A method of induction the distances with Hilbert structure

Vesna Gotovac, Kateřina Helisova $\frac{b}{2}$ Lev B. Klebanov^cand Irina V. Volchenkova^{b d}

Abstract

A method of induction the distances with Hilbert structure is proposed. Some properties of the method are studied. Typical examples of corresponding metric spaces are discussed.

Key words: Hilbert spaces; metric spaces; isomtric embeddings into Hilbert spaces

1 Introduction

Let $\{\mathcal{X}, D\}$ be a metric space. We say D is a Hilbert-type distance if and only if there is an isometry from $\{\mathcal{X}, D\}$ on a subset of a Hilbert space. It is known (see [\[3\]](#page-5-0)) this property is equivalent to negative definiteness of D^2 . Namely, a real function $\mathcal L$ from $\mathcal X^2$ such that $\mathcal L(x_1, x_2) = \mathcal L(x_2, x_1)$ is called negative definite kernel if for arbitrary positive integer n and real numbers c_1, \ldots, c_n satisfying to the condition $\sum_{j=1}^n c_j = 0$ we have

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{L}(x_i, x_j) c_i c_j \le 0.
$$
 (1.1)

^aDepartment of Mathematics, Faculty of Science, University of Split, 21000 Split, Croatia

 b Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic

^cDepartment of Probability and Mathematical Statistics, Charles University, Sokolovska 83, 18675 Prague, Czech Republic, e-mail: levbkl@gmail.com

^dThe order of authors is alphabetical and has no other sense

That is, to proof that D is a Hilbert-type distance it is sufficient to verify $\mathcal{L} = D^2$ satisfies the relation [\(1.1\)](#page-0-0). In the paper we provide a method of constructing Hilbert-type distance on a set $\mathcal X$ by using corresponding distance on image of X under a family of functions.

2 The method of defining Hilbert-type distances

Let $\mathcal Z$ be a metric space with a distance D on it. It is well-known that $\mathcal Z$ is isometric to a set of a Hilbert space if and only if $D^2(u, v)$ $(u, v \in Z)$ is negative definite kernel of \mathcal{Z}^2 . Further on we suppose that D possesses this property. Let X be an abstract set, and let $f_y(.)$, $y \in \mathcal{Y}$ be a family of functions defined on $\mathcal X$ and taking values in $\mathcal Z$. Suppose that Ξ is a probability measure on $\mathcal Y$. Define

$$
\rho(x_1, x_2) = \left(\int_{\mathcal{Y}} D^2(f_y(x_1), f_y(x_2))d\Xi(y)\right)^{1/2}.\tag{2.1}
$$

Our goal is to show that under some assumptions ρ is a distance on X such that ρ^2 is a negative definite kernel.

It is clear that for $x_1, x_2 \in \mathcal{X}$

A1. $\rho(x_1, x_2) \geq 0$;

A2.
$$
\rho(x_1, x_2) = 0
$$
 if and only if $f_y(x_1) = f_y(x_2)$ for Ξ -almost all $y \in \mathcal{Y}$;

A3.
$$
\rho(x_1, x_2) = \rho(x_2, x_1)
$$
.

Take arbitrary positive integer n and real numbers c_1, \ldots, c_n satisfying to the condition $\sum_{j=1}^{n} c_j = 0$. For arbitrary $x_1, \ldots, x_n \in \mathcal{X}$ we have

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \rho^{2}(x_{i}, x_{j}) c_{i} c_{j} = \int_{\mathcal{Y}} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} D^{2}(f_{y}(x_{i}), f_{y}(x_{j})) c_{i} c_{j} \right) d \Xi(y) \leq 0 \quad (2.2)
$$

in view of negative definiteness of the kernel D^2 . Therefore, ρ^2 is negative definite kernel on \mathcal{X} . From this fact it follows that ρ satisfies the triangle inequality (see, for example, [\[2\]](#page-5-1)):

A4.
$$
\rho(x_1, x_2) \le \rho(x_1, x_3) + \rho(x_3, x_2)
$$
 for all $x_1, x_2, x_3 \in \mathcal{X}$.

