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ABSTRACT. We present the hyperasymptotic expansions for a certain group
of solutions of the heat equation. We extend this result to a more general case
of linear PDEs with constant coefficients. The generalisation is based on the
method of Borel summability, which allows us to find integral representations
of solutions for such PDEs.

1. INTRODUCTION

Errors generated in the process of estimating functions by a finite number of
terms of their asymptotic expansions usually are of the form exp(−q/t) with
t → 0 and usually such a result is satisfactory. However, it is possible to obtain
a refined information by means of finding the hyperasymptotic expansion of a
given function, which amounts to expanding remainders of asymptotic expan-
sions repeatedly.

More precisely, let us find the asymptotic expansion of a given function F . We
receive

(1) F (t) = A0 + A1 + . . . for t→ 0

with Ai = ait
i. Once we truncate (1) after a certain amount of terms, we receive

an approximation of F and

F (t) = A0 + A1 + . . .+ AN0−1 +RN0(t).

The optimal value of N0 = N0(t) can be found by means of minimization
of the remainder RN0(t). After that we consider RN0(t) as a function of two
variables t and N0 and expand it in a new asymptotic series

RN0(t) = B0 +B1 + . . . ,

which can be truncated optimally after N1 terms. Thus we receive an estimation
of F of the form

F (t) = A0 + A1 . . .+ AN0−1 +B0 +B1 + . . .+BN1−1 +RN1(t)

and the remainderRN1(t) appears to be exponentially small compared toRN0(t).
After repeating the process n times we receive the n-th level hyperasymptotic

expansion of F as t→ 0:

F (t) = A0 + . . .+AN0−1 +B0 + . . .+BN1−1 +C0 + . . . CN2−1 + . . .+RNn(t).
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The concept of hyperasymptotic expansions emerged in 1990 as a topic of
an article by M. V. Berry and C. J. Howls [2] and it was conceived as a way
to estimate the solutions of Schrödinger-type equations. Methods of obtaining
hyperasymptotic expansions were then developed mostly by A. B. Olde Daalhuis,
who found an expansion for the confluent hypergeometric function [7, 8], linear
ODEs with the singularity of rank one [9] and various nonlinear ODEs [10, 11].

Using the results from [7] and [8], we will find a hyperasymptotic expansion
for a certain group of solutions of the heat equation. To this end we will first
obtain the optimal number of terms, after which the asymptotic expansion of the
solution should be truncated. This will enable us to estimate the remainder using
the Laplace method (see [12]). The reasoning then will be adapted to the case of
n-level hyperasymptotic expansion.

Our main goal is to generalise those results to the case of linear PDEs with
constant coefficients. To this end, first we reduce the general linear PDEs in two
variables with constant coefficients to simple pseudodifferential equations using
the methods of [4, 5]. Next, we apply the theory of summability, which allows
to construct integral representations of solutions of such equations. Finally, in a
similar way to the heat equation, we construct hyperasymptotic expansions for
such integral representations of solutions.

Throughout the paper the following notation will be used.
A sector S in a direction d ∈ R with an opening α > 0 in the universal

covering space C̃ of C \ {0} is defined by Sd(α) := {z ∈ C̃ : z = reiϕ, r >
0, ϕ ∈ (d − α/2, d + α/2)}. If the opening α is not essential, the sector Sd(α)
is denoted briefly by Sd.

We denote by Dr a complex disc in C with radius r > 0 and the center in 0,
i.e. Dr := {z ∈ C : |z| < r}. In case that the radius r is not essential, the set Dr

will be designated briefly by D.
If a function f is holomorphic on a domain G ⊂ Cn, then it will be denoted

by f ∈ O(G). Analogously, the space of holomorphic functions on a domain
G ⊂ Cn with respect to the variable z1/γ := z

1/γ1
1 , . . . , z1/γn

n , where 1/γ :=
(1/γ1, . . . , 1/γn) and (γ1, . . . , γn) ∈ Nn, is denoted by O1/γ(G).

By ∂G we mean the boundary of the set G.

2. HYPERASYMPTOTIC EXPANSIONS FOR THE HEAT EQUATION

Let us consider the Cauchy problem for the heat equation

(2)

 ut(t, z)− uzz(t, z) = 0

u(0, z) = ϕ(z).

We assume that the function ϕ has finitely many isolated singular points (single-
valued and branching points) on C. Without loss of generality we may assume
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that the set of singular points of ϕ is given by

A := {aij ∈ C : arg(ai1) = · · · = arg(aiLi) = λi, |ai1| < |ai2| < . . . < |aiLi |,
j = 1, . . . , Li, i = 1, . . . , K},

where K ∈ N, L1, . . . , LK ∈ N and λ1, . . . , λK ∈ R satisfy λ1 < · · · < λK .
Under these conditions we can define the set H as a sum of a finite number of

half-lines (see Figure 1) such that H :=
K⋃
i=1

{ai1t : t ≥ 1}. So we may assume

that ϕ ∈ O(C \ H) and A is the set of all singular points of ϕ. We denote it
briefly by ϕ ∈ OA(C \H).

