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PARABOLIC FREQUENCY MONOTONICITY ON COMPACT

MANIFOLDS

XIAOLONG LI AND KUI WANG

Abstract. This work is devoted to the study of parabolic frequency for solutions of the
heat equation on Riemannian manifolds. We show that the parabolic frequency func-
tional is almost increasing on compact manifolds with nonnegative sectional curvature,
which generalizes a monotonicity result proved by C. Poon [16] and by L. Ni [15]. The
proof is based on a generalization of R. Hamilton’s matrix Harnack inequality [8] for
small time. As applications, we obtain a unique continuation result. Monotonicity of a
new quantity under two-dimensional Ricci flow, closely related to the parabolic frequency
functional, is derived as well.

1. Introduction

The (elliptic) frequency functional for a harmonic function h(x) on R
n, introduced by F. J.

Almgren [1] in 1979 and used in the study of local regularity of (multiple-valued) harmonic
functions and minimal surfaces, is defined by

Ie(r) =
r
´

B(o,r)
|∇h|2 dµ

´

∂B(o,r)
h2 dA

,

where dA is the induced n− 1 dimensional Hausdorff measure on ∂B(o, r) and o is a fixed
point in R

n. Almgren obeserved that Ie(r) is monotone nondecreasing in r. For n = 2, it
was in fact first proved by G. H. Hardy using a complex analysis argument (see Exercise 6
on page 138 of [5]). The monotonicity of Ie(r) has many applications in partial differential
equations and geometric measure theory. For instance, it was used by N. Garofalo and F.H.
Lin [6,7] and F.H. Lin [10] to study the unique continuation properties for elliptic operators
and to estimate the size of nodal sets of solutions to parabolic and ellptic equations. The
frequency functional Ie(r) also controls the vanishing order of harmonic functions at the
center o, see the book [9]. We refer the readers to [9] and [17] for more applications.

For harmonic functions on Riemannian manifolds, N. Garofalo and F.H. Lin [6] proved
that Ie(r) is almost increasing in the sense that there exist constants R and Λ, depending
only on the Riemannian metric, such that eΛrIe(r) is monotone nondecreasing in (0, R), (see
also [13, Theorem 2.2]). More recently, A. Logunov [11][12] used this almost monotonicity
together with combinatorics techniques to estimate the size of nodal sets for harmonic
functions and eigenfunctions on manifolds, and proved Nadirashvili’s conjecture, the lower
bound in Yau’s conjecture, and polynomial upper estimates of the Hausdorff measure of
nodal sets of Laplace eigenfuctions.

The parabolic frequency functional for solutions of heat equation on R
n was introduced

by C. Poon [16] in 1996 and used in the study of the unique continuation of solutions to
parabolic equations. We recall its definition for solutions of heat equation on Riemannian
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manifolds. Let (Mm, g) be a complete Riemannian manifold, o be a fixed point in M , and
dµ be the volume element with respect to the Riemannian metric g. Let u(x, t) be a smooth
nonconstant solution to the heat equation

(1.1) ut −△gu = 0

inM×[0, T ]. LetH(x, o; t) be the fundamental solution to the heat equation (1.1), written as
H(x, t) for short. Assume eitherM is compact orM is complete with bounded geometry and
u(x, t) satisfies certain growth conditions so that the integrals are finite and all integration
by parts can be justified. Then the parabolic frequency for u is defined as

I(t) = t ·
´

M H(x, t) · |∇u|2(x, T − t) dµ
´

M H(x, t) · u2(x, T − t) dµ
.

It was shown by C. Poon [16] and L. Ni [15] that if M has nonnegative sectional curvature
and parallel Ricci curvature, then I(t) is monotone nondecreasing in t. The main ingredient
of their proofs is the matrix Harnack estimate of R. Hamilton [8], which asserts that on a
Riemannian manifold with nonnegative sectional curvature and parallel Ricci curvature, the
fundamental solution H(x, t) satisfies

∇i∇jH − ∇iH∇jH

H
+

H

2t
gij ≥ 0.

In fact, R. Hamilton proved the above matrix Harnack estimate for any positive solution of
the heat equation. For Kähler manifolds with nonnegative bisectional curvature, L. Ni [15]
also proved the monotonicity of I(t) when u is a holomorphic function. The proof again
relies on a matrix Li-Yau-Hamilton estimate for solutions to the heat equation on Kähler
manifolds that was established in [2][14].

The parallel Ricci curvature assumption seems quite restrictive and it is our purpose of
this paper to study parabolic frequency functional for solutions of heat equation on more
general Riemannian manifolds. In particular, we prove the almost monotonicity of the
parabolic frequency functional for a short time on compact manifolds with nonnegative
sectional curvature. As applications, we obtain a unique continuation result (see corollary
3.4 below) for solutions of the heat equation on such manifolds. The main result of this
paper is:

Theorem 1.1. Let (Mm, g) be a compact Riemannian manifold with nonnegative sectional
curvature. Assume u(x, t) is a nonconstant solution to the heat equation (1.1) with the
initial data u0(x). There exists a constant T > 0, depending on the manifold M and u0(x),
such that

et
1/2 · t ·

´

M H(x, t) · |∇u|2(x, T − t) dµ
´

M
H(x, t) · u2(x, T − t) dµ

is monotone increasing in t for [0, T ].

