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RATIONAL HOMOLOGY MANIFOLDS AND

HYPERSURFACE NORMALIZATIONS

BRIAN HEPLER

Abstract. We prove a criterion for determining whether the normalization

of a complex analytic space on which the shifted constant sheaf is perverse is a

rational homology manifold, using a perverse sheaf known as the multiple-point

complex. This perverse sheaf is naturally associated to any “parameterized

space”, and has several interesting connections with the Milnor monodromy

and mixed Hodge Modules.

1. Introduction

Let U be an open neighborhood of the origin in CN , let X ⊆ U be a complex
analytic space containing 0 of pure dimension n, on which the (shifted) constant
sheaf Q•

X [n] is perverse (e.g., if X is a local complete intersection), and let π : Y →
X be the normalization of X .

There is then a surjection of perverse sheaves Q•
X [n] → I•X → 0, where I•X is the

intersection cohomology complex on X with constant Q coefficients.

Remark 1.1. It is a classic result (see, e.g., [2] page 111) that there always exists
a morphism Q•

X [n] → I•X in the derived category Db
c(X) (where I•X has constant Q

coefficients). In our situation, Q•
X [n] is a perverse sheaf on X , so this descends to a

morphism of perverse sheaves. Since we are working with field coefficients, I•X is a
semi-simple object in the category of perverse sheaves on X , so one easily concludes
that the cokernel of this morphism must be zero, since the morphism Q•

X [n] → I•X
is an isomorphism when restricted to the smooth part of X .

It is worth noting that this morphism also exists with Z coefficients (and, for
a local complete intersection, Z•

X [n] is still perverse), and the morphism is still
surjective, but we can no longer use the fact that I•X is a semi-simple object.
Instead, we use that I•X is also the intermediate extension of the local system
Z•
X\ΣX

[n] to all of X (where ΣX denotes the singular locus of X), and therefore

has no perverse quotient objects with support contained in ΣX . Since Z•
X [n] → I•X

is an isomorphism when restricted to X\ΣX , it follows that the cokernel of this
morphism is zero.

Since the category of perverse sheaves on X is Abelian, there is a perverse sheaf
N•

X on X such that

0 → N•
X → Q•

X [n] → I•X → 0 (†)

is a short exact sequence of perverse sheaves.
Thus, if I•Y is intersection cohomology on Y with constant Q coefficients, we

have π∗I
•
Y
∼= I•X (π is a small resolution, in the sense of Goresky and Macpherson

1

http://arxiv.org/abs/1804.09799v3
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[2]), and we obtain the short exact sequence of perverse sheaves

0 → N•
X → Q•

X [n] → π∗I
•
Y → 0

on X . We refer to this exact sequence as the fundamental short exact sequence

of the normalization. This short exact sequence, and the perverse sheaf N•
X in

particular, have been examined recently in several papers by the author and D.
Massey in the case where the normalization Y is smooth ([4], [3]), where N•

X is
called the multiple-point complex of the normalization (see Section 2).

Disregarding the normalization, if one just examines the short exact sequence
(†), D.Massey has recently shown in [6] that, in the case where X = V (f) is a
hypersurface,

N•
X

∼= ker{id−T̃f},
where T̃f is the monodromy action on the vanishing cycles φf [−1]Q•

U [n + 1], and
the kernel takes place in the category of perverse sheaves on X = V (f). In this
context, Massey refers to N•

X as the comparison complex on X . It also seems
that one may obtain this result in the algebraic setting (with Q coefficients) using
the language of mixed Hodge modules.

Looking at (†), one notices immediately that Q•
X [n] ∼= I•X if and only if N•

X = 0;
that is, the LCI X is a rational homology manifold (or, a Q-homology manifold)
precisely when the complex N•

X vanishes (for this criterion, see for example [1], [7]).
We will recall Q-homology manifolds and their properties in Section 2. It is then
natural to ask that, given the normalization Y of X and the resulting fundamental
short exact sequence, is there a similar result relating N•

X to whether or not Y is
a Q-homology manifold?