Moreover, let us assume that for any ξ > 0 there exist positive constants B
and C such that |ϕ(z)| ≤ CeB|z|

2

for all z ∈ C \ Hξ, where Hξ := {z ∈
C : dist (z,H) < ξ}. We write it ϕ ∈ O2

A(C \H) for short.

FIGURE 1.

The solution of (2) is given by (see [6, Theorem 4])

(3) u(t, z) =
1

2
√
πt

∫
ei
θ
2 R
e−

s2

4tϕ(z + s) ds

under condition that θ is not the Stokes line for u (see [6, Definition 7], i.e.
θ 6= 2λi mod 2π for i = 1, . . . , K.

To separate from the Stokes lines we fix a small positive number δ and we
assume that

|(θ − 2λi) mod 2π| ≥ δ for all i = 1, . . . , K.(4)

In other words we assume that θ ∈ [0, 2π) \
K⋃
i=1

(2λi − δ, 2λi + δ) mod 2π.

Our goal is to find a hyperasymptotic expansion of (3) for t→ 0 and arg t = θ
with z belonging to a small neighbourhood of 0. To this end we fix a sufficiently
small constant ε̃ such that ϕ(z) ∈ O(Dε̃).
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2.1. 0-level hyperasymptotic expansion. To find the hyperasymptotic expan-
sion of the solution of (2) we will use the method described in [7] (see also [8])
in the case of the confluent hypergeometric functions. In order to do so let us
modify the right-hand side of (3) by

u(t, z) =
1

4
√
πt

∫ eiθ∞

0

e−
s
4t s−

1
2

[
ϕ
(
z + s

1
2

)
+ ϕ

(
z − s

1
2

)]
ds.

Replacing s and t by |s|eiθ and |t|eiθ, respectively, we obtain

(5) u(t, z) =
1

2
√
π|t|

∫ ∞
0

e−
s

4|t|

2
√
s

[
ϕ
(
z + ei

θ
2
√
s
)

+ ϕ
(
z − ei

θ
2
√
s
)]

ds.

To find the asymptotic expansion of (5), we will expand the function

f0(s, z) :=
1

2

[
ϕ
(
z + ei

θ
2
√
s
)

+ ϕ
(
z − ei

θ
2
√
s
)]

around the point s = 0 using the complex Taylor formula. We receive

(6) f0(s, z) =

N0−1∑
k=0

ϕ(2k) (z)

(2k)!
eikθsk + f1(s, z)sN0 ,

where f1(s, z) is of the form

(7) f1(s, z) :=
1

2πi

∫
Ω0(0, s)

f0(w, z)

wN0 (w − s)
dw

and the contour Ω0(0, s) is a boundary of the sum of two discs such that all
singular points of f0(w, z) are located outside of those discs and points 0 and s
are both inside. More precisely, let us take r := min

1≤i≤K
|ai1| − ε̃. In this case we

can put Ω0(0, s) as

Ω0(0, s) := ∂
(
{w ∈ C : |w| ≤ r2 − ε} ∪ {w ∈ C : |w − s| ≤ ε

2
}
)

for some ε ∈ (0, r2/2) and ε separate from 0. It is possible to take such a contour,
because by (4) we may choose so small ε̃ > 0 that for z ∈ Dε̃ the singularities
wij(z) := (aij − z)2e−iθ of f0(w, z) will never be positive real numbers. So we
are able to choose ε satisfying additionally

ε <
1

2
inf
z∈Dε̃

min
i=1,...K
j=1,...,Li

dist (wij(z),R+)

and then Ω0(0, s) satisfies the desired conditions.
Using (6) and basic properties of the gamma function, we can obtain an ex-

pansion of (5) of the form

(8) u(t, z) =

N0−1∑
k=0

ϕ(2k) (z)

k!
tk +RN0 (t, z) ,
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where

(9) RN0 (t, z) =
1

2
√
π|t|

∫ ∞
0

e−
s

4|t| sN0− 1
2f1 (s, z) ds.

Seeing as |w| ≥ r2 − ε, |w − s| ≥ ε

2
and assuming that all the conditions

given for the Cauchy datum hold, we can find the optimal value of N0 = N0(t).
The first step to do so is finding an estimation of f1(s, z). Let us note that there
exist positive constants Ã and B̃ such that

∣∣∣ϕ(z ± ei θ2√w)∣∣∣ ≤ ÃeB̃s for any
w ∈ Ω0(0, s), s > 0 and z ∈ Dε̃. Hence

|f1(s, z)| ≤ 1

2π

∫
Ω0(0, s)

2ÃeB̃s

ε(r2 − ε)N0
d|w| ≤ 2ÃeB̃s

ε(r2 − ε)N0
(r2 − ε+

ε

2
)

≤ 2Ãr2eB̃s

ε(r2 − ε)N0
=

A0e
B̃s

(r2 − ε)N0

for A0 := 2Ãr2/ε. As a consequence,

(10) |RN0 (t, z) | ≤ A0

2
√
π|t|

∫ ∞
0

e−
s

4|t| sN0− 1
2

(
r2 − ε

)−N0 eB̃s ds.