It is also natural to consider the case when the metric g is evolving by a geometric flow.
In this direction, we consider (M2, g(t)), a solution to Ricci flow on surfaces with positive
scalar curvature, and define a quantity J(t) by

J(t) = t ·
´

M |∇v(x, t)|2 ·R(x, t) dµg(t)
´

M v2(x, t) ·R(x, t) dµg(t)

,(1.2)

where v(x, t) is a solution of the backward heat equation and R(x, t) is the scalar curvature.
We prove that J(t) is monotone increasing in t.
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Theorem 1.2. Let M2 be a closed surface. Suppose that g(t) is a solution to the Ricci flow
∂
∂tg = −Rg on M with positive scalar curvature for t ∈ [0, T ). Let v(x, t) be a nonconstant
solution to the backward heat equation vt(x, t) + ∆g(t)v(x, t) = 0 on M × [0, T ). Then J(t)
defined in (4.1) is monotone increasing in t on [0, T ).

It would be desirable to find applications of this monotonicity formula and to extend this
result to higher dimensions and to other geometric flows.

2. Hamilton’s matrix Harnack inequality for small time

In this section, we present an improved version of Hamilton’s matrix Harnack inequality
[8] for small time, which will be used in the proof of monotonicity of parabolic frequency on
compact manifolds. We prove the following theorem.

Theorem 2.1. Let (Mm, g) be a compact Riemannian manifold with Sectg ≥ −K, K ≥ 0
and |∇Ric | ≤ L, and f(x, t) be a positive solution to the heat equation (1.1). Then for any
ǫ > 0, there exist constants B = B(M) and T = T (ǫ,K, L,m) such that

∇2 log f(x, t) +
1

2t
g ≥ −

(

(
34

3
+ ǫ)K + ǫ

)(

m+ log
B

tm/2f

)

g

for t ∈ (0, T ].

To begin with, we collect some well-known estimates on positive solutions to the heat
equation, which will be used in the proof of Theorem 2.1.

Lemma 2.1 (Corollary 1.2, 1.3 and 4.2 in [8]). Let (Mm, g) be a compact Riemannian
manifold with Ricg ≥ −(m − 1)K. Suppose that f(x, t) is a positive solution the heat
equation (1.1), satisfying

´

M f dµ ≤ 1. There exists a constant B = B(M) depending only
on M such that

f(x, t) ≤ B

tm/2

ˆ

M

f(x, t) dµ,(2.1)

t|∇f |2 ≤
(

2 + 2(m− 1)Kt
)

f2 log
B

tm/2f
,(2.2)

t

2
△f ≤ 4(m− 1)Kt/2

1− e−(m−1)Kt/2

(

m+ log
B

tm/2f

)

f,(2.3)

for 0 < t ≤ 1.

Proof of Theorem 2.1. The proof of Theorem 2.1 is essentially based on the computations
from Hamilton’s paper [8]. Let

A = m+ log
B

tm/2f
,

P =
f

2t
+ CAf,

Hij = ∇i∇jf − ∇if∇jf

f
,

Nij = Hij + Pgij ,

Q = − f

2t2
− m

2t
Cf + C

|∇f |2
f

,
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where C is a constant to be specified later. Denote by

Wikjl = Rikjl +K(gijgkl − gilgjk),

then

RikjlNkl = WikjlNkl −KNgij +KNij ,

and Wikjl ≥ 0 by Sectg ≥ −K, which implies

Rikjl∇kf∇lf ≥ −K|∇f |2gij .
Direct computations give

∂

∂t
Nij = △Nij +

2

f
N2

ij −
4

f
PNij + 2RijklNkl −RikNjk −RjkNik

+
2

f
Rikjl∇kf∇lf +

(

∇lRij −∇iRjl −∇jRil

)

∇lf +
( 2

f
P 2 +Q

)

gij .

Since
(

∇lRij −∇iRjl −∇jRil

)

∇lf ≥ −3L|∇f |gij,
we conclude

∂

∂t
Nij ≥ △Nij +

2

f
N2

ij −
4

f
PNij + 2WijklNkl

+2KNij −RikNjk − RjkNik + Zgij,

where

Z =
2

f
P 2 +Q− 2KN − 2K

f
|∇f |2 − 3L|∇f |.

Since 2
f P

2 = f
2t2 + 2

tCAf + 2CA2f and A ≥ m, we obtain

2

f
P 2 +Q ≥ 3

2t
CAf + C

|∇f |2
f

+ 2C2A2f.

Using the estimate (2.3), we estimate

2KN + 2K
|∇f |2
f

+ 3L|∇f | = 2K△f +
Km

t
f + 2KmCAf + 3L|∇f |

≤
( 16(m− 1)Kt/2

1− e−(m−1)Kt/2
+ 1

)K

t
Af + 2KCA2f + 3L|∇f |.

Assembling these estimates, we have

Z ≥ 3C

2t
Af + C

|∇f |2
f

+ 2C2A2f −
(

16
(m− 1)Kt/2

1− e−(m−1)Kt/2
+ 1

)KAf

t
− 2KCA2f − 3L|∇f |.

