
ar
X

iv
:1

80
4.

09
63

2v
1 

 [
m

at
h.

A
P]

  2
5 

A
pr

 2
01

8

LIEB–THIRRING INEQUALITIES ON THE SPHERE

ALEXEI ILYIN AND ARI LAPTEV

Abstract. We prove on the sphere S
2 the Lieb–Thirring inequalities

for orthonormal families of scalar and vector functions both on the whole
sphere and on proper domains on S

2. By way of applications we obtain
an explicit estimate for the dimension of the attractor of the Navier–
Stokes system on a domain on the sphere with Dirichlet non-slip bound-
ary conditions.

1. Introduction

The Schrödinger operator in L2(R
d)

−∆− V

with a real-valued potential V sufficiently fast decaying at infinity has a
discrete negative spectrum satisfying the Lieb–Thirring spectral inequali-
ties [27], [9], [25]

∑

λi≤0

|λi|γ ≤ Lγ,d

∫

Rd

V+(x)
γ+d/2dx, (1.1)

where V+(x) = (|V (x)|+ V (x))/2 is the positive part of V .
For γ ≥ 3/2 the sharp value of the Lieb–Thirring constants Lγ,d was

found in [24]:

Lγ,d = Lcl
γ,d :=

1

(2π)d

∫

Rd

(1− |ξ|2)γ+dx =
Γ(γ + 1)

(4π)d/2Γ(d/2 + γ + 1)
. (1.2)

For 1 ≤ γ < 3/2 the best known estimate of Lγ,d was obtained in [6]:

Lγ,d ≤
π√
3
· Lcl

γ,n,
π√
3
= 1.8138 . . . . (1.3)

The proof of (1.2) is essentially based on the following two ingredients,
while the third one, in addition, is essential for the proof of (1.3):
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2 A.ILYIN AND A.LAPTEV

1). Sharp one-dimensional Lieb–Thirring estimates for the Scrhödin-
ger operators on R with matrix-valued potentials for γ ≥ 3/2 [24].
2). The Cartesian coordinates in R

d, which make it possible to use
the lifting argument with respect to dimensions [23], [24].
3). One-dimensional Lieb–Thirring estimates for the Scrhödinger
operators on R with matrix-valued potentials for γ = 1, or, equiv-
alently, one-dimensional generalized Sobolev inequality for traces of
matrices [6], [7].

We are interested in this work in Lieb–Thirring inequalities on the sphere.
Lieb–Thirring inequalities were generalized in [11], [33] to higher-order op-
erators and Riemannian manifolds, however, the method involves extension
operators for Sobolev spaces and therefore no information is available on
the corresponding constants.
Explicit bounds for the Lieb–Thirring constants on the sphere were found

in [14] by means of the Birman–Schwinger kernel, the constant for S2 and
γ = 1 was improved in [18]. The same bound for the two-dimensional torus
(with equal periods) was also obtained in [18].
The case of multi-dimensional anisotropic torus Td (a torus with different

periods) was studied in [20]. The natural condition that the functions have
zero mean value over the whole torus was replaced by a stronger condition
that the functions have zero mean value over the shortest period uniformly
for all remaining coordinates. Under this condition it was shown that inde-
pendently of the ratios of the periods it holds

Lγ,d(T
d) ≤

(

π√
3

)d

· Lcl
γ,n, γ ≥ 1. (1.4)

Here we clearly have the Cartesian coordinates on T
d, and, furthermore,

one-dimensional Lieb–Thirring estimates for the Scrhödinger operators with
matrix-valued potentials in the periodic case [19], [20]. However, sharp
semiclassical Lieb–Thirring inequalities for γ ≥ 3/2 are not known to hold
for the periodic boundary conditions even for scalar potentials, which leads,
unlike (1.3), to the accumulation along with the dimension of the factor
π/

√
3 in (1.4).

