A method of induction the distances with Hilbert structure

Vesna Gotovac^a, Kateřina Helisova^b, Lev B. Klebanov^c and Irina V. Volchenkova^{b d}

Abstract

A method of induction the distances with Hilbert structure is proposed. Some properties of the method are studied. Typical examples of corresponding metric spaces are discussed.

Key words: Hilbert spaces; metric spaces; isomtric embeddings into Hilbert spaces

1 Introduction

Let $\{\mathcal{X}, D\}$ be a metric space. We say D is a Hilbert-type distance if and only if there is an isometry from $\{\mathcal{X}, D\}$ on a subset of a Hilbert space. It is known (see [3]) this property is equivalent to negative definiteness of D^2 . Namely, a real function \mathcal{L} from \mathcal{X}^2 such that $\mathcal{L}(x_1, x_2) = \mathcal{L}(x_2, x_1)$ is called negative definite kernel if for arbitrary positive integer n and real numbers c_1, \ldots, c_n satisfying to the condition $\sum_{j=1}^n c_j = 0$ we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{L}(x_i, x_j) c_i c_j \le 0.$$
(1.1)

 $[^]a\mathrm{Department}$ of Mathematics, Faculty of Science, University of Split, 21000 Split, Croatia

^bDepartment of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic

^cDepartment of Probability and Mathematical Statistics, Charles University, Sokolovska 83, 18675 Prague, Czech Republic, e-mail: levbkl@gmail.com

^dThe order of authors is alphabetical and has no other sense

That is, to proof that D is a Hilbert-type distance it is sufficient to verify $\mathcal{L} = D^2$ satisfies the relation (1.1). In the paper we provide a method of constructing Hilbert-type distance on a set \mathcal{X} by using corresponding distance on image of \mathcal{X} under a family of functions.

2 The method of defining Hilbert-type distances

Let \mathcal{Z} be a metric space with a distance D on it. It is well-known that \mathcal{Z} is isometric to a set of a Hilbert space if and only if $D^2(u, v)$ $(u, v \in \mathbb{Z})$ is negative definite kernel of \mathcal{Z}^2 . Further on we suppose that D possesses this property. Let \mathcal{X} be an abstract set, and let $f_y(.), y \in \mathcal{Y}$ be a family of functions defined on \mathcal{X} and taking values in \mathcal{Z} . Suppose that Ξ is a probability measure on \mathcal{Y} . Define

$$\rho(x_1, x_2) = \left(\int_{\mathcal{Y}} D^2(f_y(x_1), f_y(x_2)) d\,\Xi(y)\right)^{1/2}.$$
(2.1)

Our goal is to show that under some assumptions ρ is a distance on \mathcal{X} such that ρ^2 is a negative definite kernel.

It is clear that for $x_1, x_2 \in \mathcal{X}$

A1. $\rho(x_1, x_2) \ge 0;$

A2.
$$\rho(x_1, x_2) = 0$$
 if and only if $f_y(x_1) = f_y(x_2)$ for Ξ -almost all $y \in \mathcal{Y}$;

A3.
$$\rho(x_1, x_2) = \rho(x_2, x_1).$$

Take arbitrary positive integer n and real numbers c_1, \ldots, c_n satisfying to the condition $\sum_{j=1}^n c_j = 0$. For arbitrary $x_1, \ldots, x_n \in \mathcal{X}$ we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \rho^2(x_i, x_j) c_i c_j = \int_{\mathcal{Y}} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} D^2(f_y(x_i), f_y(x_j)) c_i c_j \right) d\Xi(y) \le 0 \quad (2.2)$$

in view of negative definiteness of the kernel D^2 . Therefore, ρ^2 is negative definite kernel on \mathcal{X} . From this fact it follows that ρ satisfies the triangle inequality (see, for example, [2]):

A4.
$$\rho(x_1, x_2) \le \rho(x_1, x_3) + \rho(x_3, x_2)$$
 for all $x_1, x_2, x_3 \in \mathcal{X}$.