We answer this question in our main result:

Main Theorem 1 (Theorem 2.3). Y is a Q-homology manifold if and only if N•
X

has stalk cohomology concentrated in degree −n + 1; i.e., for all p ∈ X, Hk(N•
X)p

is non-zero only possibly when k = −n + 1.

In general, it is quite difficult to compute these stalk cohomology groups, even in
the “next simplest” case where the normalization of a hypersurface has an isolated
singularity, e.g., the normalization of a surface with a curve singularity, which we
will work out in detail in Section 4.

Remark 1.2. M. Saito has recently drawn interesting connections with the multiple-
point complex N•

X to the setting of mixed Hodge modules in a recent preprint [9].
In particular, Saito shows, for an arbitrary reduced complex algebraic variety X of
pure dimension n, that the weight zero part of the cohomology group H1(X ;Q) is
given by

W0H
1(X ;Q) ∼= coker{H0(Y ;Q) → H0(X ;FX)},

where π : Y → X is the normalization of X , and FX is a certain constructible
sheaf on X , given by the cokernel of the natural morphism of sheaves QX → π∗QY .
The algebraic setting is necessary here, in order to endow H0(X ;FX) with a mixed
Hodge structure, and for working in the derived category of mixed Hodge modules.

This constructible sheaf FX is none other than the cohomology sheaf H−n+1(N•
X);

this follows immediately from taking the long exact sequence in cohomology of the
fundamental short exact sequence of the normalization. If, as in Saito’s case, the
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sheaf Q•
X [n] is not perverse, one can obtain this isomorphism from the distinguished

triangle

FX [n] → N•
X [1] → π∗N

•
Y [1]

+1→
obtained via the octahedral axiom in the derived category Db

c(X), together with
the fact that Y is normal.

Consequently, we can interpret Saito’s result as an isomorphism

W0H
1(X ;Q) ∼= coker{H0(Y ;Q) → H−n+1(X ;N•

X)},
since H0(X ;H−n+1(N•

X)) ∼= H−n+1(X ;N•
X). It would seem to be an interest-

ing question in the local analytic case to relate this result with the isomorphism
N•

X
∼= Wn−1Q

•
X [n] obtained in Remark 2.5, where N•

X is endowed with the natural
structure of a mixed Hodge module on X .

We would like to thank the Referee for suggesting the content of Remark 2.5,
and Jörg Schürmann for many helpful discussions regarding mixed Hodge modules
in general and Remark 1.2 and Remark 2.5 in particular.

2. Main result

Before we prove our main result, we first recall a theorem of Borho and MacPher-
son [1] giving us several equivalent characterizations of rational homology manifolds:

Theorem 2.1. ([B-M]) The following are equivalent:

(1) X is a Q-homology manifold (i.e., I•X
∼= Q•

X [n]);

(2) D (Q•
X [n]) ∼= Q•

X [n], where D is the Verdier duality functor;

(3) For all p ∈ X, for all k, Hk(X,X\{p};Q) = 0 unless k = 2n, and
H2n(X,X\{p};Q) ∼= Q.

The proof of Theorem 2.3 relies on the following well-known lemma.

Lemma 2.2. Let X be a complex analytic space of pure dimension n. Then, for
p ∈ X, the rank of H−n(I•X)p is equal to the number of irreducible components of
X at p.

Proof. This result is well-known to experts, see e.g. Theorem 1G (pg. 74) of [10],
or Theorem 4 (pg. 217) [5] �

Note that taking stalk cohomology at p ∈ X of the fundamental short exact
sequence yields the short exact sequence

0 → Q → H−n(π∗I
•
Y )p → H−n+1(N•

X)p → 0,

and isomorphisms Hk(π∗I
•
Y )p ∼= Hk+1(N•

X)p for −n + 1 ≤ k ≤ −1. With this in
mind, we claim that:

Theorem 2.3. Y is a Q-homology manifold if and only if N•
X has stalk cohomology

concentrated in degree −n + 1.

