find an optimal (largest) space D of ‘data’ so that whenever ¢ € D with sufficiently
small norm ||o|| then (1.1) admits a solution in S. In the case 0 > 0 we can completely

characterize the existence of finite energy solutions to (1.1) in the following theorem. We
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remark again that in this case all VVO1 P(Q) solutions automatically belong to S and (1.5)
holds with A = pP.

Theorem 1.1. Let o be a nonnegative locally finite measure in Q. If (1.1) has a solution
inu e WyP(Q) then o € (WyP())* and (1.4) holds with A = (p — 1)P~1. Conversely, if
0>0,0¢ (Wol’p(Q))*, and (1.4) holds with 0 < A < (p—1)P~! then (1.1) has a nonnegative
solution in Wol’p(Q) such that er1 —1 ¢ Wol’p(Q) for all § € [0,d0) where 6y = (p— 1))\1)%11.

In the linear case, p = 2, these necessary and sufficient conditions have been observed in
[17]. See also [1] (for p = 2) and [19] for certain related results that were obtained by different
methods. We remark that, under a mild restriction on the domain, by Hardy’s inequality
(see [3, 25]), Theorem 1.1 covers the case of unbounded measure such as o = e dist(z, 9Q) !
for some € > 0. It is also worth mentioning that in the case p = 2 and o is a nonnegative
locally finite measure, other sharp existence results for (1.1) were obtained in [20] for Q = R"
and recently in [17] for bounded domains © with C? boundary under a very weak notion of
solution and boundary conditions.

The first part of Theorem 1.1 follows from the known necessary condition (1.4), Holder’s

inequality, and the assumption that Vu € LP(2), since we have
o = —|VulP — div (|Vu[P72Vu) < —div (|VulP72Vu).

On the other hand, the second part is a consequence of Theorem 1.2 below that treats
even sign changing distribution datum ¢. This in fact is the main result that will be obtained

in this paper.

Theorem 1.2. (i) Suppose that (1.1) has a solution in u € Wol’p(Q) such that (1.5) holds
for some A > 0 then it necessarily holds that o = div (F) — ]F]P%l for a wvector field
F e Lﬁ(Q,}R”) such that

(1.6) / |F|%|gp|pd:17 < A/ IVol|Pdz  for all p € C°(Q).
Q Q

In particular, both o and |F|% belong to the dual space (Wol’p(Q))*.
(ii) Conversely, suppose that o = div F' + f where F' € Lﬁ(Q,Rn) and [ is a locally finite
signed measure in Q with |f| € (Wol’p(Q))* such that

W p /Q Pl [Violdz + /Q oPdlf] < A /Q VelPde o e C2(Q),
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for some X € (0,(p — 1)P~1). Then equation (1.1) has a (possibly sign changing) solution
u e WyP(Q) such that T 1e W, P(Q) for all § € [0,80) where 6 = (p — 1))\17711. This
solution satisfies the Poincaré-Sobolev inequality (1.5) for some A = A(p) > 0. Moreover,
if X € (0, (p — 1)™{be=1h) “then both er1 —1 and e* — 1 belong to Wol’p(Q).

Several remarks regarding Theorem 1.2 are now in order.

Remark 1.3. By approximation and Fatou’s lemma, inequalities (1.6) and (1.7) actually
hold for all ¢ € Wol’p(Q). The integral [q |¢|Pd|f| makes sense even for ¢ € Wol’p(Q) since
|f| is continuous with respect to the capacity cap,(-,€2) and ¢ has a cap,-quasicontinuous
representative, whose values are defined cap,,-quasieverywhere in . Here cap, (-, ) is the

variational p-capacity associated to ) defined for each compact set K C € by

cap, (K, ) := inf {/Q |Vo|Pdx : ¢ € C°(Q) and ¢ > XK} .

Remark 1.4. By Holder’s inequality we see that if F' satisfies (1.6) for some A > 0 then
p—1
p [ IFleP[Velde <pa™s [ [Delde v e C2(@).
Q Q

Thus by Theorem 1.2(i1) if F € L%(Q,R") satisfies (1.6) for some 0 < A < (p— 1)pp_%
then the equation —Apu = |VulP + div F' has a solution in Wol’p(Q).
Remark 1.5. Let p be a nonnegative locally finite measure in Q. It is well-known that the
inequality
[ leldn < ar [ 1Vepas voecE@
Q Q

1s equivalent to the condition
(1.8) pu(K) < Agcap,(K,Q)
for all compact sets K C Q (see [28, Chapter 2]).

Thus in (ii) of Theorem 1.2, condition (1.7) can be replaced by (1.8) with u = |F|ﬁ +|f]
for a sufficiently small constant Ay > 0.

Moreover, by (ii) of Theorem 1.2, if f is a locally finite signed measure in Q with |f| €
(Wol’p(Q))* such that (1.8) holds with du = d|f|, the we have a decomposition

f=divF —g,

where F' € L%(Q,R”) and g € L*(Q), g > 0, such that the L' function ju := (]F]% +9)
also satisfies (1.8). See [5, 18] for a similar decomposition of measures that are continuous

w.T.t the p-capacity.
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Remark 1.6. Let L9*°(Q2), s > 1, denote the weak L*® space on Q with quasinorm
191l 1.0 (0 = supt|{z € Q: |g(z)| > t}["/*.
t>0
For g € L%m(Q) with 1 < p < mn, it is known that (see, e.g., [16, Eqn. (2.6)])

| l6lPads < Supllgll g~ gy [ VP Ve C(@),

where the constant Sy, s given by

Snp = D )rl“(l +nj2)Pn,

[m

This shows that in Theorem 1.2(ii), condition (1.7) can be replaced by |F|ﬁ + |f| €
L%’OO(Q) with a sufficiently small norm. Ezistence results under this weak norm condition
have been obtained in [16]. See also the earlier works [14, 15] where the strong norm condition
involving L%(Q) was used instead. More general existence results in which |F|P%1 + |f| is
assumed to be small in the norm of certain Morrey spaces can be found in the recent paper
[29]. Those Morrey space conditions are also stronger than condition (1.7) as they fall into

the realm of Fefferman-Phong type conditions (see, e.g., [11, 12, 13, 31, 32]).

