
ar
X

iv
:1

80
4.

09
74

7v
3 

 [
m

at
h.

A
G

] 
 2

5 
Ju

n 
20

18

THE KRAFT-RUSSELL GENERIC EQUIVALENCE THEOREM AND

ITS APPLICATION

SHULIM KALIMAN

Abstract. We find some extensions of the Kraft-Russell Generic Equivalence The-
orem and using it we obtain a simple proof of a result of Dubouloz and Kishimoto.

1. Introduction

H. Kraft and P. Russell proved the following Generic Equivalence Theorem in [KrRu].

Theorem 1.1. Let k be a field and let p : S → Y and q : T → Y be two morphisms of
k-varieties. Suppose that
(a) k is algebraically closed and of infinite transcendence degree over the prime field;
(b) for all y ∈ Y the two (schematic) fibers Sy := p−1(y) and Ty := q−1(y) are

isomorphic; and
(c) the morphisms p and q are affine.
Then there is a dominant morphism of finite degree ϕ : X → Y and an isomorphism

S ×Y X = T ×Y X over X.

The aim of this note is to establish the following facts:
• the assumption (c) is unnecessary;
• the conclusion of Theorem 1.1 remains valid if the assumption (c) is removed and

(a) and (b) are replaced by the following assumptions (a1) k is an uncountable (but
not necessarily algebraically closed) field, (b1) there is a countable intersection W of
Zariski open dense subsets of Y such that Sy and Ty are isomorphic for every y ∈ W ;
• the conclusion of Theorem 1.1 remains valid if (a) and (c) are replaced by the

assumptions (a2) k is an algebraically closed field of finite transcendence degree over
Q and (c2) p and q are proper morphism.
Furthermore, using Minimal Model Program over non closed fields, Dubouloz and

Kishimoto proved the following result [DuKi].

Theorem 1.2. Let k be an uncountable field of characteristic zero and let f : X → S be
a dominant morphism between geometrically integral algebraic k-varieties. Suppose that
for general closed points s ∈ S, the fiber Xs contains an A1-cylinder Us ≃ Zs×A1 over
a κ(s)-variety Zs. Then there exists an étale morphism T → S such that XT = X×S T
contains an A1-cylinder U ≃ Z × A1 over a T -variety Z.

We show by much simpler means that in the case, when k is an algebraically closed
field (of any characteristic) with an infinite transcendence degree over the prime field,
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the Dubouloz-Kishimoto theorem is a simple consequence of the Kraft-Russell theo-
rem.1

2. Assumption (c)

The main result of this section (Theorem 2.5) is a straightforward adjustment of the
argument in [KrRu] (known to Russell and Kraft) but we provide it for convenience of
readers.

Notation 2.1. We suppose that ρ : X → Y is a dominant morphism of algebraic k-
varieties where k is an algebraically closed field with an infinite transcendence degree
over its prime field. Recall that there is a field k0 ⊂ k which is finitely generated over
the prime field and a morphism ρ0 : X0 → Y0 of k0-varieties such that the morphism
ρ : X → Y is obtained from ρ0 by the base extension Speck → Speck0. Denote by
K0 the field of rational functions on Y0, i.e. SpecK0 is the generic point of Y0. Put
X0,ω = X0 ×Speck0 SpecK0.

The next fact was proven in [KrRu, Lemma 1]) (but unfortunately under the addi-
tional unnecessary assumption that X is affine).

Lemma 2.2. Let Notation 2.1 hold. Then every k0-embedding K0 →֒ k defines a
closed point y ∈ Y and an isomorphism

X0,ω ×SpecK0 Speck → Xy = ρ−1(y).

Proof. Without loss of generality we suppose that Y is affine. Let k0[Y0] be the algebra
of regular functions on Y . Following [KrRu, Lemma 1] we see that since k0[Y0] ⊂ K0

any k0-embedding K0 →֒ k yields a k0-homomorphism k[Y ] = k0[Y0] ⊗k0 k → k

and, thus, a closed point y in Y . Let U0 be a Zariski dense open affine subset of X0,
U0,ω = U0 ×Spec k0 SpecK0, U = U0 ×Spec k0 Speck and Uy be the fiber over y of the
restriction U → Y of ρ. Continuing the argument of Kraft and Russell we have

U0,ω ×SpecK0 Speck ≃ U0 ×Y0 Speck ≃ U ×Y Speck = Uy.(1)

Furthermore, if V0 is a Zariski open affine subset of U0 then the way the isomorphism
U0,ω ×SpecK0 Speck ≃ Uy was constructed in Formula (1) yields the commutative
diagram

V0,ω ×SpecK0 Speck ≃ Vyy
y

U0,ω ×SpecK0 Speck ≃ Uy

(2)

where the vertical arrows are the natural embeddings (in other works, one has an
isomorphism between the structure sheaves of U0,ω ×SpecK0 Speck and Uy). Consider
a covering of X0 (resp. X0,ω, resp. Xy) by affine charts {U i

0}
n
i=1 (resp. {U i

0,ω}
n
i=1, resp.