It is easy to check that the integrand of (10) has a maximum at a certain point

s = σ1 which satisfies the condition N0 = σ1

(
1

4|t|
− B̃

)
+

1

2
, and so now we

can find the point where the minimum with respect to σ1 of the function given by
the formula

σ1 7→ e−σ1(
1

4|t|−B̃)σ
σ1( 1

4|t|−B̃)
1

(
r2 − ε

)−σ1( 1
4|t|−B̃)− 1

2

is attained. This function is minimal at σ1 = r2 − ε. Because of these facts we

can choose the optimal N0 :=

⌊
(r2 − ε)

(
1

4|t|
− B̃

)
+

1

2

⌋
, where by b·c we

denote the integer part of a real number. Next, we take σ1 :=
N0 − 1

2
1

4|t| − B̃
. Thus

σ1 ≤ r2 − ε.
Thanks to that we are able to use the Laplace method, described at length in

[12], and to estimate the right-hand side of (10). So, we conclude that

|RN0 (t, z)| ∼ O

 e−σ1(
1

4|t|−B̃)√
1− 4B̃|t|

 for t→ 0, arg t = θ.

2.2. n-level hyperasymptotic expansion. When the n-level asymptotic expan-
sion is known, it is easy to compute the (n+1)-level expansion using the method
presented in Section 2.1.
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Observe that the remainder obtained in the n-level hyperasymptotic expansion
is of the form
(11)

RNn(t, z) =
1

2
√
π|t|

∫ ∞
0

e−
s

4|t| sN0− 1
2 (s− σ1)N1 · . . . · (s− σn)Nnfn+1(s, z) ds

where

fn+1(s, z) :=
1

2πi

∫
Ωn(σn, s)

fn(w, z)

(w − σn)Nn (w − s)
dw

and

Ωn(σn, s) := ∂
(
{w ∈ C : |w−σn| ≤ d(σn, θ)−ρnε}∪{w ∈ C : |w−s| ≤ 2−n−1ε}

)
with d(w, θ) := inf

z∈Dε̃
inf
ζ∈H
|w − e−iθ(z − ζ)2| and ρn := 2 − 2−n. The contour

is chosen in this way so that, when we express fn+1 in terms of f0, that is as a
multiple integral of the form

fn+1(s, z) =
1

(2πi)n+1

∫
Ωn(σn,s)

∫
Ωn−1(σn−1, xn)

. . .

∫
Ω0(0, x1)

f0(x0, z)·

· 1

xN0
0

∏n
k=1

[
(xk − σk)Nk (xk−1 − xk)

]
(xn − s)

dx0 . . . dxn.

We show that all the singular points of x0 7→ f0(x0, z) are outside of the area
surrounded by Ωn(σn, s), Ωn−1(σn−1, xn), ..., Ω0(0, x1). To this end we take
xk ∈ Ωk(σk, xk+1) for k = 0, . . . , n with the notation σ0 := 0 and xn+1 := s. It
is sufficient to prove that d(x0, θ) ≥ ε. There are two possibilities.

In the first case |xk − xk−1| = 2−k−1ε for k = 1, . . . , n. Then

|x0 − s| ≤
n∑
k=0

|xk+1 − xk| ≤
n∑
k=0

2−k−1ε = (1− 2−n−1)ε.

Since d(s, θ) ≥ 2ε we get d(x0, θ) ≥ d(s, θ)− |x0 − s| ≥ ε.
In the second case there exists m ∈ {1, . . . , n} such that |xk−xk−1| = 2−k−1ε

for k = 1, . . . ,m − 1 and |xm − σm| = d(σm, θ) − ρmε. Hence |x0 − xm| ≤
(1 − 2−m)ε and d(xm, θ) ≥ d(σm, θ) − |xm − σm| ≥ ρmε, so we conclude that
d(x0, θ) ≥ d(xm, θ)− |x0 − xm| ≥ ε.

Using the same algorithm as in the case of the 0-level expansion, we can esti-
mate RNn(t, z) as follows

|RNn(t, z)| ≤ An

2
√
π|t|

∫ ∞
0

e−
s

4|t|+B̃s
sN0− 1

2

(r2 − ε)N0
· |s− σ1|N1

(d(σ1, θ)− ρ1ε)
N1
· . . . ·

· |s− σn|Nn

(d(σn, θ)− ρnε)Nn
ds(12)

for a certain constant An.
Next, we find points where the integrand on the right-hand side of (12) attains

its local maxima. Let us observe that this function has n + 1 maxima in points
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s1, . . . , sn+1 such that s1 < σ1 < s2 < . . . < σn < sn+1 and all sj satisfy the
condition:

(13)
1

4|t|
− B̃ =

N0 − 1
2

sj
+

N1

sj − σ1

+ . . .+
Nn

sj − σn
.