We now discuss the Schrodinger type equation with distributional potential (1.3). This
equation is interesting in its own right and has a strong connection to equation (1.1) as
being observed and exploited, e.g., in [1, 19, 21, 22].

By a solution to (1.3), we mean the following definition.

Definition 1.7. Let o € (Wol’p(Q))*. A function v defined in Q is a solution of (1.3) if
v>0,v—1¢€ Wol’p(Q), vP~l e WP(Q), and

loc

(1.9) /Q |Vo|P~2Vv - Vedz = (p — 1) P(o, 0P L) Yo € C°(9).

Note that the right hand side of (1.9) makes sense since vP~1p € VVO1 P(Q) and o €
1, *
(WP ()"
Formally, by making the change of unknowns v = ep%l, equation (1.1) is transformed into
the Schrodinger type equation (1.3). Indeed, it is possible to show rigorously that Theorem

1.2 implies the existence of finite energy solutions to (1.3):
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Theorem 1.8. Suppose that o = div F'+ f where F € Lﬁ(Q,R") and f is a locally finite
signed measure in Q with |f| € (Wol’p(Q))* such that

p /Q FllolP |V plda + /Q olPdlf] < A /Q VelPds Vi € C2(Q),

for some X € (0, (p — )™ P11 Then equation (1.3) has a nonnegative solution v such
that both v—1 and v~ —1 belong to Wol’p(Q). Moreover, v satisfies the following Poincaré-

Sobolev inequality

10 [z

with a constant A = A(p) > 0.

p
lpPda < A/ IVelPde Vo € C(Q),
Q

Remark 1.9. If the factor (p — 1)'™P on the right-hand side of (1.3) is dropped then the
smallness condition on \ becomes A € (0,p™), where p* = (p — 1)2>7P if p > 2 and p7* =1
if p <2 as in [22]. The sharpness of p* (and that of (p — 1)™{LP=1} for (1.3)) was also
Justified in [22].

One could also treat the Schrédinger type equation (1.3) in a more general fashion,
where the standard p-Laplacian is replaced by a quasilinear elliptic operator with merely
measurable ‘coefficients’. See Remark 6.1 below and see also [22].

We mention that the existence of finite energy solutions to (1.3) in the case o > 0 was
obtained in [19] by a method that does not seem to work for sign changing o (see also [1]
for p = 2). On the other hand, the work [22] (see also [21]) obtains a locally finite energy
solution v € VVlif (Q) to the first two equations in (1.3) (without any boundary conditions)

only under the mild restriction
—A/ VelPdz < (o, |o]?) < A/ VolPdz for all € C2(Q)
Q Q

for some A € (0, (p — 1)™™LP=1) and A € (0,400). Moreover, v also satisfies (1.10) for
some A > 0. Then, also under the restriction A € (0, (p — 1)™™{LP=1}) by the logarithmic
transformation u = (p— 1) log(v) it was obtained in [22], a solution u € Wli’f (€2) to the first
equation in (1.1) (but without any boundary condition) that also satisfies (1.5) for some
A>0.

In this paper, we follow an opposite route, i.e., we first treat equation (1.1) directly and
then deduce existence for the Schridinger type equation (1.3) from it. This way, we are able

to treat equation (1.1) in its most general form, i.e., the nonlinear equation with general



NONLINEAR EQUATIONS WITH NATURAL GROWTH IN THE GRADIENT 7

structure (1.2). Moreover, for equation (1.1) we obtain larger upper bound for A in the
existence condition (1.7) (i.e., (p — 1)P~! versus (p — 1)™™{LP=1}) Our approach to (1.2) is
a refinement of the approach of V. Ferone and F. Murat in [15, 16]. The main difficulties to
overcome here are the generality nature of o and the sharpness of the smallness constants.
In particular, in this scenario one does not gain any higher integrability on the nonlinear
term B(z,u, Vu), which makes it impossible to follow a compactness argument as in [29)].
Moreover, in order for us to apply the existence results of (1.1) to (1.3) we need to find a
solution w of (1.1) with the additional property that both er1 —1 and e¥ — 1 belong to
I/VO1 P(Q) as stated in Theorem 1.2.

2. EQUATIONS WITH GENERAL NONLINEAR STRUCTURE

As we have mentioned, existence results in the spirit of Theorem 1.2(ii) also hold for
equations with a more general nonlinear structure (1.2). For that we need the following
assumptions on the nonlinearities A and B:

Assumption on A. The nonlinearity A : @ x R x R® — R™ is a Carathédory function,
ie., A(z,s,&) is measurable in x for every (s,§) and continuous in (s, ) for a.e. x € Q. For

some p > 1, it holds that

(21) <A(Z’,S,§) _A(x73777)7§_77> >O,
(22) <A(Z’,S,§),§> > ()40’6‘177
(2.3) |A(z, 5, < aoléP~" + an [P~

for every (£,n) € R™ x R™, £ #n, and a.e. z € Q. Here oy > 0, and agp,a; > 0.
Assumption on B. The nonlinearity B : 1 x R x R” — R is a Carathédory function which

satisfies, for a.e. z € Q, every s € R, and every & € R",
(24) |B(3§‘,87£)| < b0|£|p+b1|8|m7 B(%‘,S,&)SigH(S) < 040/70|£|p7

where m > 0, and by, b1, 70 > 0. Here oy is as given in (2.2).

By a solution of (1.2) we mean the following.

Definition 2.1. Under (2.1)-(2.4), a function u € Wol’p(Q) is a solution of (1.2) if
B(x,u,Vu) € L () and

loc

/ A(z,u,Vu) - Vo dr = / B(z,u, Vu)p dx + (o, p)
Q Q

holds for all test functions ¢ € C°().
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We remark that in the case B(x,u, Vu) € L'(Q2) and o € (Wol’p(Q))*, we can take any
function ¢ € VVO1 P(Q)NL>®(Q) as a test function in the above definition. This follows from a
result of Brézis and Browder [9] as we have B(x,u, Vu) € (Wol’p(Q))* NLY(Q). Tt can also be
seen by approximating ¢ in Wol’p(Q) by a sequence p; € C2°(Q2) such that |p;| < |p| < M
a.e. (using Theorem 9.3.1 in [2] and suitable convolutions).