{U i
y}

n
i=1). If n = 2 then applying Diagram (2) for the embeddings U1

0,ω∩U
2
0,ω →֒ U i

0,ω and

1 Dubouloz informed the author that he and Kishimoto knew that this version of their theorem
can be extracted from the Kraft-Russell theorem.
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U1
y ∩U

2
y →֒ U i

y and gluing the affine charts we get an isomorphism between X0,ω×SpecK0

Speck and Xy = ρ−1(y). Furthermore, we see that Diagram (2) remains true when U
(resp. V ) is not affine but only a union of two affine sets. Then the similar argument
and the induction by n yields the desired isomorphism X0,ω ×SpecK0 Speck → Xy for
n ≥ 3. �

Notation 2.3. Let ϕ : Z → X be a morphism of algebraic k-varieties and k0 be a
subfield of k such that for some k0-varieties X0 and Z0 one has X = X0×Speck0 Speck
and Z = Z0×Speck0 Speck. Suppose that k1 ⊂ k is a finitely generated extension of k0

such that for k1-varieties X1 and Z1 there exists a morphism ϕ1 : Z1 → X1 for which ϕ
is obtained from ϕ1 by the base extension Speck → Speck1. However, besides k0 the
description of ϕ requires not the whole field k1 but only a finite number of elements of
k1 (because ϕ is defined by the homomorphisms of rings of regular functions on affine
charts and these rings are finitely generated). Thus for the k0-algebra C ⊂ k1 generated
by these elements we have the following observation used by Kraft and Russell in their
proof for the affine case.

Lemma 2.4. Let X and Z be algebraic varieties over a field k and ϕ : Z → X be
a morphism. Suppose that k0, X0 and Z0 are as before. Then there exist a finitely
generated k0-algebra C ⊂ k, ringed spaces X̃ and Z̃ with structure sheaves consisting
of C-rings2 and a C-morphism ϕ̃ : Z̃ → X̃ such that X = X̃ ×SpecC Speck, Z =

Z̃ ×SpecC Speck and ϕ = ϕ̃×SpecC idSpeck.

Theorem 2.5. The Generic Equivalence Theorem is valid without the assumption (c).

Proof. As before we can choose a field k0 ⊂ k which is finitely generated over the
prime field such that for some morphisms p0 : S0 → Y0 and q0 : T0 → Y0 of k0-varieties
the morphisms p : S → Y and q : T → Y are obtained from these ones via the base
extension Speck → Speck0. Suppose that K0 is the field of rational functions on Y0.
As in [KrRu] by Lemma 2.2 we get the following isomorphisms in self-evident nota-

tions
S0,ω ×SpecK0 Speck ≃ Sy ≃ Ty ≃ T0,ω ×SpecK0 Speck.

By Lemma 2.4, for the isomorphism S0,ω ×SpecK0 Speck ≃ T0,ω ×SpecK0 Speck there
exists a finitely generated K0-algebra C in k such that one has

S0,ω ×SpecK0 SpecC ≃ T0,ω ×SpecK0 SpecC.

Choosing a maximal ideal µ of C contained in the image of the morphism S0,ω ×SpecK0

SpecC → SpecC and letting L0 = C/µ we get

S0,ω ×SpecK0 SpecL0 ≃ T0,ω ×SpecK0 SpecL0.(3)

By construction the field L0 is a finite extension of K0. It follows that there is a finite
extension L of the field K of rational functions on Y such that

Sω ×SpecK SpecL ≃ Tω ×SpecK SpecL

2 If C is a subring of a ring R we call R a C-ring and a homomorphism of two C-rings whose
restriction to C is the identity map is called a C-homomorphism.
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where Sω and Tω are generic fibers of p and q respectively. Since Sω ×SpecK SpecL ≃
S×Y SpecL and Tω×SpecKSpecL ≃ T×Y SpecL there is a dominant morphism X → Y
for which S ×Y X ≃ T ×Y X and we are done. �

Remark 2.6. It is interesting to discuss what happens to Theorem 2.5 if the field
k is not algebraically closed (but still of infinite transcendence degree over the prime
field). Then there may be no embedding K0 →֒ k as in Lemma 2.2. However, for a
finite extension k1 of k one can find an embedding K0 →֒ k1. Consider the morphisms
p1 : S1 → Y1 and q1 : T1 → Y1 of k1-varieties obtained from p : S → Y and q : T → Y
via the base extension Speck1 → Speck. Then until Formula (3) the argument remains
valid with k, p and q replaced by k1, p1 and q1. In Formula (3) the field L0 may contain
a nontrivial finite extension k1

0 of k0. Taking a bigger field k1 we can suppose that
k1
0 is a subfield of k1 and proceed with the proof. Hence, though we cannot get the

exact formulation of the Generic equivalence theorem in the case of non-closed fields,
we can claim that for a finite extension k1 of k and S1, T1 and Y1 as before there is
a dominant morphism of k1-varieties of finite degree X1 → Y1 and an isomorphism
S1 ×Y1 X1 ≃ T1 ×Y1 X1 over X1.

3. Very general fibers and non-closed fields

It is obvious that the assumption that an isomorphism Sy ≃ Ty holds for every y ∈ Y
in the Kraft-Russell theorem can be replaced with the assumption that it is true for a
general point of Y , i.e. for every point contained in some Zariski open dense subset of
Y . However, the author does not know whether the proof of Kraft and Russell can be
adjusted to the case when y is only a very general point of Y , i.e. it is in a complement
of the countable union of proper closed subvarieties of Y . Hence we shall use a different
approach. Namely, we shall use the technique which was communicated to the author
by Vladimir Lin in 1980s and which was used in his unpublished work with Zaidenberg
on a special case of The Generic Equivalence Theorem. The negative feature of this
new proof is that we have to work over an uncountable field k. However, we do not
require that this field is algebraically closed.

Definition 3.1. We say that an uncountable subset W of an algebraic k-variety X
is Zariski locally dense if W is not contained in any countable union of proper closed
suvarieties of X .

Example 3.2. Let W be the complement of a countable union
⋃∞

i=1 Yi of closed proper
subvarieties of X . Then W is Zariski locally dense. Indeed, assume the contrary. That
is, W is contained in a union

⋃∞

i=1Zi of proper closed subvarieties of X and X =⋃∞

i=1 Yi∪
⋃∞

i=1 Zi. Without loss of generality we can suppose that X is affine and using
a finite morphism of X onto some affine space An

k
we reduce the consideration to the

case of X ≃ An
k
. Note that equations of all Yi’s and Zi’s involve a countable number of

coefficients. Let k0 be the smallest subfield of k containing all these coefficients. Since
k0 is countable there are points in An

k
whose coordinates are algebraically independent

over k0. Such a point cannot be contained in
⋃∞

i=1 Yi ∪
⋃∞

i=1 Zi. A contradiction.
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The aim of this section is the following.

Theorem 3.3. Let k be an uncountable field of characteristic zero and p : S → Y
and q : T → Y be morphisms of k-varieties. Suppose that W is a Zariski locally dense
subset of Y and for every y ∈ W there is an isomorphism p−1(y) = Sy ≃ Ty = q−1(y).
Then there is a dominant morphism of finite degree X → Y such that S ×Y X and
T ×Y X are isomorphic over X.

The proof requires some preparations. We start with the following simple fact.

Proposition 3.4. Let Y be an algebraic k-variety, X and Z be subvarieties of Y ×An
k
,

ρ : X → Y and τ : Z → Y be the natural projections, and P be an algebraic family
of rational maps An

k
99K An

k
. Suppose that P is a subvariety of Y × P such that for

every (y, f) ∈ P the map f is regular on Xy = ρ−1(y). Let PX,Z be the subset of P
that consists of all elements (y, f) such that f(Xy) ⊂ Zy for Zy := τ−1(y). Then PX,Z

is a constructible set.

Proof. Consider the morphism κ : X ×Y P → Y × A1
k
given by (x, f) → (ρ(x), f(x)).

Then (Y ×An
k
)\Z and, therefore, κ−1((Y ×An

k
)\Z)) are constructible sets. The image

R of the latter under the natural projection X ×Y P → P is a constructible set by the
Chevalley’s theorem (EGA IV, 1.8.4). Note that P \R coincides with PX,Z(N), i.e. it
is also constructible and we are done. �

Letting Z = Y × o where o is the origin in An
k
we get the following.