Proof. (=⇒) Suppose that Y is a Q-homology manifold, and let p ∈ X be arbitrary.
Since Y is a Q-homology manifold, QY [n] ∼= I•Y in Db

c(Y ), from which it follows
Hk(N•

X)p = 0 for k 6= −n + 1 by the above isomorphisms.
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(⇐=) Suppose that, for all p ∈ X , Hk(N•
X)p 6= 0 only possibly when k = −n+1.

We wish to show that the natural morphism QY [n] → I•Y is an isomorphism in
Db

c(Y ).
There is still the short exact sequence

0 → Q → H−n(π∗I
•
Y )p → H−n+1(N•

X)p → 0

and Hk(π∗I
•
Y )p = 0 for k 6= −n, since Hk(π∗I

•
Y )p ∼= Hk+1(N•

X)p for all p ∈ X and
−n + 1 ≤ k ≤ −1. In degree −n, we have

H−n(π∗I
•
Y )p ∼=

⊕

q∈π−1(p)

H−n(I•Y )q.

This then implies that, for all q ∈ Y , Hk(I•Y )q = 0 for k 6= −n. Our goal is to
calculate this stalk cohomology in degree −n. Since Y is normal, and thus locally
irreducible, it follows by Lemma 2.2 that H−n(I•Y )q ∼= Q for all q ∈ Y .

Finally, we claim that the natural morphism Q•
Y [n] → I•Y is an isomorphism in

Db
c(Y ). In stalk cohomology at any point q ∈ Y , both Hk(Q•

Y [n])q and Hk(I•Y )q
are non-zero only in degree k = −n, with stalks isomorphic to Q. Consequently,
the natural morphism is an isomorphism in Db

c(Y ) provided that the morphism

Q ∼= H−n(Q•
Y [n])q → H−n(I•Y )q ∼= Q

is not the zero morphism. But this is just the “diagonal” morphism from a single
copy of Q to the number of connected components of Y \{p}, which is clearly non-
zero. Thus, Y is a Q-homology manifold.

�

Corollary 2.4. Suppose that N•
X has stalk cohomology concentrated in degree −n+

1. Then, for all p ∈ X, if jp : {p} →֒ X is the inclusion map, we have

Hk(j!pN
•
X) ∼=

{
H̃n+k−1(KX,p;Q), for 0 ≤ k ≤ n− 1;

0, else.
,

where KX,p denotes the real link of X at p, i.e., the intersection of X with a sphere
of sufficiently small radius, centered at p.

This follows by applying j!p to the fundamental short exact sequence of the
normalization, and taking stalk cohomology.

When the normalization Y
π→ X is a Q-homology manifold, the short exact

sequence
0 → Q → H−n(π∗I

•
Y )p → H−n+1(N•

X)p → 0

allows us to identify, given Lemma 2.2, that

m(p) := dimQ H−n+1(N•
X)p = |π−1(p)| − 1.

Consequently, we conclude that the support of N•
X is none other than the image

multiple-point set of the morphism π, which we denote by D; precisely, we have

D := {p ∈ X | |π−1(p)| > 1}.
For this reason, we have referred to the perverse sheaf N•

X as the multiple-point

complex of X (or, of the morphism π, as we do in [3] and [4]). It is immediate from
the fundamental short exact sequence that one always has the inclusion D ⊆ ΣX .
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In such cases (see Section 4), it is useful to partition X into subsets Xk = m−1(k)
for k ≥ 1; clearly, one has

D =
⋃

k>1

Xk.

Finally, since D is the support of a perverse sheaf which, on an open dense subset
of D, has non-zero stalk cohomology only in degree −n + 1, it follows that D is
purely (n− 1)-dimensional.

Remark 2.5. When Y is a Q-homology manifold, in fact, both I•X and N•
X are

just sheaves (up to a shift); moreover, the short exact sequence of perverse sheaves

0 → N•
X → Q•

X [n] → I•X → 0

can be rewritten as a short exact sequence of (constructible) sheaves

0 → QX → I•X [−n] → N•
X [1 − n] → 0.