As far as the sphere is concerned, none of the three points mentioned
above is available.
In this work we consider Lieb–Thirring inequalities in the dual formu-

lation for orthonormal families on the two-dimensional sphere S
2 and the

torus T2 (with equal periods) by using the method of [30], [31] (see also [8],
[9]). In the case of Rd this approach does not give the best to date estimates
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of the constants obtained in [6], however, as we shall see, this approach is
very general and flexible, and works nicely in the case of the sphere pro-
ducing rather good constants in the Lieb–Thirring inequalities. We restrict
ourselves to the most important case of S2 and consider the Lieb–Thirring
inequalities in the following three settings and prove in Section 2 that:

for an orthonormal family {ψj}Nj=1 ∈ H1(S2) on the whole sphere

with
∫

S2
ψjdS = 0 it holds

∫

S2

( N
∑

j=1

ψj(s)
2

)2

dS ≤ 9

4π

N
∑

j=1

‖∇ψj‖2; (1.5)

for an orthonormal family of vector functions {uj}Nj=1 ∈ H1
0 (Ω, TS

2)
with supports in a domain Ω ⊆ S

2

∫

Ω

( N
∑

j=1

|uj(s)|2
)2

dS ≤ 9

2π

N
∑

j=1

(

‖ div uj‖2 + ‖ rotuj‖2
)

, (1.6)

where the constant goes over to 9/(4π) if div uj = 0 (or rotuj = 0);

for an orthonormal family {ψj}Nj=1 ∈ H1
0 (Ω), Ω ⊂ S

2

∫

Ω

( N
∑

j=1

ψj(s)
2

)2

dS ≤ 2

π

4π + |Ω|
4π − |Ω|

N
∑

j=1

‖∇ψj‖2. (1.7)

We observe that the constants in (1.5),(1.6) significantly improve the
previously known estimate of the constants [18], which was 3/2. Also, the
constant in (1.7) blows up as Ω → S

2, since on the whole sphere the Lieb–
Thirring inequality cannot hold without the exclusion of the zero mode.
Sharp estimates for the first eigenvalue of the Schrödinder operator on S

d−1

when the zero mode is important were obtained in [5].
In the same framework we consider in the end of Section 2 the two-

dimensional square torus T2 and show that for an orthonormal family with
orthogonality to constants it holds

∫

T2

( N
∑

j=1

ψj(x)
2

)2

dx ≤ 6

π2

N
∑

j=1

‖∇ψj‖2. (1.8)

In Section 3 we give applications of the obtained results (namely, inequal-
ity (1.6)) to the Navier–Stokes system in a domain Ω on S

2 with Dirichlet
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boundary conditions. The system reads:
{

∂tu+∇uu+∇p = ν∆u+ g,

u
∣

∣

t=0
= u0, div u = 0, u

∣

∣

∂Ω
= 0.

(1.9)

In the case Ω ⊂ R
2 we clearly have ∇vu =

∑2
i=1 v

i∂iu, while on the sphere
∇vu is the covariant derivative of u along v, and ∆ is the vector Laplace–de
Rham operator.
There is a vast literature devoted to the analysis of the long time be-

haviour of the solutions of this system described in terms of global attrac-
tors, see, for instance, [1], [33] and the references therein. A global attractor
A is a compact strictly invariant set which attracts bounded sets in the
corresponding phase space as t → ∞. An important geometric character-
ization of the attractor is its finite (Hausdorff and fractal) dimension. For
more than thirty years the estimate in [33]

dimF A ≤ c(Ω)
‖f‖ |Ω|
ν2

, Ω ⊂ R
2 (1.10)

remains the best available estimate in terms of the physical parameters:
the viscosity coefficient ν, the size of the domain |Ω| = meas(Ω), and the
magnitude of the forcing term ‖f‖ = ‖f‖L2(Ω). We also point of the impor-
tant paper [26] in this connection. Finally, this estimate was written in an
explicit form in [17]:

dimF A ≤ 1

4π31/4
‖f‖|Ω|
ν2

= 0.060 . . . · ‖f‖|Ω|
ν2

, Ω ⊂ R
2. (1.11)

We show in Section 3 that in the case of Ω ⊂ S
2 the estimate of the type

(1.10) still holds, and, furthermore, can also be written in an explicit form

dimF A ≤ 3

2(2π)3/2
‖f‖|Ω|
ν2

= 0.095 . . . · ‖f‖|Ω|
ν2

, Ω ⊂ S
2. (1.12)

