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On Short Sums Involving Fourier Coefficients of

Maass Forms

Jesse Jääsaari
∗

Abstract

We study sums of Hecke eigenvalues of Hecke-Maass cusp forms for the
group SL(n,Z), with general n ≥ 3, over certain short intervals under the
assumption of the generalised Lindelöf hypothesis and a slightly stronger
upper bound concerning the exponent towards the Ramanujan-Petersson
conjecture that is currently known. In particular, in this case we evaluate
the second moment of the sums in question asymptotically.

1 Introduction

Let f be a Maass cusp form of type ν ∈ C
n−1 for the full modular group SL(n,Z)

with Fourier coefficients A(m1, ...,mn−1) = Af (m1, ...,mn−1). Throughout the
article, let n ≥ 3 be a positive integer. The Fourier-Whittaker expansion of f
is given by

f(z) =
∑

γ∈U(n−1,Z)\SL(n−1,Z)

∞∑

m1=1

· · ·
∞∑

mn−2=1

∑

mn−1 6=0

A(m1, ...,mn−1)∏n−1
k=1 |mk|k(n−k)/2

·WJacquet

(
M

(
γ

1

)
z, ν, ψ(

1,...,1,
mn−1

|mn−1|

)
)
,

where

M =




m1 · · ·mn−2|mn−1|
. . .

m1m2

m1

1



,

U(n− 1,Z) is the group of (n− 1)× (n− 1) upper triangular matrices with ones
on the diagonal and integral entries above the diagonal, ψ(1,...,1,mn−1/|mn−1|) is
a certain character, and WJacquet is the Jacquet-Whittaker function of type ν
for the character ψ(1,...,1,mn−1/|mn−1|). For more details we refer to Goldfeld’s
book [6]. We further assume that the Maass cusp form f is an eigenfunction for
the full Hecke ring and normalised so that A(1, ..., 1) = 1.

In this case it is known that the eigenvalue of f under the mth Hecke opera-
tor Tm (see Section 4) is given by A(m, 1, ..., 1). These coefficients A(m, 1, ..., 1)
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also appear as the Dirichlet series coefficients in the standard Godement-Jacquet
L-function attached to such Maass cusp form and thus it is natural to concen-
trate on them. Such coefficients A(m, 1, ..., 1) are fascinating number theoretic
objects and they have been studied extensively as are the Fourier coefficients of
holomorphic cusp forms and Maass cusp forms in the classical situation n = 2.

Obtaining estimates for the sum of Hecke eigenvalues of cusp forms is a
classical problem with a long history as we will now explain. For the Fourier
coefficients of a holomorphic cusp form, denoted by a(m), the trivial bound for
the long sum

∑

m≤x

a(m)

is ≪ε x
1+ε, for every ε > 0. First to improve this was Hecke [9] who showed

essentially squareroot cancellation and this was soon after sharpened by Walfisz
[28]. Then Rankin [23] showed that one has an estimate of the form

∑

m≤x

a(m) ≪ x2/5,

which was the sharpest result for a long time. The currently best known upper
bound is ≪ε x

1/3(log x)−δ+ε for δ = (8 − 3
√
6)/10 proved by Rankin himself

[24]. For the classical Maass cusp form coefficients t(m), it is known that

∑

m≤x

t(m) ≪ε x
1/3+ϑ/3+ε,

where ϑ ≥ 0 is the exponent towards the Ramanujan-Petersson conjecture for
classical Maass cusp forms [8]. It is known that ϑ ≤ 7/64. Currently the
best known unconditional result for classical Maass cusp form coefficients is
≪ε x

1027/2827+ε, which is due to Lü [20]. It is a folklore conjecture that the
correct upper bound is≪ε x

1/4+ε, for both holomorphic cusp forms and classical
Maass cusp forms.

Concerning the higher rank analogue, Goldfeld and Sengupta [7] have re-
cently shown that for the Fourier coefficients of a GL(n) Maass cusp form, the
upper bound

∑

m≤x

A(m, 1, ..., 1) ≪ε x
(n3−1)/(n3+n2+n+1)+ε

holds for any n ≥ 3. Again the trivial bound for the sum is ≪ε x
1+ε. This was

recently slightly improved further by Meher and Murty [21]. The conjectural
upper bound in this case is ≪ε x

1/2−1/2n+ε.
It is natural to study analogous problems for shorter summation ranges

[x, x +∆] with ∆ = o(x). Intuitively, studying short sums makes sense as one
might suspect that shorter intervals capture the erratic nature of the Fourier
coefficients better than longer intervals. Furthermore, when ∆ is small com-
pared to x, studying short sums is analogous to studying classical error terms
in analytic number theory, such as the error term in Dirichlet’s divisor problem,
in the short intervals.

Pointwise bounds for short sums involving Fourier coefficients of cusp forms
with an exponential twist (of which the plain sum of coefficients corresponds to
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the case of a trivial twist) have been obtained first by Jutila [13] and later by
Ernvall-Hytönen and Karppinen [5] in the GL(2)-setting for holomorphic cusp
forms. Recently analogues of many results of [5] have been proved for sums
involving Fourier coefficients of classical Maass cusp forms [14].

In the present article we evaluate the mean square of sums of Hecke eigen-
values asymptotically over certain short intervals in the general GL(n)-situation
assuming the generalised Lindelöf hypothesis for the L-function attached to the
underlying cusp form in the t-aspect and a weak version of the Ramanujan-
Petersson conjecture. Previously an analogous result has been established for
the error term in Dirichlet’s divisor problem for the k-fold divisor function dk,
given by

∆k(x) :=
∑

m≤x

dk(m)− Ress=1

(
ζk(s)

xs

s

)
,

by Lester [18] under the Lindelöf hypothesis for the ζ-function and we follow his
strategy. Many of the details are similar, but we present the whole argument for
the sake of completeness as only a bound of the form A(m, 1, ..., 1) ≪ε m

ϑ+ε,
for some fixed ϑ ≥ 0, is known for the Hecke eigenvalues. It is important to
keep track of ϑ because we only know that ϑ ≤ 1/2− 1/(n2 + 1). Indeed, our
main theorems are conditional on the assumption ϑ < 1/2− 1/n.

While analytic number theory of automorphic forms has seen many advances
in the classical GL(2)-setting, the results are more sporadic in the case n ≥ 3.
There are not many statements which are currently known to hold for an individ-
ual (contrast to on average over a family of) cusp form on GL(n) for arbitrary n.
The best known results of this type are the approximations to the Ramanujan-
Petersson conjecture discussed below. The main results in the present article
add further examples of such properties assuming generic hypothesis which are
expected to be true.

This article is organised as follows. In Section 2 we introduce the statements
of the main theorems. In Section 4 we collect some facts and results needed
in the proofs. The penultimate section contains the proof of Theorem 1 and
Theorem 2 is proved in Section 6.

2 The main results

The average behaviour of short rationally additively twisted exponential sums
weighted by Fourier coefficients of holomorphic cusp forms has been studied
e.g. by Jutila [12], Ernvall-Hytönen [2, 3], and Vesalainen [27]. In the higher
rank case, the mean square of long rationally additively twisted sums involving
Fourier coefficients of SL(3,Z) Maass cusp forms has been considered in [15].

Here we study sums of Fourier coefficients of Hecke-Maass cusp forms for
SL(n,Z) over short intervals under certain generic assumptions. However, the
method of the proof is slightly different compared to the works mentioned above.
Jutila’s method is not applicable here essentially for two reasons; first one being
that trigonometric polynomials in the truncated GL(n)-Voronoi summation for-
mula are more complicated than in the lower rank setting and the other one is
that the error term in the relevant truncated Voronoi summation formula gives
larger contribution than the expected main term. Instead, we follow Lester [18]
who treats a similar problem for the error term of the Dirichlet divisor problem
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for the k-fold divisor function by combining Jutila’s method with the one of Sel-
berg [25]. Selberg’s method can also be applied to other problems concerning
automorphic forms, see e.g. [22]. The assumptions concerning the truth of the
generalised Lindelöf hypothesis and a weak form of the Ramanujan-Petersson
conjecture are needed to guarantee that the expected error term in the truncated
Voronoi summation formula is small enough on average.

In both of the main results, let the underlying Hecke-Maass cusp form be
f with Hecke eigenvalues A(m, 1, ..., 1). Our first main result computes the
variance of short sums of these coefficients. These types of averages appear for
example when studying the value distribution of said short sums over intervals
of certain length.