We then ask, is it ever the case that N•
X is a semi-simple perverse sheaf, so that

Q•
X [n] is an extension of semi-simples? One can find a Whitney stratification S

of X for which the sets Xk are finite unions of strata for all k. Then, for each
stratum S ⊂ Xk, the monodromy of the local system N•

X |S
is determined by the

monodromy of the set π−1(p) for p ∈ S; since this is a finite set with k elements,
it follows immediately that N•

X |S
is semi-simple as a local system on S (since the

monodromy action is semi-simple).

Since N•
X |S

is semi-simple as a local system for any stratum S ⊂ Xk, is N•
X

semi-simple as a perverse sheaf? If one has a Whitney stratification of X for which
the sets Xk are finite unions of strata, and for which the subset D = suppN•

X is
a union of closed strata, then the above argument demonstrates (together with [9]
Section 2.4) that N•

X is semi-simple as a perverse sheaf. In general, however, this
fails to be the case (see Section 4).

More generally, when Q•
X [n] is a perverse sheaf, one may use the general ma-

chinery of M. Saito (see [8], page 325 (4.5.9)) to obtain an isomorphism of perverse
sheaves

GrWn Q•
X [n]

∼→ I•X .

underlying the corresponding isomorphism of mixed Hodge modules. Since dim0X =
n, the induced weight filtration on Q•

X [n] terminates after degree n, so that WnQ
•
X [n] ∼=

Q•
X [n]. Consequently, the above isomorphism yields a short exact sequence

0 → Wn−1Q
•
X [n] → Q•

X [n] → I•X → 0

of perverse sheaves on X , implying N•
X

∼= Wn−1Q
•
X [n]. From this identification,

it follows that N•
X is semi-simple as a perverse sheaf provided that the weight

filtration WiQ
•
X [n] of Wn−1Q

•
X [n] ∼= N•

X for i < n is concentrated in one degree
k < n, i.e., WiQ

•
X [n] = 0 for i < k and WiQ

•
X [n] ∼= WkQ

•
X [n] for k < i < n. Then,

N•
X

∼= GrWk Q•
X [n] underlies a pure polarizable Hodge module, which is therefore

by construction a semi-simple perverse sheaf.
We anticipate that the reverse implication will be more difficult, and be outside

the scope of this paper.
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3. Interpretation in terms of Comparison Complex

Recall that, by D. Massey, if X = V (f) is a hypersurface, N•
X = ker{id−T̃f} is

the perverse eigenspace of the eigenvalue 1 of the monodromy action on φf [−1]Q•
U [n+

1], where U is an open neighborhood of the origin in Cn+1.
Since the content of this paper is interesting only in the case where dim0 Σf =

n− 1 (otherwise, X is its own normalization), we will assume throughout that this
is the case; consequently, the stalk cohomology Hk(φf [−1]Q•

U [n + 1])p is possibly
non-zero only for −n + 1 ≤ k ≤ 0.

In general, it is not the case that, given a morphism of perverse sheaves,
the cohomology of the stalk of the kernel of G is isomorphic to the kernel of the
cohomology on the stalks; that is, there may exist points p ∈ Σf such that

Hk(ker{id−
∼

Tf})p ≇ ker{id−T̃ k
f,p}.

However, this isomorphism does hold in degree −n+ 1 for all p ∈ Σf (See Lemma
5.1 of [6]):

Proposition 3.1. Let π : Y → V (f) be the normalization of V (f), and suppose Y
is a Q-homology manifold. Then, the following isomorphisms hold for all p ∈ Σf :

Hk(ker{id−
∼

Tf})p ∼=
{

ker{id−T̃−n+1
f,p }, if k = −n + 1;

0, if k 6= −n + 1.

H−n+1(im{id−
∼

Tf})p ∼= im{id−T̃−n+1
f,p },

H−n+1(coker{id−
∼

Tf})p ∼= coker{id−T̃−n+1
f,p },

where id−T̃−n+1
f,p is the Milnor monodromy action on H1(Ff,p;Q).

