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STRENGTH AND HARTSHORNE’S CONJECTURE IN HIGH DEGREE

DANIEL ERMAN, STEVEN V SAM, AND ANDREW SNOWDEN

1. Introduction

Hartshorne conjectured that every smooth, codimension c subvariety of Pn, with c < 1

3
n,

is a complete intersection [Har74, p. 1017]. We give a new proof of the case when n ≫ degX .
If X is smooth, then we say that the codimension of the singular locus of X is dimX + 1.

Theorem 1.1. There is a function N(c, e) such that if X ⊆ Pn
k
is an equidimensional,

projective subscheme of codimension c and degree e, and if the singular locus of X has
codimension at least N(c, e), then X is a complete intersection. In particular, the function
N(c, e) does not depend on n or on the field k.

Results like Theorem 1.1 have a long history. In characteristic zero, Hartshorne first proved
the above result in [Har74, Theorem 3.3]. In parallel, and also in characteristic zero, Barth
and Van de Ven proved an effective version of this result, showing that N = 5

2
e(e − 7) + c

works [Bar75]. Huneke’s work in [Hun85, Theorem 1.1] also implies Theorem 1.1 for arbitrary
c and over fields of arbitrary characteristic, and gives an explicit bound in terms of the
analytic spread. Further improvements include: work of Ran [Ran83, Theorem], sharpening
the bound and extending it to arbitrary characteristic, but only when c = 2; and Bertram-
Ein-Lazarsfeld’s [BEL91, Corollary 3], which sharpens the bound in arbitrary codimension,
but only holds in characteristic zero. See also [BC83,HS85].

The novelty in our work is through the new, and concise, method of proof. The main
ingredient in [Bar75] is an analysis of the variety of lines in X through a point, and many
of the aforementioned proofs make use of Kodaira Vanishing and topological results like
Lefschetz-type restriction theorems. By contrast, we derive Theorem 1.1 from elementary
consequences of the notion of strength introduced in [AH20], and of our result in [ESS19]
that the graded ultraproduct of polynomial rings is isomorphic to a polynomial ring. This
explicitly connects Hartshorne’s Conjecture with the circle of ideas initiated by Ananyan and
Hochster in [AH20] in their proof of Stillman’s Conjecture. It also underscores similarities
between the two conjectures, both of which propose limits on the possible behaviors for
varieties of codimension c in Pn when n ≫ c.

The ideas of [AH20] strongly motivated this work, as the connection between strength and
the codimension of the singular locus is one of the central ideas in that paper. Our viewpoint
also has some overlap with the Babylonian tower theorems, like [BVdV74, Theorems I and
IV] and those in [Coa12, Fle85, Sat91] among others. From an algebraic perspective, the
natural setting for such statements is an inverse limit of polynomial rings, and [ESS19,ESS]
shows such an inverse limit shares many properties with the ultraproduct ring.
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Remark 1.2. A classical result (see e.g. [EH87]) shows that for any nondegenerate, inte-
gral variety in Pn, the codimension is at most its degree. Thus, under these hypotheses,
Theorem 1.1 could be rephrased so as to remove the dependence on c. �
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2. Setup and Background

Each closed subscheme X ⊆ Pn
k
determines a homogeneous ideal IX ⊆ k[x0, . . . , xn]. The

scheme X , or the ideal IX , is equidimensional of codimension c if all associated primes
of IX have codimension c, and X is a complete intersection if IX is defined by a regular
sequence. Since the minimal free resolution of IX is stable under extending the ground field
k, the property of being a complete intersection is also stable under field extension.

From here on, k and ki will denote fields. If R is a graded ring with R0 = k, then
as in [AH20], we define the strength of a homogeneous element f ∈ R to be the minimal

integer k ≥ −1 for which there is a decomposition f =
∑k+1

i=1
gihi with gi and hi homogeneous

elements of R of positive degree, or ∞ if no such decomposition exists. The collective

strength of a set of homogeneous elements f1, . . . , fr ∈ R is the minimal strength of a
non-trivial homogeneous k-linear combination of the fi.