We mention that in the special case |B(z,u,Vu)| € (Wol’p(Q))* N LY(Q), we can even

drop the condition ¢ € L*>°(Q2). In fact, we have the following more general result.

Lemma 2.2. Suppose that f is a locally finite signed measure in Q0 with |f| € (Wol’p(Q))*.
Then for any ¢ € Wol’p(Q) we have

o) = [ 7

where © is any cap,,-quasicontinuous representative of .

In the case f is nonnegative, the proof of Lemma 2.2 can be found in [30, Lemma 2.5].
The general case also follows from that, since f = f 4+ f~ and both f* and f~ belong to
(VVO1 P(Q))*. In what follows, when dealing with pointwise behavior of functions in VVO1 P(Q)
we will implicitly use their cap,-quasicontinuous representatives. Lemma 2.2 will be used,
e.g., in (3.11) below.

Under the above assumptions on A4 and B, we obtain the following existence result.

Theorem 2.3. Let 0 = div F + f where F € L%(Q,R”) and f is a locally finite signed
measure in ) with |f| € (Wol’p(Q))* such that

(2.5) p /Q FllplP![Veldz + /Q oPdlf] < A /Q VolPde

holds for all ¢ € CX(R), with \ € (0,73_‘”@0(19 — 1)P=1). Then there exists a solution
u € Wol’p(Q) to the equation

(2.6) —div A(z,u, Vu) = B(z,u,Vu) + o in §,

1

Sul 1
such that er—1 — 1€ WyP(Q) for all § € [y0,80), with & = (p— 1) (@)1,
Moreover, for any 61 > 7o such that (2.5) holds with

—1\” 0
(2.7) A< <p51 > Qg (p_11+51—’70>7
1lul

we have er=1 —1 € Wol’p(Q).

>
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Remark 2.4. [t is easy to check that, for §; > vy one has

<p5_1 1>pao <I% + 01 — ’Yo> < Paolp — 1P
Moreover, for example with p > 2 and o9 = 79 = 1, if (2.5) holds with A < p—1 €
(0, (p — 1)P~Y), then we see that (3.2) holds with 1 < § < (p—1)(p — 1)1;_*11, but it does not
allow us to take 6 = p — 1! On the other hand, for A < p — 1 inequality (2.7) holds with
5 =p—1 and thus el"l —1 € W P(Q).

Due to the general structures of A and B, here we do not claim that the solution
obtained in Theorem 2.3 satisfies the Poincaré-Sobolev inequality (1.5).

The paper is organized as follows: In Section 5, we provide the proof of Theorem 2.3.
This proof is based on the existence of solutions to an approximate equation along with
certain uniform bounds given in Section 4. These important uniform bounds are in turn
deduced from the a priori estimate of Section 3, though not directly. Finally, the proof of

Theorems 1.2 and 1.8 will be given in Section 6.

3. AN A PRIORI ESTIMATE

In this section, we obtain certain exponential type a priori bounds for solutions of
(3.1) —div A(x,u, Vu) + ¢ |uP"2u = B(z,u, Vu) + ¢ in

where ¢ > 0. The case ¢ > 0 will be needed in the next section to absorb certain unfavorable
terms in the approximating process; see (4.9) below. Earlier, this idea was implemented by

V. Ferone and F. Murat in [16].

Theorem 3.1. Let o0 = div F + f where F' € L%(Q,R”) and f is a locally finite signed
measure in 0 with |f| € (Wol’p(Q))* such that (2.5) holds for all ¢ € CX(Q), with \ €
(O,’yé_pao(p — 1)P7Y). Then for any € > 0 and any Wol’p(Q) solution u to equation (3.1)
S|u|
such that er=1 — 1 € Wy P(2), we have
Slul
(3.2) Hu”wolvp(g) + [ler=1 — 1HW01’I’(Q) < Ms.

provided § € [yo,00) where o = (p — 1)(0(0//\)P+1. Here Ms is independent of u and e.
1y

Moreover, for any 61 > 7o such that e?=T —1 € Wol’p(Q), and (2.5) holds with \ satisfying
(2.7), we have

(3.3) €75~ 1llyangy < Ms, + Cs, [Vl oy
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The constants Ms, and Cs, are independent of u and ¢.
Proof. Let u € Wol’p(Q) be a solution of (3.1) and define

w = sign(u)[e’" = 1]/u,  with p=06/(p - 1),

where sign(u) = 0 if u = 0, sign(u) = 1 if u > 0, and sign(u) = —1 if u < 0. Then from the

assumption el — 1 € W P(Q), we see that w € W, () with

(3.4) Vuw = "IV,
Indeed, for € > 0 define f.(z) = \/ﬁ, x € R, and denote by Ty, s > 0, the two-sided

truncation operator at level s, i.e.,
Ts(r)=r if |r| <s and Ts(r) =sign(r)s if |r| > s,

then it follows that Ts(u) € Wol’p(Q) for any s > 0 and

VT, (u)e?
(Ts(u)? + 52)3/2(

+ fe(Ts () V (TN = 1)/

V [£(T @)™~ 1)/ AT 1)

in the weak sense. Note that

et
— &%|Ty(u))|
1S

(e — 1)/ < — (ITs(u)]? +%)%2,

ets
Tous
F(T(w)) — sign (T (u)) = sign(u) as = — 07,

and thus by Dominated Convergence Theorem we find

\% [sign(u)(e“‘Ts(“)| - 1)/“] = sign(u) V(M= - 1)/ = M T-WIT T, (1),

Now using the assumption e#"/|Vu| € LP(Q) and letting s — oo, we obtain (3.4).