To prove (1.12), in addition to (1.6) we use the following Li–Yau type bound
n

∑

k=1

λk ≥ 2π

|Ω| n
2 (1.13)

for the eigenvalues λk of the Stokes problem on Ω ⊂ S
2:

−∆uj + ∇pj = λjuj,

div uj = 0, uj|∂Ω = 0,
(1.14)

which was recently obtained in [21] and is exactly the same as in the case
Ω ⊂ R

2 [17].
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2. Lieb–Thirring inequalities on S
2 and T

2

We first recall the basic facts concerning the Laplace operator on the
sphere S2 (see, for instance, [32]). We have for the (scalar) Laplace–Beltrami
operator ∆ = div∇:

−∆Y k
n = n(n + 1)Y k

n , k = 1, . . . , 2n+ 1, n = 0, 1, 2, . . . . (2.1)

Here the Y k
n are the orthonormal real-valued spherical harmonics and each

eigenvalue Λn := n(n+ 1) has multiplicity 2n + 1.
The following identity is essential in what follows [28], [32]: for any s ∈ S

2

2n+1
∑

k=1

Y k
n (s)

2 =
2n+ 1

4π
. (2.2)

This identity, in turn, follows from the Laplace addition theorem for the
spherical harmonics on S

2:

2n+1
∑

k=1

Y k
n (s)Y

k
n (s0) =

2n+ 1

4π
Pn(s · s0), (2.3)

where Pn(x), x ∈ [−1, 1] are the classical Legendre polynomials.

The scalar case. We first consider the scalar case. We exclude the zero
mode and introduce the following notation labelling the eigenfunctions and
the corresponding eigenvalues with a single subscript counting multiplicities:
−∆yi = λiyi, where

{yi}∞i=1 = {Y 1
n , . . . , Y

2n+1
n }∞n=1, {λi}∞i=1 = {Λn, . . . ,Λn}∞n=1

2n+1 times

. (2.4)

Theorem 2.1. Let {ψj}Nj=1 ∈ H1(S2) be an orthonormal family of scalar

functions with zero average:
∫

S2
ψj(s)dS = 0. Then ρ(s) :=

∑N
j=1 ψj(s)

2

satisfies the inequality

∫

S2

ρ(s)2dS ≤ 9

4π

N
∑

j=1

‖∇ψj‖2. (2.5)

Proof. For E ≥ 0 we define the spectral projections

PE =
∑

λj<E

(·, yj)yj and P⊥
E =

∑

λj≥E

(·, yj)yj.
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We denote by ∆̇ the Laplace operator restricted to the invariant subspace
of functions orthogonal to constants, that is, ∆̇ = P⊥

2 ∆P⊥
2 . Then

−∆̇ =

∞
∑

j=1

λj(·, yj)yj.

Next, since

∞
∑

j=1

λjaj = λ1(a1+a2+ . . . )+(λ2−λ1)(a2+a3+ . . . )+ · · · =
∫ ∞

0

∑

λj≥E

ajdE,

it follows that

− ∆̇ =

∫ ∞

0

∑

λj≥E

(·, yj)yjdE =

∫ ∞

0

P⊥
E dE. (2.6)

Given the orthonormal family {ψj}Nj=1, let Γ be the finite rank orthogonal
projection

Γ =
N
∑

j=1

(·, ψj)ψj .

Then Tr(−∆̇)Γ = Tr(−∆)Γ =
∑N

j=1 ‖∇ψj‖2, which is on the right-hand

side in (2.5). On the other hand, by the cyclic property of the trace and (2.6)
we have

N
∑

j=1

‖∇ψj‖2 = Tr(−∆̇)Γ = TrΓ (−∆̇)Γ =

=

∫ ∞

0

TrΓP⊥
E ΓdE =

∫ ∞

0

TrP⊥
E ΓP

⊥
E dE =

=

∫ ∞

0

∫

S2

ρP⊥

E
ΓP⊥

E
(s)dSdE =

∫

S2

∫ ∞

0

ρP⊥

E
ΓP⊥

E
(s)dEdS,

(2.7)

where

ρP⊥

E
ΓP⊥

E
(s) =

N
∑

j=1

‖P⊥
E ψj‖2ψj(s)

2.