Lemma 2.1. Let R be a graded ring with R0 = k. If I ⊆ R is homogeneous and finitely
generated, then I has a generating set of homogeneous elements f1, . . . , fr where the strength
of fk equals the collective strength of f1, . . . , fk for each 1 ≤ k ≤ r.

Proof. Choose any homogeneous generators g1, . . . , gr of I. We prove the statement by
induction on r. For r = 1 the statement is tautological. Now let r > 1. By definition of
collective strength, we have a k-linear combination fr =

∑r

i=1
aigi such that the strength of

fr equals the collective strength of g1, . . . , gr. After relabeling, we can assume that ar 6= 0
and it follows that g1, . . . , gr−1, fr generate I. Applying the induction hypothesis to the ideal
(g1, . . . , gr−1) yields the desired result. �

Let Q = (f1, . . . , fr) ⊆ k[x1, x2, . . . ]. The ideal of c× c minors of the Jacobian matrix of
( ∂fi
∂xj

) does not depend on the choice of generators of Q. We denote this ideal by Jc(Q).

Lemma 2.2. Let Q = (f1, . . . , fr) be a homogeneous ideal in k[x1, x2, . . . ]. If the strength
of fi is at most s for c ≤ i ≤ r, then codim Jc(Q) ≤ (r − c+ 1)(2s+ 2).

Proof. For each c ≤ i ≤ r, we write fi =
∑s

j=0
ai,jhi,j where ai,j and hi,j have positive degree

for all i, j. Write Li for the ideal (ai,j , hi,j | 0 ≤ j ≤ s) and let L = Lc + Lc+1 + · · · + Lr.

The ith row of the Jacobian matrix has entries ∂fi
∂xk

; thus by the product rule, every entry in
this row is in Li. Since every c× c minor of the Jacobian matrix will involve row i for some
c ≤ i ≤ r, it follows that Jc(Q) ⊆ L. Thus codim Jc(Q) ≤ codimL, which by the Principal
Ideal Theorem is at most (r − c+ 1)(2s+ 2), as this is the number of generators of L. �

We briefly recall the definition of the ultraproduct ring, referring to [ESS19, §4.1] for a
more detailed discussion. Let I be an infinite set and let F be a non-principal ultrafilter on
I. We refer to subsets of F as neighborhoods of ∗, where ∗ is an imaginary point of I.
For each i ∈ I, let ki be an infinite perfect field. The ultraproduct of the {ki} consists of
collections c = (ci)i∈I where ci ∈ ki, modulo the relation that c = 0 if and only if ci = 0 for all
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i in some neighborhood of ∗; by the axioms of ultrafilters, this ultraproduct is also a (perfect)
field. Let S denote the graded ultraproduct of {ki[x1, x2, . . . ]}, where each polynomial ring
is given the standard grading. An element g ∈ S of degree d corresponds to a collection
(gi)i∈I of degree d elements gi ∈ ki[x1, x2, . . . ], modulo the relation that g = 0 if and only
if gi = 0 for all i in some neighborhood of ∗. For a homogeneous g ∈ S we write gi for the
corresponding element in ki[x1, x2, . . . ], keeping in mind that this is only well-defined for i
in some neighborhood of ∗. The following comes from [ESS19, Theorems 1.2 and 4.6]:

Theorem 2.3. Let K be the ultraproduct of perfect fields {ki} and fix y1, . . . , yc ∈ S of
infinite collective strength. There is a set U, containing the yi, such that S is isomorphic to
the polynomial ring K[U].

The following result follows immediately from [CCM+19, Theorem 5.2]. While that result
does not explicitly note the independence on the field k, it follows from the proof.

Lemma 2.4. Fix c and e. There exist positive integers d and r, depending only on c and
e, such that any homogeneous, equidimensional, and radical ideal Q ⊆ k[x1, . . . , xn] of codi-
mension c and degree ≤ e can be generated (not necessarily minimally) by homogeneous
polynomials g1, . . . , gr where deg(gi) ≤ d. Neither r nor d depend on n or k.