For each s > 0, we will use the following test function for (3.1):
Vg = eéluslwsa

where us = Ti(u) and w, = sign(u)[e!"s| — 1]/p with = 6/(p — 1).
From the definition of wy we have |w;| < |w| and Vws = etlsIVys. Thus both w, and

vs belong to Wol’p(Q) N L*>°(2) and moreover,

Vo, = | Vw + 5\w\€‘5'“‘w] X{Jul<s}-
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Using vs as a test function in (3.1), we get
/QA(x,u, Vu) - Vwe‘s‘ulx{wgs} dx +€/Q ufP~2ue sl da
= —/95|w|65“|.,4(:17,u, Vu) - Vuxju<sy dz +

+ / B(x,u, Vu)ell " lw, da + / F -V, dz +/ vgdf.
Q Q Q
We now write this equality as

(3.5) L+ 1y =13+ 14+ I5 + I,

where I;, i € {1,...,6}, are the corresponding terms.

Estimate for I;: Since Vw, = e“‘“S|Vu8, using the coercivity condition (2.2), we see that
(3.6) L = /A(m,uS,Vus)-sze‘MsX{u|<5} dx
Q
= / Az, us, Vuyg) - Vugertolusl gq
Q

> aO/ |Vws|P dz,
Q

where we used the fact p+ 0 = pu.

Estimate for I5: We have

plus| 1 ns 1
(3.7) I, = s/ |u|p_1e‘5‘“3|67 dx > ssp_l/ %5 X{Ju|>s} = 0
Q H Q H
Estimate for I3 + I;: By (2.2) we have
Is+1, = —/ 8lwle?™ Az, u, Vu)'VuX{uKs}dx—k/ B(x,u, Vu)edlsly,da
Q - Q

< —/5a0|ws|66|“S|Vus|p dx+/B(az,u,Vu)sign(u)e‘5“5||ws|daz
Q Q

= —/5a0]w5\e5|“8Nu8]f” dx +
Q

+ /QB(%U, Vu)sign(u)e’"s |ws| [xfjuj<sp + X{jul>s}1de-
Since we assume § > 7, this and the second condition in (2.4) imply that

(3.8) Is+1, < /(—5+’yo)a0\w8]65“5|\Vus\p dx
Q
+ /B(x,u,Vu)sign(u)e‘5“5||ws|x{|u>8}dx
Q

< /B(m,u,Vu)sign(u)eé%uws]x{m>s}da;.
Q
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Thus by the first inequality on (2.4) and the fact that

(3.9) lvs| = 65‘“5'\%! =(1+ u\w8])5/“\w8] =(1+ ,u\wsl)p_llws\
< 1(1 + plws|)P < lepu\us\ < lepu\UI,
[ I [
we find
1
B1) Bl < [ (olTuP bl e g do
Q

1/ 1
= — [ bo|VwlPxqp Sdm+—/b u|™ePH Uy s ard.
NQO| PX {ju|>s} M91|| {ul>s}

Estimate for I5 + Is: Using (3.9) again and Lemma 2.2 we have

311) L4 ls — /QF-V[(I—i—mUJSDp_le] d:n+/9vsdf
= /F-[(p—1)(1—|—u!ws\)p_2szsign(ws)uws]dx+
Q
. —1
—|—/QF (1 + p|ws|)? sz]d$+/gvsdf

< p / P11+ g JP~ [V |z + / (1+ )Pl d] .
Q Q
Using the inequality
1+ plw )P~ < L+ Hw P~ + CE,p),  €>0,

and Holder’s inequality we have

Ll < (148w 'p / FllwsP [Vwslde + (1 + &P~ / i Pl |
Q Q

+ CER) (11 27 ) + I gy ) 1Vl

We recall that by approximation and Fatou’s lemma (2.5) holds for all ¢ € I/VO1 P(Q).
Then by (2.5) we get

(312) L+l < (19" MV, o) +

+ CED (PN 2y g + I oy ) Vsl ooy -
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We now use estimates (3.6), (3.7), (3.10) and (3.12) in equality (3.5) to obtain the

following bound

1 1
k(e) |[Vwsl|? < —/b YVwPXil 8dx+—/b u|™ePH Uy s anda +
() IVwslzo 0 A 0| VP X fju|> s} A 1|ul {Jul>s}

+ O (1P g + I gy ) 196l
where k(e) = ap — (1 + €)uP~1X. Observe that when § < §y = (p — 1)(a0/)\)ﬁ we have
PN = (6/(p = 1)PTIA < (o/(p — 1)P7IA = ag

and thus we can choose ¢ > 0 small enough so that x(¢) > 0.
Since (et — 1) ¢ Wol’p(Q), by Sobolev’s embedding theorem it holds that el ¢
L”%P(Q) if 1 <p<nand el € L2(Q), say, if p > n. Thus we have |u|™eP*l ¢ L1(Q).

Now letting s oo in the last inequality, we find

1Vel%,q) < C(IFN, 2y o) + Il naye ) IVl

which yields

1

ey —a| L, <e@An (11, e g+ gy )

Wy (9)

Finally, note that

p—1 A
lullyry = 1Vull ooy < =5~ Hv(eaw /(p-1) _ 1)‘

Lr(Q)

and hence, we also have

1

lullyzn@) < COXD(IFI, g o + Il anay )7

This proves inequality (3.2) for all § € [y, dp).

To prove inequality (3.3) for 61, we first define pq = szll and redefine
(3.13) w = sign(u)[e" ¥ — 1]/, wy = sign(u)[e™ sl — 1] /py.