From (13) we conclude that sj are decreasing functions of Nn for 1 ≤ j ≤ n and
sn+1 increases with respect to Nn. Moreover, the value of the integrand in (12)
in the points sj , 1 ≤ j ≤ n, decreases with respect to Nn. However, it behaves
differently in the point sn+1. It decreases with respect to Nn when

sn+1 − σn
d(σn, θ)− ρnε

< 1,

that is for sn+1 ∈ (σn, σn + d(σn, θ) − ρnε), and increases when sn+1 ∈ (σn +
d(σn, θ) − ρnε, +∞). Hence there exist Nn ∈ N and sn+1 =: σn+1 satisfying
(13) for which the integrand reaches its minimal value (see [8]).

Again, we can use the Laplace method to obtain the estimation of RNn (com-
pare [7] and [8])

|RNn(t, z)| ∼ O

 e−ηn(
1

4|t|−B̃)√
1− 4B̃|t|

 for t→ 0, arg t = θ.

We have the sequence of positive numbers η0 = σ1 ∼ r2 < η1 < η2 < η3 < . . . ,
but it is not clear, whether or not, {ηn}n∈N is an unbounded sequence (see [7] and
[8]).

To find the (n + 1)-level hyperasymptotic expansion we expand the function
s 7→ fn+1(s, z) around the point σn+1. As a result we receive a series

(14) fn+1(s, z) =

Nn+1−1∑
j=0

bn+1,j(z)(s− σn+1)j + (s− σn+1)Nn+1fn+2(s, z),

which, after substituting it in (11), gives us the (n + 1)-level expansion of the
form

RNn(t, z) =
1√
π|t|

Nn+1−1∑
j=0

bn+1,j(z)

∫ ∞
0

e−
s

4|t| sN0

2
√
s

(s− σ1)N1 · . . . ·

·(s− σn)Nn(s− σn+1)jds+RNn+1(t, z).

Moreover, since

(15) sN0(s− σ1)N1 · · · (s− σn)Nn(s− σn+1)j =

N0+···+Nn+j∑
l=0

an,j,ls
l

is a polynomial of degree N0 + · · ·+Nn + j, and by the properties of the gamma
function

1√
π|t|

∫ ∞
0

e−
s

4|t|

2
√
s
sl ds =

(2l)!

l!
|t|l =

(2l)!

l!
e−iθltl for l = 0, 1, . . . ,
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we conclude that

RNn(t, z) =

Nn+1−1∑
j=0

bn+1,j(z)

N0+···+Nn+j∑
l=0

(2l)!

l!
an,j,le

−iθltl +RNn+1(t, z).

Hence the hyperasymptotic expansion of u takes the form

(16) u(t, z) =

N0+···+Nn−1∑
l=0

ψl(z)tl +RNn(t, z)

for some functions ψl(z) depending on bn+1,j(z) and an,j,l.

2.3. Conclusion. We can formulate the following theorem regarding the hyper-
asymptotic expansion of (2)

Theorem 1. For any n ∈ N the solution (3) of the heat equation has the hyper-

asymptotic expansion as t→ 0 in the direction θ ∈ [0, 2π)\
K⋃
i=1

(2λi−δ, 2λi+δ)

mod 2π of the form

u(t, z) =

N0−1∑
j=0

ϕ(2j) (z)

j!
tj +

n∑
m=1

Nm−1∑
j=0

bm,j(z)√
π|t|

∫ ∞
0

e−
s

4|t| sN0

2
√
s

(s− σ1)N1

· · · (s−σm−1)Nm−1(s−σm)jds+RNn(t, z) =

N0+···+Nn−1∑
l=0

ψl(z)tl+RNn(t, z),

where the remainder RNn(t, z) is of the form

RNn(t, z) =
1

2
√
π|t|

∫ ∞
0

e−
s

4|t| sN0− 1
2 (s− σ1)N1 · . . . · (s− σn)Nnfn+1(s, z) ds

and for any m ≤ n and j < Nm

fm(s, z) =
1

(2πi)m

∫
Ωm−1(σm−1,s)

∫
Ωm−2(σm−2,xm−1)

· · ·
∫

Ω1(σ1,x2)

∫
Ω0(0,x1)

f0(x0, z) dx0 . . . dxm−1

xN0
0

m−1∏
k=1

[
(xk − σk)Nk (xk−1 − xk)

]
(xm−1 − s)

and

bm,j(z) =
1

j!

∂j

∂sj
fm(s, z) |s=σm .

Moreover,

|RNn(t, z)| ∼ O

 e−ηn(
1

4|t|−B̃)√
1− 4B̃|t|

 as t→ 0, arg t = θ, z ∈ Dε̃

for some sequence of positive numbers η0 = σ1 ∼ r2 < η1 < η2 < η3 < . . . .
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3. GENERALISATION TO LINEAR PDES WITH CONSTANT COEFFICIENTS

In this section we show how to find the hyperasymptotic expansion for solu-
tions of general linear non-Cauchy-Kowalevskaya type PDEs with constant co-
efficients. The result is based on the theory of summability which allows us to
construct the actual solution, which is analytic in some sectorial neighbourhood
of the origin, from the divergent formal power series solution. Moreover this
actual solution has an integral representation in the similar form to (3).

3.1. Summability. First, we define k-summability in a similar way to [6]. For
more information about the theory of summability we refer the reader to [1].