Theorem 2.1. Let \mathcal{Z} be a metric space with a distance D on it. Suppose that $D^2(u, v)$ $(u, v \in Z)$ is negative definite kernel of \mathcal{Z}^2 . Let X be an abstract set, and let $f_y(.)$, $y \in \mathcal{Y}$ be a family of functions defined on X and taking values in Z. Suppose that Ξ is a probability measure on $\mathcal Y$ such that

$$
f_y(x_1) = f_y(x_2) \text{ for all } y \in \text{supp}(\Xi) \text{ implies } \mathbf{x}_1 = \mathbf{x}_2,\tag{2.3}
$$

where, as usual, supp(Ξ) is support of the measure Ξ . Then the function ρ defined by [\(2.1\)](#page-1-0) is a distance on X. Metric space (\mathcal{X}, ρ) is isometric to a subset of a Hilbert space.

Proof. Properties $A1 - A4$. together with [\(2.3\)](#page-2-0) show that ρ is a distance on X. Because ρ^2 is a negative definite kernel the conclusion of the Theorem follows from I.J. Schoenberg's Theorem ([\[3\]](#page-5-0), see also [\[2\]](#page-5-1)). \Box

Example 2.1. Let X be a subset of a vector space \mathcal{H} and \mathcal{Y} is a subspace of algebraic conjugate \mathcal{X}' . Suppose that on \mathcal{X}' with a σ -field of its subsets there exists a measure Ξ such that

$$
\langle x', x_1 \rangle = \langle x', x_2 \rangle \text{ for all } x' \text{ implies } x_1 = x_2.
$$

Then there exists a Hilbert-type distance on \mathcal{X} .

Proof. It is sufficient to apply Theorem [2.1](#page-2-1) to $\mathcal{Y} = \mathcal{X}'$ and $D(u, v) = |u - v|$ for $u, v \in \mathcal{Z} = \mathbb{R}^1$. \Box

Let us note that the distance

$$
\rho(x_1, x_2) = \left(\int_{\mathcal{Y}} (\langle x', x_1 \rangle - \langle x', x_2 \rangle)^2 d \Xi(x') \right)^{1/2}
$$

on X induces a norm on X . Namely,

$$
||x|| = \rho(x, 0), x \in \mathcal{X}.
$$

Corresponding inner product may be calculated as

$$
(x_1, x_2) = \int_{\mathcal{Y}} \langle x', x_1 \rangle \cdot \langle x', x_2 \rangle d\Xi(x').
$$

Basing on this, we can say that $\mathcal X$ is isometric to linear subspace of a Hilbert space. However, we cannot state that $\mathcal X$ is complete.

The conditions of Example [2.1](#page-2-2) are close to necessary. Really, let $\mathcal X$ be a subset of a separable Hilbert space \mathfrak{H} . We may take as $\mathcal Y$ the dual space of all continuous linear functionals on \mathfrak{H} . Of course, in this situation there exists corresponding measure Ξ possessing desirable properties. Namely, from the proof of the result of [\[1\]](#page-5-2) it follows that we can choose Ξ as a Gaussian measure with $supp(\Xi) = \mathfrak{H}$.

The facts given by Example [2.1](#page-2-2) and after it show that the condition of existence of inner product on a linear space may be changed by the condition of existence of suitable measure Ξ on reach enough subset of the dual space.

3 The method of defining L^m -type distances

Let $\mathcal X$ be an abstract set, and m be an even integer greater than 1. Assume that $\mathcal{L}(x_1, \ldots, x_m)$ is a real continuous function on \mathcal{X}^m symmetric with respect to permutations of its arguments. We say that $\mathcal L$ is an *m*-negative *definite kernel* (see [\[4\]](#page-5-3)) if for any integer $n \geq 1$, any collection of points $x_1, \ldots, x_n \in \mathcal{X}$, and any collection of real numbers h_1, \ldots, h_n satisfying the condition $\sum_{j=1}^{n} h_j = 0$, the following inequality holds:

$$
(-1)^{m/2} \sum_{i_1=1}^n \dots \sum_{i_m=1}^n \mathcal{L}(x_{i_1}, \dots, x_{i_m}) h_{i_1} \cdots h_{i_m} \ge 0.
$$
 (3.1)