Theorem 2.1. Let \mathcal{Z} be a metric space with a distance D on it. Suppose that $D^2(u, v)$ $(u, v \in Z)$ is negative definite kernel of \mathcal{Z}^2 . Let \mathcal{X} be an abstract set, and let $f_y(.), y \in \mathcal{Y}$ be a family of functions defined on \mathcal{X} and taking values in \mathcal{Z} . Suppose that Ξ is a probability measure on \mathcal{Y} such that

$$f_y(x_1) = f_y(x_2) \text{ for all } y \in \text{supp}(\Xi) \text{ implies } \mathbf{x}_1 = \mathbf{x}_2, \tag{2.3}$$

where, as usual, $\operatorname{supp}(\Xi)$ is support of the measure Ξ . Then the function ρ defined by (2.1) is a distance on \mathcal{X} . Metric space (\mathcal{X}, ρ) is isometric to a subset of a Hilbert space.

Proof. Properties A1. - A4. together with (2.3) show that ρ is a distance on \mathcal{X} . Because ρ^2 is a negative definite kernel the conclusion of the Theorem follows from I.J. Schoenberg's Theorem ([3], see also [2]).

Example 2.1. Let \mathcal{X} be a subset of a vector space \mathcal{H} and \mathcal{Y} is a subspace of algebraic conjugate \mathcal{X}' . Suppose that on \mathcal{X}' with a σ -field of its subsets there exists a measure Ξ such that

$$\langle x', x_1 \rangle = \langle x', x_2 \rangle$$
 for all x' implies $x_1 = x_2$.

Then there exists a Hilbert-type distance on \mathcal{X} .

Proof. It is sufficient to apply Theorem 2.1 to $\mathcal{Y} = \mathcal{X}'$ and D(u, v) = |u - v| for $u, v \in \mathcal{Z} = \mathbb{R}^1$.

Let us note that the distance

$$\rho(x_1, x_2) = \left(\int_{\mathcal{Y}} (\langle x', x_1 \rangle - \langle x', x_2 \rangle)^2 d\Xi(x')\right)^{1/2}$$

on \mathcal{X} induces a norm on \mathcal{X} . Namely,

$$||x|| = \rho(x,0), \ x \in \mathcal{X}.$$

Corresponding inner product may be calculated as

$$(x_1, x_2) = \int_{\mathcal{Y}} \langle x', x_1 \rangle \cdot \langle x', x_2 \rangle d\Xi(x').$$

Basing on this, we can say that \mathcal{X} is isometric to linear subspace of a Hilbert space. However, we cannot state that \mathcal{X} is complete.

The conditions of Example 2.1 are close to necessary. Really, let \mathcal{X} be a subset of a separable Hilbert space \mathfrak{H} . We may take as \mathcal{Y} the dual space of all continuous linear functionals on \mathfrak{H} . Of course, in this situation there exists corresponding measure Ξ possessing desirable properties. Namely, from the proof of the result of [1] it follows that we can choose Ξ as a Gaussian measure with $\operatorname{supp}(\Xi) = \mathfrak{H}$.

The facts given by Example 2.1 and after it show that the condition of existence of inner product on a linear space may be changed by the condition of existence of suitable measure Ξ on reach enough subset of the dual space.

3 The method of defining L^m -type distances

Let \mathcal{X} be an abstract set, and m be an even integer greater than 1. Assume that $\mathcal{L}(x_1, \ldots, x_m)$ is a real continuous function on \mathcal{X}^m symmetric with respect to permutations of its arguments. We say that \mathcal{L} is an *m*-negative definite kernel (see [4]) if for any integer $n \geq 1$, any collection of points $x_1, \ldots, x_n \in \mathcal{X}$, and any collection of real numbers h_1, \ldots, h_n satisfying the condition $\sum_{j=1}^n h_j = 0$, the following inequality holds:

$$(-1)^{m/2} \sum_{i_1=1}^n \dots \sum_{i_m=1}^n \mathcal{L}(x_{i_1}, \dots, x_{i_m}) h_{i_1} \dots h_{i_m} \ge 0.$$
(3.1)