Observe that

(emrlusl — 1yedilusl > (1 — g)e@rtmlusl _ (e, 6)) for all £ € (0,1),
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and thus by the first inequality in (3.8), with (d1, p1) in place of (0, i), we have

I3+ 1; < /( o1 —|—"}/0) (em\us\ — 1) 61‘u5“VU ‘p dx
Q M1
+ /B(:E,u,Vu)sign(u)651“S|ws|x{u|>s}dx
0
Qo Qg
< /(1 ) (=b1 + 70) 2 |V, Pda +/ Cle,51)(61 — 7o) 22 [V do
Q H1 Q H1

+ /B(w,u,Vu)sign(u)eéluS]ws\x{u|>s}dx.
0

Here in the last inequality we used that §; > o and |Vaw|? = e(1Hrolusl| 7y, P,

Thus arguing as in (3.10) for the last term we find

(3.14) I3+1, < /(1—5)(—51+70)%\Vw8]f”dx+0(a)/ ’Vusfp dx
Q 1 Q

1 1
+— [ bo|Vw|Pxqu 8d:17+—/b umePrltly o d.
m/90| PX{uisyde+ 5 | bilul X{Jul>s}
Using estimates (3.6), (3.7), (3.12) (with (1, p1) in place of (6, 1)) and (3.14) in equality
(3.5) we then get

1 1 m u
K1(e )HVU)SHLP(Q < E/Qb0|vw|p><{u|>s}dx+E/Qb1|u| ertl IX{\u|>S}dﬂj+

+ CEIFN 2y g + 1 wrqeny ) 195l oy +

E)/ |Vug|P dx,
Q

where k1(e) = ap + (1 —€)(61 — 70)% — (14 e)uﬁ’_l/\, with € € (0,1). Thus when (2.7)
holds we can find ¢ € (0,1) such that x1(g) > 0. Then using Young’s inequality and letting

s — oo we eventually obtain

1
p-1 P
IVullugy < C(IPN 2y o)+ Wl ) +C | 9P do.

This proves inequality (3.3) for all §; > vy such (2.7) holds. O

4. EXISTENCE OF SOLUTIONS TO AN APPROXIMATE EQUATION

For k > 0, we now define a function Hy(z, s, &) by letting

B(z,s,§)
1+ k\B(x 5,8

Note |Hi(x,s,£)| < k, and (2.4) also holds with Hy(z, s, &) in place of B(x, s,§). Moreover,

(4.1) Hi(z,8,€) ==

kli)m %k(‘ra 376) = B(‘Ta 376)'
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The goal of this section is to obtain existence results for the approximate equation
(4.2) —div A(z,u, Vu) = Hi(z,u,Vu) + o in Q.

Proposition 4.1. Let 0 = divF + f where F € LI%(Q,]R”) and f is a locally finite
signed measure in Q with |f| € (Wol’p(Q))* such that (2.5) holds for all ¢ € C(R2), with
A€ (0,79 Pag(p — 1)P7Y). Then for each k > 0, there exists a solution w, € WP(2) to

Slugl

(4.2) such that ev=1 —1 € Wol’p(Q) for all § € [9,00), with 5 = (p — 1)(a0/)\)ﬁ, and

Sugl
p—1

Moreover, for any 61 > 7o such that (2.7) holds then we have

8y lupl

(4.4) e st — 1||W01'p(§2) < Ms,,

Here the constants My and Ms, are independent of k.

Proof. Since o € (Wol’p(Q))* and |Hg(z,s,£)] < k, by the theory of pseudomonotone
operators (see, e.g., [26], [27, Chapter 6], and [8]), for any £ > 0 there exists a solution
Up e € Wol’p(Q) to the equation

(4.5) —div A(z, u, Vu) + e|lulP">u = Hp(z,u, Vu) + o in Q.

The next step is to obtain uniform bounds of the form (4.3)-(4.4) for {uy}. However, we

Slug |

cannot directly apply Theorem 3.1 here since we do not know if e »=1T" —1 € VVO1 P(Q). The
strategy here is to follow the proof of Theorem 3.1. For simplicity let us write u = uz, ., and
for each s > 0, we set v, = el%slw,, where uy = T,(u) and w, = sign(u)[e**s| —1]/p with

w=0/(p—1). Then using vs as a test function for (4.5) we obtain the following equality
(4.6) L+DL=I+1I)+ 15+ I,

where the expressions for Iy, Is, I3, I5, Is are as in the proof of Theorem 3.1. The term I} is
similar to I given in the proof of Theorem 3.1 except that B(x,u, Vu) is now replaced by

Hy(z,u, Vu). That is,

I} = / Hy(, u, Vi)l da.
Q
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Thus lower estimates for I7, Is and upper estimates for I5 + I are unchanged; see (3.6),

(3.7), and (3.12). As in (3.8) we have the following upper estimate for I3 + I}:
IL+1I, < /Q(—5 + 70 ) o |wg | | Vg [P da
+ Lﬂk(x,u,Vu)sign(u)eJUS\ws\x{u|>s}dx
= /QHk(w,u,W)sign(U)e‘”“’IwSIX{|u>s}d$-

Thus, instead of (3.10), we now get

et —1

(4.7) I3+ 1) < ]{7/9668 X{|u|>s}dT.

Similarly, instead of (3.14), we now obtain

(4.8) L+1, < /(1—5)(—51—i—’yg)%wws]f”da:—l—(}'(a)/ V[P da
Q 1 Q

et —1
—|—k‘/e‘55 X1 ul>s1 AT
0 [ {lul>s}

We recall that in (4.8), u1 = p‘%ll with w, ws to be understood as in (3.13).
When & > 0 and s is such that es?~! > k by (3.7) and (4.7) we have

(4.9) I3+ 1, —1,<0

and thus it follows from (4.6) that

L <I5+ Ig.

With this, employing (3.6) and (3.12) we find

1

[Vl ogey < COXD(IFI oy g + Il ncay )™

At this point we let 5,700 to obtain that any solution u = uy . to (4.5) satisfies the bound

5‘“]@,5‘
okl + e 7 —1H <
(4.10) o WP (@) 1

< C(s, )\,p)< HFHLP_ET(Q) + |||f|||(W011P(Q))* )Pq

for every ¢ € [0, do).
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For 61 > 7 such that (2.7) holds, using (4.8) and arguing similarly we obtain

1

==
< C(IFN, 21 g + I 2y )

61‘“1@,5‘

e r—1  — 1H

(4.11)

Wol’p(Q)

—i—C/ |V |P de
Q
1

Py
< C(”F”L%«n+|”f’”(wo“’<m>*)p '

As the bound (4.10) is uniform in €, we can extract a subsequence, still denoted by &,

such that
up e — up weakly in Wol’p(Q), strongly in LP(€2), and a.e. in €,

as e\,0" for a function uy € VVO1 P(Q2). Due to the pointwise a.e. convergence, we see that
uy, also satisfies (4.10)-(4.11) for every d € [y0,dp) and every d; > 7o such that (2.7) holds.
Recall that we have

(4.12) —div A(z, ug e, Vug o) + z—:|uk7e|p_2uk,€ = Hi(z, upe, Vuge) + 0 in D'(Q).