We say that a formal power series û(t, z) =
∞∑
n=0

un(z)

n!
tn with un(z) ∈ O1/κ(D)

is a Gevrey series of order q if there exist A,B, r > 0 such that |un(z)| ≤
ABn(n!)q+1 for every |z| < r and every n ∈ N. We denote by O1/κ(D)[[t]]q
the set of such formal power series.

Moreover, for k > 0 and d ∈ R, we say that û(t, z) ∈ O1/κ(D)[[t]] 1
k

is k-
summable in a direction d if its k-Borel transform

v(s, z) := (Bkû)(s, z) :=
∞∑
n=0

un(z)

Γ(1 + (1 + 1/k)n)
sn,

where Γ(·) denotes the gamma function, is analytically continued with respect to
s to an unbounded sector Sd in a direction d and this analytic continuation has
exponential growth of order k as s tends to infinity (i.e. |v(s, z)| ≤ AeB|s|

k

as
s → ∞). We denote it briefly by v(s, z) ∈ Ok1,1/κ((D ∪ Sd) × D). In this case
the k-sum of û(t, z) in the direction d is given by

ud(t, z) := (Lk,dv)(t, z) := t−k/(1+k)

∫
eidR+

v(s, z)C(k+1)/k((s/t)
k

1+k ) ds
k

1+k ,

where Cα(τ) is the Ecalle kernel defined by

Cα(τ) :=
∞∑
n=0

(−τ)n

n! Γ
(
1− n+1

α

) .
3.2. Reduction of linear PDEs with constant coefficients to simple pseudo-
differential equations. We consider the Cauchy problem

(17)

{
P (∂t, ∂z)u = 0

∂jtu(0, z) = ϕj(z) ∈ OA(C \H),

where P (λ, ζ) := P0(ζ)λm −
m∑
j=1

Pj(ζ)λm−j is a general polynomial of two

variables, which is of order m with respect to λ.
First, we show how to use the methods from [4, 5] for the reduction of (17) to

simple pseudodifferential equations.
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If P0(ζ) is not a constant, then a formal solution of (17) is not uniquely de-
termined. To avoid this inconvenience we choose some special solution which is
already uniquely determined. To this end we factorise the polynomial P (λ, ζ) as
follows

(18) P (λ, ζ) = P0(ζ)(λ− λ1(ζ))m1 · · · (λ− λl(ζ))ml =: P0(ζ)P̃ (λ, ζ),

where λ1(ζ), . . . , λl(ζ) are the roots of the characteristic equation P (λ, ζ) = 0
with multiplicity m1, . . . ,ml (m1 + · · ·+ml = m) respectively.

Since λα(ζ) are algebraic functions, we may assume that there exist κ ∈ N
and r0 < ∞ such that λα(ζ) are holomorphic functions of the variable ξ = ζ1/κ

(for |ζ| ≥ r0 and α = 1, . . . , l) and, moreover, there exist λα ∈ C \ {0} and
qα = µα/να (for some relatively prime numbers µα ∈ Z and να ∈ N) such that

λα(ζ) ∼ λαζ
qα for α = 1, . . . , l (i.e. lim

ζ→∞

λα(ζ)

ζqα
= λα, λα and qα are called

respectively a leading term and a pole order of λα(ζ)). Observe that να|κ for
α = 1, . . . , l.

Following [5, Definition 13] we define the pseudodifferential operators λα(∂z)
as

(19) λα(∂z)ϕ(z) :=
1

2κπi

∮ κ

|w|=ε
ϕ(w)

∫ eiθ∞

eiθr0

λα(ζ)E1/κ(ζ
1/κz1/κ)e−ζw dζ dw

for every ϕ ∈ O1/κ(Dr) and |z| < ε < r, where E1/κ(t) :=
∞∑
n=0

tn

Γ(1 + n/κ)

is the Mittag-Leffler function of order 1/κ, θ ∈ (− argw − π

2
,− argw +

π

2
)

and
∮ κ

|w|=ε
means that we integrate κ times along the positively oriented circle of

radius ε. Here the integration in the inner integral is taken over the ray {eiθr : r ≥
r0}.

Under the above assumption, by a normalised formal solution û of (17) we
mean such solution of (17), which is also a solution of the pseudodifferential
equation P̃ (∂t, ∂z)û = 0 (see [4, Definition 10]).

Since the principal part of the pseudodifferential operator P̃ (∂t, ∂z) with re-
spect to ∂t is given by ∂mt , the Cauchy problem (17) has a unique normalised
formal power series solution û ∈ O(D)[[t]].

Next, we reduce the Cauchy problem (17) of a general linear partial differential
equation with constant coefficients to a family of the Cauchy problems of simple
pseudodifferential equations. Namely we have
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Proposition 1 ([5, Theorem 1]). Let û be the normalised formal solution of (17).