Theorem 1. Let f be a Hecke-Maass cusp form for SL(n,Z) normalised so that
A(1, ..., 1) = 1. Assume the generalised Lindelöf hypothesis for L(s, f) in the t-
aspect and that the exponent towards the Ramanujan-Petersson conjecture satis-
fies 0 ≤ ϑ < 1/2−1/n. Furthermore, suppose that 2 ≤ L≪ε X

1/(n(n−1+2nϑ))−ε

for some fixed ε > 0 and that L = L(X) −→ ∞ as X −→ ∞. Then we have

1

X

∫ 2X

X

∣∣∣∣∣∣

∑

x≤m≤x+x1−1/n/L

A(m, 1, ..., 1)

∣∣∣∣∣∣

2

dx ∼ Cf · X
1−1/n

L
.

Here Cf is a constant given by

Cf :=
21−1/n − 1

2n− 1
· rf ·Hf (1), (1)

where rf is the residue of the Rankin-Selberg L-function L(s, f × f̃) attached

to the underlying Maass cusp form f at s = 1, and f̃ is the dual Maass form of
the form f . It is given by

rf =
4πn2/2

n · w(f)‖f‖
2.

For the proof of this, see Appendix A in [17]. The Petersson norm of f is given
by

‖f‖2 :=
∫

SL(n,Z)\Hn

|f(z)|2 d∗z,

where d∗z is the GL(n,R)-invariant measure on the generalised upper-half plane
Hn ≃ SL(n,R)/SO(n,R), see Section 1.5 of [6]. Here the group GL(n,R) acts
on Hn by left matrix multiplication. Furthermore,

w(f) :=
∏

1≤j≤n

Γ

(
1 + 2ℜ(λj(ν))

2

) ∏

1≤j<k≤n

∣∣∣∣∣Γ
(
1 + λj(ν) + λk(ν)

2

)∣∣∣∣∣

2

,

where λj(ν), j = 1, ..., n, are the Langlands parameters of the form f . These
are complex numbers expressed in terms of the type ν = (ν1, ..., νn−1) ∈ Cn−1

of f . Finally, the constant Hf (1) is given by

Hf (1) :=
∏

p

Pn(αp(f), αp(f̃), p
−1),
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where Pn is the polynomial defined in (2) below, αp(f) := {α1,p(f), ..., αn,p(f)}
is the set of Satake parameters of f at prime p and it turns out that αp(f̃) =

αp(f) := {α1,p(f), ..., αn,p(f)}. The fact that Hf (1) is non-zero is shown in [17,
Appendix B].

The other main theorem computes the mean square of the sum of Hecke
eigenvalues over certain short intervals of fixed length.

Theorem 2. Let f be a Hecke-Maass cusp form for SL(n,Z) normalised so
that A(1, ..., 1) = 1. Suppose that X1−1/n+ε ≪ε ∆ ≪ε X

1−ε for some small
fixed ε > 0 and that the generalised Lindelöf hypothesis for L(s, f) holds in
the t-aspect. Suppose also that the exponent towards the Ramanujan-Petersson
conjecture satisfies ϑ < 1/2− 1/n. Then we have

1

X

∫ 2X

X

∣∣∣∣∣∣

∑

x≤m≤x+∆

A(m, 1, ..., 1)

∣∣∣∣∣∣

2

dx ∼ Bf ·X1−1/n,

where

Bf :=
1

π2
· 2

2−1/n − 1

2n− 1

∞∑

m=1

|A(m, 1, ..., 1)|2
m1+1/n

.

The fact that Bf is finite follows from (7) below and partial summation. This
partly generalises results of Ivić [10], Jutila [12], and Vesalainen [27] to the
higher rank setting, and is an analogue to Lester’s result [18] in the setting of
cusp forms.

Remark 3. Theorem 2 is not expected to hold in the range ∆ ≪ε′ X
1−1/n−ε′

as in that range the sum of coefficients over the interval [x, x+∆], with x ≍ X,
is conjectured to be bounded from above by

√
∆.

3 Notation

The symbols ≪, ≫, ≍, O, and ∼ are used for the usual asymptotic notation: for
complex valued functions f and g in some set X , the notation f ≪ g means that
|f(x)| 6 C |g(x)| for all x ∈ X for some implicit constant C ∈ R+. When the
implied constant depends on some parameters α, β, . . ., we use ≪α,β,... instead
of mere ≪. The notation g ≫ f means f ≪ g, and f ≍ g means f ≪ g ≪ f .

All the implicit constants are allowed to depend on the underlying Maass
cusp form and on ε, which denotes an arbitrarily small fixed positive number,
which may not be the same on each occurrence, unless stated otherwise.

As usual, we write e(x) for e2πix. The notation
∏

p means the product over
primes. The real and imaginary parts of a complex number s are denoted by
ℜ(s) and ℑ(s), respectively. Sometimes we also write s = σ + it with σ, t ∈ R.
Finally, 〈t〉 stands for (1 + |t|2)1/2.

4 Useful results

We start by recalling a few facts about higher rank Hecke operators and auto-
morphic L-functions. By analogue to the classical situation, it follows that for
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every integer m ≥ 1, we have a Hecke operator given by

Tmf(z) :=
1

mn−1/2

∑
∏n

ℓ=1
cℓ=m

0≤ci,ℓ<cℓ (1≤i<ℓ≤n)

f







c1 c1,2 · · · c1,n
c2 · · · c2,n

. . .
...
cn


 · z




acting on the space L2(SL(n,Z)\Hn) of square-integrable automorphic functions
(which contains the space of Maass cusp forms). Unlike in the classical situation,
these operators are not self-adjoint but they are normal. If a Maass cusp form
f is an eigenfunction of every Hecke operator, it is called a Hecke-Maass cusp
form. We remark that if the Fourier coefficient A(1, ..., 1) of a Hecke-Maass
cusp form is zero, then the form vanishes identically. For more theory of Hecke
operators for SL(n,Z), see [6, Section 9.3.].

The Fourier coefficients of Hecke-Maass cusp forms are related to the Satake
parameters via the work of Shintani [26] together with results of Casselman and
Shalika [1]. They showed that for any prime number p and β1, ..., βn ∈ Z≥0 one
has

Af (p
β1 , ..., pβn−1) = Sβn−1,...,β1

(α1,p(f), ..., αn,p(f)),

where

Sβn−1,...,β1
(x1, ..., xn)

:=
1

V (x1, ..., xn)
det







x
n−1+βn−1+···+β1

1 · · · x
n−1+βn−1+···+β1

n

...
...

...

x
2+βn−1+βn−2

1 · · · x
2+βn−1+βn−2

n

x
1+βn−1

1 · · · x
1+βn−1

n

1 · · · 1







is a Schur polynomial, and V (x1, ..., xn) is the Vandermonde determinant given
by

V (x1, ..., xn) :=
∏

1≤i<j≤n

(xi − xj).

Kowalski and Ricotta proved in [17, Proposition B.1] that there exists a poly-
nomial Pn(x,y, T ), where x = (x1, ..., xn), y = (y1, ..., yn), and T are indeter-
minates, such that

∑

k≥0

S0,...,0,k(x)S0,...,0,k(y)T
k =

Pn(x,y, T )∏
1≤j,k≤n(1− xjykT )

. (2)

Next, we define an important notion of a dual Maass cusp form. Let f be a
Maass cusp form of type (ν1, ..., νn−1) ∈ Cn−1 for SL(n,Z). Then

f̃(z) := f(w · t(z−1) · w), where w =




(−1)⌊n/2⌋

1
. .
.

1


 ,
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is a Maass cusp form of type (νn−1, ..., ν1) ∈ Cn−1 for SL(n,Z). We say that f̃
is a dual Maass cusp form of f . It turns out that

Af (m1, ...,mn−1) = Af̃ (mn−1, ...,m1) (3)

for every m1, ...,mn−1 ≥ 1.
The Fourier coefficients of Hecke-Maass cusp form satisfy the multiplicativity

relations

A(m, 1, ..., 1)A(m1, ...,mn−1) =
∑

∏n
ℓ=1

cℓ=m
cj |mj for 1≤j≤n−1

A

(
m1cn
c1

,
m2c1
c2

, ...,
mn−1cn−2

cn−1

)

for positive integers m,m1, ...,mn−2, and a non-negative integer mn−1. Fur-
thermore, the relation

A(m1, ...,mn−1)A(m
′
1, ...,m

′
n−1) = A(m1m

′
1, ...,mn−1m

′
n−1) (4)

holds if (m1 · · ·mn−1,m
′
1 · · ·m′

n−1) = 1. For the proofs of these facts, see [6,
Theorem 9.3.11.]