For the case $m = 2$ we have the case of negative definite kernel. If the equality in [\(3.1\)](#page-3-0) implies that $h_1 = \ldots = h_n = 0$, then we call $\mathcal L$ strictly m-negative definite kernel. Equivalent form of (3.1) is

$$
(-1)^{m/2} \int_{\mathcal{X}} \cdots \int_{\mathcal{X}} \mathcal{L}(x_1, \ldots, x_m) h(x_1) \cdots h(x_m) dQ(x_1) \ldots dQ(x_m) \ge 0 \quad (3.2)
$$

for any measure Q and any integrable function $h(x)$ such that

$$
\int_{\mathcal{X}} h(x)dQ(x) = 0.
$$
\n(3.3)

We call $\mathcal L$ strongly m-negative definite kernel if the equality in [\(3.3\)](#page-3-1) holds for $h = 0$ Q-almost everywhere only.

Let X be an abstract set, and let $f_y(.)$, $y \in \mathcal{Y}$ be a family of functions defined on $\mathcal X$ and taking values in a set $\mathcal Z$. Suppose that $\mathcal L$ is m-negative

definite kernel on \mathcal{Z}^m and Ξ is a probability measure on \mathcal{Y} . Define

$$
\mathfrak{R}_m(x_1,\ldots,x_m)=\int_{\mathcal{Y}}\mathcal{L}(f_y(x_1),\ldots,f_y(x_m))d\Xi(y). \hspace{1cm} (3.4)
$$

It is easy to see that \mathfrak{R}_m is m-negative definite kernel on \mathcal{X}^m .

Assumption 1. If

$$
(-1)^{m/2} \sum_{i_1=1}^n \dots \sum_{i_m=1}^n \mathcal{L}(f_y(x_{i_1}), \dots, f_y(x_{i_m})) h_{i_1} \dots h_{i_m} = 0
$$

for Q – almost all $y \in \mathcal{Y}$

implies that

$$
(-1)^{m/2} \sum_{i_1=1}^n \dots \sum_{i_m=1}^n \mathcal{L}(x_{i_1}, \dots, x_{i_m}) h_{i_1} \dots h_{i_m} = 0
$$

then strictly m-negativeness of $\mathcal L$ implies strictly m-negativeness of $\mathfrak R$.

Similarly statements with integrals instead of sums are true for strong negative definiteness. We omit precise formulation.

Suppose, as before, that m is an even integer greater than 1. Let D_m is a distance on $\mathcal Z$. From the results of [\[4\]](#page-5-3) (see also [\[2\]](#page-5-1)) it follows that $(\mathcal Z, D_m)$ is isometric to a subset of L^m space if and only if

$$
D_m(u,v) = \left((-1)^{m/2}\mathcal{L}(u-v,\ldots,u-v)\right)^{1/m}, \quad u,v \in \mathcal{Z},\tag{3.5}
$$

where $\mathcal{L}(u_1, \ldots, u_m)$ is a strictly negative definite kernel on \mathcal{Z}^m . Therefore, under Assumption 1 and if $D_m(u, v)$ has the form [\(3.5\)](#page-4-0) then

$$
\rho_m(s,t) = \left(\Re_m(s-t,\ldots,s-t)\right)^{1/m}, \quad s,t \in \mathcal{X}
$$
\n(3.6)

is a distance on \mathcal{X} , where L is strictly m-negative definite kernel used in [\(3.5\)](#page-4-0). The set X with the distance ρ_m is isometric to a subset of L^m space.

4 Acknowledgment

The work was partially supported by Grant GACR 16-03708S.

References

- [1] K. Ito (1970). The Topological Support of Gauss Measure on Hilbert Space, Nagoya Math. J. Vol. 38, 181–183.
- [2] Lev B. Klebanov (2005). N-Distances and their Applications, Charles University in Prague, The Karolinum Press.
- [3] I.J. Schoenberg (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc., 44, 3, 552–563.
- [4] A.A. Zinger, A.V. Kakosyan, L.B. Klebanov (1989). Characterization of distributions by the mean values of statistics and some probability metrics, Stability Problems of Stochastic Models, p.p. 47–55, Moscow: VNII Sistemnykh Isledovanii (in Russian).