Now we choose C = (343 + ǫ)K + ǫ, and then

Z ≥ 3ǫ

2t
Af +

(3ǫ

2
+ 16(1− (m− 1)Kt/2

1− e−(m−1)Kt/2
)
)KAf

t

+
(

(
34

3
+ ǫ)K + ǫ

) |∇f |2
f

+ 2
(

(
34

3
+ ǫ)K + ǫ

)2

A2f

−2K
(

(
34

3
+ ǫ)K + ǫ

)

A2f − 3L|∇f |

≥ 3ǫ

2t
Af +

[3ǫ

2
+ 16(1− (m− 1)Kt/2

1− e−(m−1)Kt/2
)
]KAf

t
− 9

4ǫ
L2f,
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where we used

3L|∇f | ≤ ǫ
|∇f |2
f

+
9

4ǫ
L2f.

Observing

lim
t→0

(1− (m− 1)Kt/2

1− e−(m−1)Kt/2
) = 0,

then we conclude there exists a small T , depending on K, m and ǫ, such that

3ǫ

2
+ 16(1− (m− 1)Kt/2

1− e−(m−1)Kt/2
) ≥ 0,

for t ≤ T . Furthermore if t < 2ǫ2m/(3L2), we have

3ǫ

2t
Af − 9

4ǫ
L2f ≥ 0.

Thus we can choose a constant T , depending on K, m, L, and ǫ, such that

Z ≥ 0.

Therefore, Hamilton’s maximum principle for tensors implies

Nij ≥ 0

for 0 < t ≤ T = T (K,m,L, ǫ), proving the theorem. �

Denote by d(x) = dg(x, o), the distance between x and o. For the heat kernel H(x, t),
we have both upper bound and lower bound from Cheng-Li-Yau’s paper [3] and Hamilton’s
paper [8]. We summarize as the following lemma.

Lemma 2.2. Let (Mm, g) be a compact Riemannian manifold. The fundamental solution
H(x, t) of heat equation on M satisfies

(2.4) H(x, t) ≤ C

tm/2
exp

(

− d2(x)

5t

)

,

and

(2.5) H(x, t) ≥ C

tm/2
exp

(

− d2(x)

4t
(1 + 2(m− 1)Kt)− m

2
e2(m−1)Kt

)

for some constant C depending on M .

From the lower bound (2.5), we deduce

A = m+ log
B

tm/2H

≤ m+ logB − log(Ce−
d2

4t (1+2(m−1)Kt)−m
2 e2(m−1)Kt

)

≤ C0 +
d2

4t
+

1

2
(m− 1)Kd2(x).

Where C0 is a constant depending on M only.

In conclusion, we get the following Harnack inequality for the heat kernel on compact
manifolds with nonnegative sectional curvature.
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Corollary 2.2. Assume M is a compact manifold with nonnegative sectional curvature.
Then for any ǫ > 0, there exist constants T = T (M, ǫ) and C0 = C0(M), such that

(2.6) ∇2 logH(x, t) +
1

2t
g ≥ −ǫ

(

C0 +
d2(x)

4t

)

g,

for t ∈ (0, T ].

3. Monotonicity of parabolic frequency

In this section, we prove that the parabolic frequency on compact manifolds with nonneg-
ative sectional curvature is almost increasing.

Theorem 3.1. Let (Mm, g) be a compact Riemannian manifold with nonnegative sectional
curvature. Assume u(x, t) is a solution to the heat equation (1.1) with the initial data u0(x)
satisfying

|u0(x)|+ |∇u0(x)|+ |∇2u0(x)| ≤ a0 · (
ˆ

M

|∇u0|2 dµ)
1
2 ,

for some positive a0. There exists a constant T > 0, depending on the manifold M and a0
such that

et
1/2 · t ·

´

M
H(x, t) · |∇u|2(x, T − t) dµ
´

M H(x, t) · u2(x, T − t) dµ

is an increasing function of t in [0, T ].

Remark 3.2. The initial condition in Theorem 3.1

|u0(x)| + |∇u0(x)| + |∇2u0(x)| ≤ a0 · (
ˆ

M

|∇u0|2 dµ)
1
2

is equivalent to that u0(x) is not a constant. In fact, if u0 = constant, then u(x, t) is also
a constant and Theorem 3.1 is trivial.

To begin with, we define the following quantities:

Z(t) =

ˆ

M

H(x, t) · u2(x, τ) dµ,

D(t) =

ˆ

M

H(x, t) · |∇u|2(x, τ) dµ,

where τ = T − t. We first show the monotonicity of quantities D(t) and Z(t), by calculating
their evolution equations.

Proposition 3.1. For t ∈ [0, T ], it holds that

(3.1) Z ′(t) = 2D(t) > 0.

Assume further that Ricg ≥ −(m− 1)K, then

(3.2) D′(t) ≥ −2(m− 1)KD(t),

and therefore e2(m−1)KtD(t) is monotone increasing.
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Proof. Direct calculations show that

Z ′(t) =

ˆ

M

Ht · u2 dµ−
ˆ

M

2Hu · uτ dµ(3.3)

=

ˆ

M

H · △u2 dµ−
ˆ

M

2Hu · uτ dµ

= 2

ˆ

M

H · |∇u|2 dµ

= 2D(t),

which is clearly positive.

We compute that

D′(t) =

ˆ

M

Ht|∇u|2 − 2H〈∇u,∇uτ〉 dµ(3.4)

=

ˆ

M

△H |∇u|2 − 2H〈∇u,∇uτ 〉 dµ

=

ˆ

M

2H〈∇u,∇△u〉+ 2H |∇2u|2 dµ

+

ˆ

M

2H〈∇u,Ric(∇u)〉 − 2H〈∇u,∇uτ〉 dµ

=

ˆ

M

2H |∇2u|2 dµ+ 2

ˆ

M

H〈∇u,Ric(∇u)〉 dµ.