For a Hecke eigenfunction, one can use Möbius inversion to show that the
relation

A(m1, ...,mn−1) = A(mn−1, ...,m1)

holds [6, Theorem 9.3.6, Theorem 9.3.11, Addendum]. In particular, together
with the relation (3) this yields that

Af (m, 1, ..., 1) = Af̃ (m, 1, ..., 1).

Also, it follows that |A(m, 1, .., 1)| = |A(1, ..., 1,m)|. Given a Hecke-Maass cusp
form f of type ν ∈ Cn−1 for SL(n,Z) with Hecke eigenvalues A(m, 1, ..., 1), the
associated L-series is given by

L(s, f) :=
∞∑

m=1

A(m, 1, ..., 1)

ms
,

which converges for large enough ℜ(s). This has an entire continuation to the
whole complex plane via the functional equation

L(s, f) = πns−n/2G(1− s, f̃)

G(s, f)
L(1− s, f̃), (5)

where

G(s, f) :=

n∏

j=1

Γ

(
s− λj(ν)

2

)
and so G(s, f̃) =

n∏

j=1

Γ

(
s− λ̃j(ν)

2

)
.

Recall that here λj(ν) and λ̃j(ν) are the Langlands parameters of f and f̃ ,
respectively. This produces an L-function attached to the form f called the
Godement-Jacquet L-function.

An elementary application of Stirling’s formula says, that when s lies in the
vertical strips −δ ≤ ℜ(s) ≤ 1 + δ, for a small fixed δ > 0, and has sufficiently
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large imaginary part, the multiple Γ-factors can be replaced by a single quotient
of two Γ-factors [4]:

G(1− s, f̃)

G(s, f)
= nns−n/2 Γ

(
1−ns

2

)

Γ
(

ns−(n−1)
2

)
(
1 +O(|s|−1)

)
.

The main theorems of the present paper are conditional on the generalised
Lindelöf hypothesis in the t-aspect. It states that on the critical line σ = 1/2
an estimate of the form L(1/2 + it, f) ≪ε 〈t〉ε holds for every ε > 0. For more
detailed discussion about this conjecture, see [11].

The Rankin-Selberg L-function of two Hecke-Maass cusp forms f and g for
SL(n,Z) is given by

L(s, f × g) := ζ(ns)
∑

m1,...,mn−1≥1

Af (m1, ...,mn−1)Ag(m1, ...,mn−1)

(mn−1
1 mn−2

2 · · ·mn−1)s
,

which converges for large enough ℜ(s). This L-series has an analytic continua-

tion to the whole complex plane if g 6= f̃ and a meromorphic continuation to C

with a simple pole at s = 1 if g = f̃ . If we set

Λ(s, f × g) :=

n∏

i=1

n∏

j=1

π(−s+λi(νf )+λj(νg))/2Γ

(
s− λj(νf )− λj(νg)

2

)
L(s, f × g),

then the functional equation

Λ(s, f × g) = Λ(1− s, f̃ × g̃) (6)

holds; see [6, Theorem 12.1.4].
If L(s, f) has an Euler product representation

L(s, f) =

∞∑

m=1

A(m, 1, ..., 1)

ms
=
∏

p

n∏

j=1

(1− αj,p(f)p
−s)−1

for large enough ℜ(s), and similar representation holds for g with parameters
αj,p(g), then also the Rankin-Selberg L-function has an Euler product given by

L(s, f × g) =
∏

p

n∏

k=1

n∏

ℓ=1

(1 − αk,p(f)αℓ,p(g)p
−s)−1.

Recall that here the complex numbers αj,p(f) are called the Satake parameters

of the underlying Hecke-Maass cusp form f . Analytic properties of L(s, f × f̃)
imply that

∑

mn−1

1
mn−2

2
···mn−1≤x

|A(m1,m2, ...,mn−1)|2 ∼ rf · x, (7)

where rf is as before, see [6, Proposition 12.1.6, Remark 12.1.8]. This result can
be interpreted as saying that the Fourier coefficients A(m1, ...,mn−1) are essen-
tially of constant size on average. However, pointwise bounds for the Fourier
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coefficients are quite far from the expected truth. The Ramanujan-Petersson
conjecture predicts that an estimate of the form A(m, 1, ..., 1) ≪ε m

ε holds for
every ε > 0. There are however approximations towards this conjecture. Let
ϑ = ϑ(n) ≥ 0 be a real number so that the estimate A(m, 1, ..., 1) ≪ε m

ϑ+ε

holds. It is easy to see that one can take ϑ = 1/2 [6, Proposition 12.1.6], but cur-
rently it is known that ϑ ≤ 1/2−1/(n2+1). This result is due to [19]. For small
values of n sharper results are known. We have ϑ(2) ≤ 7/64, ϑ(3) ≤ 5/14 and
ϑ(4) ≤ 9/22 [16]. The Ramanujan-Petersson conjecture predicts that the value
ϑ(n) = 0 is admissible for every n ≥ 2. An equivalent estimate holds for the Sa-
take parameters of the underlying form f . Namely, we have αj,p(f) ≪ε p

ϑ(n)+ε

for every prime p.
It follows from (7), for δ ∈ R+, that

∞∑

m=1

|A(1, ..., 1,m)|2
m1+δ

≪δ 1 and
∞∑

m=1

|A(1, ..., 1,m)|
m1+δ

≪δ 1. (8)

In the course of the proof of Proposition 8 we will come across certain complex
line integrals involving Γ-functions. More precisely, these integrals are of the
form

Ων,k(y; δ, Y ) :=
1

2πi

−δ+iY∫

−δ−iY

Γ
(
1−ns

2

)

Γ
(
ns+1

2 + ν − n
2

) (s+ Λ)−k ys ds,

where integration is along a straight line segment, and where ν and k are non-
negative integers, and y and Y are positive real numbers. The parameter Λ is
a large positive real number, which will depend on n and the underlying Maass
cusp form. The parameter δ will be a sufficiently small positive real constant.
All the implicit constants in the following are going to depend on n, δ and Λ.
It is proved in [15] that the following lemma holds.

Lemma 4. (Lemma 8 in [15]) Let ν and k be non-negative integers, and let
y, Y ∈ [1,∞[ with y < (nY/2)n. Then

Ων,k(y; δ, Y ) =
(n
2

)k−1

y1/2+(1−ν−k)/n Jν+k−n/2(2y
1/n) +O(1)

+O
(
Y n/2−ν−k+nδ

)
+O

(
Y n/2−ν−k 1

log nnY n

2ny

)
.

Using the asymptotics of J-Bessel functions for y ≫ 1, we get the following
corollary.

Corollary 5. Let y, Y ∈ [1,∞[ with y < (nY/2)n. Then

Ω0,1(y; δ, Y ) =
1√
π
y1/2−1/(2n) cos

(
2y1/n +

(n− 3)

4
π

)

+O(y1/2−1/(2n)−1/n) +O(Y n/2−1+nδ) +O

(
Y n/2−1 1

log nnY n

2ny

)
.

We also need an asymptotic formula for the sum of the coefficients |A(m, 1, ..., 1)|2.
The proof of the following theorem combines methods from [17] and [21].
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Theorem 6. Let f be a Hecke-Maass cusp form for the group SL(n,Z) nor-
malised so that A(1, ..., 1) = 1. Then

∑

m≤x

|A(m, 1, ..., 1)|2 ∼ rf ·Hf (1) · x,

where rf and Hf (1) are as given above.

Proof. We start by defining a Dirichlet series

Df (s) :=
∑

m≥1

|A(m, 1, ..., 1)|2
ms

,

which is absolutely convergent for ℜ(s) > 1 due to (7) and defines a holomor-
phic function on this half-plane. Since f is a Hecke eigenform, the coefficients
A(m, 1, ..., 1) are multiplicative by using (4). Therefore we have

Df (s) =
∏

p

∑

k≥0

|A(pk, 1, ..., 1)|2
pks

=:
∏

p

Df,p(s).

