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8 A method of induction the distances with

Hilbert structure

Vesna Gotovaca, Kateřina Helisova b,
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Abstract

A method of induction the distances with Hilbert structure is pro-

posed. Some properties of the method are studied. Typical examples

of corresponding metric spaces are discussed.
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Hilbert spaces

1 Introduction

Let {X , D} be a metric space. We say D is a Hilbert-type distance if and
only if there is an isometry from {X , D} on a subset of a Hilbert space. It
is known (see [3]) this property is equivalent to negative definiteness of D2.
Namely, a real function L from X 2 such that L(x1, x2) = L(x2, x1) is called
negative definite kernel if for arbitrary positive integer n and real numbers
c1, . . . , cn satisfying to the condition

∑n
j=1

cj = 0 we have

n
∑

i=1

n
∑

j=1

L(xi, xj)cicj ≤ 0. (1.1)
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That is, to proof that D is a Hilbert-type distance it is sufficient to verify
L = D2 satisfies the relation (1.1). In the paper we provide a method of
constructing Hilbert-type distance on a set X by using corresponding distance
on image of X under a family of functions.

2 The method of defining Hilbert-type dis-

tances

Let Z be a metric space with a distance D on it. It is well-known that Z
is isometric to a set of a Hilbert space if and only if D2(u, v) (u, v ∈ Z)
is negative definite kernel of Z2. Further on we suppose that D possesses
this property. Let X be an abstract set, and let fy(.), y ∈ Y be a family
of functions defined on X and taking values in Z. Suppose that Ξ is a
probability measure on Y . Define

ρ(x1, x2) =
(

∫

Y

D2(fy(x1), fy(x2))dΞ(y)
)1/2

. (2.1)

Our goal is to show that under some assumptions ρ is a distance on X such
that ρ2 is a negative definite kernel.

It is clear that for x1, x2 ∈ X

A1. ρ(x1, x2) ≥ 0;

A2. ρ(x1, x2) = 0 if and only if fy(x1) = fy(x2) for Ξ-almost all y ∈ Y ;

A3. ρ(x1, x2) = ρ(x2, x1).

Take arbitrary positive integer n and real numbers c1, . . . , cn satisfying to the
condition

∑n
j=1

cj = 0. For arbitrary x1, . . . , xn ∈ X we have

n
∑

i=1

n
∑

j=1

ρ2(xi, xj)cicj =

∫

Y

(

n
∑

i=1

n
∑

j=1

D2(fy(xi), fy(xj))cicj

)

dΞ(y) ≤ 0 (2.2)

in view of negative definiteness of the kernel D2. Therefore, ρ2 is negative
definite kernel on X . From this fact it follows that ρ satisfies the triangle
inequality (see, for example, [2]):

A4. ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2) for all x1, x2, x3 ∈ X .

2



Theorem 2.1. Let Z be a metric space with a distance D on it. Suppose that
D2(u, v) (u, v ∈ Z) is negative definite kernel of Z2. Let X be an abstract
set, and let fy(.), y ∈ Y be a family of functions defined on X and taking
values in Z. Suppose that Ξ is a probability measure on Y such that

fy(x1) = fy(x2) for all y ∈ supp(Ξ) implies x1 = x2, (2.3)

where, as usual, supp(Ξ) is support of the measure Ξ. Then the function ρ

defined by (2.1) is a distance on X . Metric space (X , ρ) is isometric to a
subset of a Hilbert space.

Proof. Properties A1.−A4. together with (2.3) show that ρ is a distance on
X . Because ρ2 is a negative definite kernel the conclusion of the Theorem
follows from I.J. Schoenberg’s Theorem ([3], see also [2]).

Example 2.1. Let X be a subset of a vector space H and Y is a subspace of
algebraic conjugate X ′. Suppose that on X ′ with a σ-field of its subsets there
exists a measure Ξ such that

〈x′, x1〉 = 〈x′, x2〉 for all x′ implies x1 = x2.

Then there exists a Hilbert-type distance on X .

Proof. It is sufficient to apply Theorem 2.1 to Y = X ′ and D(u, v) = |u− v|
for u, v ∈ Z = IR1.