Since the Ricci curvature is bounded from below by −(m− 1)K, then

D′(t) ≥
ˆ

M

2H |∇2u|2 dµ− 2(m− 1)K

ˆ

M

H |∇u|2 dµ

≥ −2(m− 1)KD(t),

completing the proof. �

To prove Theorem 3.1, we derive a lower bound on D(t) first.

Lemma 3.1. Let (M, g) and u(x, t) be same as in Theorem 3.1. Assume further that
´

M
|∇u0|2 dµ = 1. Then for any ǫ > 0, there exist constants T = T (M, ǫ), CM = C(M),

c = c(M, ǫ) and C = C(M, ǫ, a0), such that

(3.5) D(t) ≥ ce−C·t−CMǫ

for t ∈ [0, T ].

Proof. Recall from Corollary 2.2 that for any ǫ > 0, there exists a constant T = T (M, ǫ)
and C0 = C0(M), such that

(3.6) ∇2H − ∇H ⊗∇H

H
+

H

2t
g ≥ −ǫ(C0 +

d2(x)

4t
)Hg,

for t ∈ (0, T ].

Let X = ∇u, and then it follows from the heat equation (1.1) that

(3.7) Xt −△X = −Ric(X).



8 XIAOLONG LI AND KUI WANG

Let

W (t) =

ˆ

M

H(x, t) · |∇X |2(x, τ) dµ,

then we see from (3.4) that

D′(t) = 2W (t) + 2

ˆ

M

H
〈

X,Ric(X)
〉

dµ.(3.8)

Direct computations show that

W ′(t) =

ˆ

M

Ht|∇X |2 − 2H〈∇X,∇Xτ 〉 dµ

=

ˆ

M

△H |∇X |2 + 2H〈△X,Xτ〉+ 2H〈∇∇ logHX,Xτ 〉 dµ

=

ˆ

M

△H |∇X |2 + 2H〈Xτ +Ric(X), Xτ 〉+ 2H〈∇∇ logHX,Xτ 〉 dµ,

where we used equation (3.7). Using integration by parts, we get

(3.9)
ˆ

M

△H |∇X |2 dµ = −2

ˆ

M

Hi〈Xj , Xji〉 dµ

= −2

ˆ

M

Hi〈Xj , Xij〉 dµ+ 2

ˆ

M

HiRijklukjul dµ

= 2

ˆ

M

Hij〈Xj , Xi〉 dµ+ 2

ˆ

M

H〈∇∇ logHX,△X〉 dµ

+2

ˆ

M

HiRijklukjul dµ

= 2

ˆ

M

Hij〈Xj , Xi〉 dµ+ 2

ˆ

M

H〈∇∇ logHX,Xτ +Ric(X)〉 dµ

+2

ˆ

M

HiRijklukjul dµ.

Recall from Harnack inequality (3.6) that

Hij −
HiHj

H
+

H

2t
gij ≥ −EHgij,

with E = ǫ(C0 +
d2(x)
4t ), we have

(3.10) 2

ˆ

M

Hij〈Xj , Xi〉 dµ ≥ 2

ˆ

M

H |∇∇ logHX |2 dµ− W (t)

t
− 2

ˆ

M

EH |∇X |2 dµ.

Now we estimate the curvature involved term by

(3.11) 2

ˆ

M

HiRijklukjul dx ≥ −CM

ˆ

M

|∇H | · |X | · |∇X | dµ.

Here and thereafter, we always use CM to denote the constant depending only on the man-
ifold, though it may change from line to line. Combining above calculations and estimates
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(3.9–3.11) together, we conclude

W ′(t) ≥
ˆ

M

2H |∇∇ logHX |2 dµ− W (t)

t
− 2

ˆ

M

EH |∇X |2 dµ

+

ˆ

M

2H〈∇∇ logHX,Xτ +Ric(X)〉 dx− CM

ˆ

M

|∇H | · |X | · |∇X | dµ

+

ˆ

M

2H〈Xτ +Ric(X), Xτ 〉+ 2H〈∇∇ logHX,Xτ 〉 dµ

=

ˆ

M

2H
∣

∣∇∇ logHX +Xτ

∣

∣

2
+ 2H〈Ric(X),∇∇ logHX +Xτ 〉 dµ

−W (t)

t
− 2

ˆ

M

EH |∇X |2 dµ− CM

ˆ

M

|∇H | · |X | · |∇X | dµ

=

ˆ

M

2H
∣

∣∇∇ logHX +Xτ +
1

2
Ric(X)

∣

∣

2
dµ− 1

2

ˆ

M

H |Ric(X)|2 dµ

−W (t)

t
− 2

ˆ

M

EH |∇X |2 dµ− CM

ˆ

M

|∇H | · |X | · |∇X | dµ,

using the evolution equation (3.8) for D(t), we get

W ′(t)D(t)−W (t)D′(t) ≥
ˆ

M

2H |∇∇ logHX +Xτ +
1

2
Ric(X)|2 dµ ·

ˆ

M

H |X |2 dµ

−1

2

ˆ

M

H |Ric(X)|2 dµ ·D(t)− W (t)

t
·D(t)− 2

ˆ

M

EH |∇X |2 dµ ·D(t)

−CM

ˆ

M

|∇H | · |X | · |∇X | dµ ·D(t)− 2W ·
(

W +

ˆ

M

H〈Ric(X), X〉 dµ
)

.