For the case m = 2 we have the case of negative definite kernel. If the equality in (3.1) implies that $h_1 = \ldots = h_n = 0$, then we call \mathcal{L} strictly *m*-negative definite kernel. Equivalent form of (3.1) is

$$(-1)^{m/2} \int_{\mathcal{X}} \dots \int_{\mathcal{X}} \mathcal{L}(x_1, \dots, x_m) h(x_1) \cdots h(x_m) dQ(x_1) \dots dQ(x_m) \ge 0 \quad (3.2)$$

for any measure Q and any integrable function h(x) such that

$$\int_{\mathcal{X}} h(x) dQ(x) = 0. \tag{3.3}$$

We call \mathcal{L} strongly *m*-negative definite kernel if the equality in (3.3) holds for h = 0 *Q*-almost everywhere only.

Let \mathcal{X} be an abstract set, and let $f_y(.), y \in \mathcal{Y}$ be a family of functions defined on \mathcal{X} and taking values in a set \mathcal{Z} . Suppose that \mathcal{L} is *m*-negative definite kernel on \mathcal{Z}^m and Ξ is a probability measure on \mathcal{Y} . Define

$$\mathfrak{R}_m(x_1,\ldots,x_m) = \int_{\mathcal{Y}} \mathcal{L}(f_y(x_1),\ldots,f_y(x_m)) d\,\Xi(y). \tag{3.4}$$

It is easy to see that \mathfrak{R}_m is *m*-negative definite kernel on \mathcal{X}^m .

Assumption 1. If

$$(-1)^{m/2} \sum_{i_1=1}^n \dots \sum_{i_m=1}^n \mathcal{L}(f_y(x_{i_1}), \dots, f_y(x_{i_m})) h_{i_1} \dots h_{i_m} = 0$$

for Q - almost all $y \in \mathcal{Y}$

implies that

$$(-1)^{m/2} \sum_{i_1=1}^n \dots \sum_{i_m=1}^n \mathcal{L}(x_{i_1}, \dots, x_{i_m}) h_{i_1} \cdots h_{i_m} = 0$$

then strictly m-negativeness of \mathcal{L} implies strictly m-negativeness of \mathfrak{R} .

Similarly statements with integrals instead of sums are true for strong negative definiteness. We omit precise formulation.

Suppose, as before, that m is an even integer greater than 1. Let D_m is a distance on \mathcal{Z} . From the results of [4] (see also [2]) it follows that (\mathcal{Z}, D_m) is isometric to a subset of L^m space if and only if

$$D_m(u,v) = \left((-1)^{m/2} \mathcal{L}(u-v,\dots,u-v) \right)^{1/m}, \quad u,v \in \mathcal{Z},$$
(3.5)

where $\mathcal{L}(u_1, \ldots, u_m)$ is a strictly negative definite kernel on \mathcal{Z}^m . Therefore, under Assumption 1 and if $D_m(u, v)$ has the form (3.5) then

$$\rho_m(s,t) = \left(\mathfrak{R}_m(s-t,\ldots,s-t)\right)^{1/m}, \quad s,t \in \mathcal{X}$$
(3.6)

is a distance on \mathcal{X} , where L is strictly *m*-negative definite kernel used in (3.5). The set \mathcal{X} with the distance ρ_m is isometric to a subset of L^m space.

4 Acknowledgment

The work was partially supported by Grant GACR 16-03708S.

References

- K. Ito (1970). The Topological Support of Gauss Measure on Hilbert Space, Nagoya Math. J. Vol. 38, 181–183.
- [2] Lev B. Klebanov (2005). N-Distances and their Applications, Charles University in Prague, The Karolinum Press.
- [3] I.J. Schoenberg (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc., 44, 3, 552–563.
- [4] A.A. Zinger, A.V. Kakosyan, L.B. Klebanov (1989). Characterization of distributions by the mean values of statistics and some probability metrics, Stability Problems of Stochastic Models, p.p. 47–55, Moscow: VNII Sistemnykh Isledovanii (in Russian).