Proof. By [CCM+19, Theorem 5.2], both the regularity ofQ and the individual Betti numbers
βi,j(Q) are bounded solely in terms of c and e. Choosing d as the regularity bound and r as

the bound on
∑d

i=1
β0,d(Q), we obtain the desired statement. �

3. Proof of the main result

Theorem 3.1. There is a function N(c, e) such that if Q ⊆ k[x1, . . . , xn] is a homogeneous,
equidimensional ideal of codimension c and degree e and if V (Q) is nonsingular in codimen-
sion ≥ N(c, e), then Q is defined by a regular sequence of length c. In particular, N(c, e)
does not depend on n or on the field k.

Remark 3.2. Since an equidimensional ideal of codimension c that is nonsingular in codi-
mension 2c + 1 must be prime, it would be equivalent to rephrase Theorem 3.1 in terms of
prime ideals. We stick with equidimensional and radical ideals because some of the auxiliary
results in this paper might be of interest with this added generality. �

Proof of Theorem 3.1. We first reduce to the case where k is perfect. Extending the field will
change neither the minimal number of generators of Q, nor the codimension of the singular
locus. By taking N(c, e) ≥ 1, we can also assume that Q is radical, even after extending the
field. Finally, since a field extension will not change the codimension of any minimal prime of
Q [Stacks, 00P4], we can assume that k is perfect and that Q is radical and equidimensional
of codimension c.

Suppose that the theorem were false. Then for some fixed c, e and for each j ∈ N we can
find an equidimensional, radical ideal Q′

j ⊆ kj[x1, x2, . . . ] (with kj perfect) of codimension c

and degree e that is not a complete intersection, but where the codimension of the singular
locus of V (Q′

j) tends to ∞ as j → ∞. Since the singular locus of V (Q′

j) is defined by
Q′

j+Jc(Q
′

j), this implies that codim Jc(Q
′

j) → ∞ as j → ∞. We choose a functionm : I → N

where m(i) is unbounded in each neighborhood of ∗. For each i ∈ I, define Qi to be any
of the Q′

j satisfying codim Jc(Q
′

j) ≥ m(i). By construction, codim Jc(Qi) is unbounded in
every neighborhood of ∗.
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We now apply Lemma 2.4 for each i ∈ I, to find positive integers r and d and homoge-
neous g1,i, . . . , gr,i of degree ≤ d which generate Qi. Let g1 = (g1,i), . . . , gr = (gr,i) be the
corresponding elements in S and let Q = (g1, . . . , gr). By Lemma 2.1, we can find a new
homogeneous generating set f1, . . . , fr of Q where the strength of fk is the collective strength
of f1, . . . , fk for each 1 ≤ k ≤ r. For each k, we may write fk = (fk,i).

If fc had strength at most s, then we observe that the same holds for fc,i in a neighborhood
of ∗; for if fc =

∑s

j=0
ajhj then fc,i =

∑s

j=0
(aj)i(fj)i for i near ∗. But by Lemma 2.2, this

would imply that codim Jc(Qi) is bounded in a neighborhood of ∗. Since this cannot happen,
fc must have infinite strength. Thus the collection f1, . . . , fc has infinite collective strength
and so applying Theorem 2.3 with yi = fi, we conclude that f1, . . . , fc are independent
variables in S. In particular, (f1, . . . , fc) defines a prime ideal of codimension c and we
therefore must have fc+1 = · · · = fr = 0. By [ESS19, Corollary 4.10], there is a neighborhood
of ∗ where each Qi is a complete intersection, contradicting our original assumption. �

Proof of Theorem 1.1. As in the beginning of the proof of Theorem 3.1, we can quickly
reduce to the case where k is perfect. For a fixed c and e, we let N equal the bound
from Theorem 3.1. Fix some X ⊆ Pn satisfying the hypotheses of Theorem 1.1, and let
Q ⊆ k[x1, . . . , xn+1] be the defining ideal of X . By Theorem 3.1, Q is defined by a regular
sequence, and thus X is a complete intersection. �
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