Now let B be a spherical cap around a point a ∈ S
2 with area |B| and let χB

be the corresponding characteristic function. Also, let E ≥ 2 (= λ1 = Λ1).
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Then denoting by ‖ · ‖HS the Hilbert–Schmidt norm we obtain

(
∫

B

ρ(s)dS

)1/2

= ‖Γ χB‖HS ≤ ‖ΓPEχB‖HS + ‖ΓP⊥
E χB‖HS =

= ‖ΓPEχB‖HS +

(
∫

B

ρP⊥

E
ΓP⊥

E
(s)dS

)1/2

.

(2.8)

Using that ‖Γ‖ = 1 and then the fact that both χB and PE are projections,
we find that

‖ΓPEχB‖2HS ≤ ‖PEχB‖2HS =
∑

λj<E

∫

S2

yj(s)
2χB(s)dS =

=

n(n+1)<E
∑

n=1

∫

S2

2n+1
∑

k=1

Y k
n (s)

2χB(s)dS =
1

4π
|B|

n(n+1)<E
∑

n=1

(2n+ 1),

(2.9)

where we used the key identity (2.2) at the last step.
Let n(E) = (

√
1 + 4E−1)/2 be the positive root of the quadratic equation

n(n+ 1) = E and let [n(E)] be the integer part of it. We estimate the sum
on the right-hand side

n(n+1)<E
∑

n=1

(2n+ 1) = ([n(E)] + 1)2 − 1 ≤ (n(E) + 1)2 − 1 =

=
4E + 2

√
1 + 4E − 2

4
≤ Emax

E≥2

4E + 2
√
1 + 4E − 2

4E
=

3

2
E.

Substituting this into (2.8) and letting |B| → 0 we obtain

ρ(a)1/2 ≤ C1/2E1/2 + ρP⊥

E
ΓP⊥

E
(a)1/2, C =

3

8π
.

Since ρP⊥

E
ΓP⊥

E
≥ 0 we have actually shown that

ρP⊥

E
ΓP⊥

E
(a) ≥

(

ρ(a)1/2 − C1/2E1/2
)2

+
. (2.10)

We derived this lower bound under the condition that E ≥ 2. However,
since P⊥

E = I for 0 ≤ E < 2 and ρP⊥

E
ΓP⊥

E
= ρ, lower bound (2.10) holds for

all E ≥ 0. Integrating with respect to E we obtain
∫ ∞

0

ρP⊥

E
ΓP⊥

E
(a)dE ≥

∫ ∞

0

(

ρ(a)1/2 − C1/2E1/2
)2

+
dE =

1

6C
ρ(a)2 =

4π

9
ρ(a)2.
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Finally, integration over S2 in (2.7) completes the proof:

N
∑

j=1

‖∇ψj‖2 ≥
4π

9

∫

S2

ρ(s)2dS.

�

The vector case. In the vector case we have the identity for the gradients
of spherical harmonics that is similar to (2.2) (see [13]): for any s ∈ S

2

2n+1
∑

k=1

|∇Y k
n (s)|2 = n(n+ 1)

2n+ 1

4π
. (2.11)

This identity is essential for inequalities for vector functions on S
2. Sub-

stituting ϕ(s) = Y k
n (s) into the identity

∆ϕ2 = 2ϕ∆ϕ+ 2|∇ϕ|2

we sum the results over k = 1, . . . , 2n + 1. In view of (2.2) the left-hand
side vanishes and we obtain (2.11) since the Y k

n (s)’s are the eigenfunctions
corresponding to Λn.
In the vector case we first define the Laplace operator acting on (tangent)

vector fields on S
2 as the Laplace–de Rham operator −dδ − δd identifying

1-forms and vectors. Then for a two-dimensional manifold (not necessarily
S
2) we have [12, 13]

∆u = ∇ div u− rot rotu, (2.12)

where the operators ∇ = grad and div have the conventional meaning. The
operator rot of a vector u is a scalar and for a scalar ψ, rotψ is a vector:

rotu := − div(n× u), rotψ := −n×∇ψ,
where n is the unit outward normal vector, and in the local frame n× u =
(−u2, u1).
Integrating by parts we obtain

(−∆u, u)L2(TS2) = ‖ rotu‖2 + ‖ div u‖2. (2.13)