Proof. Since Hk(ker{id−T̃f})p = 0 for k 6= −n + 1, the result follows from the
short exact sequences

0 → H−n+1(ker{id−
∼

Tf})p → H1(Ff,p;Q) → H−n+1(im{id−
∼

Tf})p → 0,

and

0 → H−n+1(im{id−
∼

Tf})p → H1(Ff,p;Q) → H−n+1(coker{id−
∼

Tf})p → 0.

�

By taking stalk cohomology of the fundamental short exact sequence, we have

0 → H−n(Q•
X [n])p → H−n(I•X)p → ker{id−T̃−n+1

f,p } → 0.

Since π∗I
•
Y
∼= I•X , and H−n(π∗I

•
Y )p ∼= Q|π−1(p)|,

ker{id−T̃−n+1
f,p } ∼= Q|π−1(p)|−1

for all p ∈ X , yielding the following nice lower-bound:

Corollary 3.2.

dimQ H1(Ff,p;Q) ≥ |π−1(p)| − 1.
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Remark 3.3. In the case where X = V (f) is a hypersurface with smooth normal-
ization in some open neighborhood U of the origin in Cn+1, we prove in [3] that a
strong relationship holds between the characteristic polar multiplicities of N•

X

and the Lê numbers of the function f (Theorem 5.2).

A careful observation yields that the same result holds for hypersurfaces whose
normalizations are Q-homology manifolds (since all computations in the Theorem
take place inside the hypersurface V (f)). Moreover, one can even use the same
proof as Theorem 5.2 to obtain this more general result.

Remark 3.4. In the hypersurface case X = V (f), Saito’s calculation of H0(X ;FX)
via invariant cycles of the monodromy ([9] Section 2.4) is especially interesting to
us.

Suppose the normalization of X is a rational homology manifold. Massey’s result

that N•
X

∼= ker{id−T̃f} together with Proposition 3.1 allows us to identify FX with

the constructible sheaf ker{id−T̃−n+1
f } whose stalk at a point p is

ker{id−T̃−n+1
f,p } ⊆ H−n+1(φf [−1]Q•

U [n + 1])p ∼= H1(Ff,p;Q),

where T̃−n+1
f,p is the Milnor monodromy operator on H1(Ff,p;Q). Consequently,

Saito’s calculation of H0(X ;FX) via the internal monodromy of FX allows us to
compute information about the Milnor monodromy of f .

4. Example

We consider the following “trivial, non-trivial” example of the normalization of
a surface X with one-dimensional singularity in C3, which nicely illustrates the
content of Theorem 2.3.

Let f(x, y, z) = xz2 − y2(y + x3), so that X = V (f) ⊆ C3 has critical locus
Σf = V (y, z). Then, if we let Y = V (u2− x(y + x3), uy− xz, uz− y(y + x3)) ⊆ C4,
the projection map π : Y → X is the normalization of X .

It is easy to check that ΣY = V (x, y, z, u), and

π−1(Σf) = V (u2 − x4, y, z).

It then follows that Xk = ∅ if k > 2, and X2 = V (y, z)\{0}, so that

suppN•
X = V (y, z) = Σf.

For p ∈ X ,

H−2(π∗I
•
Y )p ∼=

⊕

q∈π−1(p)

H−2(I•Y )q (†4.1)

But π−1(p) ⊆ Y \ΣY , and (I•Y )|
π−1(p)

∼= (Q•
Y [2])|

π−1(p)
, so from (†4.1), it follows

that

H−2(π∗I
•
Y )p ∼= Q2.

Similarly, since (I•Y )
Y \ΣY

∼= Q•
Y \ΣY

[2], it follows that

H0(N•
X)p ∼= H−1(π∗I

•
Y )p = 0.



8 BRIAN HEPLER

When p = 0, we find

Hk(I•Y )0 ∼=
{
Hk(KY,0; I•Y ), if k ≤ −1

0, if k > −1

Since Y has an isolated singularity at the origin in C4, we further have

Hk(KY,0; I•Y ) ∼= Hk+2(KY,0,Q).