Furthermore, by applying (2) with x = αp(f), y = αp(f̃) and T = p−s, we have

Df,p(s) =
Pn(αp(f), αp(f̃), p

−s)
∏

1≤j,k≤n(1− αj,p(f)αk,p(f̃)p−s)

for any prime p, where Pn is the polynomial given by (2). Hence, by using the

explicit description of Pn(αp(f), αp(f̃), p
−s) [17, Proposition B.1 (3)], estimates

αp(f), αp(f̃) ≪ε p
ϑ+ε and estimating by absolute values, the quotient

Df (s)

L(s, f × f̃)
=
∏

p

Pn(αp(f), αp(f̃), p
−s) =: Hf (s) (9)

defines a bounded holomorphic function on the half-plane ℜ(s) > 1/2 + ϑ.
Hence, writing Hf (s) as a Dirichlet series

Hf (s) =

∞∑

m=1

c(m)

ms

we have

∑

m≤x

c(m) ≪ε x
1/2+ϑ+ε (10)

for every ε > 0.
For simplicity, write

af×f̃(m) :=
∑

mn−1

1
mn−2

2
···mn−1=m

|A(m1, ...,mn−1)|2

10



for the Dirichlet series coefficients of L(s, f × f̃). By the properties of Dirichlet
convolution together with (9) we have

|A(m, 1, ..., 1)|2 =
∑

d|m
c(d)af×f̃

(m
d

)
.

Therefore
∑

m≤x

|A(m, 1, ..., 1)|2 =
∑

m≤x

∑

d|m
c(d)af×f̃

(m
d

)

=
∑

d≤x

∑

ℓ≤ x
d

c(d)af×f̃ (ℓ)

∼ rf · x
∑

d≤x

c(d)

d

by using (7). Combining this with the observation, which follows from (10), the
fact that ϑ ≤ 1/2− 1/(n2 + 1), and partial summation,

∑

d>x

c(d)

d
≪ε

∫ ∞

x

t1/2+ϑ+ε

t2
dt

≪ε x
−1/2+ϑ+ε

≪ε x
−1/(n2+1)+ε

it follows that
∑

m≤x

|A(m, 1, ..., 1)|2 ∼ rf · x
∑

d≤x

c(d)

d

= rf · x
∞∑

d=1

c(d)

d
+O

(
x
∑

d>x

c(d)

d

)

∼ rf ·Hf (1) · x.
This completes the proof.

As a consequence of this, we can evaluate the sum

∑

m≤Xθ

|A(m, 1, ..., 1)|2
m1+1/n

sin2
(
π n
√
m

L

)
,

where 0 < θ ≤ 1 is fixed, asymptotically.
By using partial summation we have

∑

m≤Xθ

|A(m, 1, ..., 1)|2
m1+1/n

sin2
(
π n
√
m

L

)

=

(
1 +

1

n

)∫ Xθ

1



∑

m≤x

|A(m, 1, ..., 1)|2



sin2
(

π n
√
x

L

)

x2+1/n
dx

− 2π

n
· 1
L

∫ Xθ

1




∑

m≤x

|A(m, 1, ..., 1)|2



sin
(

π n
√
x

L

)
cos
(

π n
√
x

L

)

x2
dx+O

(
1

Xθ/n

)
,

(11)

11



where the error term comes from the substitution term by trivial estimation.
The first term is, by using Theorem 6 and a simple change of variables, asymp-
totically

∼
(
1 +

1

n

)
· rf ·Hf (1)

∫ Xθ

1

1

x1+1/n
sin2

(
π n
√
x

L

)
dx

∼
(
1 +

1

n

)
· rf ·Hf (1)

∫ Xθ/n/L

1/L

1

(yL)n+1
sin2(πy) · Lnnyn−1 dy

∼ rf ·Hf (1) · (n+ 1)

L

∫ Xθ/n/L

1/L

sin2(πy)

y2
dy

∼ rf ·Hf (1) · (n+ 1)

L
· π

2

2
,

where the last estimate follows from the identity

∫ ∞

0

sin2(πy)

y2
dy =

π2

2

together with the estimates

∫ 1/L

0

sin2(πy)

y2
dy ≪ 1

L
,

∫ ∞

Xθ/n/L

sin2(πy)

y2
dy ≪ L

Xθ/n

provided that L = L(X) −→ ∞ as X −→ ∞ and L ≪ε X
θ/n−ε for some fixed

ε > 0.
An analogous computation shows that the second term on the right-hand

side of (11) is

∼ −π
2

2
· rf ·Hf (1)

L
.

So, altogether

∑

m≤Xθ

|A(m, 1, ..., 1)|2
m1+1/n

sin2
(
π n
√
m

L

)
∼ rf ·Hf (1) · n

L
· π

2

2
. (12)

5 Proof of Theorem 1

Our proof follows the argument of Lester [18]. Most of the steps are analogous,
but we present the details for the sake of completeness.

Let f be a Hecke-Maass cusp form for the group SL(n,Z) with Hecke eigen-
values A(m, 1, ..., 1). Let 0 < θ ≤ 1 and define

P (x; θ) :=
x1/2−1/2n

π
√
n

∑

m≤Xθ

A(1, ..., 1,m)

m1/2+1/2n
cos

(
2πn n

√
mx+

(n− 3)

4
π

)

for X ≤ x ≤ 2X .

12



Let us write

E(x; θ) :=



∑

m≤x

A(m, 1, ..., 1)


− P (x; θ).

We remark that arguments similar to those in Section 7 of [15] show that

E(x; θ) ≪ε x
1−(1+θ)/n+ϑ+ε, (13)

where ϑ is the exponent towards the Ramanujan-Petersson conjecture. The
pointwise bound (13) is too weak to establish Theorem 1 but it will be shown
that on average E(x + x1−1/n/L; θ) − E(x; θ) is much smaller than what this
bound implies, of course under certain assumptions.

The proof has three main steps. The first two are formulated in the following
propositions. The first one evaluates the mean square of the expected main term
for the sums of Hecke eigenvalues over a short interval [x, x + x1−1/n/L] for a
suitable L = L(X).

Proposition 7. Let f be a Hecke-Maass cusp form for the group SL(n,Z) nor-
malised so that A(1, ..., 1) = 1. Let 0 ≤ θ ≤ 1 and suppose that 2 ≤ L ≪ε

X1/(n(n−1))−ε for some small fixed ε > 0. Then we have

1

X

∫ 2X

X

∣∣∣∣P
(
x+

x1−1/n

L
; θ

)
− P (x; θ)

∣∣∣∣
2

dx ∼ X1−1/n

L
· Cf ,

where Cf is as in (1).

The other proposition shows that on average P (x; θ) is a sufficiently good
approximation for the sum of Hecke eigenvalues A(m, 1, ..., 1) up to x under
the assumption of the generalised Lindelöf hypothesis and a weak version of
the Ramanujan-Petersson conjecture. This is better than the pointwise up-
per bounds for the error term one gets from the relevant Voronoi summation
formula.

Proposition 8. Let f be a Hecke-Maass cusp form for the group SL(n,Z) nor-
malised so that A(1, ..., 1) = 1. Suppose that 0 < θ < 1/(n− 1 + 2nϑ), where ϑ
is the exponent towards the Ramanujan-Petersson conjecture, and assume also
that ϑ < 1/2− 1/n. Furthermore, suppose that the generalised Lindelöf hypoth-
esis for the L-function attached to the underlying Maass cusp form holds in the
t-aspect. Then we have

1

X

∫ 2X

X

∣∣∣∣E
(
x+

x1−1/n

L
; θ

)
− E(x; θ)

∣∣∣∣
2

dx≪ε X
1−(1+θ)/n+ε

for every ε > 0.

Remark 9. Notice that this bound is superior compared to the pointwise bound
≪ε X

2−2(1+θ)/n+2ϑ+ε which follows from (13).

Once these have been established, the proof can be completed as follows. For
now, let ε > 0 be small but fixed. For notational simplicity, we set

S(x, L) :=
∑

x≤m≤x+x1−1/n/L

A(m, 1, ..., 1)

13



and

Q(x, L, θ) := P

(
x+

x1−1/n

L
; θ

)
− P (x; θ).

Then by making use of the elementary identity

|S|2 = |Q|2 + |S −Q|2 + 2ℜ
(
Q(S −Q)

)

we obtain

1

X

∫ 2X

X

∣∣∣∣∣∣

∑

x≤m≤x+x1−1/n/L

A(m, 1, ..., 1)

∣∣∣∣∣∣

2

dx

=
1

X

∫ 2X

X

|Q(x, L; θ)|2 dx+O

(
1

X

∫ 2X

X

|S(x, L)−Q(x, L; θ)|2 dx
)

+O

(
1

X

∫ 2X

X

|S(x, L)−Q(x, L; θ)| · |Q(x, L; θ)| dx
)
.