Corollary 3.5. The subset P0
X(N) of P that consists of all elements (y, f) such that

f vanishes on Xy is a constructible set.

Notation 3.6. (1) Let P (N) consist of 2n-tuples ϕ = (f1, g1, f2, g2, . . . , fn, gn) of poly-
nomials on An

k
of degree at most N such that g1, . . . , gn are not zero polynomials. We

assign to ϕ the rational map ϕ̆ : An
k
99K An

k
given by ϕ̆ = (f1

g1
, . . . , fn

gn
) and denote the

variety of such rational maps by R(N) with Θ : P (N) → R(N) being the morphism
given by Θ(ϕ) = ϕ̆.
(2) Let the assumptions of Theorem 3.3 hold and Y be affine. Consider a cover of S

(resp. T ) by a collection S = {Si}i∈J of affine charts (resp. T = {T i}i∈J) where J is
finite set of indices. We can suppose that for some n > 0 every Si (resp. T i) is a closed
subvariety of Y ×An

k
where the natural projection Si → Y is the restriction of p (resp.

Ti → Y is the restriction of q). By Si
y (resp. T i

y) we denote Sy ∩ Si (resp. T i ∩ Ty).

We treat each transition isomorphism αij of S (resp. βij of T ) as the restriction of
some rational map An

Y 99K An
Y and, choosing N large enough we assume that for every

y ∈ Y each rational map αij|Si
y
(resp. βij|T i

y
) is contained in Θ(P (N)).

(3) Suppose that Q(N) =
∏

i,j∈J P (N), i.e. each element of Q(N) is Φ = {ϕij ∈

P (N)|i, j ∈ J} where ϕij = (f ij
1 , gij1 , f

ij
2 , gij2 , . . . , f

ij
n , gijn ). Let F (N) be the subset of

Y × Q(N) consisting of all elements (y,Φ) such that for all i, j, i′, j′ ∈ J and y ∈ Y
one has the following

ϕ̆i′j′ ◦ αii′|Si
y
= βjj′ ◦ ϕ̆ij|Si

y
;(4)
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∀x ∈ Si ∃j such that ∀k = 1, . . . , n gijk (x) 6= 0;(5)

ϕ̆ij(Si
y) ⊂ T j

y .(6)

Lemma 3.7. The set F (N) is constructible.

Proof. Every coordinate function of the rational map

(ϕ̆i′j′ ◦ αii′ − βjj′ ◦ ϕ̆ij) : An
k
99K An

k

can be presented as a quotient of two polynomials with the degrees of the numerator
and the denominator bounded by some constant M depending on N only. That is, the
ordered collection νi,j,i′,j′ of the numerators of this rational map is contained in P (M).
Consider the morphism ν̃i,j,i′,j′ : Y ×Q(N) → Y × P (M) where ν̃i,j,i′,j′ = (id, νi,j,i′,j′).
Let Zi be the subvariety of Y × P (M) that consists of all elements (y, f1, . . . , fn)
such that fk|Si

y
≡ 0 for every k. By Corollary 3.5 Zi is a constructible set. Hence its

preimages Z̃i,j,i′,j′ in Y ×Q(N) under ν̃i,i′,j,j′ is also constructible. Note that the variety

C =
⋂

i,j,i′,j′∈J Z̃i,j,i′,j′ consists of all elements satisfying Formula (4).

Consider the morphism θij : Si ×Y C → Si × An
k
over Si which sends each point

(x,Φ) to (x, gij1 (x), . . . , g
ij
n (x)). Let L be the union of the coordinate hyperplanes in

An
k
and Lij = θ−1

ij (Si × L) . Then Ki =
⋂

j∈J Lij is the subvariety of Si ×Y C that

consists of all points (x,Φ) such that for every j ∈ J there exists 1 ≤ k ≤ n with
gijk (x) = 0. Let Ki be the image of Ki in C under the natural projection Si ×Y C → C
i.e. it is constructible by the Chevalley’s theorem. Then its complement Mi consists of
elements (y,Φ) ∈ C such that for every x ∈ Si

y there exists j ∈ J for which gijk (x) 6= 0
for every k = 1, . . . , n. Hence the constructible set D =

⋂
i∈J Mi satisfies Formula (5).

Let Rij be the subvariety of Si×Y D that consists of points (x,Φ) for which gijk (x) 6= 0
for every k = 1, . . . , n. That is, the map κij : R

ij → Y × An
k
sending each point (x,Φ)

to (p(x), ϕ̆ij(x)) is regular. Let Rij ⊂ Rij be the preimage of An
k
\ T j under this map.