The vector Laplacian has a complete in L2(TS
2) orthonormal basis of

vector eigenfunctions. Using notation (2.4) we have

−∆wj = λjwj, −∆vj = λjvj , (2.14)

where

wj = λ
−1/2
j n×∇yj, divwj = 0, vj = λ

−1/2
j ∇yj, rot vj = 0.
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Hence, on S
2, corresponding to the eigenvalue Λn = n(n + 1), where

n = 1, 2, . . . , there are two families of 2n + 1 orthonormal vector-valued
eigenfunctions wk

n(s) and vkn(s), where k = 1, . . . , 2n + 1 and (2.11) gives
the following important identities: for any s ∈ S

2

2n+1
∑

k=1

|wk
n(s)|2 =

2n+ 1

4π
,

2n+1
∑

k=1

|vkn(s)|2 =
2n+ 1

4π
. (2.15)

We finally observe that since the sphere is simply connected, −∆ is strictly
positive −∆ ≥ Λ1I = 2I.

Theorem 2.2. Let {uj}Nj=1 ∈ H1(TS2) be an orthonormal family of vector

fields in L2(TS2). Then

∫

S2

ρ(s)2dS ≤ 9

2π

N
∑

j=1

(‖ rotuj‖2 + ‖ div uj‖2), (2.16)

where ρ(s) =
∑N

j=1 |uj(s)|2. If, in addition, div uj = 0 (or rotuj = 0), then

∫

S2

ρ(s)2dS ≤ 9

4π
·























N
∑

j=1

‖ rotuj‖2, div uj = 0,

N
∑

j=1

‖ div uj‖2, rotuj = 0.

(2.17)

Proof. We prove (2.16), the proof of (2.17) is similar. For E ≥ 0 we set

PE =
∑

λj<E

(

(·, wj)wj + (·, vj)vj
)

, P⊥
E =

∑

λj≥E

(

(·, wj)wj + (·, vj)vj
)

.

Then as before

−∆ =

∫ ∞

0

∑

λj≥E

(

(·, wj)wj + (·, vj)vj
)

dE =

∫ ∞

0

P⊥
E dE.

The finite rank operator Γ is now Γ =
∑N

j=1(·, uj)uj, and in view of (2.13)

equality (2.7) goes over to

N
∑

j=1

(

‖ div uj‖2 + ‖ rotuj‖2
)

= Tr(−∆)Γ =

∫

S2

∫ ∞

0

ρP⊥

E
ΓP⊥

E
(s)dEdS,

where

ρP⊥

E
ΓP⊥

E
(s) =

N
∑

j=1

‖P⊥
E uj‖2|uj(s)|2.
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Next, (2.8) is formally unchanged and (2.9) in view of (2.15) goes over to

‖PEχB‖2HS =
∑

λj<E

∫

S2

(

|wj(s)|2 + |vj(s)|2
)

χB(s)dS =
2

4π
|B|

n(n+1)<E
∑

n=1

(2n+ 1),

and we complete the proof as in Theorem 2.1 with C = 3/(4π). �

Lieb–Thirring inequality on domains on S
2. In conclusion we con-

sider Lieb–Thirring inequalities for scalar functions in a domain on S
2 with

Dirichlet boundary conditions. Let {ψj}Nj=1 ∈ H1
0 (Ω) be an orthonormal

family in L2(Ω), where Ω ⋐ S
2 is a proper domain on S

2 with |Ω| < 4π.
Of course, the Lieb–Thirring inequality holds for this system, and we find
below an estimate for the constant.
We extend the ψj ’s by zero to the whole sphere (preserving the same

notation). The functions ψj , however, do not necessarily have zero average.
Therefore we consider the operator

A = −∆+ aI, a > 0.

on the whole space L2(S
2) (without the orthogonality condition). Then

infspecA = a. We also include the eigenvalue λ0 = Λ0 = 0 into (2.4), so
that it goes over to

{yi}∞i=0 = {Y 1
n , . . . , Y

2n+1
n }∞n=0, {λi}∞i=0 = {Λn, . . . ,Λn}∞n=0

2n+1 times

. (2.18)

Following the proof of Theorem 2.1 for E ≥ 0 the projections are now

PE =
∑

λj+a<E

(·, yj)yj and P⊥
E =

∑

λj+a≥E

(·, yj)yj.