By Proposition 7, the first term on the right-hand side is

∼ Cf · X
1−1/n

L

assuming L ≪ε X
1/(n(n−1))−ε and the second term is, say, ≪ε X

1−(1+θ)/n+ε/2

by Proposition 8 provided that 0 < θ < 1/(n − 1 + 2nϑ) and ϑ < 1/2 − 1/n.
For the last term, an application of the Cauchy-Schwarz inequality yields

≪ε
1

X
·
(
X2−1/n

L

)1/2

· (X2−(1+θ)/n+ε/2)1/2

≪ε
X1−(2+θ)/2n+ε/4

L1/2
.

Notice that this is smaller than the main term due to the assumption L ≪ε

Xθ/n−ε. This completes the proof of Theorem 1. The next two subsections are
devoted to the proofs of Propositions 7 and 8.

5.1 Proof of Proposition 7

We start by writing

P

(
x+

x1−1/n

L
; θ

)
− P (x; θ)

= P

(
x+

x1−1/n

L
; θ

)
− P

((
n
√
x+

1

nL

)n

; θ

)

︸ ︷︷ ︸
=:I1(x,L;θ)

+P

((
n
√
x+

1

nL

)n

; θ

)
− P (x; θ)

︸ ︷︷ ︸
=:I2(x,L;θ)

.

The idea here is that I2(x, L; θ) is easier to handle than the original difference
and intuitively I1(x, L; θ) should be small on average, which turns out to be the
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case. Then

1

X

∫ 2X

X

∣∣∣∣P
(
x+

x1−1/n

L
; θ

)
− P (x; θ)

∣∣∣∣
2

dx (14)

=
1

X

∫ 2X

X

|I1(x, L; θ)|2 dx+
1

X

∫ 2X

X

|I2(x, L; θ)|2 dx

+O

(
1

X

∫ 2X

X

|I1(x, L; θ)I2(x, L; θ)| dx
)
.

The proof of the proposition now proceeds by estimating the first two terms on
the right-hand side separately. The second term is treated in Lemma 10 and
the first term in Lemma 11. The cross terms are handled by an application of
the Cauchy-Schwarz inequality. Once we have shown that the contribution of
the first term is ≪ε L

−4X1−1/n+(3−n)/(n(n−1))−ε and the contribution of the
second term is ≪ X1−1/n/L, it follows that the error term contributes

≪ε
1

X

(
X2−1/n+(3−n)/(n(n−1))−ε

L4

)1/2(
X2−1/n

L

)1/2

≪ε
X1−1/n+(3−n)/(2n(n−1))−ε/2

L5/2
,

which is small enough as n ≥ 3.

Lemma 10. Suppose that 0 < θ ≤ 1/(n − 1) − ε for some small fixed ε > 0.
Then we have

1

X

∫ 2X

X

|I2(x, L; θ)|2 dx ∼ X1−1/n

L
· Cf .

Proof. To estimate the difference I2(x, L; θ) we are reduced to understand terms
of the form

(x+ Ξ)1/2−1/2n cos

(
2πn n

√
mx+

2π n
√
m

L
+

(n− 3)

4
π

)

− x1/2−1/2n cos

(
2πn n

√
mx+

(n− 3)

4
π

)
,

where Ξ is given by the equation x + Ξ = ( n
√
x + 1/nL)n. Now, the relevant

observation is that

∣∣∣(x+ Ξ)1/2−1/2n − x1/2−1/2n
∣∣∣ ≍

∣∣∣∣∣

∫ x+Ξ

x

y−1/2−1/2n dy

∣∣∣∣∣≪ x−1/2−1/2n · Ξ.

But by the binomial theorem we have

Ξ ≪ x(n−1)/n

L
.

Therefore

∣∣∣(x+ Ξ)1/2−1/2n − x1/2−1/2n
∣∣∣≪ x1/2−3/2n

L
.
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This shows that

(x+ Ξ)1/2−1/2n cos

(
2πn n

√
mx+

2π n
√
m

L
+

(n− 3)

4
π

)
− x1/2−1/2n cos

(
2πn n

√
mx+

(n− 3)

4
π

)

= x1/2−1/2n

(
cos

(
2πn n

√
mx+

2π n
√
m

L
+

(n− 3)

4
π

)
− cos

(
2πn n

√
mx+

(n− 3)

4
π

))

+ O

(
x1/2−3/2n

L
cos

(
2πn n

√
mx+

2π n
√
m

L
+

(n− 3)

4
π

))
.

By using the formula for the difference of two cosines, cos(α) − cos(β) =
−2 sin((α+ β)/2) sin((α− β)/2), it follows that

I2(x, L; θ)

=
−2x1/2−1/2n

π
√
n

∑

m≤Xθ

A(1, ..., 1,m)

m1/2+1/2n
sin

(
π n
√
m

L

)
sin

(
2πn n

√
m

(
n
√
x+

1

2nL

)
+

(n− 3)

4
π

)

+O



x
1/2−3/2n

L

∣∣∣∣∣∣

∑

m≤Xθ

A(1, ..., 1,m)

m1/2+1/2n
cos

(
2πn n

√
m

(
n
√
x+

1

nL

)
+

(n− 3)

4
π

)∣∣∣∣∣∣





=:M(x, L; θ) +R(x, L; θ).

Hence,

1

X

∫ 2X

X

|I2(x, L; θ)|2 dx =
1

X

∫ 2X

X

|M(x, L; θ)|2 dx+
1

X

∫ 2X

X

|R(x, L; θ)|2 dx

+O

(
1

X

∫ 2X

X

|M(x, L; θ)R(x, L; θ)| dx
)
. (15)

The main term can be written as

M(x, L; θ) = −x
1/2−1/2n

πi
√
n



∑

m≤Xθ

a+me(n
n
√
mx)−

∑

m≤Xθ

a−me(−n n
√
mx)


 ,

where

a±m :=
A(1, ..., 1,m)

m1/2+1/2n
e

(
±

n
√
m

2L
± (n− 3)

8

)
sin

(
π n
√
m

L

)
.

Let us first evaluate the mean square of M(x, L; θ). Notice that

|M(x, L; θ)|2 =
x1−1/n

nπ2




∣∣∣∣∣∣

∑

m≤Xθ

a+me(n
n
√
mx)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∑

m≤Xθ

a−me(−n n
√
mx)

∣∣∣∣∣∣

2



− 2x1−1/n

nπ2
ℜ





∑

m≤Xθ

a+me(−n n
√
mx)





∑

m≤Xθ

a−me(−n n
√
mx)




 . (16)

We consider the first two terms on the right-hand side simultaneously as their
treatment is identical due to the fact that |a+m| = |a−m|. By opening the absolute
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squares these split into diagonal and off-diagonal terms. By the first derivative
test the non-diagonal terms give a contribution

≪ X1−2/n
∑

1≤m,ℓ≤Xθ

m>ℓ

|a+ma+ℓ |
n
√
m− n

√
ℓ

≪ X1−2/n
∑

1≤m,ℓ≤Xθ

m>ℓ

|a+ma+ℓ |m1−1/n

|m− ℓ|

≪ X1−2/nXθ(1−1/n) logX
∑

1≤m≤Xθ

|a+m|2,

where the last estimate follows from the elementary estimate ab≪ a2 + b2.
The total contribution coming from the diagonal terms is

(22−1/n − 1)

(2− 1/n)nπ2



∑

m≤Xθ

|a+m|2 +
∑

m≤Xθ

|a−m|2

X1−1/n

=
2(22−1/n − 1)

(2− 1/n)nπ2
·X1−1/n

∑

m≤Xθ

|A(m, 1, ..., 1)|2
m1+1/n

sin2
(
π n
√
m

L

)
.

For the third term in (16) we observe that it can be estimated similarly by using
the first derivative test as the off-diagonal terms above. Therefore it follows that

1

X

∫ 2X

X

|M(x, L; θ)|2 dx

=
2

nπ2
· 2

2−1/n − 1

2− 1/n
X1−1/n

∑

m≤Xθ

|A(m, 1, ..., 1)|2
m1+1/n

sin2
(
π n
√
m

L

)

+O


X1−2/n+θ(1−1/n) logX

∑

m≤Xθ

|a+m|2

 .

By using (12) we infer that

∑

m≤Xθ

|a+m|2 =
∑

m≤Xθ

|A(m, 1, ...1)|2
m1+1/n

sin2
(
π n
√
m

L

)
∼ rf ·Hf (1) · n

L
· π

2

2
.