Then û =
l∑

α=1

mα∑
β=1

ûαβ with ûαβ being a formal solution of a simple pseudodiffer-

ential equation

(20)


(∂t − λα(∂z))

βûαβ = 0

∂jt ûαβ(0, z) = 0 (j = 0, . . . , β − 2)

∂β−1
t ûαβ(0, z) = λβ−1

α (∂z)ϕαβ(z),

where ϕαβ(z) :=
m−1∑
j=0

dαβj(∂z)ϕj(z) ∈ O1/κ(D) and dαβj(ζ) are some holomor-

phic functions of the variable ξ = ζ1/κ and of polynomial growth.
Moreover, if qα is a pole order of λα(ζ) and qα = max{0, qα}, then a formal

solution ûαβ is a Gevrey series of order qα − 1 with respect to t.

For this reason we will study the following simple pseudodifferential equation

(21)


(∂t − λ(∂z))

βu = 0

∂jtu(0, z) = 0 (j = 0, . . . , β − 2)

∂β−1
t u(0, z) = λβ−1(∂z)ϕ(z) ∈ O1/κ(D),

where λ(ζ) ∼ λζq for some q ∈ Q, q > 1. So we assume that q = µ/ν for some
relatively prime µ, ν ∈ N, µ > ν.

3.3. Summable solutions of simple pseudodifferential equations. We have
the following representation of summable solutions of (21).

Theorem 2. Let k := (q − 1)−1 and d ∈ R. Suppose that û(t, z) is a unique
formal power series solution of the Cauchy problem (21) and

(22) ϕ(z) ∈ Oqk1/κ

(
D ∪

qκ−1⋃
l=0

S(d+arg λ+2lπ)/q

)
.

Then û(t, z) is k-summable in the direction d and its k-sum is given by

u(t, z) = ud(t, z) =
1

t1/q

∫
e
id
q R+

v(sq, z)Cq(s/t
1/q) ds,(23)

where
(24)

v(t, z) := B̂1/kû(t, z) = B̂1/k(
∞∑
n=0

un(z)

n!
tn) =

∞∑
n=0

un(z)

Γ(1 + qn)
tn ∈ Oq1,1/κ((D∪Sd)×D)

has the integral representation
(25)

v(t, z) =
tβ−1

(β − 1)!
∂β−1
t

1

2κπi

∮ κ

|w|=ε
ϕ(w)

∫ eiθ∞

eiθr0

Eq(tλ(ζ))E1/κ(ζ
1/κz1/κ)e−ζw dζ dw
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with θ ∈ (− argw− π

2
,− argw+

π

2
). Moreover, if ϕ ∈ OA(C \H) and z ∈ Dε̃

for some ε̃ > 0 then the function t 7→ v(t, z) is holomorphic for |t| < (r − ε̃)q

|λ|
,

where r := min
1≤i≤K

|ai1|.

Proof. First, observe that by Proposition 1 we get û(t, z) ∈ O1/κ(D)[[t]]q−1.
Moreover, by [5, Proposition 7] the function v(t, z) = B̂1/kû(t, z) ∈ O1,1/κ(D

2)
satisfies the moment partial differential equation

(26)


(∂t,Γq − λ(∂z))

βv = 0

∂jt,Γqv(0, z) = 0 (j = 0, . . . , β − 2)

∂β−1
t,Γq

v(0, z) = λβ−1(∂z)ϕ(z) ∈ O1/κ(D),

where Γq is a moment function defined by Γq(n) := Γ(1 + nq) for n ∈ N0 and
∂t,Γq is so called Γq-moment differential operator defined by (see [5, Definition
12])

∂t,Γq

( ∞∑
n=0

an(z)

Γq(n)
tn
)

:=
∞∑
n=0

an+1(z)

Γq(n)
tn.

Hence by [5, Lemma 3] with m1(n) = Γq(n) and m2(n) = Γ(1 + n) we get the
integral representation (25) of v(t, z).

Sinceϕ(z) satisfies (22), by [5, Lemma 4] we conclude that v(t, z) ∈ Oq1,1/κ((D∪
Sd)×D). So, the function ud(t, z) := Lk,dv(t, z) is well-defined and is given by
(23).

Since the Mittag-Leffler function is the entire function satisfying the estima-
tion |Eq(z)| ≤ Ce|z|

1/q

(see [1, Appendix B.4]), the integrand in the inner integral
in (25) is estimated for |z| < ε̃ by

|Eq(tλ(ζ))E1/κ(ζ
1/κz1/κ)e−ζw| ≤ C̃e|ζ|(|λ|

1/q |t|1/q−|w|+ε̃)

as ζ → ∞, arg ζ = θ = − argw. By the hypothesis ϕ(w) is holomorphic for
|w| < r, so we may deform the path of integration in the outer integral in (25)
from |w| = ε to |w| = r̃ for any r̃ < r. It means that the inner integral in (25)

is convergent for any t satisfying |t| < (r − ε̃)q

|λ|
and the function t 7→ v(t, z) is

holomorphic for such t. �

3.4. Hyperasymptotic expansion of solution of simple pseudodifferential equa-
tions. Using the change of variables to (23), as in the case of the heat equation
we obtain

uθ(t, z) =
1

qt1/q

∫ eiθ∞

0

1

s1− 1
q

v(s, z)Cq((s/t)
1/q) ds,

so as t→ 0, arg t = θ we conclude that

uθ(t, z) =
1

q|t|1/q

∫ ∞
0

1

s1− 1
q

v(seiθ, z)Cq((s/|t|)1/q) ds
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for any θ different from the Stokes lines, i.e. θ 6= qλi − arg λ mod 2π for
i = 1, . . . , K.