Integration by parts yields
ˆ

M

H |∇X |2 dµ = −
ˆ

M

H〈∇∇ logHX,X〉+H〈Xτ +Ric(X), X〉 dµ

= −
ˆ

M

H〈∇∇ logHX +Xτ , X〉 dµ−
ˆ

M

H〈Ric(X), X〉 dµ,

then we have

2W ·
(

W +

ˆ

M

H〈Ric(X), X〉 dµ
)

= 2
(

ˆ

M

H
〈

∇∇ logHX +Xτ +
1

2
Ric(X), X

〉

dµ
)2

−1

2

(

ˆ

M

H〈Ric(X), X〉 dµ
)2

.

Thus, using Hölder’s inequality, we get

W ′D −WD′ ≥ −1

2

ˆ

M

H |Ric(X)|2 dx ·D − W

t
·D(3.12)

−2

ˆ

M

EH |∇X |2 dµ ·D − CM

ˆ

M

|∇H ||X ||∇X | dµ ·D.

Since the gradient estimates (2.2) gives

|∇H | ≤
√
2H√
t

(

C0 +
d2

4t

)1/2
,
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we then estimate

CM

ˆ

M

|∇H ||X ||∇X | dµ ≤ CM

ˆ

M

√
2H√
t

(

CM +
d2

4t

)1/2|X ||∇X | dµ

≤ CM

ˆ

M

1

ǫt
H |X |2 dµ+ CM

ˆ

M

H |∇X |2
(

ǫ+
ǫ

t

)

dµ

≤ CM

ǫt
D(t) + CM (ǫ+

ǫ

t
)W (t).

Observing

2

ˆ

M

EH |∇X |2 dµ ≤ CM (ǫ+
ǫ

t
)W,

and plugging above estimates to (3.12), we derive

W ′(t)D(t) −W (t)D′(t) ≥ −CMD2 − WD

t
− CM (ǫ+

ǫ

t
)WD − CMD2

tǫ
(3.13)

≥ −CM

tǫ
D2 −

(1 + CM ǫ

t

)

WD

for t ≤ T . Thus
(W (t)

D(t)

)′

≥ −CM

tǫ
−
(1 + CM ǫ

t

)W (t)

D(t)
,

which implies

t1+CM ǫW (t)

D(t)
+

CM

(1 + CM ǫ)ǫ
t1+CM ǫ

is monotone nondecreasing in [0, T ]. Therefore

W (t)

D(t)
≤ t−1−CMǫ · C(M, ǫ, a0),

for t ≤ T .

From derivative of D(t) in (3.4) and above estimate, we obtain that

(logD(t))′ =
2W (t) + 2

´

M
H〈Ric(X), X〉 dµ
D(t)

≤ t−1−CM ǫ · C(M, ǫ, a0).

Integrating from t to T yields

D(t) ≥ D(T )e−C(M,ǫ,a0)·t
−CM ·ǫ ≥ c(M, ǫ) · e−C(M,ǫ,a0)·t

−CM ·ǫ

proving the lemma. �

Using the above lemma, we give the following estimate.

Lemma 3.2. Let (M, g) and u(x, t) be same as in Theorem 3.1. Assume
´

M |∇u0|2 dµ = 1.
There exists a constant T0 = T0(M,a0), such that

(3.14)
1

t1/2

ˆ

M

H |∇u|2d2(x) dµ ≤ 3

2
D(t),

for any 0 < t ≤ T0.
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Proof. We first choose ǫ in Lemma 3.1 so that

CM ǫ =
1

4
,

which clearly depends only on M . Observing that

1

t1/2

ˆ

M

d2H |∇u|2 dµ =

ˆ

d2(x)≤t1/2

d2

t1/2
H |∇u|2 dµ+

ˆ

d2(x)≥t1/2

d2

t1/2
H |∇u|2 dµ

≤ D(t) +

ˆ

d2(x)≥t1/2

d2

t1/2
H |∇u|2 dµ,

then we only need to estimate the integral
ˆ

d2(x)≥t1/2

d2

t1/2
H |∇u|2 dµ.

From the upper bound of the heat kernel (2.4), it follows
ˆ

d2(x)≥t1/2

d2

t1/2
H |∇u|2 dµ ≤ C(M)

ˆ

d2(x)≥t1/2

e−d2/(5t)

t(m+1)/2
|∇u|2 dµ

= C(M)
e
− 1

5t1/2

t(m+1)/2

ˆ

d2(x)≥t1/2
|∇u|2 dµ

≤ C(M)e−
t
−

1
2

10

ˆ

M

|∇u|2 dµ

≤ C(M)e−
t
−

1
2

10 .

From Lemma 3.1

D(t) ≥ c(M) · e−C(M,a0)·t
−

1
4

and

e−
t
−

1
2

10 = o(ce−Ct−
1
4 ),

then there exists a constant T0, depending on M and a0, such that
ˆ

d2(x)≥t1/2

d2

t1/2
H |∇u|2 dµ ≤ 1

2
D(t),

for t ∈ (0, T0], proving the lemma. �

Now we are using above lemmas to prove Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality, to prove Theorem 3.1, we assume that
ˆ

M

|∇u0|2 dµ = 1.