Let us note that the distance

ρ(x1, x2) =
(

∫

Y

(〈x′, x1〉 − 〈x′, x2〉)
2dΞ(x′)

)1/2

on X induces a norm on X . Namely,

‖x‖ = ρ(x, 0), x ∈ X .

Corresponding inner product may be calculated as

(x1, x2) =

∫

Y

〈x′, x1〉 · 〈x
′, x2〉dΞ(x

′).

Basing on this, we can say that X is isometric to linear subspace of a Hilbert
space. However, we cannot state that X is complete.
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The conditions of Example 2.1 are close to necessary. Really, let X be a
subset of a separable Hilbert space H. We may take as Y the dual space of all
continuous linear functionals on H. Of course, in this situation there exists
corresponding measure Ξ possessing desirable properties. Namely, from the
proof of the result of [1] it follows that we can choose Ξ as a Gaussian measure
with supp(Ξ) = H.

The facts given by Example 2.1 and after it show that the condition of
existence of inner product on a linear space may be changed by the condition
of existence of suitable measure Ξ on reach enough subset of the dual space.

3 The method of defining Lm-type distances

Let X be an abstract set, and m be an even integer greater than 1. Assume
that L(x1, . . . , xm) is a real continuous function on Xm symmetric with re-
spect to permutations of its arguments. We say that L is an m-negative
definite kernel (see [4]) if for any integer n ≥ 1, any collection of points
x1, . . . , xn ∈ X , and any collection of real numbers h1, . . . , hn satisfying the
condition

∑n
j=1

hj = 0, the following inequality holds:

(−1)m/2

n
∑

i1=1

. . .

n
∑

im=1

L(xi1 , . . . , xim)hi1 · · ·him ≥ 0. (3.1)

For the casem = 2 we have the case of negative definite kernel. If the equality
in (3.1) implies that h1 = . . . = hn = 0, then we call L strictly m-negative
definite kernel. Equivalent form of (3.1) is

(−1)m/2

∫

X

. . .

∫

X

L(x1, . . . , xm)h(x1) · · ·h(xm)dQ(x1) . . . dQ(xm) ≥ 0 (3.2)

for any measure Q and any integrable function h(x) such that

∫

X

h(x)dQ(x) = 0. (3.3)

We call L strongly m-negative definite kernel if the equality in (3.3) holds for
h = 0 Q-almost everywhere only.

Let X be an abstract set, and let fy(.), y ∈ Y be a family of functions
defined on X and taking values in a set Z. Suppose that L is m-negative
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definite kernel on Zm and Ξ is a probability measure on Y . Define

Rm(x1, . . . , xm) =

∫

Y

L(fy(x1), . . . , fy(xm))dΞ(y). (3.4)

It is easy to see that Rm is m-negative definite kernel on Xm.

Assumption 1. If

(−1)m/2

n
∑

i1=1

. . .

n
∑

im=1

L(fy(xi1), . . . , fy(xim))hi1 · · ·him = 0

for Q− almost all y ∈ Y

implies that

(−1)m/2

n
∑

i1=1

. . .

n
∑

im=1

L(xi1 , . . . , xim)hi1 · · ·him = 0

then strictly m-negativeness of L implies strictly m-negativeness of R.

Similarly statements with integrals instead of sums are true for strong
negative definiteness. We omit precise formulation.

Suppose, as before, that m is an even integer greater than 1. Let Dm is
a distance on Z. From the results of [4] (see also [2]) it follows that (Z, Dm)
is isometric to a subset of Lm space if and only if

Dm(u, v) =
(

(−1)m/2L(u− v, . . . , u− v)
)1/m

, u, v ∈ Z, (3.5)

where L(u1, . . . , um) is a strictly negative definite kernel on Zm. Therefore,
under Assumption 1 and if Dm(u, v) has the form (3.5) then

ρm(s, t) =
(

Rm(s− t, . . . , s− t)
)1/m

, s, t ∈ X (3.6)

is a distance on X , where L is strictly m-negative definite kernel used in
(3.5). The set X with the distance ρm is isometric to a subset of Lm space.
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