Then Ri =
⋃

j∈J Rij is a constructible subset of Si ×Y D and, therefore, its image

Ri in D under the natural projection Si ×Y D → D is also constructible. Note that
F (N) := D \

⋃
i∈J Ri satisfies Formula (6) and we are done. �

Remark 3.8. Formulas (4), (5) and (6) guarantee that any point (y, {ϕij|i, j ∈ J})
in F (N) defines a morphism Sy → Ty. Hence we treat F (N) further as collections of
such morphisms.

Notation 3.9. Exchanging the role of S and T we get a constructible set G(N), i.e.
each element of G defines a morphism Ty → Sy. In particular, F (N)×Y G(N) consists
of elements {(y, fy, gy)} where fy : Sy → Ty and gy : Ty → Sy are morphisms.

Lemma 3.10. Let H(N) be the subset of F (N)×Y G(N) that consists of all elements
(y, fy, gy) such that each fy is an isomorphism and gy = f−1

y . Then H(N) is a con-
structible set.

Proof. Note that each element h = (y, fy, gy) of F (N)×Y G(N) defines the morphism
κh : S → S×Y S which sends s ∈ Sy to (s, gy ◦fy(s)). Let ∆S be the diagonal in S×Y S

6



and let H ′(N) ⊂ F (N) ×Y G(N) be the subset that consists of those elements h for
which κh(S) ⊂ ∆S . By Proposition 3.4 H ′(N) is constructible. Exchanging the role of
S and T we get the similar constructible set H ′′(N). Letting H(N) = H ′(N)∩H ′′(N)
we get the desired conclusion.

�

Lemma 3.11. Let the assumptions of Theorem 3.3 hold, H(N) be as in Lemma 3.10
and W (N) = ρ(H(N)) where ρ : H(N) → Y is the natural projection. Then for some
number N the set W (N) contains a Zariski dense open subset of Y .

Proof. Note that for any isomorphism ϕ : Sy → Ty we can find N for which (ϕ, ϕ−1)
is an element of H(N). Hence the assumptions of Theorem 3.3 imply that Y =⋃∞

N=1W (N). Therefore, one of W (N)’s is Zariski locally dense in Y . Furthermore,
it is constructible by the Chevalley’s theorem which implies that it contains a Zariski
open dense subset U of Y . This is the desired conclusion. �

Proof of Theorem 3.3. Without loss of generality we suppose that Y is affine. Let N be
as in Lemma 3.11, H = H(N) and ρ : H → Y be the natural morphism. It is dominant
by Lemma 3.11. Taking a smaller H we can suppose that it is affine. Then we have the
natural embedding ρ∗ : k[Y ] →֒ k[H ] of the rings of regular functions. For the field K
of rational functions on Y consider the K-algebra A = K ⊗k[Y ] k[H ]. By the Noether
normalization lemma one can find algebraically independent elements z1, . . . , zk ∈ k[H ]
such that A is a finitely generated over the polynomial ring K[z1, . . . , zn]. Choose
elements b1, . . . , bk ∈ k so that the subvariety X of H given by the system of equations
z1 − b1 = . . . = zk − bk = 0 is not empty. Then the field of rational functions on X is
a finite extension of K, i.e. we get a dominant morphism X → Y of finite degree.
Note that we can veiw x ∈ X ⊂ H as an element (y, fy, gy) of F (N)×Y G(M) as in

Lemma 3.10 such that y = ρ(x) and fy : Sy → Ty is an isomorphism while gy : Ty → Sy

is its inverse. Hence the map S×Y X → T×Y X that sends every point (s, x) ∈ S×Y X
to (fy(s), x) is an isomorphism. This is the desired conclusion. �

Remark 3.12. We do not know if the morphism X → Y in Theorem 3.3 can be
made étale in the case of a positive characteristic. However, if k has characteristic zero
then over a Zariski dense open subset U of Y this morphism is smooth by the Generic
Smoothness theorem [Har, Chapter III, Corollary 10.7] and replacing Y by U we can
suppose that X → Y is étale.

4. Case of Q̄-varieties

Notation 4.1. In this section k0 is an algebraically closed field of finite transcendence
degree over Q (e.g., k0 is the field Q̄ of algebraic numbers) and p0 : S0 → Y0 and
q0 : T0 → Y0 are morphisms of algebraic k0-varieties. By the Lefschetz principle we treat
k0 as a subfield of C and we denote by p : S → Y and q : T → Y are complexifications
of these morphisms p0 and q0 (i.e., say, S coincides with S0 ×Speck0 SpecC).