For each fixed k > 0, we know Hp(x, ugc, Vg o) — lug [P~ 2u ¢ is uniformly bounded in
e € (0,1) as finite measures in 2. Thus by a convergence result shown in [6, Eqn (2.26)],

we may further assume that
Vupe — Vu,  a.e. in (, as eNO™.

This allows us to pass to the limit in (4.12) as e\,0" to see that uy solves (4.2) and
satisfies the bounds (4.3)-(4.4). O

5. PROOF OF THEOREM 2.3

This section is devoted to the proof of Theorem 2.3.

Proof. For each k > 0, let u; be a solution of the approximate equation (4.2) as obtained
in Proposition 4.1. Recall that Hy(z,s, &) is defined in (4.1). By (4.3)-(4.4) and Rellich’s

compactness theorem, there is a subsequence, still denoted by k, such that
up 5 u weakly in Wol’p(Q), strongly in LP(2), and a.e. in 2,

Slul|
for some function u € Wol’p(Q) such that er-1 — 1 € Wol’p(Q) for each 0 € [y0,d0), and
1 lul

er-1 —1¢€ Wol’p(Q) for any 61 > 7o such that (2.7) holds.
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As uy, solves (4.2), we have

(5.1) —div A(z, u, Vug) = Hi(x,ug, Vug) + o in .
Thus to show that u is a solution of (2.6) it is enough to show that

(5.2) up — v strongly in Wol’p(Q) as k oo,

so that we can pass to the limit in (5.1) using (2.4), (4.3), and Vitali’s Convergence Theorem.

For each s > 0 we can write
Vup — Vu = VTs(ur) — VTs(u) + VGs(ug) — VGs(u),

where
Gs(r) =1 —Ts(r), r e R.

In order to show (5.2) we shall show that the following limits hold:

(5:3) Jim sup [VGs () = VG (W)ll oy =0
(5.4) klim VT (ug) = VTs(u)ll oy =0 for each s > 0.
—00

The rest of the proof will be devoted to the verification of these limits.

Proof of (5.3). Define wy, = [e%m‘ - 1]7%1 and hence we get

/\VGs(uk)\p dx = / |Vug|P dx
Q {luk|>s}
Sp
= / e_ﬁ‘uk||Vwk|p dz
{luk|>s}

_p_
< e pls/ |V’wk|p dx.
{lur>s}

Using the estimate (4.3), we then find
[
(5.5) / VG (w)P dz < C(8)e 72,
Q

which yields (5.3).
Proof of (5.4). Following [16] (see also the earlier works [15, 4]), we shall make use of the

following test function in (5.1):
o = TRy (zy),  with j > s,
where z, = Ts(uy) — Ts(u) and 9 is a C! and increasing function from R to R satisfying

(5.6) $(0)=0 and ¥ — Holo| > 1,
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2.2
bo+(ao+a1)

HAr
where Hy = " 3. For example, the function ¢ (r) = 2re 1~ will do. We then have

/QA(x, ug, Vuyg) - eé‘Tj(“’“)‘i//(zk)Vzk dx
= /Q [’Hk(x,uk, Vug) — 0A(x, Vuy,) - VTj(uk)sign(uk)] Tl (2) da
+ {0, M EDIy(z).
Note that the term on the left-hand side in the above equality can be written as
/QA(ﬂfauk, V) - (VTs(ug) — VTi(w))e 50y (2) da
= (A T ), D ) — AG T ), VT 0)-
(VT(ug) = VT (w) el TR () dee
+/{| - }A(x7Ts(uk)7VTs(u)) (VT () = V()0 (2) da
ug|<s
+ / Az, wg, Vg - (—=V Ty ()T @l (2,) da.
{luk|>s}
Thus combining the last two equalities we obtain
(5.7) L =—I— I3+ 14+ I5,
where we have defined
o= [ AT ), VT ) A T ), TT(0)

(VT (ug) — V() el (2,) da,

I = / Az, Ty(ug), VTs(w) - (VT (ug,) — VTs(w)) e T @y (2) da,
{Jux|<s}
Is = / Az, wg, Vg - (—=V Ty ()T @l (2,) da,
{Jur|>s}

Iy = / [’Hk(x,uk, Vuy) — 0 A(z, ug, Vuy) - VT (ug)sign(uy) 66|Tj(“k)|1/1(zk) dx,
Q
and

Is = (o, eﬂﬂ(w)\wzk»_

We now write I4 as

(5.8) Li=1I+1,
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where
e [ Hig@) ) d,
{lug|>s}
Iy 32/ Hy () T W)lp(2) da,
{lux|<s}
with

Hy, j(x) = Hi(x, ug, Vug) — 0A(x, ug, Vug) - VT (uy)sign(ug).