Then

A =
∞
∑

j=0

(λj + a)(·, yj)yj,

and

A =

∫ ∞

0

∑

λj+a≥E

(·, yj)yjdE =

∫ ∞

0

P⊥
E dE. (2.19)

As in Theorem 2.1 the operator Γ =
∑N

j=1(·, ψj)ψj and (2.7) goes over to

N
∑

j=1

(

‖∇ψj‖2 + a‖ψj‖2
)

= TrAΓ =

∫

S2

∫ ∞

0

ρP⊥

E
ΓP⊥

E
(s)dEdS.
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Inequality (2.8) is formally as before and (2.9) becomes

‖PEχB‖2HS =
∑

λj+a<E

∫

S2

yj(s)
2χB(s)dS =

1

4π
|B|

n(n+1)+a<E
∑

n=0

(2n+ 1) ≤

≤ 1

4π
|B|

(

N(E, a) + 1
)2

=
1

4π
|B|

(
√

1 + 4(E − a) + 1
)2

4
≤ 1

4π
|B|E F (a),

where N(E, a) is the root of the equation n(n+1)− (E−a) = 0 and where

F (a) := max
E≥a

(
√

1 + 4(E − a) + 1
)2

4E
=

{

1/a, a ≤ 1/2;
4a/(4a− 1), a ≥ 1/2.

(2.20)

We can now complete the argument as in Theorem 2.1 to obtain the in-
equality

∫

Ω

ρ(s)2dS ≤ 3F (a)

2π

N
∑

j=1

(

‖∇ψj‖2 + a‖ψj‖2
)

≤

≤ 3F (a)

2π

(

1 + aλ1(Ω)
−1
)

N
∑

j=1

‖∇ψj‖2,
(2.21)

where λ1(Ω) is the first eigenvalue of the Dirichlet Laplacian in Ω, for which
we have the following lowed bound obtained in [21, Corollary 3.2]:

λ1(Ω) ≥
2π

|Ω|

(

1− |Ω|
4π

)

.

Setting a = 1 (so that F (a) = 4/3) we have proved the following result.

Theorem 2.3. Let Ω be a domain on S
2 with |Ω| < |S2| = 4π. Let

{ψj}Nj=1 ∈ H1
0 (Ω) be an orthonormal family of scalar functions. Then

ρ(s) :=
∑N

j=1 ψj(s)
2 satisfies the inequality

∫

Ω

ρ(s)2dS ≤ k(Ω)
N
∑

j=1

‖∇ψj‖2L2(Ω), k(Ω) ≤ 2

π

4π + |Ω|
4π − |Ω| . (2.22)

Remark 2.1. The constant in (2.22) blows up as |Ω| → 4π as it should,
since the Lieb–Thirring inequality for scalar functions cannot hold on the
whole sphere without the exclusion on the zero mode. This does not happen
in the vector case, since the vector Laplacian is positive definite, and for
any Ω ⊆ S

2 and an orthonormal family {uj}Nj=1 ∈ H1
0 (Ω, TS

2) extension by
zero shows that the corresponding Lieb–Thirring constants are uniformly
bounded by the constant on the whole sphere.
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Remark 2.2. In (2.22) we have just set a = 1, while of course

k(Ω) ≤ 3

2π
min
a≥1/2

F (a)
(

1 + aλ1(Ω)
−1
)

.

Given (2.20) we can find the minimum explicitly. Avoiding writing a long
expression we just write the asymptotic behaviour of our estimate of the
constant in the two regimes:

k(Ω) → 3

2π
as |Ω| → 0; k(Ω) ∼ 12

4π − |Ω| as |Ω| → 4π.

However, setting a = 1/2 in (2.21) we see that k(Ω) ≤ 12/(4π− |Ω|) for all
|Ω| < 4π. It is also worth pointing out that 3/(2π) is the estimate of the
Lieb–Thirring constant in R

2 by the approach of [30], [31], (see also [9]).