The analogue of the Kraft-Russell theorem for k0-varieties can be reduced to the
complex case if the following is true.

7



Conjecture 4.2. Let Notation 4.1 hold and the fibers p−1
0 (y) and q−1

0 (y0) be isomorphic
for general points y0 ∈ Y0. Then the fibers Sy = p−1(y) and Ty = q−1(y) are isomorphic
for general points y ∈ Y .

We can prove this conjecture only in the case of proper morphisms p0 : S0 → Y0 and
q0 : T0 → Y0, and our proof is based on the theory of deformations of compact complex
spaces.

Definition 4.3. A deformation of a compact complex space Z is a proper flat holo-
morphic map ρ : Z → B of a complex spaces such that for a marked point b0 ∈ B
one has ρ−1(b0) = Z. A deformation ρ is called versal if for any other deformation
κ : W → D of Z with Z = κ−1(d0) there is a holomorphic map g : (D, d0) → (B, b0) of
the germs such that g∗(ρ) = κ|(D,d0).

We need the following crucial results of Palamodov [Pa76, Theorem 5.4] and [Pa73].

Theorem 4.4. (1) Every compact complex space Z is a fiber ρ−1(b0) of a proper flat
map ρ : Z → B of complex spaces which is a versal deformation of each of its fibers.
(2) The space M of classes of isomorphic complex spaces admits a T0-topology such

that every proper flat family ρ : Z → B induces a continuous map θ : B → M.
(3) Furthermore, if ρ in (2) is a versal deformation at every point of B then θ is an

open map.

Theorem 4.5. Let Notation 4.1 hold and the morphisms p and q be proper. Then
Conjecture 4.2 is true.

Proof. Without loss of generality we suppose that Y0 is affine, i.e. we view Y0 as a
closed subvariety of An

k0
. Hence Y is a closed subvariety of Cn and we can treat the

set of points in Y whose coordinates are in k0 as Y0. Let Y1 be the closure of Y0 in Y
in the standard topology (i.e. Y1 contains all points of Y ⊂ Cn with real coordinates).
That is, Y1 is Zariski locally dense in Y in the terminology of Definition 3.1. Hence by
Theorem 3.3 it suffices to establish isomorphisms Sy ≃ Ty for a general y0 ∈ Y1.
Let ρ : Z → B be a versal deformation as in Theorem 4.4 (1) for Z = Sy0 ≃ Ty0

and let θ : B → M be as in Theorem 4.4 (2). For some neighborhood Y ′ (in the
standard topology) of y0 in Y we have holomorphic maps p̂ : (Y ′, y0) → (B, b0) and
q̂ : (Y ′, y0) → (B, b0) such that (p̂)∗(ρ) = p|Y ′ and (q̂)∗(ρ) = q|Y ′. To prove that
Sy and Ty are isomorphic it suffices to prove that they are biholomorphic (by virtue
of [SGA 1, XII, Theorem 4.4]). That is, it suffices for us to establish the equality
p′ := θ ◦ p̂ = θ ◦ p̂ =: q′ and, furthermore, as we mentioned before it is enough to
establish equality p′|Y ′

1
= q′|Y ′

1
where Y ′

1 = Y1 ∩ Y ′.
Assume the contrary. Then by Theorem 3.3 the set R0 ⊂ Y ′

1 of points y for which
p′(y) = q′(y) cannot be Zariski locally dense, i.e. it is contained in a countable union of
subsets of Y ′

1 which are nowhere dense in Y ′
1 . Let R1 ⊂ Y ′

1 (resp. R2 ⊂ Y ′
1) be the set

of points y such that there is a neighborhood Uy ⊂ M of p′(y) that does not contain
q′(y) (resp. a neighborhood Vy ⊂ M of q′(y) that does not contain p′(y)). Since M
is a T0-space we see that R0 ∪ R1 ∪ R2 = Y ′

1 . Furthermore, since the map θ is open
8



(by Theorem 4.4(3)) we can suppose that Uy = θ(Ũy) (resp. Vy = θ(Ṽy)) where Ũy is a

neighborhood of p̂(y) in B (resp. Ṽy is a neighborhood of q̂(y) in B). Since B is a germ
of a complex space we can consider a metric on it which induces the standard topology.

Let Rn
1 be the set of points y ∈ R1 such that Ũy contains the ball D(y, 1

n
) ⊂ B of radius

1
n
(in this metric) with center at y and let Rn

2 be the similar subset of R2. Then we
have

Y ′
1 = R0 ∪

∞⋃

i=1

Rn
1 ∪

∞⋃

i=1

Rn
2 .