Note that |VT)(ux)| < |Vug| and hence using the growth conditions in (2.3) and (2.4)

we get
’IZ‘ < /{ ) <bo]Vuk\p +blluk’m —i—éao]Vuk]p +5a1\uk\p_1]Vuk]> X
ug|<s
< [ ot ban + a ) [Fue D )] do
{lukl<s}
s [ (bl + o) [0z da
{lukl<s}
< bo + d(ap + a1)

/ A, T(up), VT () - VT ()00 (2] da
Qo {Jug|<s}

b [ (bl )l ) A ()] da,
{luxl<s}

where we used Young’s inequality in the second inequality and the coercivity condition (2.2)

in the last inequality. Thus, recalling that Ho = 2F@0%) e fing
| < Hy /{ AT ), VT ) = A ), VT )
VT (ug) — VTi(w)] 2T (o(2,) |dae
+ Hy /{ - }A(%TS(W),VTS(U)) VT (ug) — VTo(u)] 00 [ (2 )| da
wil<s

v H, / Al Tu(ug), V() - VTa()edT @ (20 d
(unl<s)

b (ol o VT ) T e
ug|<s
Using this bound, equalities (5.7)-(5.8), and the inequality in (5.6), we now obtain
(5.9) L<—-L—I3+ I+ 15+ I+ Ir + Is,
where

I = /{ - }(A(x,Ts(Uk),VTs(Uk)) — Az, Ty(u), VT () - (VT (ug) — VTs(u)) d,
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Is = Ho/ A, To(ur), VTs(w)) - [VTs(ur) = VTo(u)] 50 [0 (2)| d,
{lug|<s}

I; = H, / Alw, To(ug), V() - VTs(w)el 5@ ip(2)| da,
{lug|<s}
and
Iy = /{I - (blfuk’m +C(P)5alfuk’p_l\VTs(uk)\)eé‘Tj(uk)‘ [V (z)| de.
u|<s

We shall next treat each term on the right-hand side of (5.9).

The term I5: We know that wuy ﬁ) u a.e., from which we see that z, ﬁ) 0 a.e. and hence
Az, Ty (ug), V()T 0y (2) £ Az, Ty(u), VT ()l T3 @y (0)  ace.
Thus using the pointwise estimate, which follows from (2.3),

A, T (ug), VT ()T ()] < € max, }W(r)l ao| VT (uw) P~ + ars ™!
re|—=2s,2s

and the fact that |VTy(u)[P~1 € Lﬁ(Q), it follows from Lebesgue’s Dominated Conver-

gence Theorem that
A, Ty (ur), VT, ()TN () £ A, T (), VT, ()Tl (0)

_p_
strongly in L»-T(Q,R"™).
Since HTs(uk)HWOLp(Q) is uniformly bounded in k and Ts(ug) LA Ts(u) a.e. we get that

VT, (u) LN VTs(u) weakly in LP(Q2,R™). Also, since
(5.10)  X{juy|<s} LN X{ju|<s} &€ in Q\ {|u| = s} while [VTs(u)| = 0 a.e. on {|u| = s},
we have from Lebesgue’s Dominated Convergence Theorem that

VT ()X fur <} > VTs(w) X puj<sy = VTs(u) strongly in  LP(Q,R™).

Thus with the observation x(j,,|<s}(VTs(ug) — VTs(u)) = VTg(ug) — VT (U)X {juy|<s}s We
see that

(5.11) Xiun <o} (VTs(ug) = VTs(w) 20 weakly in  LP(9,R™).

The above calculations imply that limg .o, Io = 0.
The term I3: By (2.3), |A(x, ug, Vug)| is uniformly bounded in Lﬁ(Q) On the other

hand, again by (5.10) and Lebesgue’s Dominated Convergence Theorem we have
\X{‘ukbs}(—VTS(u))e‘5|TJ'(“k)‘w'(zk)\ LAY strongly in  LP(9).

Thus we see that lim;_,o, I3 = 0.
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The term [j: We have the inequalities A(z, uy, Vug) - VTj(ur) > ao|Vug[Px(ju,|<j) and
X{Ju|>s}5ign(ur)®(21) > 0. Thus using the second inequality in (2.4) we see that

I, = / [sign(ug ) Hp(x, ug, Vug) — 0A(x, ug, Vug) - VTj(ug)] ¥
{Jur|>s}

x sign(uy, )€l e (2) das

IN

/{ - (Y000 | VuglP — dao| Vg P X fjug|<jy ] sign(ug)ed T 0l (2) dae
Ug|>s

IN

/ ’yoao]Vuk]psign(uk)eé‘Tf(“k)‘w(zk) dz,
{Jur|>5}

where we used that 6 > 7y and j > s in the last inequality. At this point, using (5.5) with

j in place of s, we get

Io< nose WO [ Vulrds
re[—2s,2s] {|uk|>j}

< C(0)yao max |[o(r)] € e,
re(—2s,2s]

This yields that limsup;_, ., supy~q I} = 0.
The term [5: Since f € (Wol’p(Q))*, there is a vector field Fy € Lﬁ(Q,R”) such that
div Fy = f in D'(Q). Thus o = div (F + F}) which yields

(5.12) I; = 5/9(F+ Fy) - Tl (2 )V T (uy, )sign (uy,) da

—I-/(F + Fy) - Tyl (2)V 2, de.
Q

As ¥(0) = 0 we have (F + Fy)edl 5l () LN (0,...,0) a.e. in Q. Thus by Lebesgue’s

Dominated Convergence Theorem we find
(F + F)ed Tl (2,) LN (0,...,0) strongly in L%(Q,Rn).
Since VT (uy)sign(uy) is uniformly bounded in LP(€2,R™), we then conclude that
(5.13) 5 /Q (F + Fy) - 00l (2 )V T (ug)sign(ug) da 5 0.
We now write

(5.14) / (F + Fy) - Tl (2)V 2y, de = Ry + Ry,
Q
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where

Ry := / (F + Fy) - 00 (2) V2 de
{luk|<s}

Ry := / (F+ Fy) - Ty (2)V 2, da.
{luk|>s}

Again by Lebesgue’s Dominated Convergence Theorem we have
(F + Fp)ell Tl () L (F + F)ell Tl (0)  strongly in Lﬁ(Q,R").
Thus using (5.11) (recall that Vz, = VTs(ur) — VIs(u)) we obtain that

R1—>0.

On the other hand, from the definition of z; we have

Ry = / (F + Fr) - DT (o) (VT ()X
Q

Then by (5.10), Holder’s inequality, and Lebesgue’s Dominated Convergence Theorem,

it follows that

Ry 55 0.