Lieb–Thirring inequality on the torus. The case of the square 2D
torus T

2 = [0, 2π]2 is treated in exactly the same way as in Theorem 2.1.
The orthonormal eigenfunctions of −∆ in the space of functions with zero
average are

1

2π
eik·x, k ∈ Z

2
0 = {k = (k1, k2) ∈ Z

2, |k|2 > 0}

with eigenvalues k21+k
2
2. The first eigenvalue is 1 and for E ≥ 1 the number

N(E) of eigenvalues less than or equal to E satisfies

N(E) ≤ 4E. (2.23)

In fact, it is well known that limE→∞N(E)/E = π. Therefore it suffices to
verify (2.23) for finitely many eigenvalues. We have N(1) = 4, N(5) = 20
and for other E we have the strict inequality in (2.23).

Theorem 2.4. Let {ψj}Nj=1 ∈ H1(T2) be an orthonormal family of scalar

functions with zero average:
∫

T2 ψj(x)dx = 0. Then ρ(x) :=
∑N

j=1 ψj(x)
2

satisfies the inequality
∫

T2

ρ(x)2dx ≤ 6

π2

N
∑

j=1

‖∇ψj‖2. (2.24)

Proof. Up to (2.8) the proof is the same as in Theorem 2.1. Setting now
E ≥ 1, in view of (2.23) we have

‖PEχB‖2HS =
1

4π2

∑

k∈Z2

0
, |k|2<E

∫

T2

χB(x)dx ≤ 1

4π2
N(E)|B| ≤ 1

π2
E|B|,

and we obtain the analog of (2.10) with C = 1/π2. The completion of the
proof is again exactly the same. �
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Remark 2.3. The case of multidimensional anisotropic torus with arbitrary
periods was studied in [20] under a stronger orthogonality condition that the
functions have zero average with respect to the shortest coordinate. Then,
for example, in the 2D case the constant is π/6 < 6/π2 and is independent
of the aspect ratio.

Remark 2.4. It is also worth pointing out that the 2D Lieb–Thirring in-
equalities for one function, that is, for N = 1 turn into multiplicative in-
equality of the form

‖ψ‖4L4 ≤ k‖ψ‖2‖∇ψ‖2,
where k is the corresponding Lieb–Thirring constant. In the context of
the Navier–Stokes equations this inequality is called the Ladyzhenskaya in-
equality and is important both in the theory, and applications. For example,
the estimate for k specifically for this inequality on the torus T

2 in [10] is
1/(2π2) + 1/(

√
2π) + 2 = 2.27 . . . , while (1.8) gives 6/π2 = 0.60 . . . .

3. Navier–Stokes system in a domain on S
2

We now consider the Navier–Stokes system in a domain Ω ⊂ S
2, see (1.9)

and write it as an evolution equation

∂tu+ νAu+B(u, u) = f, u(0) = u0, (3.1)

in the phase space H , which is the completion in L2(Ω, TS
2) of the linear

set of smooth divergence free tangent vector functions compactly supported
in Ω. Let P be the corresponding orthogonal projection. Then A = −P∆
is the Stokes operator and B(u, v) = P (∇uv) is the bilinear term defined
by duality as follows: for all u, v, w ∈ H1

0 (Ω, TS
2) ∩H

〈Au, v〉 = (rotu, rot v),

〈B(u, v), w〉 =
∫

Ω

∇u(s)v(s) · w(s) dS =: b(u, v, w).

Equation (3.1) generates the semigroup of solution operators St : H → H ,
Stu0 = u(t) which has a compact global attractor A ⋐ H . The case of whole
sphere (or a two-dimensional manifold without boundary) was studied in
[12], [13]. The fact that Ω is not the whole sphere does not play a role
here (see, however, Remark 3.2). The existence of the attractor is shown
similarly to the case of a bounded domain in R

2 with Dirichlet boundary
conditions (see, for instance, [1], [33] for the case of a domain with smooth
boundary and [22], [29] for a nonsmooth domain). The attractor A is the
maximal strictly invariant compact set.
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Theorem 3.1. The fractal dimension of A satisfies the estimate

dimF A ≤ 3

2(2π)3/2
‖f‖|Ω|
ν2

. (3.2)

Proof. Following the general scheme we have to estimate the m-trace of
the semigroup linearized on the solution lying on the attractor [33]. The
semigroup St is uniformly differentiable in H with differential L(t, u0) : ξ →
U(t) ∈ H , where U(t) is the solution of the variational equation