Now we are ready to repeat the construction of the hyperasymptotic expansion
for the heat equation under condition that ϕ ∈ OkqA (C \H) (i.e. ϕ ∈ OA(C \H)
and ϕ(z) has the exponential growth of order kq as z →∞, z ∈ C\H). We also
assume that the direction θ is separated from the Stokes lines, i.e. that

θ ∈ [0, 2π) \
K⋃
i=1

(qλi− arg λ− δ, qλi− arg λ+ δ) mod 2π for fixed δ > 0.

We put f0(s, z) := v(seiθ, z), r := min
1≤i≤K

|ai1| − ε̃ and

Ω0(0, s) := ∂
(
{w ∈ C : |w| ≤ rq

|λ|
− ε} ∪ {w ∈ C : |w − s| ≤ ε

2
}
)

for some ε ∈
(

0,
rq

2|λ|

)
.

Observe that by Theorem 2 for any z ∈ Dε̃ the function w 7→ f0(w, z) is
holomorphic in the domain bounded by Ω0(0, s). By [4, Lemma 2]

u(t, z) =

N0−1∑
j=β−1

(
j

β − 1

)
λj(∂z)ϕ(z)

j!
tj +RN0(t, z).

Moreover, as in the case of the heat equation

RN0(t, z) =
1

q|t|1/q

∫ ∞
0

sN0−1+ 1
qCq((s/|t|)1/q)f1(s, z) ds,

where f1(s, z) is defined as in (7).
By (24) there exist positive constants A′ and B′ such that

|f0(w, z)| ≤ A′eB
′|s|k for any w ∈ Ω0(0, s).

Hence

|f1(s, z)| ≤ 1

2π

∫
Ω0(0, s)

2A′eB
′|s|k

ε( r
q

|λ| − ε)N0
d|w| ≤ 2A′eB

′|s|k

ε( r
q

|λ| − ε)N0
(
rq

|λ|
− ε+

ε

2
)

≤ 2A′rqeB
′|s|k

|λ|ε( rq|λ| − ε)N0
=

A′0e
B′|s|k

( r
q

|λ| − ε)N0
,

where A′0 :=
2A′rq

|λ|ε
.

Moreover, by the properties of the Ecalle kernel (see [3, Lemma 6]) we may
estimate

|Cq(τ)| ≤ Ce−(τk+1/cq) with cq = (k + 1)k+1k−k.

So

(27) |RN0(t, z)| ≤
A′0

q|t|1/q

∫ ∞
0

sN0−1+ 1
q e
−sk( 1

cq |t|k
−B′)

(
rq

|λ|
− ε)−N0 ds.
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Similarly to the heat equation case we conclude that the integrand of (27) has a

maximum at certain point s = σ1 satisfying N0 = kσk1(
1

cq|t|k
− B′) + 1 − 1

q
.

Now, the minimum with respect to σ1 is given at σ1 =
rq

|λ|
− ε. Hence we take

N0 := bk(
rq

|λ|
−ε)k( 1

cq|t|k
−B′)+1−1

q
c and σ1 :=

( N0 + 1
q
− 1

k( 1
cq |t|k −B

′)

)1/k

. Observe

that σ1 ≤
rq

|λ|
− ε. So we are able to use the Laplace method and to conclude that

|RN0(t, z)| ∼ O
( e

−σk1 ( 1

cq |t|k
−B′)

|t|1/q
√

1
cq |t|k −B

′

)
for t→ 0, arg t = θ, z ∈ Dε̃.

Next, we construct the n-level hyperasymptotic expansion as for the heat equa-
tion. The remainder obtained in the n-level hyperasymptotic expansion is of the
form
(28)

RNn(t, z) =
1

q|t|1/q

∫ ∞
0

Cq((
s

|t|
)
1
q )sN0−1+ 1

q (s−σ1)N1 · · · (s−σn)Nnfn+1(s, z) ds,

where

fn+1(s, z) :=
1

2πi

∫
Ωn(σn, s)

fn(w, z)

(w − σn)Nn (w − s)
dw.

Here we take

Ωn(σn, s) := ∂
(
{w ∈ C : |w−σn| ≤ d(σn, θ)−ρnε}∪{w ∈ C : |w−s| ≤ 2−n−1ε}

)
with d(σn, θ) := inf

z∈Dε̃
inf
ζ∈H
|σn − e−iθλ(z − ζ)q| and ρn := 2− 2−n.