By the Baire category theorem there is a nonempty open subset W ⊂ Y ′
1 and n such

that, say, Rn
1 is everywhere dense in W . In particular, for every point y1 ∈ W ∩Rn

1 the
ball D(p̂(y1),

1
n
) does not meet θ−1(q′(y1)). Without loss of generality we can suppose

that p̂(y1) is a smooth point of p̂(Y ′) and taking a larger n we can also assume that
p̂(W ) coincides with the intersection of p̂(Y ′

1) with D(p̂(y1),
1
2n
). Hence we can choose

a point y2 ∈ W ∩ Y0 near y1 such that for b2 := p̂(y2) the ball D(b2,
1
3n
) does not meet

θ−1(q′(Rn
1 ∩W )).

On the other hand by the assumption of Conjecture 4.2 we have Sy2 ≃ Ty2 and since
ρ : Z → B is a versal deformation at every point of B (by Theorem 4.4 (1)) there
exists a map q̆ : (Y ′, y2) → (B, b2) such that (q̆)∗(ρ) = q|(Y ′,y2). By continuity D(b2,

1
3n
)

contains points from q̆(Rn
1 ∩W )). Thus it must contain points from θ−1(q′(Rn

1 ∩W ))
since q′ = θ ◦ q̂ and θ ◦ q̂(Rn

1 ∩W ) = θ ◦ q̆(Rn
1 ∩W ). This contradiction shows that R0

is Zariski locally dense in Y . Now the desired conclusion follows from Theorem 3.3.
�

Remark 4.6. The assumption that k0 is algebraically closed can be dropped from the
formulation of Theorem 4.5 since it is not used in the proof.

Theorem 4.7. Let Notation 4.1 hold and let p0 : S0 → Y0 and q0 : T0 → Y0 be proper
morphisms. Suppose that for all y0 ∈ Y0 the two (schematic) fibers p−1

0 (y0) and q−1
0 (y0)

are isomorphic. Then there is a dominant morphism of finite degree X0 → Y0 and an
isomorphism S0 ×Y0 X0 = T0 ×Y0 X0 over X0.

Proof. Let K0 be the field of rational functions on Y0 and ω be the generic point
of Y0. Since C is algebraically closed and of infinite transcendence degree over k0

we can always find an injective homomorphism K0 →֒ C. Then by Lemma 2.2 this
homomorphism defines a closed point y ∈ Y and

S0,ω ×SpecK0 SpecC → Sy

where S0,ω is the generic fiber of p0. Since the similar fact holds for q0 : T0 → Y0 and
since Sy ≃ Ty by Theorem 4.5 we have

S0,ω ×SpecK0 SpecC ≃ Sy ≃ Ty ≃ T0,ω ×SpecK0 SpecC.

Then repeating the argument from the proof of Theorem 2.5 we construct a finite
extension L0 of K0 for which

S0,ω ×SpecK0 SpecL0 ≃ T0,ω ×SpecK0 SpecL0.
9



Since S0,ω ×SpecK0 SpecL0 ≃ S0×Y0 SpecL0 and T0,ω ×SpecK0 SpecL0 ≃ T0×Y0 SpecL0

there is a dominant morphism of finite degree X0 → Y0 for which S0×Y)
X0 ≃ T0×Y0X0

and we are done. �

5. The Dubouloz-Kishimoto theorem

The aim of this section is to use the Kraft-Russell Generic Equivalence theorem to
get a rather simple proof of the following result which has a strong overlap with the
Dubouloz-Kishimoto theorem.

Theorem 5.1. Let k be an algebraically closed field of infinite transcendence degree
over the prime field and let f : X → Y be a dominant morphism between geometrically
integral algebraic k-varieties. Suppose that for general closed points y ∈ Y , the fiber
Xy contains a Zariski dense subvariety Uy of the form Uy ≃ Zy × Am

k
over a κ(y)-

variety Zy. Then there exists a dominant morphism T → Y of finite degree such that
XT = X ×Y T contains a variety W ≃ Z × Am

k
over a T -variety Z.

We start with the following.