For 0 < ǫ ≪ 1, the sphere Sǫ transversely intersects Y near 0, so the real link
KY,0 = Y ∩Sǫ is a compact, orientable, smooth manifold of (real) dimension 3. We
are interested in computing the two integral cohomology groups H0(KY,0;Q) and
H1(KY,0;Q).

Because KY,0 is also connected, we can apply Poincaré duality to find H0(KY,0;Q) ∼=
Q.

Consider the standard parameterization of the twisted cubic ν : P1 → P3 via

ν([s : t]) = [s3 : st2 : t3 : s2t] = [x : y : z : u]

which lifts to a map ν : C2 → C4, parameterizing the affine cone over the twisted
cubic, i.e., the normalization Y = V (u2−xy, uy−xz, uz−y2). Then, we claim that
ν is a 3-to-1 covering map away from the origin. Clearly, since ν parameterizes Y ,
we see that ν is a surjective local diffeomorphism onto ν(C2) = Y .

Suppose that ν(s, t) = ν(s′, t′). Then, we must have s3 = (s′)3 and t3 = (t′)3, so
that there are cube roots of unity η and ω for which s = ηs′ and t = ωt′. But then,

s2t = (s′)2(t′) = η2ωs2t,

so either η2ω = 1, or st = 0. Since η and ω are both cube roots of unity, if η2ω = 1,
then η = ω. Additionally, note that st = 0 implies (s, t) = 0. It then follows that
ν is 3-to-1 away from the origin.

Consider then the (real analytic) function

r(x, y, z, u) = |x|2 + 3|y|2 + |z|2 + 3|u|2

on C4; r is proper, transversally intersects Y away from 0, and Y ∩ r−1[0, ǫ) gives a
fundamental system of neighborhoods of the origin in Y . Consequently, Y ∩ r−1(ǫ)
gives, up to homotopy, the real link KY,0. The composition r(ν(s, t)) then gives:

r(ν(s, t)) = |s3|2 + 3|st2| + |t3|2 + 3|s2t|2

= |s|6 + 3|s|4|t|2 + 3|s|2|t|2 + |t|6

=
(
|s|2 + |t|2

)3
= ǫ,

provided that |s|2+|t|2 = 3
√
ǫ; that is, ν maps the 3-sphere in C2 3-to-1 onto the real

link KY,0. Since the 3-sphere is simply-connected, it is the universal cover of KY,0.
The group of deck transformations given by multiplying (s, t) by a cube root of
unity then yields the isomorphism π1(KY 0) ∼= Z/3Z. Thus, H1(KY,0;Z) ∼= Z/3Z.

By again applying Poincaré duality, we find H2(KY,0;Z) ∼= Z/3Z as well. By
the Universal Coefficient theorem for cohomology, we then have H2(KY,0;Z) = 0
so that H1(KY,0;Z) = 0 by Poincaré duality. Using Q coefficients, this implies:

Hk(KY,p;Q) ∼=
{
Q, if k = 0, 3
0, else

for all p ∈ Y , so that Y is a Q-homology manifold.
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Equivalently, we find:

Hk(N•
X)p ∼=

{
Q, if k = −1 and p ∈ Σf\{0}
0, if k 6= −1, p ∈ Σf

i.e., N•
X has stalk cohomology concentrated in degree −1.

It is not hard to show that the monodromy of the local system H−1(N•
X)|Σf\{0}

is
trivial; consequently, N•

X |Σf
is isomorphic to the extension by zero of the constant

sheaf on Σf\{0}. That is, if j : Σf\{0} →֒ Σf is the open inclusion, then N•
X |Σf

∼=
j!Q

•
Σf\{0}[1]. In particular, we see that N•

X is not semi-simple as a perverse sheaf

on X .
To compare with Remark 2.5, this failure to be a semi-simple perverse sheaf can

be detected by the presence of W0N
•
X

∼= Q•
{0} 6= 0.
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