The assumption θ < 1/(n−1)−ε guarantees that the error term is smaller than
the main term. The mean square of the remainder term R(x, L, θ) is treated
similarly: it is

≪ 1

X
· 1

L2
·X2−3/n

∑

m≤Xθ

|A(m, 1, ..., 1)|2
m1+1/n

≪ X1−3/n

L2

by using (8).
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Finally, cross-terms in (15) are handled by a single application of the Cauchy-
Schwarz inequality; they contribute

≪ε
1

X

(
X2−3/n

L2

)1/2(
X2−1/n+ε

L

)1/2

≪ε
X1−2/n+ε/2

L3/2
,

which is smaller than the main term if ε is small enough in terms of n. This
completes the proof of the lemma.

Next, we will compute the mean square of I1(x, L; θ).

Lemma 11. Assume that 0 < θ < 1/(n− 1)− ε for some fixed ε > 0. Then we
have

1

X

∫ 2X

X

|I1(x, L; θ)|2 dx≪ε
X1−1/n+(3−n)/(n(n−1))−ε

L4
+
X1−5/n

L4
.

Proof. For simplicity, we set

x1 := n
√
x+

1

nL
and x2 :=

(
x+

x1−1/n

L

)1/n

.

Then

I1(x, L; θ) = x
(n−1)/2
2

∑
(x2)− x

(n−1)/2
1

∑
(x1),

where we have set
∑

(x) :=
1

π
√
n

∑

m≤Xθ

A(1, ..., 1,m)

m1/2+1/2n
cos

(
2πnx n

√
m+

(n− 3)

4
π

)
.

By the triangle inequality we get
∣∣∣x(n−1)/2

2

∑
(x2)− x

(n−1)/2
1

∑
(x1)

∣∣∣

=
∣∣∣
(
x
(n−1)/2
1 − x

(n−1)/2
2

)∑
(x1) + x

(n−1)/2
2

(∑
(x1)−

∑
(x2)

)∣∣∣

≪
∣∣∣x(n−1)/2

1 − x
(n−1)/2
2

∣∣∣ ·
∣∣∣
∑

(x1)
∣∣∣+ x

(n−1)/2
2

∣∣∣
∑

(x1)−
∑

(x2)
∣∣∣ .

By the mean value theorem we have
∣∣∣x(n−1)/2

1 − x
(n−1)/2
2

∣∣∣ ≍
∫ x2

x1

t(n−3)/2 dt ≍ |x1 − x2|X(n−3)/2n.

For the second term we observe that
∑

(x1)−
∑

(x2)

=
1

π
√
n

∑

m≤Xθ

A(1, ..., 1,m)

m1/2+1/2n

(
cos

(
2πn n

√
mx1 +

(n− 3)

4
π

)
− cos

(
2πn n

√
mx2 +

(n− 3)

4
π

))

≍
∑

m≤Xθ

A(1, ..., 1,m)

m1/2+1/2n
·m1/n|x1 − x2|

=
∑

m≤Xθ

A(1, ..., 1,m)

m1/2−1/2n
|x1 − x2|,
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as
∣∣∣∣cos

(
2πn n

√
mx1 +

(n− 3)

4
π

)
− cos

(
2πn n

√
mx2 +

(n− 3)

4
π

)∣∣∣∣

≍
∣∣∣∣m

1/n

∫ x2

x1

sin

(
2πn n

√
mt+

(n− 3)

4
π

)
dt

∣∣∣∣

≪ m1/n|x1 − x2|.

Thus we have
∣∣∣x(n−1)/2

1

∑
(x1)− x

(n−1)/2
2

∑
(x2)

∣∣∣

≪ |x1 − x2|



X1/2−1/2n
∑

m≤Xθ

A(1, ..., 1,m)

m1/2−1/2n
+X(n−3)/2n

∣∣∣
∑

(x1)
∣∣∣



 .

But as, say,

∑

m≤Xθ

A(1, ..., 1,m)

m1/2−1/2n
≪ε X

θ(1/2+1/2n)+ε/2n

by partial summation, and

|x1 − x2| ≍
∣∣∣∣∣

∫ x+x1−1/n/L

x+Ξ

t1/n−1 dt

∣∣∣∣∣

≪
∣∣∣∣
x1−1/n

L
− Ξ

∣∣∣∣ (x + Ξ)1/n−1

≪ x1−2/n

L2
·X1/n−1

≪ 1

L2X1/n
,

it follows that this can be further estimated to be

≪ε
1

L2X1/n

(
X1/2−1/2n+θ(1/2+1/2n)+ε/2n +X(n−3)/2n

∣∣∣
∑

(x1)
∣∣∣
)
.

By using the inequality ab≪ a2 + b2 we infer

1

X

∫ 2X

X

|I1(x, L; θ)|2 dx≪ε
X1−1/n+θ(1+1/n)+ε/n

L4X2/n
+
X(n−3)/n

L4X2/n
· 1

X

∫ 2X

X

∣∣∣
∑

(x1)
∣∣∣
2

dx

≪ε
X1−3/n+θ(1+1/n)+ε/n

L4
+
X1−5/n

L4
.

The claim follows from this by recalling that θ < 1/(n− 1)− ε. In the last step
we have used the fact that

1

X

∫ 2X

X

∣∣∣
∑

(x1)
∣∣∣
2

dx≪ 1.
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This follows by opening the absolute square and integrating termwise. The
off-diagonal contributes

≪ε X
−1/n+θ(1−1/n)+ε(n−1)/n

∑

m≤Xθ

|A(m, 1, ..., 1)|2
m1+1/n

≪ε X
−1/n+θ(1−1/n)+ε(n−1)/n

≪ 1

by using the first derivative test and the assumption θ < 1/(n − 1) − ε. The
diagonal term is obviously

≪
∑

m≤Xθ

|A(m, 1, ..., 1)|2
m1+1/n

≪ 1.

This completes the proof.

Now, as Lemmas 10 and 11 are proved, the proof of Proposition 7 is completed
by the discussion above.

5.2 Proof of Proposition 8

Recall that

E(x; θ) =




∑

m≤x

A(m, 1, ..., 1)



− P (x; θ).

Throughout the proof, let ε > 0 be small but fixed. We start by simply esti-
mating

1

X

∫ 2X

X

∣∣∣∣E
(
x+

x1−1/n

L
; θ

)
− E(x; θ)

∣∣∣∣
2

dx

≪ 1

X

∫ 2X

X

∣∣∣∣E
(
x+

x1−1/n

L
; θ

)∣∣∣∣
2

dx+
1

X

∫ 2X

X

|E(x; θ)|2 dx.

Analysis of both terms on the right-hand side is similar and hence we concentrate
on the latter term

1

X

∫ 2X

X

|E(x; θ)|2 dx.

As usual, the starting point is the truncated Perron’s formula which gives, for
a small enough fixed δ > 0,

∑

m≤x

A(m, 1, ..., 1) =
1

2πi

∫ 1+δ+iX

1+δ−iX

L(s, f)xs
ds

s
+O(Xϑ+ε)

uniformly for X ≤ x ≤ 2X .
The error term is admissible as we assume that ϑ < 1/2− 1/n. We shift the

line segment of integration first to the line σ = 1/2. The Phragmén-Lindelöf
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principle tells that in the strip 1/2 ≤ σ ≤ 1 + δ the estimate of the form
L(s, f) ≪ε 〈t〉ε holds under the assumption of the generalised Lindelöf hypoth-
esis. By using this, the vertical line segments from the shift contribute

≪
∫ 1+δ

1/2

L(σ ± iX, f)xσ+iX dσ

σ ± iX

≪ε X
ε−1/2 +Xδ+ε

≪ε X
δ+ε.

It follows that

∑

m≤x

A(m, 1, ..., 1) =
1

2πi

∫ 1/2+iY

1/2−iY

L(s, f)xs
ds

s
+

1

2πi

∫ 1/2−iY

1/2−iX

L(s, f)xs
ds

s

+
1

2πi

∫ 1/2+iX

1/2+iY

L(s, f)xs
ds

s
+O

(
Xϑ+ε/2

)
,

uniformly for X ≤ x ≤ 2X , where 0 < Y < X is a parameter chosen later.
Next we move the line segment of integration to the line σ = −δ in the first

term on the right-hand side. Using the convexity bound L(s, f) ≪ 〈t〉(1+δ−σ)n/2

in the vertical strip −δ ≤ σ ≤ 1+ δ together with the assumption that L(1/2+
it, f) ≪ε 〈t〉ε it follows that the vertical line segments contribute

≪
∫ 1/2

−δ

L(σ ± iY, f)xσ+iY dσ

σ ± iY

≪ε Y
ε−1X1/2 + Y n/2+nδ−1X−δ

≪ε X
1/2−(1+θ)/2n+ε/2

as we are going to choose δ so that 2δθ ≤ ε, where the last estimate follows
from the assumption on θ as we are going to choose Y such that it satisfies
Y ≍ X(1+θ)/n.