Now recalling (5.14) we get
(5.15) / (F + Fy) - Ty () V2, da 5.
Q

Hence using (5.13) and (5.15) in (5.12) we conclude that limg_,o, I5 = 0.
The terms Ig, I7, and I5: Since ¥(0) = 0, by Lebesgue’s Dominated Convergence Theorem
we find

X{|uk‘§8}A(aE,T5(uk),VTs(u))e‘S‘Tj(“k)Hw(zk)] LAY strongly in Lﬁ(Q,R”)

and
X{‘UHSS}VTS(u)e‘S‘TJ(“k)‘]w(zk)\ 50 strongly in ~ LP(£2,R"™).
On the other hand, VT, (ug) — VTs(u) and A(z, Ts(ux), VIs(ug)) are uniformly bounded
in LP(Q,R™) and in L#(Q,R”), respectively. Thus we obtain that

kli)nolo Is = kh—>n;o Ir =0.
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As for the term Ig, we estimate
B[ sl o)t e e
{lug|<s}

which also converges to zero, as k_"oo, by Lebesgue’s Dominated Convergence Theorem.
We have shown that limy oo (—I2— I3+ 5+ I+ 17+ 13) = 0 and lim sup,_, , Supy~ I, =0.

For each fixed s > 0, we now let
Dy, = (A(x, Ts(ug), VTs(ug)) — Az, Ts(ug), VIs(w))) - (VTg(ug) — VTg(w)).
As Dy, > 0 (by (2.1)), in view of (5.9) we find that
(5.16) / Dy da % 0.
{luk|<s}
On the other hand, by (5.10),

X{|uk\>s}Dk = X{|ug|>s} [A(x7T8(uk)7 0) - A(x7T8(uk)7 VTS(U))] ’ (_VTS(U))

— 0 a.e. as k "oo.

It then follows from Lebesgue’s Dominated Convergence Theorem that

(5.17) / Dy da % 0.
{luk|>s}
Combining (5.16)-(5.17) we obtain

/Dkdxﬁo.
Q

At this point we use the conditions (2.1)-(2.3) and a result of F. E. Browder (see [10] or
[7, Lemma 5]) to complete the proof of (5.4). O

6. PROOF OF THEOREMS 1.2 AND 1.8

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. (i) Suppose that (1.1) has a solution in u € Wol’p(Q) such that (1.5)
holds for some A > 0. Then letting F' = |Vu[P~2Vu, we immediately have the desired
representation for o.

(ii) Suppose that 0 = div F' + f where F € L%(Q,R”) and f is a locally finite signed
measure in Q with |f| € (Wol’p(Q))* such that (1.7) holds for some A € (0,(p — 1)P71).
Applying Theorem 2.3 we obtain a solution to (1.1) that satisfies all of the properties
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stated in Theorem 1.2(ii) except the Poincaré-Sobolev inequality (1.5). To verify it, we use

lolP, @ € C°(R2), as a test function in (1.1) to get

/ ol VulPdz = p / Va2V - VigllplPdz + (o |ol?).

Thus by Hélder’s inequality and condition (1.7) we find

/ |<,o|p|w|pdw§p( / |Vu|P|<,o|pdx> ( / IVsolpdw> sy [ (Ve
Q Q Q

At this point applying Young’s inequality we obtain the Poincaré-Sobolev inequality (1.5)
with some A = A(p) > 0. O

Finally, we prove Theorem 1.8.

Proof of Theorem 1.8. By Theorem 1.2(ii) we can find a solution u € Wol’p(Q) to (1.1) such
that both €% — 1 and e7-T — 1 € Wol’p(Q). Thus if we define v = e7T then it holds that
v—1¢€ Wol’p(Q) and v~ = % € WHP(Q). We will show that v is indeed a solution of
(1.3).

We first observe that the function ¢*|Vu[P belongs to L'(€). Indeed,

/e“|Vu|pd:17 = / e“|Vu|pdx—|—/ e"|VulPdzx
Q {u>0}NQ {u<0}NQ

/ ep“|Vu|pdx+/ |VulPdz
{u=>0}NQ2 {u<0}NQ

/ \V(e“)]”dx—k/ |VulPde < +oo.
Q Q

IN

IN

Let ¢ € C(2). Using ¢; := pmin{e", j}, j > 0, as a test function for (1.1) we have
(6.1) /Q |VulP~2Vu - V;dr = /Q \VulPpdx + (o, ¢j).
We now send j oo in (6.1) to obtain
/ |VulP2Vu - V(pe')dr = / |VulPpe'dr + (o, pe*).
Q Q

Here we use e*|VulP € L'(Q2) and Lebesgue’s Dominated Convergence Theorem. We note
that actually by Lemma 2.2 we can immediately use pe" as a test function. Thus after

expanding and simplifying we get
[ I9uP2Vu- Tgletdn = (o e = (0,007
Q
Note that Vv = (p — 1)_1(3% Vu and thus Vu = (p — 1)6_1’%1VU. This yields that

(IVulP=2Vu)e" = (p — )P~ Vo[P 2V,
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and hence
Vo2V Veds = (p = 1)1 o)
Q
for all ¢ € C2°(€2). This shows that v is a solution of (1.3) as claimed.
Finally, inequality (1.10) follows from (1.5) and the equality |%|p =(p—1)"P|Vulp. O

Remark 6.1. The above argument also works for the more general equation
—div A(z, Vo) = (p — )P ovP™t in Q, v >0 in Q, v=1 on 09,
where A(x, &) satisfies (2.1)-(2.3) with 0 < ag < ag and the homogeneity condition
Az, t€) = P71 A(x, €) for all t > 0.
In this case v = er-1, where u € Wol’p(Q) solves the equation
—div A(z, Vu) = A(z,Vu) - Vu + o.

By Theorem 2.8, to guarantee that both e* — 1 and er1—1¢ Wol’p(Q), we also need to
assume
A€ <0, a(l)_pozg (p— 1)p_1) if il >p—1
%))
and
a
A€ (0, agp —ag) if -0 <p-1.

Qo
However, note that no regularity assumption in the x-variable of A(z,€) is needed here.
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