∂tU = −νAU −B(U, u(t))−B(u(t), U) =: L(t, u0)U, U(0) = ξ. (3.3)

We estimate the numbers q(m) (the sums of the first m global Lyapunov
exponents):

q(m) := lim sup
t→∞

sup
u0∈A

sup
{vj}mj=1

1

t

∫ t

0

m
∑

j=1

(L(τ, u0)vj, vj) dτ, (3.4)

where {vj}mj=1 ∈ H1
0 (Ω, TS

2) ∩ H is an arbitrary orthonormal system (see
[1], [4], [33]). Using below the well-known identity b(u, v, v) = 0 and the
estimate

m
∑

j=1

b(vj , u, vj) ≤ 2−1/2‖ρ‖‖ rotu‖,

where ρ(s) =
∑m

j=1 |vj(s)|2, see [16, Lemma 3.2], we obtain also using (2.13)

m
∑

j=1

(L(t, u0)vj, vj) = −ν
m
∑

j=1

‖ rot vj‖2 −
m
∑

j=1

b(vj , u(t), vj) ≤

≤ −ν
m
∑

j=1

‖ rot vj‖2 + 2−1/2‖ρ‖‖ rotu(t)‖ ≤

≤ −ν
m
∑

j=1

‖ rot vj‖2 + 2−1/2

(

cLT

m
∑

j=1

‖ rot vj‖2
)1/2

‖ rotu(t)‖ ≤

≤ −ν
2

m
∑

j=1

‖ rot vj‖2 +
cLT
4ν

‖ rotu(t)‖2 ≤ −νcLYm
2

2|Ω| +
cLT
4ν

‖ rotu(t)‖2.

Here we used the Lieb–Thirring inequality (2.17) with cLT ≤ 9/(4π) and
inequality (1.13), which gives by the variational principle that for the or-
thonormal family {vj}mj=1 ∈ H1

0 (Ω, TS
2) ∩H it holds

m
∑

k=1

‖ rot vk‖2 ≥
m
∑

k=1

λk ≥
cLYm

2

|Ω| , cLY = 2π, (3.5)
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where λk are the eigenvalues of the Stokes operator (1.14). Using the well-
known estimate [1], [33]

lim sup
t→∞

sup
u0∈A

1

t

∫ t

0

‖ rotu(τ)‖2dτ ≤ ‖f‖2
λ1ν2

,

for the solutions lying on the attractor we obtain for the numbers q(m):

q(m) ≤ −νcLYm
2

2|Ω| +
cLT‖f‖2
4λ1ν3

≤ −νcLYm
2

2|Ω| +
cLT‖f‖2|Ω|
4cLYν3

.

It was shown in [4], [33] and in [2], [3], respectively, that both the Hausdorff
and fractal dimensions of A are bounded by the number m∗ for which
q(m∗) = 0. This gives that

dimF A ≤ 1

cLY

(

cLT
2

)1/2‖f‖|Ω|
ν2

and completes the proof since cLY = 2π and cLT ≤ 9/(4π). �

Remark 3.1. In terms of the physical parameters estimate (3.2) is the
same as (1.11) in the case Ω ⊂ R

2, so that the (constant) curvature does
not seem to play a role. Furthermore, the numerical coefficients are different
only due to the fact that the current estimate for the Lieb–Thirring constant
for orthonormal families of two-dimensional divergence free vector functions
in Ω ⊂ R

2 is 1/(2
√
3) (see [6], [17]), which is better than our estimate for

the sphere 9/(4π), while, as mentioned above, the constants in the Li-Yau
lower bounds for the Stokes operator in Ω ⊂ R

2 and Ω ⊂ S
2 are the same.

Remark 3.2. In the case when Ω = S
2 (or, more generally, when Ω is a 2D

manifold without boundary) we have an additional important orthogonality
relation

b(u, u, Au) = 0,

which is the same as in the 2D space periodic case. This makes it possible to
improve the estimate of the dimension in terms of the physical parameters
and obtain that as in the case of the torus T2 [33] it holds (see [13, 15])

dimF A ≤ cG2/3(1 + logG)1/3, G =
‖f‖|Ω|
ν2

.
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