Next, we treat the term

1

2πi

∫ −δ+iY

−δ−iY

L(s, f)xs
ds

s
.

We are now in the position to apply the proof method of the Voronoi summation
formula used in [15] in the case n = 3. Since we intend to apply Stirling’s
formula, we write

1

2πi

∫ −δ+iY

−δ−iY

L(s, f)xs
ds

s
=

1

2πi

( ∫ −δ−iΛ

−δ−iY

+

∫ −δ+iY

−δ+iΛ

)
L(s, f)xs

ds

s
+Oδ,Λ(1),

where Λ := 1 + 2max1≤j≤n{|λj(ν)|, |λ̃j(ν)|}. Now we may apply the func-
tional equation of Godement–Jacquet L-functions (5), interchange the order of
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integration, and summation and apply Stirling’s formula to get

1

2πi

(∫ −δ−iΛ

−δ−iY

+

∫ −δ+iY

−δ+iΛ

)
L(s, f)xs

ds

s

=
1

2πi

(∫ −δ−iΛ

−δ−iY

+

∫ −δ+iY

−δ+iΛ

)
πns−n/2 G(1 − s, f̃)

G(s, f)
L(1− s, f̃)xs

ds

s

=
1

2π

∞∑

m=1

A(1, . . . , 1,m)

m

·
(∫ −δ−iΛ

−δ−iY

+

∫ −δ+iY

−δ+iΛ

)
1

i
πns−n/2 nns−n/2 Γ

(
1−ns

2

)

Γ
(

ns−(n−1)
2

)
(
1 +O(|s|−1

)
)
ms xs

ds

s
.

(17)

In the region of integration the quotient of Γ-factors is ≪ tn/2+nδ by Stirling’s
formula, and so the series corresponding to the O-term can be estimated to be

≪
∞∑

m=1

|A(1, . . . , 1,m)|
m1+δ

∫ Y

Λ

tn/2+nδ t−1 x−δ dt

t

≪ x−δ Y n/2+nδ−1

≪ε X
ε/2 Y n/2−1

≪ε X
1/2−(1+θ)/n+θ/2+ε/2

≪ε X
1/2−(1+θ)/2n+ε/2,

provided that 2θδ 6 ε, by using (8), the assumption on θ, and the fact that
Y ≍ X(1+θ)/n.

We are going to transform rest of the integral in (17) further by making a
simple change of variables to rewrite it as

2ℜ



∫ Y

Λ

(πn)n(−δ+it)−n/2
Γ
(

1−n(−δ+it)
2

)

Γ
(

n(−δ+it)−(n−1)
2

) (mx)
−δ+it dt

−δ + it


 .

Using the elementary fact that

1

−δ + it
=

1

it
+O(t−2),

this equals

2ℜ



∫ Y

Λ

(πn)n(−δ+it)−n/2
Γ
(

1−n(−δ+it)
2

)

Γ
(

n(−δ+it)−(n−1)
2

) (mx)
−δ+it dt

it


+O(Xε Y n/2−1).

By Stirling’s formula,

Γ
(
1−ns

2

)

Γ
(

ns−(n−1)
2

) =

(
nt

2

)n/2−nσ

exp

(
−int log nt

2
+ int+

πni

4

)(
1 +O(t−1)

)
.
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Substituting this back to the last integral, and observing that the terms coming
from the O(t−1)-term contribute ≪ε X

ε Y n/2−1, it takes the form

2 (2π)−n/2 (2nπnmx)
−δ

· ℜ




Y∫

Λ

tn/2+nδ−1 exp

(
−int log t

2π
+ it log(mx) + int+

π(n− 2)i

4

)
dt


 .

The derivative of the phase is, up to a constant, given by

−n log t+ log(2n πnmx),

and so the integrand has a unique saddle point at

t = 2π (mx)1/n.

We will choose Y to be

Y := 2π

((
Xθ +

1

2

)
x

)1/n

,

so that for the terms m > Xθ the integrands have no saddle-points and are
therefore oscillating.

First, we treat these high-frequency terms with m > Xθ. By using the fact
that t ≤ Y , the derivative of the phase in the corresponding integrals is

log
2nπnmx

tn
≫ log

2nπnmx

Y n
= log

m

Xθ + 1
2

,

and so, by the first derivative test and (8), they contribute

≪ X−δ Y n/2+nδ−1
∑

m>Xθ

|A(1, . . . , 1,m)|
m1+δ

· 1

log m
Xθ+ 1

2

≪ X−δ Y n/2+nδ−1
∑

Xθ<m62Xθ

|A(1, . . . , 1,m)|
m1+δ

(
m

Xθ+ 1

2

− 1
) +X−δ Y n/2+nδ−1

≪ε X
(1/2+δ−1/n)(1+θ)−δ+θϑ+ε/2 +X(1/2+δ−1/n)(1+θ)−δ

≪ε X
1/2−(1+θ)/2n+ε/2,

where the elementary fact that log x≫ x− 1 for x ∈ ]1, 2[ is used in the second
estimate, in the penultimate step we have used the fact that Y ≍ X(1+θ)/n, in
the last estimate we have used that θ < 1/(n − 1 + 2nϑ), and finally we have
bounded the sum trivially by using the absolute values:

∑

Xθ<m62Xθ

|A(1, . . . , 1,m)|
m1+δ

(
m

Xθ+ 1

2

− 1
) ≪ Xθϑ−θδ

∑

Xθ<m62Xθ

1

m−Xθ − 1
2

≪ε X
θϑ+ε/2.

Next, we will deal with the low-frequency terms, that is, terms with m 6 Xθ.
First, we extend the integrals over the line segments [−δ − iY,−δ − iΛ] and
[−δ + iΛ,−δ + iY ] to be over the whole line segment connecting −δ − iY to
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−δ + iY with an error Oδ,Λ(1). Similarly, we may replace the factor s−1 by
(s + Λ)−1 with the error O(Xε/2 Y n/2−1). Thus, the terms that we are left to
deal with are

(nπ)−n/2
∑

m6Xθ

A(1, . . . , 1,m)

m
· 1

2πi

−δ+iY∫

−δ−iY

Γ
(
1−ns

2

)

Γ
(

ns−(n−1)
2

) (πnnnmx)
s ds

s+ Λ
.

The main terms come from using Corollary 5 on these integrals with the choice
y = πnnnmx. These main terms are given by

x1/2−1/2n

π
√
n

∑

m6Xθ

A(1, . . . , 1,m)

m1/2+1/2n
cos

(
2nπ(mx)1/n +

(n− 3)

4
π

)
= P (x; θ).

Note that the condition y < (nY/2)n is satisfied by the choice of Y . The
contribution coming from the error terms of Corollary 5 can be estimated as
follows by using partial summation together with (7) and recalling the fact that
Y ≍ X(1+θ)/n:

∑

m6Xθ

|A(1, . . . , 1,m)|
m

(
(mx)1/2−1/2n−1/n + Y n/2−1+nδ + Y n/2−1 1

log Y n

2nπnmx

)

≪ε X
(1/2−3/2n)(1+θ)+ε/2

+X(1/2−1/n+δ)(1+θ) +X(1/2−1/n)(1+θ)
∑

m6Xθ

|A(1, . . . , 1,m)|
m

1

log
Xθ+ 1

2

m

≪ε X
(1/2−3/2n)(1+θ)+ε/2 +X(1/2−1/n)(1+θ)+ε/4



1 +
∑

m6Xθ

|A(1, . . . , 1,m)|
Xθ + 1

2 −m





≪ε X
1/2−(1+θ)/2n+ε/2

if 2δ(1 + θ) ≤ ε, where the last estimate follows simply by using the absolute
values as before. Therefore we have shown that

1

2πi

∫ −δ+iY

−δ−iY

L(s, f)xs
ds

s
= P (x; θ) +O

(
X1/2−(1+θ)/2n+ε/2

)

in the range 0 < θ < 1/(n− 1 + 2nϑ) assuming ϑ < 1/2− 1/n. Furthermore, it
follows that

E(x; θ) =

∫ 1/2−iY

1/2−iX

L(s, f)xs
ds

s
+

∫ 1/2+iX

1/2+iY

L(s, f)xs
ds

s
+O

(
X1/2−(1+θ)/2n+ε/2

)

for 0 < θ < 1/(n− 1 + 2nϑ) and ϑ < 1/2− 1/n.
From this it follows that

1

X

∫ 2X

X

|E(x; θ)|2 dx

≪ε X
1−(1+θ)/n+ε +

1

X

∫ 2X

X

∣∣∣∣∣

∫ 1/2−iY

1/2−iX

L(s, f)xs
ds

s
+

∫ 1/2+iX

1/2+iY

L(s, f)xs
ds

s

∣∣∣∣∣

2

dx
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for θ and ϑ in the same ranges as before.
Hence, we are now reduced to study

1

X

∫ 2X

X

∣∣∣∣∣

∫ 1/2−iY

1/2−iX

L(s, f)xs
ds

s
+

∫ 1/2+iX

1/2+iY

L(s, f)xs
ds

s

∣∣∣∣∣

2

dx.