Let T be a constant, depending on M and a0, which is so defined that Corollary 2.2 holds
with ǫ = 1/2, i.e.

∇2H − ∇H ⊗∇H

H
+

H

2t
g ≥ −1

2

(

C0 +
d2(x)

4t

)

Hg.

We assume further

T ≤ min
{

T0,
1

64C2
0

}
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so that the estimate (3.14) holds as t ≤ T .

Noting

D′(t) =

ˆ

M

Ht · |∇u|2 dµ−
ˆ

M

2H〈∇u,∇uτ 〉 dµ

=

ˆ

M

△H |∇u|2 dµ+

ˆ

M

2Hu2
τ dµ+

ˆ

M

2〈∇H,∇u〉uτ dµ

=

ˆ

M

2Hijuiuj dµ+

ˆ

M

2Hu2
τ dµ+

ˆ

M

4H〈∇ logH,∇u〉uτ dµ,

and matrix Harnack inequality (2.6) gives
ˆ

M

2Hijuiuj dµ ≥
ˆ

M

(

2H |〈∇ logH,∇u〉|2 − 1

t
H |∇u|2 −

(

C0 +
d2(x)

4t

)

H |∇u|2
)

dµ,

we obtain

D′(t) ≥
ˆ

M

2H |〈∇ logH,∇u〉|2 dµ− D(t)

t
−
ˆ

M

(

C0 +
d2(x)

4t

)

H |∇u|2 dµ

+

ˆ

M

4H〈∇ logH,∇u〉uτ dµ+

ˆ

M

2Hu2
τ dµ

=

ˆ

M

2H |〈∇ logH,∇u〉+ uτ |2 dµ− D(t)

t
−
ˆ

M

(

C0 +
d2(x)

4t

)

H |∇u|2 dµ.

These imply

D′(t)Z(t)−D(t)Z ′(t) ≥
ˆ

M

2H
∣

∣〈∇ logH,∇u〉+ uτ

∣

∣

2
dµ ·
ˆ

M

Hu2 dµ− D(t)Z(t)

t

−
ˆ

M

(

C0 +
d2(x)

4t

)

H |∇u|2 dµ · Z(t)− 2D2(t).

Since

D(t) =

ˆ

M

H |∇u|2 dµ = −
ˆ

M

Hu〈∇ logH,∇u〉+Huuτ dµ,

then
ˆ

M

2H |〈∇ logH,∇u〉+ uτ |2 dµ ·
ˆ

M

Hu2 dµ− 2D2(t) ≥ 0

by the Hölder inequality. Then we get
(D(t)

Z(t)

)′

=
1

Z2

(

D′(t)Z(t)−D(t)Z ′(t)
)

(3.15)

≥ 1

Z2

(

− D(t)Z(t)

t
−
ˆ

M

(

C0 +
d2(x)

4t

)

H |∇u|2 dµ · Z(t)
)

= −1

t

D(t)

Z(t)
− C0

D(t)

Z(t)
− 1

4t

´

M d2H |∇u|2 dµ

Z(t)

Using estimate (3.14), we obtain from (3.15) that
(D(t)

Z(t)

)′

≥ −1

t

D(t)

Z(t)
− C0

D(t)

Z(t)
− 3

8t1/2
D(t)

Z(t)
≥ −1

t

D(t)

Z(t)
− 1

2t
1
2

D(t)

Z(t)

for 0 < t ≤ T , which implies
(

et
1
2 · t · D(t)

Z(t)

)′

≥ 0,
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proving the theorem.

�

Remark 3.3. The conclusion in Theorem 3.1 also holds for almost nonnegative manifolds
with almost the same proof as Theorem 3.1’s, i.e. sectional curvature nonnegative in The-
orem 3.1 can be replaced by Sectg ≥ −K with K diam2(M) ≤ ǫ0 for some small positive
ǫ0.

It is well-known that on R
n a unique continuation (or backward uniqueness) theorem fol-

lows from the monotonicity of parabolic frequency, and then from Theorem 3.1, we conclude
the following backward uniqueness theorem for the heat equation on compact manifolds with
nonnegative sectional curvature.

Corollary 3.4. Let (Mm, g) be a compact Riemannian manifold with nonnegative sectional
curvature. Let u(x, t) be a smooth solution to the heat equation (1.1) in M × (0,+∞). If
u(x, t) vanishes of infinite order in (x0, t0) in the sense that

(3.16) |u(x, t)| ≤ O
(

d2(x, x0) + |t− t0|
)N

for any integer N > 0, for any (x, t) near (x0, t0). Then u(x, t) is identically zero.

Proof. We assume by contradiction that

c1 :=

ˆ

M

H(x, x0; t0) · |∇u|2(x, 0) dx > 0.

Assume further that

|u(x, t)|C2 ≤ c2,

for M × [0, t0].

Let

Z(t) =

ˆ

M

H(x, x0; t) · u2(x, t0 − t) dµ, and D(t) =

ˆ

M

H(x, , x0; t) · |∇u|2(x, t0 − t) dµ.

Then by Theorem 3.1, there exist a constant T (depending on M and c2/c1), such that

et
1/2 · t · D(t)

Z(t)

is monotone nondecreasing in [T − t0, t0]. Let e
t
1/2
0 · t0 · D(t0)

Z(t0)
= C(t0), and then it follows

(

logZ(t)
)′ ≤ 2C(t0)

t
,

which implies

(3.17) Z(t) ≥ Z(t0)
( t

t0

)2C(t0)

for 0 < t < t0. Here Z(t0) and D(t0) are nonzero due to the assumption on D(T ) and
Proposition 3.1.