Lemma 5.2. Let the notation of Lemma 2.4 hold, ϕ be an open immersion, µ be
a maximal ideal of the ring C contained in the image of the morphism S0,ω ×SpecK0

SpecC → SpecC and k′ = C/µ (i.e. the field k′ is a finite extension of k0). Suppose

that X ′ = X̃ ×SpecC Speck′, Z ′ = Z̃ ×SpecC Speck′, and ϕ′ : Z ′ → X ′ is the morphism
obtained from ϕ̃ by the base extension C → k′. Let Z0 = V0 × Am

k0
(i.e. Z = V × Am

k
)

where V0 is affine. Then Z ′ = V ′ × Am
k′ and dimk′ ϕ′(Z ′) = dimk Z.

Proof. By the assumption the algebra k0[Z0] of regular functions on Z0 = V0 × Am
k0

coincides with a polynomial ring B0[x1, . . . , xm] where B0 is some k0-algebra. Hence

for Z̃ = Z0 ×Speck0 SpecC the algebra of regular functions is B̃[x1, . . . , xm] where

B̃ = B0⊗k0 C. This implies that the algebra k′[Z ′] of regular functions on Z ′ coincides

with B′[x1, . . . , xm] where B′ = B̃ ⊗C k′ which yields the equality Z ′ = V ′ × Am
k′.

Furthermore, by the Noether’s normalization lemma there are algebraically inde-
pendent elements y1, . . . , yn ∈ B0 such that B0 is a finitely generated module over
k0[y1, . . . , yn] and, hence, the natural embedding ι : k0[x1, . . . , xm, y1, . . . , yn] → k0[Z0]
is an integral homomorphism (in particular, dimZ0 = dimZ = n + m =: d). Note
that k′[Z ′] = (k0[Z0] ⊗k0 C) ⊗C k′ = k0[Z0] ⊗k0 k

′ and ι induces a homomorphism
k′[x1, . . . , xn, y1, . . . , ym] → k′[Z ′] which is integral by [AM, Exercise 5.3]. Thus dimZ ′ =
d. Enlarging k0 in this construction we can suppose that the morphism ϕ−1 : ϕ(Z) → Z
can be also obtained from a morphism of k0-varieties. This implies that ϕ′ is an im-
mersion and we are done. �

Proof of Theorem 5.1. Let k0,X0, Y0,K0 andX0,ω be as in Notation 2.1 and Lemma 2.2.
That is, k0 ⊂ k is finitely generated over the prime field, X = X0 ×Spec k0 Speck, Y =
Y0×Speck0 Speck, K0 is the field of rational functions on Y0, X0,ω = X0×Speck0 SpecK0,
and, choosing an embedding K0 →֒ k, we have an isomorphism X0,ω ×SpecK0 Speck →
Xy for some closed point y ∈ Y . Enlarging k0 (and, therefore, K0) and treating
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K0 as a subfield of k we can suppose that the natural immersion ϕ : Zy → Xy is
obtained from an immersion ϕ0 : Z0

y → X0
y of K0-varieties Z0

y and X0
y via the base

extension Speck → SpecK0. By Lemma 2.4 there exist a finitely generated K0-algebra
C ⊂ k, ringed spaces X̃y and Z̃y with structure sheaves consisting of C-rings and a

C-morphism ϕ̃ : Z̃y → X̃y such that Xy = X̃y ×SpecC Speck, Zy = Z̃y ×SpecC Speck
and ϕ = ϕ̃×SpecC idSpeck. Let µ be a maximal ideal of C and L0 = C/µ. By Lemma

5.2 we get an immersion ϕ′ : Z ′ → X ′ of the L0-varieties X
′
y = X̃y ×SpecC SpecL0 and

Z ′
y = Z̃y ×SpecC SpecL0 such that Z ′ = V ′ × Am

L0
and dimL0 ϕ

′(Z ′) = dimk Z.

Put L = K⊗K0 L0 where K is a field of rational functions on Y . Let Z̆ = Z ′×SpecL0

SpecL (in particular Z̆ = V̆ × Am
L
), X̆ = X ′ ×SpecL0 SpecL and ϕ̆ : Z̆ → X̆ be the

open immersion induced by ϕ′. By construction the field L0 is a finite extension of
K0 and, hence, L is a finite extension of K. This implies that there is a dominant
morphism T → Y of finite degree such that the field of rational functions on T is L

and X ×Y T is a k-variety for which the generic fiber of the projection X ×Y T is X̆ .
Hence X ×Y T contains a Zariski open dense subset of the form W ×Am

k
which is the

desired conclusion. �

Remark 5.3. Note that unlike in the original formulation of the Dubouloz-Kishimoto
theorem the field k may be countable and it may have a positive characteristic. If k
has characteristic zero then similar to Remark 3.12 we can suppose that T → Y is
étale as in the Dubouloz-Kishimoto theorem.
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