Let us fix a smooth compactly supported non-negative weight function w ma-
jorising the characteristic function of the interval [1, 2].

Now we simply compute:

1

X

∫ 2X

X

∣∣∣∣∣

∫ 1/2−iY

1/2−iX

L(s, f)xs
ds

s
+

∫ 1/2+iX

1/2+iY

L(s, f)xs
ds

s

∣∣∣∣∣

2

dx

≤ 1

X

∫

R

∣∣∣∣∣

∫ 1/2−iY

1/2−iX

L(s, f)xs
ds

s
+

∫ 1/2+iX

1/2+iY

L(s, f)xs
ds

s

∣∣∣∣∣

2

w
( x
X

)
dx

≪ 1

X

∫

R

∣∣∣∣∣

∫ 1/2+iX

1/2+iY

L(s, f)xs
ds

s

∣∣∣∣∣

2

w
( x
X

)
dx

=
1

X

∫

R

∫ 1/2+iX

1/2+iY

∫ 1/2+iX

1/2+iY

L(s1, f)x
s1L(s2, f)x

s2
ds1
s1

ds2
s2

w
( x
X

)
dx

=
1

X

∫

R

∫ X

Y

∫ X

Y

L

(
1

2
+ it, f

)
x1/2+itL

(
1

2
+ iv, f

)
x1/2−iv dtdv(

1
2 + it

) (
1
2 − iv

)w
( x
X

)
dx

=

∫ X

Y

∫ X

Y

L
(
1
2 + it, f

)
L
(

1
2 − iv, f̃

)

(
1
2 + it

) (
1
2 − iv

) X1+i(t−v)

(∫

R

x1+i(t−v)w(x) dx

)
dt dv.

By repeated integration by parts we see that the inner integral is negligible
(i.e. ≪A X−A for any A > 0) when |t − v| ≥ Xη for some fixed η > 0. In
the complementary range the inner integral is bounded. Using this we simply
estimate that the remaining part of the integral is

≪η X

∫ ∫

Y≤t,v≤X
|t−v|≤Xη

∣∣∣L
(
1
2 + it, f

)
L
(

1
2 − iv, f̃

)∣∣∣
tv

dt dv

≪η,ε X

∫ ∫

Y≤t,v≤X
|t−v|≤Xη

(tv)−1+εn(1+θ)/2 dt dv

≪η,ε X
1+ηY −1+εn(1+θ)/2

∫ X+Xη

Y−Xη

t−1+εn(1+θ)/2 dt

≪η,ε X
1+ηY −1+εn(1+θ)/2

≪η,ε X
1−(1+θ)/n+η+ε/2,

where, in the third step, we have used the fact that, for fixed t, the parameter v
ranges over a set of measure ≍ Xη. The resulting upper bound is small enough
if we choose η = ε/2 > 0. Here we have used the generalised Lindelöf hypothesis
in the second step and the fact that Y ≍ X(1+θ)/n in the penultimate step. This
finishes the proof.
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6 Proof of Theorem 2

We start by observing that

1

X

∫ 2X

X

∣∣∣∣∣∣

∑

x≤m≤x+∆

A(m, 1, ..., 1)

∣∣∣∣∣∣

2

dx

=
1

X

∫ 2X

X

|P (x+∆; θ)− P (x; θ)|2 dx+
1

X

∫ 2X

X

|E (x+∆; θ)− E(x; θ)|2 dx

+O

(
1

X

∫ 2X

X

|P (x+∆; θ)− P (x; θ)| · |E (x+∆; θ)− E(x; θ)| dx
)

(18)

for any 0 < θ ≤ 1. In fact, we will suppose that 0 < θ < 1/(n− 1 + 2nϑ). For
the first term on the right-hand side we see that

1

X

∫ 2X

X

|P (x+∆; θ)− P (x; θ)|2 dx

=
1

X

∫ 2X

X

|P (x +∆; θ)|2 dx+
1

X

∫ 2X

X

|P (x; θ)|2 dx

− 1

X

∫ 2X

X

[
P (x+∆; θ)P (x; θ) + P (x)P (x+∆; θ)

]
dx. (19)

By writing cosines as exponentials we have

P (x; θ) =
x1/2−1/2n

2π
√
n

∑

m≤Xθ

A(1, ..., 1,m)

m1/2+1/2n
e

(
n n
√
mx+

(n− 3)

8

)

+
x1/2−1/2n

2π
√
n

∑

m≤Xθ

A(1, ..., 1,m)

m1/2+1/2n
e

(
−n n

√
mx− (n− 3)

8

)
.

Arguing just as in the proof of Lemma 10 we see that

1

X

∫ 2X

X

|P (x; θ)|2 dx ∼ 1

2
· 1

nπ2
· 2

2−1/n − 1

2− 1/n
·X1−1/n

∞∑

m=1

|A(m, 1, ..., 1)|2
m1+1/n

.

assuming θ < 1/(n− 1)− ε. The identical argument shows that

1

X

∫ 2X

X

|P (x+∆; θ)|2 dx

satisfies the same asymptotics under the additional condition ∆ = o(X).
On the other hand, in order to estimate the last remaining term in (19) a

short calculation by writing cosines in terms of exponential functions shows that
we need to estimate integrals of the form

1

X

∫ 2X

X

(x(x +∆))1/2−1/2ne

(
±n
(

n
√
m(x+∆)± n

√
ℓx
)
± µ · (n− 3)

4

)
dx

with µ ∈ {0, 1}.
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Set F (x) := n
√
m(x+∆)− n

√
ℓx. Using the easy observation that for x 6= y

we have | n
√
x− n

√
y| ≫ |x− y|(max(x, y))1/n−1, it follows that

|F ′(x)| ≫ X1/n−1|m− ℓ|(max(m, ℓ))1/n−1

for m 6= ℓ. Also

n
√
m(x+∆)− n

√
mx = n

√
m

∫ x+∆

x

t1/n−1 dt ≍ n
√
m∆X1/n−1.

Therefore, by applying the first derivative test, we have

1

X

∫ 2X

X

(x(x +∆))1/2−1/2n

4π2n
e

(
±n
(

n
√
m(x+∆)− n

√
ℓx
)
± µ · (n− 3)

4

)
dx

≪
{

X1−2/n(max(m,ℓ))1−1/n

|m−ℓ| , if m 6= ℓ
X2−2/n

∆ n
√
m
, if m = ℓ

Similarly,

1

X

∫ 2X

X

(x(x +∆))1/2−1/2n

4π2n
e

(
±n
(

n
√
m(x+∆) +

n
√
ℓx
)
± µ · (n− 3)

4

)
dx

≪ X1−2/n(max(m, ℓ))1−1/n

|m+ ℓ| .

Hence, the non-diagonal terms in

1

X

∫ 2X

X

|P (x+∆; θ)P (x; θ)| dx

contribute

≪ε X
1−2/n+θ(1−1/n)+(n−2)ε/n

≪ε X
1−1/n−ε/n

by using (8) and the assumption θ < 1/(n− 1)− ε. The diagonal contribution
is estimated as

≪ X2−2/n

∆

∑

m≤Xθ

|A(1, ..., 1,m)|2
m1+1/n

≪ X2−2/n

∆

≪ε X
1−1/n−ε,

provided that ∆ ≫ε X
1−1/n+ε, again by using (8).

The term involving E(x; θ) is ≪ε X
1−1/n−ε, which follows from the proof

of Proposition 8 (here the generalised Lindelöf hypothesis is needed) for 0 <
θ < 1/(n − 1 + 2nϑ) assuming ϑ < 1/2 − 1/n. Finally, the error term in
(18) is ≪ε X

1−1/n−ε/2n by the Cauchy-Schwarz inequality. This concludes the
proof.
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