But on the other hand if u vanishes of infinite order in (x0, t0), then for any integer N > 0
there exist constant C1 > 0 and θ > 0, such that for any (x, t) satisfying d2(x, x0)+ |t−t0| ≤
θ, it holds

|u(x, t)| ≤ C1

(

d2N (x, x0) + |t− t0|N
)

.
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For any t satisfying t1/2 + t ≤ θ, we estimate

Z(t) =

ˆ

M

H(x, x0; t) · u2(x, t0 − t) dµ ≤ CM

ˆ

M

u2(x, t0 − t) · t−m
2 e−

d2(x,x0)
5t dµ.

Since
ˆ

d≤t1/4
u2(x, t0 − t)t−

m
2 e−

d2(x,x0)
5t dµ ≤ C(M,C1)

ˆ

d≤t1/4
t
N
2 t−

m
2 e−

d2(x,x0)
5t dµ

≤ C(M,C1)t
N/2−m/2

and
ˆ

d>t1/4
u2(x, t0 − t) · t−m

2 e−
d2(x,x0)

5t dµ ≤ C(c2)

ˆ

d>t1/4
t−

m
2 e−

d2(x,x0)
10t e

− 1

10t1/2 dµ

≤ C(c2)e
− 1

10 t
−1/2

≤ C(c2)t
N/2−m/2

for t small. These give

Z(t) ≤ CtN/2−m/2.

Since N is arbitrary large, the above inequality contradict with the estimate (3.17) as t goes
to zero. Then we have D(T ) = 0, which immediately implies that u(x, t) is identically zero
for t ∈ [t0 − T, t0], hence for all t.

�

4. A monotonicity formula for Ricci flow on surfaces

In this section, we introduce a quantity J(t) (see (4.1)), which is closely related to the
parabolic frequency functional, and prove its monotonicity under Ricci flow on surfaces.

Theorem 4.1. Let M2 be a closed surface. Suppose that g(t) is a solution to the Ricci flow
∂
∂tg = −Rg on M with positive scalar curvature for t ∈ [0, T ). Let v(x, t) be a nonconstant
solution to the backward heat equation

vt(x, t) + ∆g(t)v(x, t) = 0

on M × [0, T ). Define

J(t) = t ·
´

M |∇v(x, t)|2 ·R(x, t) dµg(t)
´

M
v2(x, t) ·R(x, t) dµg(t)

.(4.1)

Then J(t) is monotone increasing in t on [0, T ).

The quantity J(t) can be viewed as an entropy on two-dimensional Ricci flow. The crucial
ingredient of the proof is a matrix differential Harnack estimate for Ricci flow on surfaces,
which was obtained by R. Hamilton in the 1980’s and was included in [4, Exercise 10.22].
It can be proved by applying Hamilton’s maximum principle for tensors to the evolution
equation satisfied by the quantity on the left hand side of (4.2).

Lemma 4.1. Let (M2, g(t)) be a solution to the Ricci flow with positive scalar curvature
for t ∈ [0, T ). Then for any t ∈ (0, T ), we have

(4.2) ∇i∇j logR+
1

2

(

R+
1

t

)

gij ≥ 0.
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Before giving the proof of Theorem 4.1, we recall some evolution equations for the Ricci
flow on surfaces that can be found in [4].

Lemma 4.2. Let (M2, g(t)) be a solution to the Ricci flow ∂
∂tg = −Rg. Then we have

∂

∂t
gij = Rgij ,

∂

∂t
(R dµ) = ∆R dµ.

Proof of Theorem 4.1. In the following, all the integrals are preformed with respect to dug(t),
the Riemannian measure induced by the metric g(t). To keep notations simple, we omit
writing it. Let

Z1(t) =

ˆ

M

v2(x, t)R(x, t) dµ > 0,

D1(t) =

ˆ

M

|∇v(x, t)|2R(x, t) dµ.

Direct calculation using Lemma 4.2 shows

Z ′
1(t) =

ˆ

M

2vvtR dµ+

ˆ

M

v2∆R dµ

=

ˆ

M

−2v∆vR dµ+

ˆ

M

(2v∆v + 2|∇v|2)R dµ

= 2D1(t).

Making use of

∂

∂t
|∇v|2 =

(

∂

∂t
gij

)

∇iv∇jv + 2gij
∂

∂t
(∇iv)∇jv = |∇v|2R+ 2〈∇v,∇vt〉,

and
ˆ

M

|∇v|2∆R dµ = −2

ˆ

M

∇jR∇j∇iv∇iv dµ = 2

ˆ

M

∇i∇jR∇iv∇jv dµ−2

ˆ

M

〈∇R,∇v〉vt dµ,

yields

D′
1(t) =

ˆ

M

|∇v|2R2 dµ+ 2

ˆ

M

〈∇v,∇vt〉R dµ

+2

ˆ

M

∇i∇jR∇iv∇jv dµ− 2

ˆ

M

〈∇R,∇v〉vt dµ

=

ˆ

M

|∇v|2R2 dµ+ 2

ˆ

M

v2tR dµ

+2

ˆ

M

∇i∇jR∇iv∇jv dµ− 4

ˆ

M

〈∇R,∇v〉vt dµ.