Using the same algorithm as in the case of the heat equation, we can estimate
RNn(t, z) as follows

(29) |RNn(t, z)| ≤ A′n
q|t|1/q

∫ ∞
0

e
−sk( 1

cq |t|k
−B′) sN0−1+ 1

q

( r
q

|λ| − ε)N0
· |s− σ1|N1

(d(σ1, θ)− ρ1ε)
N1
·

· · · |s− σn|Nn

(d(σn, θ)− ρnε)Nn
ds

for a certain constant A′n.
Let us observe that the integrand on the right-hand side of (28) has n + 1

maxima in points s1, . . . , sn+1 such that s1 < σ1 < s2 < . . . < σn < sn+1 and
all sj satisfy the condition:

ksk−1
j

(
1

cq|t|k
−B′

)
=
N0 − 1 + 1

q

sj
+

N1

sj − σ1

+ . . .+
Nn

sj − σn
.

From this, as in the case of the heat equation, we conclude that sj are decreasing
functions of Nn for 1 ≤ j ≤ n and sn+1 increases to infinity as Nn → ∞.
Similarly, the value of the integrand in (29) in the points sj , 1 ≤ j ≤ n, decreases
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with respect to Nn. Moreover, this value in the point sn+1 decreases with respect
toNn for sn+1 < σn+d(σn, θ)−ρnε and increases when sn+1 > σn+d(σn, θ)−
ρnε.

Hence, as in the case of the heat equation there exists Nn ∈ N and sn+1 for
which the integrand reaches its minimal value. We denote such sn+1 by σn+1.

Again, using the Laplace method we obtain the estimation of RNn

|RNn(t, z)| ∼ O
( e

−η̃kn( 1

cq |t|k
−B′)

|t|1/q
√

1
cq |t|k −B

′

)
for t→ 0, arg t = θ, z ∈ Dε̃,

where, as previously η̃0 = σ1 ∼
rq

|λ|
< η̃1 < η̃2 < η̃3 < . . . is some increasing

sequence of positive numbers (see [7] and [8]).
To find the (n + 1)-level hyperasymptotic expansion we expand the function

s 7→ fn+1(s, z) around the point σn+1 as in (14), which, after substituting it in
(28), gives us the (n+ 1)-level expansion

RNn(t, z) =
1

q|t|1/q

Nn+1−1∑
j=0

bn+1,j(z)

∫ ∞
0

Cq((
s

|t|
)
1
q )sN0−1+ 1

q (s− σ1)N1

· · · (s− σn)Nn(s− σn+1)j ds+RNn+1(t, z).

Since the Laplace transform Lk,d is inverse to k-Borel transform B̂k, we con-

clude that Lk,d(tl) =
Γ(1 + ql)

l!
tl for l = 0, 1, . . . . It means that

1

q|t|1/q

∫ ∞
0

Cq((
s
|t|)

1
q )

s1− 1
q

sl ds =
Γ(1 + ql)

l!
|t|l =

Γ(1 + ql)

l!
e−iθltl,

and using (15) we get

RNn(t, z) =

Nn+1−1∑
j=0

bn+1,j(z)

N0+···+Nn+j∑
l=0

an,j,l
Γ(1 + ql)

l!
e−iθltl +RNn+1(t, z).

Hence, as in the case of the heat equation, we conclude that the hyperasymp-
totic expansion of u takes also the form (16) for some functions ψl(z).

Finally, similarly to the heat equation, we get as the conclusion

Theorem 3 (Hyperasymptotic expansion for the simple equation). For every n ∈
N the solution of the equation (21) with ϕ ∈ OkqA (C\H) has the hyperasymptotic

expansion as t tends to zero in a direction θ ∈ [0, 2π)\
K⋃
i=1

(qλi−arg λ− δ, qλi−
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arg λ+ δ) mod 2π, which has the form

uθ(t, z) =

N0−1∑
j=β−1

(
j

β − 1

)
λj(∂z)ϕ(z)

j!
tj +

n∑
m=1

Nm−1∑
j=0

bm,j(z)

|t|1/q

∫ ∞
0

1

qs1− 1
q

· Cq((s/|t|)1/q)sN0(s− σ1)N1 · · · (s− σm−1)Nm−1(s− σm)j ds+RNn(t, z)

=

N0+···+Nn−1∑
l=0

ψl(z)tl +RNn(t, z),

where

bm,j(z) =
1

j!

∂j

∂sj
fm(s, z)|s=σm ,

RNn(t, z) =
1

|t|1/q

∫ ∞
0

1

qs1− 1
q

Cq((
s

|t|
)
1
q )sN0(s−σ1)N1 · · · (s−σn)Nnfn+1(s, z) ds,

fm(s, z) =
1

(2πi)m

∫
Ωm−1(σm−1,s)

∫
Ωm−2(σm−2,xm−1)

· · ·
∫

Ω1(σ1,x2)

∫
Ω0(0,x1)

v(x0e
iθ, z) dx0 . . . dxm−1

xN0
0

[∏m−1
k=1 (xk − σk)Nk(xk−1 − xk)

]
(xm−1 − s)

and v(s, z) is defined by (25).

Moreover RNn(t, z) ∼ O
( e

−η̃kn( 1

cq |t|k
−B′)

|t|1/q
√

1
cq |t|k −B

′

)
as t → 0, arg t = θ, z ∈ Dε̃

for some sequence of positive numbers η̃0 = σ1 ∼
rq

|λ|
< η̃1 < η̃2 < η̃3 < . . . .
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