The matrix differential Harnack estimate in Lemma 4.2 is equivalent to

∇i∇jR −R∇i logR∇j logR+
1

2
R

(

R+
1

t

)

gij ≥ 0.
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Substituting this into the expression for D′
1(t) yields

D′
1(t) ≥ 2

ˆ

M

R〈∇v,∇ logR〉2 dµ− 1

t

ˆ

M

|∇v|2R dµ

+2

ˆ

M

v2tR dµ− 4

ˆ

M

R〈∇ logR,∇v〉vt dµ

= 2

ˆ

M

R |〈∇v,∇ logR〉 − vt|2 dµ− D1(t)

t
.

Therefore,

D′
1(t)Z1(t) +

Z1(t)D1(t)

t
≥ 2

ˆ

M

R |〈∇v,∇ logR〉vt|2 dµ ·
ˆ

M

v2R dµ

≥ 2
(

ˆ

M

vR (vt − 〈∇v,∇ logR〉) dµ
)2

≥ 2D2
1(t) = Z ′

1(t)D1(t),

where we have used the Cauchy-Schwarz inequality, Z ′
1(t) = 2D(t), and

D1(t) =

ˆ

M

|∇v|2R dµ = −
ˆ

M

〈∇v,∇R〉v dµ−
ˆ

M

v∆vR dµ

=

ˆ

M

vR (vt − 〈∇v,∇ logR〉) dµ.

Theorem 4.1 then follows immediately since

J ′(t) =
t

Z1(t)2

(

Z1(t)D1(t)

t
+D′

1(t)Z1(t)− Z ′
1(t)D1(t)

)

≥ 0.

This finishes the proof. �

The quantity J(t) can also be viewed as a Dirichlet energy with respect to the weighted
evolving measure R(x, t)dµ. For any 0 < t < T , we define the first nonzero eigenvalue of
(M2, g(t)) with the weighted measure R(x, t)dµ by

λR(t) = inf

{

´

M |∇u|2R(x, t) dµg(t)
´

M
u2R(x, t) dµg(t)

: u(x) ∈ C∞(M) \ {0},
ˆ

M

u(x)R(x, t) dµg(t) = 0

}

.

Then it is easy to see that the following corollary is a direct consequence of Theorem 4.1.

Corollary 4.2. Let M2 be a closed surface. Suppose that g(t) is a solution to the Ricci flow
∂
∂tg = −Rg on M with positive scalar curvature for t ∈ [0, T ), and λR(t) is the eigenvalue
defined as above. Then tλR(t) is a monotone increasing function of t in [0, T ).

Acknowledgments

The second author was supported by NSF of China under Grant No. 11601359, NSF
of Jiangsu Province No. BK20160301, and China Postdoctoral Foundation grant No.
2017T100394 and 2016M591900.



PARABOLIC FREQUENCY MONOTONICITY ON COMPACT MANIFOLDS 17

References

[1] Frederick J. Almgren Jr., Dirichlet’s problem for multiple valued functions and the regularity of mass

minimizing integral currents, Minimal submanifolds and geodesics (Proc. Japan-United States Sem.,
Tokyo, 1977), 1979, pp. 1–6. MR574247 ↑1

[2] Huai-Dong Cao and Lei Ni, Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler mani-

folds, Math. Ann. 331 (2005), no. 4, 795–807. MR2148797 ↑2
[3] Siu Yuen Cheng, Peter Li, and Shing Tung Yau, On the upper estimate of the heat kernel of a complete

Riemannian manifold, Amer. J. Math. 103 (1981), no. 5, 1021–1063. MR630777 ↑5
[4] Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics,

vol. 77, American Mathematical Society, Providence, RI; Science Press, New York, 2006. MR2274812
(2008a:53068) ↑14, 15

[5] John B. Conway, Functions of one complex variable, Second, Graduate Texts in Mathematics, vol. 11,
Springer-Verlag, New York-Berlin, 1978. MR503901 ↑1

[6] Nicola Garofalo and Fang-Hua Lin, Monotonicity properties of variational integrals, Ap weights and

unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268. MR833393 ↑1
[7] , Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure

Appl. Math. 40 (1987), no. 3, 347–366. MR882069 ↑1
[8] Richard S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993),

no. 1, 113–126. MR1230276 ↑1, 2, 3, 5
[9] Qing Han and Fang-Hua Lin, Nodal sets of solutions of elliptic differential equation, Book in prepartion.

↑1
[10] Fang-Hua Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 44

(1991), no. 3, 287–308. MR1090434 ↑1
[11] Alexander Logunov, Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff

measure, Ann. of Math. (2) 187 (2018), no. 1, 221–239. MR3739231 ↑1
[12] , Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound

in Yau’s conjecture, Ann. of Math. (2) 187 (2018), no. 1, 241–262. MR3739232 ↑1

[13] Dan Mangoubi, The effect of curvature on convexity properties of harmonic functions and eigenfunc-

tions, J. Lond. Math. Soc. (2) 87 (2013), no. 3, 645–662. MR3073669 ↑1
[14] Lei Ni, A matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow, J. Differential Geom. 75 (2007),

no. 2, 303–358. MR2286824 ↑2
[15] , Parabolic frequency monotonicity and a theorem of Hardy-Pólya-Szegö, Analysis, complex
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